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Foreword 

By emphasizing the symmetry of certain set theoretic conditions, shown to be associ- 

ated with Arrow's Impossibility Theorem, a characterization of "kinds of axioms" is ob- 

tained. More precisely, if the defining properties of a model satisfies these conditions, 

then the model must have a conclusion much like that of Arrow's theorem. Because the 

conditions are described in set theoretic terms, the applicability of these results extends 

beyond the usual setting of complete, binary, transitive rankings to space of utility func- 

tions, probability distributions, etc. In this manner, not only can new extensions of 

Arrow's theorem be obtained, but it is shown how the same "kinds of axioms" applies to, 

say, problems about the aggregate excess demand function, the Hurwicz-Schmeidler dicta- 

torial result about Pareto optimal, Nash equilibria, the Gibbard-Satterthwaite theorem 

about manipulability, etc. 

Alexander B. Kurzhanski 

Chairman 

System and Decision Sciences Program 



Stirmlated by A r r o w ' s  seminal work [ I ] ,  socia l  choice has become an act ive 

research area. There are lists of axioms forcing impossibility statements, 

conditions admitting possib i l i ty  assert ions, and the Gibbard [3] - Satterthwaite 

[ 191 theorem a b u t  rranipulation. (An excel lent survey is Sen [20]. ) What is 

missing from the l i t e ra tu re  is a simple, unifying mthematical explanation - one 

t h a t  with a single argument can sukume several seemingly d i f ferent  conclusions, 

one tha t  eas i ly  permits extensions of classical theorems and the derivation of new 

resu l ts ,  and one t ha t  captures the elusive f ron t ie r  between possib i l i ty  and 

impossibility statements. A s tep  toward such a description is given here. The 

idea is to s h i f t  emphasis from wh3t pwticijlar set of axions yield possib i l i ty  o r  

i m s s i b i l i t y  conclusions, to w 1 ~ t  kin& of axiom cause these resul ts .  This 

approach is i l l u s t r a t d  by showing how A r r o w ' s  T b r e m ,  several other soc ia l  choice 

resu l ts ,  a s t a t i s t i c a l  paradox a b u t  contingency tables,  the Hurwicz-Schidler 

study of o p t i m l  Nash equi l ibr ia,  cer ta in  questions a b u t  economic al locat ion 

procedures, and conclusions from several other discipl ines are a l l  c losely related. 

This assert ion may be surpris ing if only because the examples come from di f ferent  

discipl ines where the sets of underlying assumptions or axioms m y  have l i t t le  to 

do with each other. What unif ies these mdels is t ha t  w h i l e  the assumptions and 

axioms d i f fe r ,  they are a l l  of the s m  mmbinatoric End; consequently, these 

rrndels have related properties. For instance, by characterizing what kinds of 

axiom- give rise to an Arrowtype theorem, as I do here, resu l ts  from d i f fe rent  

l i te ra tures  can be unified and extended i n  several direct ions. 

My presentation has a geometric f lavor where the goal is to create an 

eas i l y  used, versat i le  technique. The idea is this. Often, aggregation mdels  

from socia l  choice, economics, probabil i ty, and other areas are described i n  terms 

of the requirements we want the system to sat is fy ;  e. g. , the independence 

conditions from socia l  choice. But, are these conditions self-contradictorf l  To 

invest igate this issue we might examine a l l  logical,  combinatoric p s i b i l i t i e s .  

I t  turns out t ha t ,  f o r  several mdels ,  the combinatoric analysis of the axiom 

involve related argum?nts. This suggests characterizing "MI& of axiom-" i n  terms 

of the associated combinatoric analysis. This program is started here; I 

characterize the kind of axioms t ha t  a m  related to Arrow's theorem. To do so, I 

introduce a geometric representation t ha t  I call the bhwy  owxlap principle. I t  

is based the geometry of cer ta in  sets - the "level sets" of the imposed conditions. 

We now k n o w  why soc ia l  aggregation procedures have d i f f i cu l t i es .  An 

aggregation process mps a d m i n  onto a rmch smaller range, so the problems and 



paradoxes are created by the "squashed overflow". In an earlier paper [ 161 (also 

see [15]), I demnstrated tha t  this explains the paradoxes fo r  several classes of 

socia l  choice, voting, and probability mdels. To prove rw assert ion, I embedded 

"discrete d e l s "  i n b  classes of s m t h  mppings. Then, the existence and the 

creation of new paradoxes are obtained with calculus techniques. But certain 

discrete problem, such as A r r o w ' s  t b r e m ,  cannot be handled i n  this m r .  So, 

tk resul ts given here can be viewed as extending tk discussion of [16]. Indeed, 

one can show tha t  the overlap principle corresponds b the rank conditions of [16]. 

A secondary t k m e  fo r  this paper corn from economics. Sen [20,p.1074] 

points out that  "Economists did not . . take nuch notice of  this [social c h i ce ]  

l i teratum, or of t h  pmblem studied i n  them, until the "infomtional  crisis" 

sent them s m h i n g  for other m t h d s .  " One way tD study infonmtion is with the 

mchanism introduced by L. Hurwicz [6]; an approach that  has proved b be a 

convenient f o m l a t i o n  tD analyze incentive problem and organizational design. A 

central issue is b understand the relationship between an al location process and 

the associated mchanism. For s m t h  mchanism, we have answers; in  [9,17,18] 

geomtr ic tools are created that  characterize a l l  possible "message mchanism" 

associated with a given " s m t h  allocation procedures". But, because this 

characterization is based on the level sets of certa in s m t h  functions, the 

techniques do not extend tD discrete allocation processes - indeed, the discrete 

problem remins open. (Some par t ia l  results are i n  [81. ) However, as S. Reiter 

[ 13 ] recognized, social choice d e l s  are discrete examples of Hurwicz 's "one 

shot" mechanism. So, i n  this s p i r i t ,  a secondary objective of this paper is tD 

use the analysis of social choice mxlels tD understand w h t  kind of mathematics is 

needed fo r  the mchanism design of discrete system. I t  turns out tha t  the "level 

set" approach stil l applies where the di f ferent ia l  geomtric techniques developed 

to analyze the level sets fo r  s m t h  allocation procedures are replaced with an 

algebraic group theoretic analysis. 

The emergence of these algebraic structures reinforces rw belief [I51 that  

t h y  explain the d i f f icu l t ies  c o m n  tD social choice and other discrete decision 

and allocation problem. (This runs against Sen 's c o m n t  [20, p. 10781 , " . . h~t;  - 

Lww;ile - IJO 'gtni~p tJmry ' is i ~ ~ w ~ l  VW:~!" ) These algebraic synmetries - the wreath 

p d u c t  of certain permtation groups - play a c r i t i ca l  ro le i n  the development of 

the overlap principle; indeed, a complete characterization of other classes of 

"kinds of axioms" re l ies  on these st.ructures. However, I decided tD suppress these 
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complicated, algebraic s y m ~ t r y  structures i n  order to focus at tent ion on the 

overlap pr inciple and to rmke the paper easier to read. (A brief introduction to 

the wreath product is i n  [ 151. ) 

In Section 2, the basic concepts used i n  this paper are introduced with a 

two voter,  three candidate formulation of A r r o w ' s  theorem. In Section 3 ,  the ideas 

are akstracted in to  the overlap principle. The f l ex i b i l i t y  of the overlap 

pr inciple is i l l us t ra ted  by obtaining simple proofs of several  known soc ia l  choice 

resu l t s  as w e l l  as to derive some new, and som whirmica1 ones. In this m e r ,  

the connection m n g  several w e l l  known socia l  choice resu l ts  along with problems 

from statistics, economics, and game theory becomes imnediate. Because the 

emphasis of the overlap pr inciple is on h o w  the i m ~ 4 4  p ~ t p s r t i e s  o r  ax iom divide 

in formt ion  in to  equivalence c lasses,  rather  than on what par t icu lar  in formt ion 

used (e. g. , complete, binary, t rans i t i ve  rankings) , extensions are inmdiate.  To 

i l l u s t r a t e  how impl ic i t ly  defined overlap conditions arise, a new proof of the 

Gibbard - Sattert,hwaite Theorem as well as the Hirwicz-Schid ler  theorem [ lo ]  a b u t  

Pareto o p t i m l  Nash equi l ibr ia  are given. Some extensions of the overlap principle 

as w e l l  as a descript ion of the f ron t ie r  between poss ib i l i t y  and impossibi l i ty 

conclusions are given in Section 4. Section 5 contains the proofs of the m j o r  

theorems. 

The ideas of this paper can be demnstrated with a geomtr ic  proof of 

A r r o w ' s  theorem f o r  a two voter,  three candidate process. To do this, we need a 

geometric representation f o r  the complete, binary, t rans i t i ve  rankings of the 

candidates {cl , Q , ~3 ). Star t ing  with an equi la tera l  t r iangle,  ident i fy  each 

vertex with a candidate. (See Figure 1. ) In this t r iang le ,  define a binary 

re lat ionship i n  terms of the proximity of a pojnt to a vertex. Thus, a point p 

corresponds to the ranking cl >Q i f  and only i f  p is closer to vertex cl than to 

vertex Q.  Tllis relat ionship divides the equi la tera l  triangle i n to  the regions 

displayed i n  Figure 1. The open regions - the smllest t r iangles - correspond to 

strict rankings without " indifference" m n g  the candidates , while the l i ne  

segmnts and the baricentr ic point. correspond to rankings with indifference. For 

instance, region A corresponds to the ranking cl >c2 >% , while the l i ne  s e m n t  

between regions C and D represents c3 >cl=c2. Let P(1,2,3) denote the 3 ! o R n  





regions where the rankings do not admit indifference. Let P( i  , j ) denote the two 

equivalence classes of rankings i n  P(1,2,3) where ci>cj  and where cj>ci.  

Consequently, P(1,2) = { {A ,  B,C) , {DIE, F)) . Geomtrical ly,  t h e  two  equivalence 

classes are the two r ight  tr iangles i n  Figure 1 separated by the l ine  cl=cz. In 

general, the two  sets i n  P ( i , j )  are represented by the  two  r ight  t r iangles 

separated by the  indifference l ine  ci=cj. I ' l l  show how Arrow's theorem is a 

consequence of the  geomtr ic  positioning of these sets of r ight  tr iangles. 

In a two  voter, three candidate context without indifference, a socia l  

welfare function is a mapping 

2 .1  F: P(1,2,3)  x P(1,2,3) -----> P(1,2,3) .  

The cartesian product represents the two voters' possible rankings. The standard 

Armwian conditions are replaced with the following requiremnts. 

1. The usual Pareto condition forces a l l  o u t c o m  to be admitted. I 

require only t h a t  F is onto. 

2. The IIA condition states t ha t  f o r  each i and j ,  the re la t ive  ranking of 

ci and cj  depends only on the voters ' re la t ive  rankings of these candidates. This 

is equivalent to requiring for each choice of i, j ,  that 

2.2 F: P( i ,  j )  x P( i ,  j )  ----> P( i ,  j). 

3. If the f i r s t  voter is a d ic ta tor  f o r  F, then F can be represented by a 

mapping depending only on the f i r s t  variable. Replace the "no dictator" axiom with 

the condition t ha t  F cannot be represented by a function of a single variable. 

Theom 1. Tkm does not  exist a napping of the form given by h u a t i o n  2.1 that 

s a t i s f i e s  conditions 1, 2, and 3. If a napping given by h. 2.1 satisfies 1 and 2,  

then it can be remerited by a function of a single variable t h a t  is generated 

either by mapping each relat ionship ci >cj to itself (a d ic ta tor ) ,  o r  by mapping 

each xelationship ci >cj to c >ci (an anti-dictator) . 

Arrow's theorem is an i d i a t e  consequence. An ea l i e r  version of t h i s  

resu l t  is i n  Saar i  [14], and a portion of it w a s  restated i n  a ax iomt ic  form i n  

K i m  and Rouch [12]. See Sen [20] f o r  added discussion and references. 

Outline of the pmof. Assume tha t  the theorem is f a l se  because. such an F 

exists.  By (3) , there are situat ions where each voter, by changing rankings, can 

a l t e r  thw outcome. According to (2) , i f  thz new ranking i n t e r c l s~xes  the re la t ive  



ranking of ci and c j ,  then it is because the  voter changed her r e l a t i v e  ranking of 

these two a l te rna t ives .  In f a c t ,  from (2) ,  this same P ( i ,  j) change i n  F occurs 

whenever 1) she rmkes this change i n  t he  re la t i ve  rankings and 2)  the other  voter  

keeps his sam ranking of this pai r .  

This argument reduces the  analys is  to how F changes the  r e l a t i v e  rankings 

of pairs of candidates. (Thus, the  rest of the  proof relies on the pos i t ion ing of 

the  r i g h t  t r iang les  in Figure 1. ) Because of (3) and symnetry, assume without l oss  

of genera l i ty  t h a t  there  are s i t ua t i ons  w h e r e  voter 1 can alter the  r e l a t i v e  

ranking of cl and q and there are s i t ua t i ons  where voter 2 can a l t e r  the r e l a t i v e  

ranking of c2 and c3. Namly, if voter 2 has a speci f ied ranking of cl and c 2 ,  

then as voter 1 var ies  her rankings between the  r i g h t  t r iang les  represent ing cl>c2 

and c 2 > c l ,  s o  does the  imge of F (but not  necessar i ly i n  the  same d i rec t i on . )  I f  

the  speci f ied ranking f o r  voter 2 is c l > c z ,  then let him vary between regions A and 

B; otherwise, let  him vary between D and E. In either s i tua t ion ,  voter  2 has f ixed 

P(1,2) and f ixed P(1,3)  rankings while re ta in ing the freedom to change his P(2 ,3)  

ranking. A s imi la r  analys is  holds f o r  voter 1. In order f o r  voter 2 to change the  

P(2,3) outcome, voter 1 may need to have a spec i f i c  ranking of this pai r .  I f  it is 

t he  r i g h t  t r i ang le  c2 > 5 ,  le t  her vary between A and F; i f  it is c3 >c2,  then 

pastrict her to C and D. Again, voter 1 can chmge her P( 1 ,2)  ranking while 

keeping her P(2,3) and P(1,3)  rankings f ixed. 

As t h e  voters vary i n  t h e i r  assigned regions, tk P(1,2) and P(2,3) 

imges of F ( the group o u b o m )  change independent of each other. Thus, there  are 

s i tua t ions  w h e r e  t he  P(1,2)  ouborne is t he  r i g h t  t r i ang le  corresponding to c l > c 2 ,  

while the P(2,3) ouborne is the  r i g h t  t r i ang le  corresponding to c2 >c3. These two 

t r iang les  i n te rsec t  i n  region A - c l>c2>5  - which forces the  binary ranking of 

cl >c3. On the  other  hand, there are s i tua t ions  w h e r e  the two " t r iangle"  outcomes 

are +, >cl and c3 >+,. The in tersect ion of these t r iang les  is region D, which 

requires c3 >cl. Consequently, even tIkx.gl, b t h  voters have fix& P (1,3 rakirgs, 

t l ~  gzvc~p ralliirg of t k s e  tm alterxatives, giver] by the i m w  of F, clxinges. This 

contrad ic ts  (2) , and the  f i r s t  part of the theorem is proved. 

The second part of the  theorem a l s o  follows from the geometric posi t ioning 

of the  r i g h t  t r iang les .  Obviously, a d ic ta to r  o r  an an t i -d ic ta to r  can be def ined, 

s o  w e  only need to show that no other  rapping exists. Without loss of genera l i t y ,  

assure there is a rapping g:P(1,2,3) --> P(1,2,3)  t h a t  s a t i s f i e s  (1) and (21, t h a t  

preserves the P(1,2) rmlki ly,  h ~ t  reverses t . 1 ~  P (2 ,3)  ralddng. This f o r c m  the  



imges of c, >c2 and of c3 >c2 to be the two r igh t  t r iang les  containing A. Indeed, 

the intersect ion of these two tr iangles is precisely A - cl>c2 >c3. Because this 

intersect ion def i= the  re la t ive  ranking c, >c3 , the def in i t ion of ,g over P ( 1,2 ) 

and P(2,3)  uniquely determines g:P(1,3) - ->  P(1,3).  More precisely, the g preirrage 

of cl >c3 is aw P(1,3) ranking met ing the intersect ion of the tr iangles f o r  c, >c2 

and c3 >c2. In Figure 1, this intersection is {B, C} . k t ,  B and C are in 

d i f ferent  P ( l ,  3 )  classes. According to (2) , this forces g to be the const;u,t 

mppixg over P(1,3) t ha t  maps both c1 >5 and 5 >cl to cl >c3. This contradicts (1) 

and proves the second part of the theorem. 

The proofs of both parts of the theorem depend upon the symnetry properties 

of the  simplex as captured by positioning of the r igh t  triangles i n  the three 

equivalence classes P ( i ,  j). Cr i t ica l  to this analysis is t ha t  the geomtry of the 

imge S ~ C E !  is restrictive; e.  g. , f o r  each t r iangle from P(1,2) there is one from 

P(2,3) where t he i r  intersect ion is i n  only one t r iang le  from P(1,3) .  Moreover, 

t h i s  holds f o r  each triangle i n  P(1,3).  This res t r i c t i ve  e f fec t  on the inrage fixed 

the imges of F to obtain the contradiction. Similar ly,  i n  the second part of the 

theorem, these imge res t r ic t ions  limited the options f o r  g. The second critic21 

element is t ha t  the  geomtry admits flexibility of m v e m n t  in the domain. For 

each t r iangle from P( 1 ,2)  there is one from P(2,3) where tkir intersection 

both t r iangles from P ( l ,  3 ) .  This w a s  used in  both parts of thr, t h r e m  to allow a 

voter to a l t e r  his rankings of one pair  while retaining f ixed rankings f o r  the 

other  two. Added f l ex i b i l i t y  occurs i f  a t  least two voters a f fec t  tk outcorrp,. 

The proof of the thorem exploi ts this contradictory interplay between res t r i c t i om 

( in  the range) and the f l ex i b i l i t y  (in the donnin) admitted by the overlapping 

geometry. The f ac t  t h a t  t h i s  geomtry w a s  derived from binary, t rans i t i ve ,  ordinal 

rankings is incidental. Consequently, the essence of A r r o w ' s  theorem extends to a 

surpris ingly wide realm of s i tuat ions.  Indeed, whenever a set of axiom; can be 

described with a similar geomtr ic  representation, the  sm conclusions resul t .  In 

other  words, the kinds of axiom tha t  lead to an Arrow-like theorem can be 

characterized by emphasizing the appropriate geometric - set t h o r e t i c  conditions 

of overlapping regions. 

3. THE OVEEUA' PRINCIPLE 
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In this sec t i on ,  an over lap pr inc ip le  is introduced and i l l u s t r a t e d  with 

severa l  examples. The examples are selected to s b w  why the s m  basic argument 

proves and extends severa l  classical theorem and to suggest o ther  uses of t he  main 

t h r e m .  

Notation: kt I A I  dexmte t h  cardinality of set A. If A = {AI,. . ,&I ard B = 
&, . . ,]Eb) a m  oollection of sets, let NU3 = {Aj% : 1LjCr1, & h n } .  

Let D = D1x. .a be the car tes ian  product of t he  N12 s e t s  I&, let  R be a 

given s e t ,  and let 

3 . 1  F:D ---> R 

be given. The s e t s  Dj replace the  domin s e t s  P(1 ,2 ,3 )  from Section 2. There is 

no r e s t r i c t i o n  on the  choice of Dj -- it could be a s e t  of binary,  t r ans i t i ve  

rankings, probabi l i ty  measures, spaces of admissible s t ra teg ies ,  funct ion spaces of 

u t i l i t y  funct ions, o r  any-thing e lse .  Indeed, the  choice of Dj could even d i f f e r  

from agent to agent where, say ,  Dl is a s e t  of t r ans i t i ve  rankings, Q is a s e t  of 

probabi l i ty  measures, e t c .  The critical aspect is not what i n f o m t i o n  is 

represented by Dj, but, how the  i l l formt ion is divided i n to  equivalence s e t s .  

Replacing the  d iv is ion of P(1 ,2 ,3 )  i n t o  the  subsets P ( i  , j) is t he  d iv is ion  of each 

set I& into the  i~ fo~m?t io~~a l  w ~ l i ~ l e ~ ~ i ~  c?l,wses I j  (k) {IJ ( k , l )  , I j  (k ,2) } ,  

j=1,2,3.  The superscr ip t  j indices the  three "independence condit ions" while k 

i den t i f i es  the voter o r  agent. The cartesian prodi~ct. I j = X, I j  (k) replaces 

(P( i  ,s)}N i n  the  independence condit ion Eq. 2.2. 

Although Ij replaces t h e  "indepndence" o r  IIA condit ions of A r r o w ' s  

theorem, these sets can be d i f i e d  to include d e l s  with interdependency amng 

voters '  rankings o r  agents ' act ions. Such interdependency can be viewed as 

def in ing E, a proper s u b e t  of D. I f  E is given, then the  sets Ij are restricted 

t~ E. More prec ise ly ,  I j ( k ) ,  k l , . . ,  N ,  is defined by 1JN.T. For instance, 

E=((cl>c2 )N, ( ~ 2  > c l ) N )  requires a11 voters to have the  sam r e l a t i v e  ranking of the  

candidates cl and c 2 .  With such an E, I1 = P(1,2)NT'IE E while I2 = P(2,3N)N.T 

P(2,3)N. This E d e l s  t he  Pareto condit ion i l l u s t r a t e d  i n  Corol lary 2.6. 

The range, R, can be any set where the  c r i t i c a l  aspect is its subdivision 

i n t o  other  equivalence s e t s .  Let this subdivision be given by R j  = 
{Rj l ,Rj2, .  . ,Rjk}, W ,  j=1,2,3.  The s e t s ,  Rj, replace the  earlier suMiv is ion  of 

t he  range P(1,2,3) into the  th ree  classes of two s e t s ,  P ( i ,  j ) .  
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The g e o ~ t r i c  conditions t ha t  provide the interplay between the f l ex i b i l i t y  

i n  the domin with r ig id i ty  i n  the range are captured by the following def ini t ion. 

kf init ion. The triple €F, CIJ I ,  CRJ I } ,  j= 1,2,3, sa t i s f ies  the himry ouerlap 

principle if the following four oonditiors hold. 

1. For each j a d  each k I,.. ,N ,  lh two suhsets { IJ(k, l ) ,  IJ(k,2)} are 

eitkr dis jo in t  o r  equal. For each j, t bm is at  least one c h i o e  of k tb 

sets am disjoint.  

2. (Dnmai_ll o m l a p )  For each choice of k a d  f o r  each permrtation (a,b,c) 

of (1,2,3), them is a pezmrtation (u,v) of (1,2) s o  tbt each of I n ( k , l ) f P  (k,u) 

a d  1s (k ,2 ) fP  (k,v) met both IC (k, 1) and IC (k,2). The restricted damin d t i m  

is whem, fo r  each pennrtation (a, b, c) , the doimin wrd i t ion .is sa t i s f ied  f o r  a 

unique pernutation (u, v) . (Thrs , Ia (k, 1) n P  (k, u) does not met both I C  classes f o r  

both chi- of u. ) For at l eas t  one k, the mst r i c ted  ckmdn  overlap wrd i t ions 

am sat isf ied.  

3. (Range o m l a p )  kt R j  ' denote some pair of sutsets of R j  . For each 

permrtation (a,b,c) of (1,2,3) and fo r  each pair of suhiets, t h ~  a m  two s u k e t s  

i n  Ra 'W '  tha t  do not m e t  the saxre subset of Rc. 

4. (Invarianoe) a )  For j = 1,2,3, F : I J  -> R j .  

b) For a t  least  two choices of j, tk hmge of F meets at least t m  of the 

RJ sets. 

5. If tbe domin indep=mkme wnditiolls an? detc 3 bu an 

intmdepsdemy wrdi t ion E, then for at  least two choioes of j whem the limage of 

F is nomnstant ,  IJ (Yi = Ij . 

As in Section 2 ,  the "dictator" is replaced with tk mre general concept 

of a function of a single variable. 

M i n i t i o n .  kt % : D - > 4, be the ~ t u r a l  pm jection mpping. The mpping 

F: D -> R can be ~pmsenhd ly a function af a sirgle variahle if  the^ exists a 

choice of k a d  a &:4, --> R s o  tbt I? = gk(%). 

This def in i t ion does not require F to be a function of a s ing le  variable. 

For instance, suppose three voters rank the three candidates c j ,  j=1,2,3,  with the 

following Mdi f icat ion of the Borda Count. The i t h  ranked al ternat ive f o r  the jth 
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voter is assigned (3-i) 10j p i n t s .  The t a l l y  f o r  each candidate determines the 

ordinal ranking of the al ternat ives and defines the mpping 

F: {P(1,2,3)}3 ----> P(1,2,3).  Although F is a function of a l l  three variables, it 

can te ident i f ied with the ident i ty mpping (d ic tator)  g,:P(1,2,3) - ->  P(1,2 ,3) .  

If F ( 1,2,3 ) denotes a l l  13 rankings depicted i n  F igu re  1, then F can be extended 

-to a napping F: (F (1 ,2 ,3 ) )3  ---> F ( 1 , 2 , 3 )  by assuming tha t  when the i t h  voter is 

ind i f ferent  between two candidates, each of these two candidates receives the 

obvious average of the assigned p i n t s .  This choice of F creates sequential 

dictators; if the th i rd voter is indif ferent between two candidates, then the 

second voter decides tk group ranking between them. If both the second and th i rd  

voters are indi f ferent between the sm two candidates, then the f i r s t  voter 

decides. (This is generalized i n  Theorem 3 ,  Section 4.  ) 

The overlap conditions capture the essence of the  geometric proof of our 

version of Arrow's theorem. Thus, i n  l i gh t  of the proof of Theorem 1, T h r e m  2 

should be expected. T k  f o m l  proof i n  Section 5 is just  an a ts t r ac t  version of 

the  proof i n  Section 2. 

Theom 2. Assum that F: D -> R satisf ies t k  binary overlap principle w i t h  

the sets {IJ) and mi). When F is v ied  as a napping 

3.2 F: 11nm-m -> R ~ w ~ ,  

t h m  is an index k so that F can be repxsented by a function of a single 

variable, gk. 

Suppose the image of F meets the pairs {R j l  ,Rj2), j=1,2,3.. Tkm a~ 

pmcisely an> ways to &fine gk , and each is uniqwly determined by w k t h r  I j (k, 1) 

or U(k,2) is mapped to R j l .  Tk index k satisfies the mstricted domain condition 

and all three Ij (k) classes have two disjoint elemmts. If m such index exists, 

then F doesn't exist. 

Theorem 2 asserts t ha t  the tensions between the f l ex ib i l i t y  i n  the domin 

and r ig id i t y  i n  the range extend Arrow's theorem. Moreover, a new feature emrges. 

If the domin of each voter admits e i ther  too much f l ex i b i l i t y  o r  too mch 

r ig id i t y ,  as captured by the last sentence, then such an F doesn't ex i s t  even with 

only one voter. For F to ex is t ,  even as a dictatorship, restr ic t ions on the  dormin 

are required. For mt sozial  choice examples, the restr ic ted domin conditions 

are sat.isf ied, but th is  need not be s o  fo r  examples from probability and economics. 



Overlap threm - k i n  m u l t s  h g ~  10 

Applications of lhmm 2 

Start ing with A r r o w ' s  theorem, I ' l l  i l l u s t r a t e  the considerable f l ex i b i l i t y  

offered by Theorem 2. To underscore which overlap feature  is being discussed - the 

nature of F, the possible def ini t ions for  the domin,  o r  the choice of the range - 
examples are  selected to emphasize only tha t  feature. To s t a r t ,  we extend the 

notation i n  Section 2. For the n candidates, {cl , . . ,c,}, let P(1,.  . ,n)  denote the 

s e t  of a l l  n! corqplete, binary t ransi t ive rankiw5 w i t b u t  ties of t h e  

candidates. If A is a subset of t h e  indices, then an e lemnt  of P (A) cons is ts of 

the n! / ( A  1 ! rankings of P( 1, .  . , n) tht preserves the re la t ive  ranking of t k ~  

candidates i n  A. P(A) is the obvious extension of P ( i ,  j) where its elemnts  are  

the I A 1 ! dis jo in t  subsets of P(1, .  . ,n) . The f i r s t  corol lary extends Theorem 1 to 

any ( f i n i te )  number of candidates and voters. 

Comllary 2.1. kt 1123, N 2 ,  and F : (P ( l , . . ,  n))N ---> P ( l , . . ,  n) be given. Suppcse 

F is onto ard tbat for each piir ( i ,  j ) ,  F satisfies the indepedeme cordition 

F: ( P ( i , j ) )  - -  P i )  F can be ~p.msentsd ty a f d o n  of a single variable 

that c o m p o r d s  to e i k  a dictator or to an anti-dictator. 

Fkuof. S b r t  with 11 (k) = R1 = P(1,2),  I 2  (k) = Rz P(2,3) ,  and I3 (k) 

W = P , 3  The overlap cqnditions are sa t i s f i ed ,  s o  F is represented by a 

function of one variable on the domin P(1,2)NT'IP(2,3)NT'IP(1,3)N. Next, let I l ( k )  

R1 P(1,2) ,  I 2  (k) R2 = P(2,4) and 13 (k) = R3 = P(1,4) .  I t  follows from Theorem 

2 tha t  F can be represented by a function of a s ing le  variable over 

P(1,2)NT'IP(2,4)NT'IP(1,4)N. Ebth of these dormins include P(1,2)N, s o  i n  b t h  cases 

the s m  voter is the d ic ta tor  o r  the ant i-dictator.  TIE proof is completed with 

the obvious induction argument. 

The dist inct ion between whether a d ic ta tor  o r  an anti-dictator reigns can 

be determined with a mntonic i ty  condition, such as a pareto condition, on s o m  

pair  o r  even by specifying the irrage of a s ingle point. 

Comllary 2.2. a. Sugparje in addition to the assumptions in Comllary 2 .1 ,  it is 

known that F((cI>%>. . . > c n ) N )  is in the P(lDn) class companding to c l > ~ .  'l'k 

function F can be mpmsentsd by a dictator. 

b. kt p be a profile in P( 1,. . n) N . If the assumptions of Comllary 2 . 1  
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a m  satisfied an]. F can be mwesented by a, tben, for a ~ y  (i,j), t2e P(i,j) 

image of F(p) &~~ wkthr k is a didator or an anti-dictator. 

These corollaries extend the standard Arrow t h r e m .  The next corol lary 

permits t ie votes to emrge. The m i n  feature demnstrated by Corollary 2 .3  is the  

f l ex ib i l i t y  offered by Theorem 2 by allowing each R j  to have mre than two 

elements. For this statement , let F (1,. . , n) be the set of a l l  complete, 

t ransi t ive,  binary rankings of the n a l ternat ives,  even those with t i es .  If A is a 

subset of (1,. . , n} , then an elernent of F (A )  consists of a l l  of the rankings i n  

F (1, .  . , n) with the sm re la t i ve  t rans i t i ve  ranking - including possible t ie  votes 

- of the candidates in  A. By admitting t ie  votes, the concept of a d ic ta tor  is 

weakened. So, let gk ,  a limited d i c t a t ~ r o v e r  P ( i , j ) ,  be where gk is either 

constant valued over this pai r ,  o r  where ci >cj is mpped either to c i > c j  o r  to ci = 

cj . A correspnding def in i t ion defines a limited ant i-dictator.  So, a l i m i t e d  

d ic tator  m y  not be able to ge t  outcomes bet ter  than, say, ci >cj and ci = cj  . 

Corollary 2.3. kt ~ 3 ,  N22 , and F: (P(1,. . , n) )N --- > F (1,. . , n) be given. Suppose 

for each pair (i , j) , F sat isf ies tk irdependeme wndition 

: ( i , j ) )  - -  i , )  IE F is m~ons tan t  for eachpair, t k n  F ran be 

-presented by a function of a single variable that wrresponds tro e i t k r  a 

(limited) dictator or tro a (limited) anti-dictatror. 

Proof. This corol lary is proved with the s m  kind of induction argumnt 

used i n  the proof of Corollary 2.1. So, we only need to show t h a t  the new range, 

sa t i s f i es  the range overlap conditions. S ta r t  with R1 = F (1 ,2) ,  R2 = F (2 ,3 ) ,  and 

R3 = p1( 1,3 ) . We know tht the strict r a n k i m  given by P( i  , j ) sa t i s f y  the range 

overlap conditions. So, it suf f ices to consider a pa i r  withstrict ranking and 

another pa i r  with indifference. The set {cl >c2 , cl=c2 } n {q >5 , c3 >c2 } contains 

{cl >c2 >c3} and {cl=c2 >c3}. Each of these sets are i n  d i f ferent  p1 (1,3) sets. (See 

Figure 1. ) Likewise, the intersect ion {cl >c2 , cl=% } n {% >q , =q } contains 

{cl=c2 >c3 ) and {c1=c2 =c3 } ; each is in a di f ferent  F'" (1,3) set. Thus, the range 

overlap conditions are sat is f ied .  By synn~ t r y ,  the same conclusion holds f o r  any 

t r i p l e t  of indices. This completes the proof. 

Corollary 2.3 admits mny possib i l i t ies ranging from a dictator  tn a 



l imited d i c ta to r  wbre ci >c is mpped to i t s e l f  i f f  i< j ; otherwise it is rnapped to 

ci=cj. I f  n=3, then the  image of F consis ts  of the  four  rankings {cl >c2 >c3, 

c1=c2 >c3 , c1 >c2=c3 , c1=c2 =c3 1. BY se lec t i ve ly   laxing t he  nonconstancy condit ion 

on F, a l l  s o r t s  of o ther  s i t ua t i ons  emrge with d i f f e ren t  f i e fdom.  For example, 

we could have a d i c ta to r  over P(1,2,3)  and a l imited d i c ta to r  over P (3 ,4 ,5 ) .  Such 

a d iv is ion i n to  fiefdoms works as long as no pair of candidates are shared by 

competing f i e f  doms . 
For g o d  reasons, the independence conditions f o r  s o c i a l  choice d e l s  

usually s a t i s f y  an implicit mnoton ic i t y  property; e .  g. , t he  group's r e l a t i v e  

ranking of ci and c are determined on1 y by the voters ' r e l a t i v e  rankings of these 

same two candidates. But, does such a t a c i t  assumption c o n t r i b  to t he  

impossibi l i ty conclusions? Why not let the  j t h  voter 's  r e l a t i v e  ranking o f ,  say,  

cl and c2 a f f e c t  the group's ranking o f ,  say, and c3. (Such a condit ion 

captures s o m  of the f lavor  of t h e  Hurwicz-Schidler " kingraker" [ 101. ) . Corollary 

2.4 proves t h a t  nothing is gained from t h i s .  ALso, it shows tht t he  re la t ionship 

between the domin and range independence conditions need not  s a t i s f y  t he  tacit 

mnotonic i ty  assumptions standard i n  the soc ia l  choice l i t e r a t u r e .  Indeed, the 

form of t he  independence assumptions can change with the voter. ( In  Corol lary 

2.4a, i f an i d e x  has a value grea ter  than 3 ,  then replace it with its reminder  

{1,2,3) when d i v id .4  by 3. For i n s t m e ,  7 i s  replaced with 1, arid. 9 is replacw3. 

with 3. ) 

b m l l a r y  2.4. a. Let NS? ard F: (P(1,2,3))N -> P(1,2,3) be given. Let I j (k)  = 
P + + )  , j 1 2 3  1 .  N .  S~~ppase that F Is onto and sa t is f ies  t k  

indepmkme corditions F: IJ ->P(j, j+l). Thm is an index s (voter s )  s o  that  F 

can be repmsented by a function of a single variable, &. T k m  are only two 

possible ways to &f im  g, . 
b. Let N12, -3, and F: (P(l,.. ,n))N --> P(1,. . ,n) be given. For each 

k1,. . , N ,  let %(-) be a permrtation of tk irdices {I,. . ,N)  f o r  the lrth vobr, let 

Ij.e(k) be the set P(%(j) ,%(s)) ,  and let 1j.s = X,  U.s&) ,  j,s = l , . . , N .  If F 
satisfies tk idependeme corditions F: IJ --> P( j , s )  wkm F is ontn, tfien t h m  

is an index 0 (voter 23) so that F can be mpresserrted by a function of a single 

variable, &. There are only two pmsible ways to define go. 

Tr iv ia l l y ,  the overlap condit ions are s a t i s f i e d ,  s o  the  coro l lary  follows 
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imnediately from Theorem 2. The function o f  one variable need not  te a d i c t a t o r  

nor an anti-dictator .  For instance, i n  part a ,  i f  s=2, then one of the two 

possible def ini t ions has g2 taking cj  >ck to cj+ >ck+ l ;  so,  g(c1>c2 >c3 ) = c2 >c3 >cl .  

If the range is replaced with F ( 1, . . . , n) and the nonconstancy condition of F is 

relaxed, al l  so r ts  of other poss ib i l i t ies  are admitted. 

Z b  mioe of F and &rasi-dfc&toIs 

The next application of T h r e m  2 underscoI.es t ha t  F need not be a mpping; 

e. g. , it could be a correspondence w h e r e  R is the power set of som other set. 

Secondly, it i l l us t ra tes  t ha t  w h i l e  F mst be represented as a function of one 

variable over the domin IlnI2nI3, it need not have t h i s  =presentation over th 

f u l l  dormin D. 

Ehnple. Let ~ i 2  and let  F be a correspondence with dormin P(1,2,3,4)  N 

withvalues i n  P(1,2,3,4) .  Let I j ( k )  = R j  = P ( j , j + l )  f o r  j=2,3, and equal to 

P(2,4) f o r  j=3. If F sa t i s f i es  the invariance conditions F: Ij-- > R j  , j=1,2,3,  then, 

according to Theorem 2 ,  F can be represented by a function of one variable over the 

dormin IlnI2 nI3. But, t h i s  domin imposes no I.estrictions on the re la t ive  ranking 

of cl and c2.  Thus, it is consistent to define such an F where the re la t ive  

ranking of cl and c2 is determined by, say, a m j o r i t y  vote. So, the re la t ive  

ranking of %, 5 ,  and c, rmst be' determined by a part icular voter - F is 

represented by a function of one variable over the intersect ion of the equivalence 

classes IlnI2nI3 - but m j o r i t y  vote applies fo r  the ranking of (cl ,cz 3. 
Th is  example and Theorem 2 explain why nondictatorial socia l  welfare 

functions so often endow som agent with considerable power. Altbugh the 

specif ied independence conditions mw not force a d ic ta tor  over a l l  of D, they m y  

force a d ictator  to emrge over the sets i n  IlnI2nI3 - he is a quasi-dictator  over 

the wble domin D. An i l l us t ra t ion  of this is i n  a piper by Gibbard, Hylland, and. 

Weymwk [4] w h e r e  they s b w  t ha t  a related nondictatorial function ex is ts  i f  a l l  of 

the feasible sets include cl . As we now how from Theorem 2 , t h i s  is the general 

si tuat ion. 

Flexibility in the of t hz  Dnmin 

Because the domin overlap conditions are specif ied in set theoret ic 

terms, there is considerable freedom i n  the modelling. With this f lex ib i l i t y ,  we  

could examine som natural questions about rankings, such as those pioneered by 

Weymwk, concerning what happens when we relax assumptions of completeness, etc.  

As long as the geomtry defined by these new rest r ic t ions and equivalence classes 
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of rankings sa t i s f y  the overlap conditions, the usual d i c ta to r ia l  conclusions 

apply. kt, ins-d of showing how som of Weymarks's nice resu l ts  are subumd  by 

T h e o r e m  2 ,  I w i l l  emphasize other  kinds of d e l l i n g  f l e x i b i l i t y  admitted by this 

theorem. The f ea twx  i l l us t ra ted  i n  Corollary 2.5 is t h a t  the sets IJ (k, I ) ,  

I j  (k,2) need not be d i s jo in t  f o r  al l  choices of k. This feature admits f l e x i b i l i t y  

i n  the d e l l i n g  because I j  (k,  1) = I j  (k,2) rmms t h a t  t he  kttl voter has no 

influence over which R j  equivalence class is selected. (This is -use there is 

only one I j  (k) component f o r  Ij . This forces the  kt tl voter to have a constant 

value over this equivalence set, so  he has no influence on the outcome of F : I j  -- 

> R j .  ) Corollary 2.5 i l l us t ra tes  how such d e l l i n g  can be used with Theorem 2. 

Part a asserts there does not ex i s t  a soc ia l  welfare function where the  f i r s t  agent 

determines tk group ranking of cl and c2,  the second agent determines the ranking 

of c2 and c3 , while the th i rd  agent determines the ranking of cl and Q . Part b 

asserts tha t  i f  we w a n t  each agent to be involved with only two pa i rs ,  there is a 

penalty t ha t  a sur ject ive F does not ex is t .  

Corollary 2.5. a. Let N=3 ard F:P(1,2,3)3 --> P(1,2,3) be given. Let U(k) = 
P ( C ~ , C ~ + ~ )  iff kj; otherwise let IJ (k, l )=I j (k,2).  Let R J = F ( C ~ , C ~ + ~ ) .  If F 

satisfies the independeme coditions F: IJ-- >RJ , j= 1,2,3,  tbzn F has a f ixced 

ranking for at least two of tk pairs. 

b. Let N12 ard let F:P(1,2,3)N-->P(1,2,3) be given. Sugpose for each k, 

one of the U(k)  equivaleme class is tk whole set P(1,2,3) while the otbx t w  

a m  IJ (k) = P(j. j+ l ) .  If F exists, it is corstant valued for at least t m  of t he  

pairs- 

h f .  a. The overlap conditions are sa t i s f i ed ,  so  i f  F is nonconstant 

over two o r  mre binaries, then F can be represented by a function of a single 

variable. By assumption, t h i s  is impossible. This completes the proof of part a.  

Part  b follows from the  last sentence of Theorem 2. 

A standard way to obtain a poss ib i l i t y  theorem is to restrict the dormin. 

Corollary 2.5 shows t ha t  overly strict res t r ic t ions  can reintroduce d ic ta to r ia l  

behavior. (See Theorem 4 . )  For instance i f  the f i r s t  voter can vary between only 

c l>q ,>% and q,>cl>q,;  the second voter between cl>q,>c3 and c l > q > c 2 ,  and the 

t h i rd  voter between cl >c3 >c2 and c3 >cl >c2 , then Corollary 2.5 proves t ha t  this 
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e i t h e r  w i l l  not avoid impossibi l i ty asser t ions ,  o r  F is constant over two pai rs .  

Such a r e s u l t ,  where cer ta in  voters are concerned only a b u t  ce r ta in  outzoms, 

contains the s p i r i t  of Sen's tfreorem on liberalism [21]. In Sen's f o m l a t i o n ,  two 

agents have the privi leged s t a t u s  to determine the  re la t i ve  ranking of  ce r ta in  

a l ternat ives - pmsumbly their own - w h i l e  tk other  a l ternat ives are represented 

only through a weak pareto condition. The following version of Sen's tfreorem 

i l l us t ra te5  how the  s e t  E, introduced i n  t h e  beginning of this sect ion,  is used. 

Definition. kt F: P(1,. . , n)N -- > P( 1, .  . ,n) be given. F satisfies the m d r  m.mto 
audition for {cj, if P((cj>cL)N) = cj>% F ( ( % > c ~ ) ~ )  = Ck>Cj. N ~ W ~ Y ,  

when everyone has the relative ranging of thse two alternatives, Preserve5 

this relative ranking. 

The weak pareto condit ion is not  an independence condit ion, but,  with the  

appropriate E set and Theorem 2 ,  it does def ine an I j s e t .  Thus, its connection 

with the  standard A r r o w  theorem becomes apparent - b t h  resu l ts  form t h e  s w  kind 

of axioms. 

kmlLary2 .6 .  kt ~ 3 ,  N22. Assum that Al, 4,  A, a m  subsets of the indioes 

{ l , .  . ,n) strch that (A j  122 any two of these sets h v e  pmcisely one index in 

oomnon. T k m  does not exist an F:P(l , .  . ,n)N --> P" (1,.  . ,n) smh that: 1) t h  

P" (Aj ) image of F is no~yx)nstant and it depends solely upon the jt h voter 's 

rankhgs of the Aj cardidate, J=1,2, and 2) F satisfies ~ J E  w s . k  pareti0 cordition 

for the pairs of altmmtives in 4. 

I f  Al and 4 have mre than one e lemnt ,  in c o m n ,  then, an argumnt l i k e  

t h a t  given in Corollary 2.5, shows t h a t  such an F doesn' t  exist. An induction 

argument, similar to t h a t  used i n  Corollary 2 .1 ,  extends t h i s  s t a t e m n t  to a larger  

number of A j  sets. 

h f .  Without loss  of genera l i ty ,  assum t h a t  cl is the commn e l e m n t  

of Al and A2, c2 is the e l e m n t  i n  4 and 4 ,  w h i l e  5 is in 4 and A l .  Let E = 
(c3>cl)NU(cl>c3)N. Se t  E is a proper sukset  of P(1,3)N requir ing a l l  voters to 

agree a b u t  the re la t i ve  ranking of these two a l ternat ives.  The following sets are 

de f inedonE.  L e t  Il(1) = P(1 ,2 ) ,  I2(2) = P(2,3) ,  P ( j )  = P(1,3) ,  a n d a l l  o ther  

I k ( j )  sets equal to Dj. The interdependency given by set E af fects  only the I3 ( j )  



sets - a voter 's ranking mt agreed with tha t  of the  other voters. The overlap 

pr inciple, with s e t  E l  is sa t i s f i ed ,  so  it follows from Theorem 2 t ha t  i f  such an F 

ex i s t s ,  then it can be represented by a function of a single variable. N m l y ,  the 

ranking of one part icu lar  voter determines the outcoroe of F. This contradicts the 

f i r s t  assumption, s o  t he  theorem is proved. 

Incidentally, this pmof i l lus t ra tes  tha t  aruf interdependency condition 

nrodelled with an E sat is fy ing Theorem 2 is not su f f ic ien t  to escape the penalt ie5 

of A r r o w ' s  theorem. By examining the proofs of Theorem 2 and 4 i n  Section 5, one 

can extend the def in i t ion of E so  tht it is "ks t  possible". In this manner, one 

can characterize the  kinds of interdependency conditions t ha t  admit a possib i l i ty  

theorem. 

So f a r ,  a l l  of w examples are based on the georoetry of P ( l , . .  , n ) .  This is 

not necessary. To i l l u s t r a te ,  Corollaries 2.7, 2.8 show t h a t  everything extends to 

function spaces. The function spaces are the spaces of u t i l i t y  functions, and the 

mt i va t ing  example is the &el of Kalai, Mueller, and Satterthwaite [ 11 I .  L e t  Ec, 

be the posit ive orthant of a c-dimnsional Euclidean space, c s ,  and let the  swce 

of utility functions be U={u: Ec,-->E: u is a s m t h  function, and a t  each point i n  

Ec, the gradient of u points to the in ter io r  of Ec,. 1 These u t i l i t y  functions a re  

concave, mnotonic, and they do not admit a sat ia t ion  point. 

A c lass ica l  object ive is to f ind a group u t i l i t y  function; to f ind an 

F: UN-- > U  t ha t  sa t i s f i es  ce r ta in  properties. If F ex is ts ,  its *e, I+ , defines a 

complete, binary, t rans i t i ve  relat ionship over Ec, . If f o r  x E Ec, , I+ (x) is 

defined i n  tens of ( u l ( x ) , . . , ~ ( x ) ) ,  then F sa t i s f i es  the def in i t ion given k l ow  

f o r  pointwise binary independence where S = Ec,. Indeed, by se t t i ng  S = Ec, i n  the 

next defini t ion, w e  recover the condition used by Kalai, b l l e r ,  and Satterthwaite 

to show tha t  such an F leads to a dictator.  But, can a dictatorship be eliminated 

by using other cbices of S, say, by m u i r i n g  a g r e m n t  only over s o m  smll 

subset of p i n t s  ra ther  than a l l  of Ec,? Instead of defining a ranking over a l l  of 

Ec,, how a b u t  l e t t i ng  t he  u t i l i t y  functions define such a ranking only over a 

specif ied set S? 

&finition. Let  S be a subset of Ec,, a d  let P(S) be the set of all mnplete, 

binary, transitive rankings on tfie set S .  Let F,:W->P(S) be given. F, sat is f ies  

t h  pointwise, biznzy ixr3epemkmx? condition over S if tfre following cordition 
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holds. For for  all pairs of points xl ard + fIwn S, and for  any two choioes 

uj=(ulJ ,. . ,I@), 3=1,2, fimn W, if u1(&)=l12 (G), k=1,2, then F, ( u l ( 5 ) )  = 
Fa (S 1, k=l,2- 

Soroe restr ict ions need to be impsed upon the s e t  S. 

Mini t ion.  A set of point, S in &+, is mmmnotanic if for x ,  y E S, som 

oolllponent of x is Larger than the c o ~ p o ~  ammnent of y, ard socoe anannent 

of y is larger than the C O ~ ~  -t of x. A set S is f u l l  if i) t h m  

is a t  least one mnm>mtonic paFr of points in S, and ii) for  each wnm>mtonic 

pair of points, t h ~  is a third point i n  S so that the t r ip le t  is wrmpmtonic. 

I t  is natural to W s e  a mnotonicity condition on F such as requiring 

when la1 (x) = la2 (x) and u l  ( y )a2  (y) that the relat ive r a n k i w  of x and y with 

F, (la1 ) cannot rank y lower than F, ($ ) . A less restr ict ive way is to define the 

jt h agent's independence se ts  for  points {xi, +} as Ii k (j , 1) = {U in U: the level 

s e t  of u passing through xi passes below +.} while the definit ion for  Ii l k ( j  , 2 )  is 

tha t  the level s e t  passes above + . Notice that  Ii , j (k, 1) = I j I i (k, 2 ) .  The 

independence condition is 

3 . 2  for  eachpai r  of mmnoton ic  points (2q,xj) fromS, F : I i l k  - ->  P(q, +). 

ComlLary 2.7. L e t  S be a f u l l  subset of &+ w i t h  a t  least t h ~ ~ =  points. Suppose 

F,:W --> P(S) satisf ies the p i n k b e  binary independeme condition, t l ~  

~~ cordition 3.2, ard tht F, is not oorstant over at least two 

mnmnotnnic z a i n  of points of S. Fs can be repns=nted b a function of a single 

variable tht cornponds to eithr a dictator or an anti-dictator. 

Can a nondictatorical F, be constmcted with dif ferent kinds of economic 

in fomt ion? For instance, the price mchanisrn depends, i n  part, on the gradients 

of the u t i l i t y  functions. The next definition permits gradients and other 

information to be used by replacing a point from S with a subset determined by a 

point in S. In th is  way, it describes a "general binary independence condition" 

tha t  permits F, to be defined in  terms of any kind of dif ferential in fomt ion  

coming from la as well as the behavior of la a t  neighboring points. Indeed, the 

definit ion of the "B sets" even prmits the ranking of two points to be b e d  on 



i n f o m t i o n  corning from elsewhere i n  Ec+. 

Ikf ini t ion. kt S be a subset of B+. F,:W-->P(S) satisfies th gemmd hinary 

aMdi tim if for a l l  finite subset of points A= {xl , . . , x, } . q E S , 
and dl nl ard Uz f n m  UN , the f o l l ouhg  d t i o r r s  b l d :  

i) %rp: a m  nxlerqrty, pairw;se disjoint sets W ( j , k ) ) ,  j=l,-. ,N ,  k l , . .  , t ,  

in 16c+ such t ha t  i f  q and + a m  mmmmtonic, then, f o r  each j, any point f m  

I P ( j , i )  ard any point fmin IP( j ,k)  are mmmmtonic. 

ii) For each pair (xi,&) f m m  A, if ulj and G, both agme on I P ( j , i )  ard 

BA(j,k), j=l,.. ,N, t k m  F , ( u ~ )  a d  F,(L$) wind& on a d  xj. 

A pointwise binary independence condition is a special  case where BA (j , k) = 

{ I .  Another special  case would be where F, is based on the values of u and its 

derivatives at a point. Here, (with a s l i gh t  d i f i c a t i o n  of the def ini t ion) open 

sets about each point i n  S rn used to define the germ of the u t i l i t y  functions. 

The c b i c e  of EY(j,k) can vary with the point, s o  d i f ferent  types of i n f o m t i o n  

can be employed. For instance, a t  xl w e  m y  use the value of the u t i l i t y  function, 

and a t  x2 and x3, the gradient of the u t i l i t y  function. The independence 

conditions tha t  replace the usual mnotonici ty condit ion. are defined in the 

following mnner. For a t r i p l e t  A={xl ,x2 ,x3}, let Ij (k,  1) be the set of a l l  

u t i l i t y  functions f o r  the kth agent tha t  have level sets passing through BA(k, j) 

but below BA (k, j+l) , while Ij (2) are the u t i l i t y  functions with a level  set passing 

through BA(k,j) but above BA(k,j+l). The independence condition is 

3 . 3  f o r  a l l  t r i p l e t s  of n o m m t o n i c  points F: Ij --- > P (xj , xj + ) . 

Comlliuy 2.8. L e t  S be a full suhset of B+ w i t h  at  least thme points. 

Suppxe that F, : W-->P(S) satisfies a geneml b m  i n d e p d e m x  wndition, the 

indepdeme wndition 3.3, ard t h a t  F, is not amstant  valued o m  at least tm 

m~m~mtronic pairs. F, can be r e p ~ e n t e d  b a ftolction of a single variable that 

armsponds to either a dictator or an anti-dictator. 

Corollaries 2.7, 2.8 i l l u s t r a te  tha t  the problem of d ic ta tor ia l  behavior is 

not imluced by w h t  h l f o m t i o n  is used, ht by tk division of informtion. In 

these corol lar ies,  the d ic ta to r ia l  conclusions are d i rec t  consesuences of an 

attempt to create an F, tha t  preserves mmtonic i ty .  
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Out1i.m of tlre Proof. As with Corol lary 2 .1 ,  t h e  proof is by induction 

over triplets. L e t  A= {x l ,  +, x3) be a tr iplet of po ints  t h a t  are n o m n o b n i c .  

A l l  t h a t  needs to be proved is t h a t  t he  domain over lap condit ions are sa t i s f i ed .  

The proof is out l ined f o r  c=2; t he  extension to c>2  is imnediate. The proof of t he  

domain over lap condit ion is indicated i n  Figure 2. Because the  sets Bk ( j ,  i) are 

n o m n o t o n i c ,  with some choice of t he  indices, they can be arranged in a fashion 

s im i l a r  to t h a t  given in this sketch. Now, f o r  A = {xl ,x2 ,x3) ,  it is easy to see 

why I l ( j , Z ) n I 2 ( j , l )  meets both I 3 ( j , l )  and I 3 ( j , 2 ) .  I n t h e  f i r s t s k e t c h ,  therea2-e 

three leve l  sets f o r  t he  sm u t i l i t y  funct ion u. The f i r s t  l eve l  set passes 

t h roughBA( j , l ) ,  above BA(j,2), ht belowBA(j,3). This is possible because of t h e  

norumnotonicity assumption. Such a u is i n  I1 ( j , 2  ) . To ensure u is i n  I 2  ( j , 1) , 
t he  second l eve l  set passes through BA (j , 2 ) .  Because c=2 and because l eve l  sets 

cannot cross,  this leve l  set is forced to be below both BA ( j  , 1) and BA ( j  , 3 ) .  There 

is still f l e x i b i l i t y  in  t h e  design of u to have a t h i r d  leve l  set passing through 

BA(j,3). Again, geomtric const ra in ts  fo rce  this l eve l  set to be above BA( j , l ) ,  s o  

it is i n  I3 ( j  , 2 ) .  I t  only remins to show there  is a d i f f e ren t  u t i l i t y  funct ion 

from I l ( j , Z ) n 1 2 ( j , l )  t h a t  is i n  I 3 ( j , l ) .  This is s b w n  i n  t he  second sketch where 

t h e  f i rs t  l eve l  set passing through BA ( j  , 1) now passes above both BA ( j  ,2 )  and 

BA(j,3). This forces the  level  set passing through BA(j,2) to be below BA( j , l )  

( f o r  geomtric reasons) and BA ( j  ,3 )  (because it is i n  I 2  ( j  , 1) ) . These two 

r e s t r i c t i o n .  f o rce  the  leve l  set passing through BA ( j  , 3 )  to have the  proper t ies of 

mmbership f o r  I A  ( j  , 1) . Simi lar arguments apply to s b w  t h a t  t he  domin  

independence condit ions hold. The conclusion now fol lows from Theorem 2. 

SCUE &Lications to 6 c o d c s  

We now use t h e  independence condit ions to characterize th i n f o m t i o n a l  

requ i remnts  of economic prooedures. To see t he  idea,  suppose we wnat to know 

whether we can cons tmc t  a group decis ion pmcedure, based on binary compr is ions ,  

t h a t  always is i n m u m  to a Dutch Book procedure. (See, f o r  instance, [22]. ) Thus, 

we w a n t  to know whether t h e  order ing of t h e  pa i r s  is of any consequence. Can such 

i n f o m t i o n  be combined s o  it always y ie lds a t r a n s i t i v e  ranking of the  

a l te rna t ives?  If t he  answer is yes, t he  procedure def ines a soc ia l  cbice funct ion 

t h a t  s a t i s f i e s  c e r t a i n  independence condit ions, s o  Theorem 2 m y  apply. 

Al ternat ively,  f o r  a given economic procedure, w e  m y  want to determine whether 

c e r t a i n  kinds of m i a l  i n f o r m t i o n  a m  adequate to capture aspects of t h e  

p m e d u r e ;  i . e . ,  of what use is this partial i n f o m t i o n  with respect  to t he  



procedure? If the cbice of pa r t i a l  i n f o m t i o n  defines independence condit ions, 

Theorem 2 may apply. For instance, when analyzing a solut ion concept f o r  a 

standard t rading o r  exchange d e l  amng three agents, can we can reoover aspects 

of the solut ion by knowing what would happen i n  al l  the possible binary t rades 

m n g  the three pairs of agents? Suppse externalities are introduced into a 

c lass ica l  a l locat ion procedure. Is the i n f o m t i o n  a b u t  how pin of 

externalities e f f ec t  the classical solution of any use when considering the total 

ef fect? 

To i l l u s t r a t e  this l i ne  of thought (and to demnstrate another fea ture  of 

the overlap pr inc ip le) ,  consider the aggregate excess d e d  function f o r  a simple 

t rading society with neo-classical u t i l i t y  functions. For a given pr ice vector,  

can w e  obtain qual i ta t ive information a b u t  the aggregate excess demand function 

from the re la t ive  d e d  f o r  the pairs of comnd i t i e s?  To be mre spec i f i c ,  a t  a 

given pr ice, the components of the aggregate excess demand function determine an 

ordinal ranking of the c o d i t i e s  i n  a natural  fashion; the larger the demand f o r  

a c o d i t y ,  the  mre favored it i s .  I t  is reasonable to expect t ha t  i n f o m t i o n  

a b u t  this ranking can be obtained by f inding f o r  each pair of comoodities, 

considered a t  these sam prices, which one is the mre desired. Such a problem can 

be analyzed in several  ways ; I '11 use Theorem 2. The outcorn is t h a t  the 

information a b u t  pairs can be unreliable - even f o r  a single agent. 

Suppose the three c o m d i t i e s  are {cl ,  Q ,  Q} .  The qual i ta t ive 

i n f o m t i o n  w e  seek is the dkec t i on  of the aggregate excess d e d  function. So, 

let the two R i  , J classes,  {Ri s J (ci >c . ) , R i  J (cj >ci ) }  be determined, respect ively,  
J 

by whether there is a posi t ive d e d  f o r  ci o r  f o r  cj.  I t  is easy to show t h a t  

the  range overlap conditions are sat is f ied .  The domain f o r  each agent is the  set 

of neoclassical u t i l i t y  functions. The kth agent is given an i n i t i a l  e n d o m n t  

(Wkl, WkZ, Wk3), Wkj>2.. For a s p e c i f i e d p r i c e ,  ( p l , & , ~ ) ,  pj>O, the I i , J ( k )  sets 

are defined i n  the following m e r :  Ii , J (k,ci >cj ) ) is the set of a l l  u t i l i t y  

functions s o  tha t ,  when the remining c o d i t y  is held f ixed, the excess d e m d  

function at the price (pi , pj ) has a net  trade between 1 and 2 units in favor of ci . 
If the approach of comparing binary i n f o m t i o n  gives qual i ta t ive information a b u t  

the  aggregate excess d e d  function, then, f o r  the given i n i t i a l  endomn ts  and 

pr ice,  F:{U}N-->n{Ri , J }  s a t i s f i e s  the independence condition tha t ,  f o r  each pair 

( i ,  j) , F: I J -  R J .  Clearly, F is not determined by one agent, s o  the  f u t i l i t y  

of such a binary approach follows from Theorem 2 once w e  establ ish t h a t  the  domin 



overlap conditions are sat is f ied .  

I t  is t r i v i a l  to show tha t  the domin overlap conditions are sat is f ied .  

Indeed, a n e w  feature arises ; the intersection of each 11 I 2 class with each I 2  , 3  

class mts b t h  1183 class. Thus, unless res t r ic t ions  are impxed on the c lass 

of u t i l i t y  functions, no aget~t sa t i s f i es  the rtstrictivo domin conditions, s o  the 

last sentence of Theorem 2 applies. To indicate the basic ideas, I w i l l  out l ine 

why I l , 2  (k ,c l>+)  n I z P 3  ( k ,+>%)  mets Lnth 1113  classes. In the plane z=Wk3 in 

E3 consider the circle of radius 1.5. In this plane, the line passing through the 

i n i t i a l  endomn t  with n o m l  vector (pl ,pz) mts the  circle i n  precisely two 

points. Choose the  one where cl A t  this point, construct a level  set of the 

u t i l i t y  function such t h a t  the f i r s t  two comnents  of its gradient is a posit ive 

m l t i p l e  of (p, , I + ) .  Use a similar construction f o r  a level  set of the u t i l i t y  

function in  I2,3 (k ,+>c3) .  SO f a r  we've specif ied t w o  level  sets a t  two d is jo in t  

points using only pa r t i a l  i n f o m t i o n  a b u t  the gradient. The same construction 

f o r  I l r3  (k) speci f ies two mre mints .  A l l  four points are dis jo in t ;  indeed, they 

do not even l ie  i n  the same plane, and only the last two are on a line passing 

through the i n i t i a l  endomnt .  So, it is t r i v i a l  to construct a u t i l i t y  function 

with a level set sat is fy ing the point i n f o m t i o n  a t  the  f i r s t  two points and a t  

e i the r  one (but, c lear ly  not b t h )  of the remaining four points. This completes the 

proof. 

Because no agent sa t i s f i es  the res t r ic t ive  domain conditions, such an F 

doesn't ex i s t  even f o r  one agent - such i n f o m t i o n  is not re l iab le  even to 

determine a s ingle person's d e d  function. The s m  f a t e  holds f o r  any choice 

of F based on similar i n f o m t i o n .  This can be i l l us t ra ted  with the next example 

t h a t  uses a kind of i n f o m t i o n  often considered i n  economics. Suppose F is a 

function of the gradient of the u t i l i t y  function a t  x j  where the imge of F 

sa t i s f i es  the range conditions. Instead of using the mnotonici ty condition given 

i n  Corollaries 2.7,  2.8, suppose the related domin independence conditions are 

I j (k, 1) = (u in U: the j t h  component of the  gradient of u is larger  than the other 

two  oomponents) where Ij (k,2) is the set where some other component is larger than 

the j t h  conqmnent. Again, not only are the domin overlap conditions sa t i s f i ed ,  

but no agent sa t i s f i es  the res t r ic ted domin conditions. Thus, such an F cannot be 

defined even f o r  one agent. 

bnt i rgemy lbbles i n  Statistics 

Theomm 2 can be used with issues from statistics. For instance, by 
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t reat ing each data point as a "voter", i f  follows immdia.tely from Theorem 2 that  

there i s n ' t  a s t a t i s t i c a l  roethod yielding a t ransi t ive ranking of three o r  mre 

alternat ives that  respects binary comparisons. As another statistic question 

sukumd  by T b r e m  2 ,  consider the problem of c o l l a ~ i n g  of contingency tables to 

obtain the mwginal probabi l i t ies. To describe the problem, suppse  a new vaccine 

is proposed to cure the c o m n  cold. T h i s  vaccine is to be tested in Evanston and 

i n  Ann Arbor. A t  each s i t e ,  a test group and a control  group axe used and the 

probabil i ty of a pat ient regaining health is complted. L e t  x, and xA denote, 

respectively, the difference between t k e  values f o r  the t w o  groups as masured at  

Evanston and a t  Ann Arbor. So, x, > O  means that  i n  Evanston the n e w  vaccine had a 

better success ra te  than the standard t reatmnt.  Finally, suppose the test resul ts  

f r o m  both locations are sent  to a central  location and aggregated where y is the 

d i f f e ~ n c e  between probabi l i t ies of success with the vaccine and with the standard 

t reatmnt .  We want to compare signs of the t r i p l e t  (x,  , XA , Y) . Sings011 s ycuadox 

is when the signs (+, +, -) occur; the vaccine was successful b t h  i n  Evanston and 

Ann Arbor, tut not i n  the aggregate. 

Simpson's paradox is an annoying consequence of the combinatoric rules of 

conditional probabi l i t ies. Can som other measure be invented to avoid S i m o n ' s  

paradox? Namely, can w e  f ind a mpping F = (h , pA , p) , depending on a l l  of the 

informtion, where the outcorn assures a l l  sign combinations except (+,+,-) and 

- , - , + In this manner, the n e w  m u r e  avoids the p i t f a l l  of S i m o n ' s  paradox. 

(See [5] fo r  som masures. ) Now, w e  want this masure to be useful on its own a t  

each s i t e ,  s o  we want the sign of h , C I A ,  p to depend, respectively, only on the 

sign of x, . x, , and y. This defines a binary independence condition, and it is 

easy to show that  the range overlap conditions are sat is f ied.  Using the resul ts  

given in [ 161 concerning Simpson's paradox, it follows t ha t  the "one voter" 

sa t i s f i es  the domin overlap condition, but not the restricted domain conditions. 

( A l l  signs fo r  (% , XA , y) are possible. ) Hence, according to the last sentence of 

Theorem 2 ,  such a measure does not exist .  

l%e Rwge ibditim: Social &ice Amctians 

Theorem 2 offers f l ex i b i l i t y  i n  choice of the range, o r  outcome space. 

Because the range overlap conditions are i n  a set theoret ic form, the range could 

be any space - a function space, a space of probability d i s t r i h t i o n s ,  a lo t tery ,  

su tsets  of al ternat ives, etc. I decided to i l l u s t ra te  the basic ideas with a 

famil iar &el - socia l  choice mappings. Le t  the candidates ( c l , .  . ,c,) be given, 
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le t  Aj, j = l , .  . ,p, be a s u t s e t  of these candidates, let FS = {Al,. . ,$) be the set 

of feasible sets of A,  and let R be the set of a l l  nonempty subsets of the 

candidates. A soc ia l  choice correspondence, F: FSx{P(l,. . ,n )  IN--->R, assigns to 

each feas ib le  s e t  and preference pro f i le  a nonempty subset of t he  feas ib le  set. 

N m l y ,  f o r  A j  in FS and x i n  P ( l , . .  ,n)N, F(Aj,x) is a nonempty subset of A j .  F 

s a t i s f i e s  the condit ion of inde-ndence of infeasible a l t emt i ves  i f  f o r  Aj  i n  FS, 

and i f  f o r  x and y i n  P ( 1 , .  . ,n)N that agree on Aj  (they a r e  i n  the  s m  P(Aj) 

c lass )  , then F (A j  , x) = F ( A j  , y) . A soc ia l  choice correspondence F is stsict ly 

nomnstant over Aj  i f  t he  imge of F(Aj ,-) has a t  least two d i s j o i n t ,  nonempty 

su tse ts .  F s a t i s f i e s  the choice axiom i f ,  f o r  a l l  x, F(Aj ,X I  = F({ l , .  . ,n) , x )M j .  

The def in i t ion  of a correspondence of a s ing le var iable,  a d i c t a t o r ,  and an 

an t id i c ta to r  are the obvious ones. 

The di f ference between a soc ia l  welfare function and a s o c i a l  choice 

funct ion is t h a t  a s o c i a l  welfare function determines the  g m u p  ranking of the 

a l te rna t ives ,  while the  social choice function se lec ts  only the  set of "k t "  

candidates. So, i f  a s o c i a l  welfare function e x i s t s ,  the  re la ted  s o c i a l  choice 

funct ion se lec ts  the top ranked a l ternat ive.  This mans t ha t  the  s o c i a l  choice 

funct ion is zaliaed by the  s o c i a l  welfare function. An important theorem by 

Hansson [6] spec i f ies  w h a t  kind of feas ib le s e t s  pennits a soc ia l  welfare function 

can be constructed to r e a l i z e  a given soc ia l  choice function. Thus, whenever his 

conditions are s a t i s f i e d ,  there is a re la t ionship between r e s u l t s  f o r  soc ia l  choice 

and s o c i a l  welfare. While the conditions given below can be used to invoke 

Hansson's theorem, the  conclusions a r e  proved d i r e c t l y  to i l l u s t r a t e  how Theorem 2 

includes soc ia l  choice mdels. 

Comllary 2.9. For A = {cl,. . ,q,) w k  -3, let th set of feasible sets h l&  

A and all tm element subsets of A kt F be a social cbioe o o ~ p o d e m e  that 

satisfies t& codition of indepexdeme of infeasible alternatives, th cbice 

axium, a d  is strictly mmr~tant over th p a i ~  of altiernatives. F can be 

mpzesented a function of a single variable. 

Of course, Corol lary 2.9 could be d i f i e d  to obta in a r e s u l t  with the 

f lavor  of Corollary 2.4 and some of the other s t a t e m n t s .  

Proof. As with Corol lary 2.1,  the proof is by induction. Choose three 

candidates, say {cl, q ,  c3). A s s m  t h a t  A j  = {c j ,  C ~ + ~ I .  Let I j ( k )  = P ( j , j + l ) ,  
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and define R j  to be { { c j , A j S ) ,  { C ~ + ~ , A ~ ' ) )  where A j '  is the complemnt of Ak i n  A. 

(So, i f  n=3, R1 = {{c1,c3), {%,%)).) I t  follows from the condition of 

independence of infeasible al ternat ives and the choice axiom t h a t  F: Ij-->RJ. I t  is 

easy to show t h a t  the sets Rk sa t i s fy  the range overlap conditions. For instance, 

asah in n=3, RlfW = {{cl ,031, {c2 ,0311 fl {{c2 , c l l ,  {CJ ,c l ) )  = { {%I,  {cl)  

{cl , c3 ) , {c2 ,% 1). The f i r s t  tw sets are i n  di f ferent  R3 s u k e t s  . From th i s ,  the 

conclusion follows from Theorem 2. 

Gibtrud - Sattert)aefte 

A s  a last i l l us t ra t ion  of Theorem 2, 1-11 give a proof of the Gibbard - 
Satterthwaite theorem t h a t  d i f fe rs  from the standard mtkd depending on the 

dist r ibut ion of power. For simplicity of exposition, restrict attent ion to three 

alternat ives. (In mch the same manner as described f o r  the ear l i e r  corol lar ies,  

the resul ts  exknd to all values of n13. ) Recall t h a t  i f  A = {c , c2 , % ) is the set 

of candidates, then a voting scheme is a function F: {P( 1,2,3)  )N --- > A. For xj  E 

P(1,2,3) ,  ci >jck i f f  t h i s  is the ~ l a t i v e  ranking of the two candidates i n  xj .  A 

voting schem is m i p l a b l e  i f f  there ex is ts  x, y E {P(1,2,3)1N tha t  d i f fe r  only 

i n  the j t h  component and F (y) > F (x) . The j t h  c o m n e n t  f o r  y, y j  , represents 

the j t h  voter's m is~presen ta t ion  of his t rue ranking. We say t h a t  j mnip l la tes  F 

at  x with yj. 

Comllary 2.10 (The G i ~ S a t ~ t e  ~ I T M ) .  kt F be a mting s c k  f m  

(P(1,2,3)}Nto {cl, %, 5 3  ub=mthemngeof F h  onto. F ise i~d ic ta to r ia l  

or mnipllable. 

M f .  Assum F is not rmnipulable; we show it is d i c t a b r i a l .  For the 

pair 4 , j  = {ci ,  c j} ,  let R i  , j  = {{c,, A ' i ,  j ) ,  {cj , A ' i ,  j ) ) .  For instance, R 1 , 2  = 
{{c, , CJ 1 ,  {% , % I ) .  The range overlap condit.ion5 are sat is f ied.  Corollary 2.10 

follows from Theorem 2 once we show that  the I i  . j (k) sets are P (i , j ) . This proof 

i l l us t ra tes  how these impl ic i t ly  defined independence conditions are extracted from 

"level set" and mno.tonicity properties of F. To emphasize the ideas, the proof is 

divided i n b  three lemnas. F i r s t ,  note tha t  F- 1 (c ) # 8 f o r  a l l  j. 

L e m  1. If F (x) = cj , and i f  x = (xl , . . , ) varies only i n  the kth 

component where t h i s  variable, yk , is i n  the same P ( i  , j) class,  then F remins i n  

the sane R i  $ J  class. If when yk changes P ( i ,  j) classes,  the imge of F changes 

R i  ,J classes, then the change is mnobnic;  e.g. , i f  y, mves from P(cj >ci) b 



P(c i>c j ) ,  then the imge of F mves from {cj,ck) to {ci ,ck) .  

Proof. Without loss of generality, l e t  k = 1. Suppse the f i r s t  part of 

the l e m  is fa lse because the M e  of F changes R i  j classes when this voter 

changes to yl ' where both xl and yl ' are in  the s m  P ( 1,2) class. If this voter's 

re lat ive ranking is c i>c j ,  he can rmniprlate the outcorn of F a t  x with y, ' ;  

otherwise he can mnipulate the outcorn of F a t  (y, - , x;! , . . , +) with x1 . BOth 

contradict the assumption that  F Is not m ip r l ab le .  Similarly, i f  changing tk 

P ( i , j )  classes has the reversed ef fect  on the i w e ,  then ei ther one way, of tk 

other, the f i r s t  agent can manipllate tk outcorn. If t h i s  agent's relat ive 

ranking is ci >cj , then F is rrranipulated a t  x with y,; otherwise F is manipdated a t  

(yl,xz , .  . via xl. 

&finition. The change of a ranking xi to yi is called a level set cIw@ 

with rtzspect to cj i f f  for  each choice of k, ck >C in q i f f  the same relat ive 

ranking holds in  yi . 
In other words, in  a level s e t  change, a l l  of the candidates ranked above 

c j  in  q are also ranked above cj  in  yi and vice versa. So, c j  remins a t  the sam 

level and a l l  candidates originally above (below) remain above (below). For 

instance, c l  >c2 >q and c2 >cl >c3 are level s e t  changes with respect to q , but not 

with respect to c j ,  j=1,2.. 

L e m  2. If F (x) = c , and y di f fers from x only i n  the kt h voters ranking 

which is a level s e t  change with respect to c j  , then F (y) = c j .  

Proof. Assum the l e m  is fa lse,  and that  F(y) = c i .  Because the kth 

agent rnade a level set change, t h i s  agent's relat ive ranking of ci and c j  remins 

the sm. Thus, this voter can e i ther  manipulate F a t  x with y-x o r  a t  y with x-y. 

L e m  3. For each i and j ,  F : I i I j - ->Ris j .  

Proof. If th is  l e m  were fa lse,  there would be a profi le x where F(x) = 
c,, and a prof i le, y, in the same P(1,Z)N class as x, w h e r e  F(y) = Q .  Becawe we 

can go from x to y with a series of individual ranking changes i n  the sam P(1,2) 

c lass,  it follows from km 1 that  there is an i n t e d i a t e  prof i le, z ,  in the 

sm P(1,Z)N class,  such that  F(z) = q .  First ,  assum that  a l l  rankings in  x with 

c l  >c3 have the ranking cl >c, >% or  Q >cl > q .  If this i sn ' t  so, it can be achieved 

with cl level s e t  changes. According to Lem 1, i f  P(1,Z) invariant changes a l t e r  

the outcorn to c3, it is due to P(1,3) changes fo r  a sukset of these voters; l e t  

V 1 , 3 '  be the indices of these voters, and let z'  be the new profi le. (Notice, 

these are level s e t  changes where c l>q  b m s  >cl. ) Now, to change the 



hmge f r o m  c3 to c2 , certa in voters keep t he i r  rankings in the same P (1,2) class, 

but they mt change P(2,3) f r o m  % >c2 to Q >c;, . Let V2 , 3  be the indices of these 

voters and let  y be the prof i le.  We can assume tha t  V1.2  and V2 , 3  are dis jo int .  

T h i s  is because the voters with the x ranking of c2 >cl >c3 have the wrong P(2,3) 

ranking to mke th i s  change. For the other voters i n  V l  , 2 , the P ( 1,3 ) change 

resu l ts  i n  cl>c+. If this doesn't change the F image to cl  (the only poss ib i l i ty ) ,  

then this voter wasn't needed i n  V l 1 2 .  If it does, then, according to L e m  1, the 

next P (2,3 ) change cannot change the outcorn to %. 

Change y to w by using a Q level set change with a l l  indices i n  V112. 

According to L e m  2, F(y) = F(w) = Q .  Prof i le x di f fe rs  from w only f o r  the 

rankings of the V2 , 3  voters. So, the changes from x to a only involve P (2,3) 

changes i n  the sane P (1,2 1 and the sam P (2,3) classes. Thus, according to L e m  

1,  F (w) is in {cl, % I .  T h i s  contradiction completes the proof. 

Corollary 2.10 follows from Lemna 3 and Theorem 2. (Of  course, w e  could 

have streamlined the proof by s b w i n g  , f o r  example, tha t  the V i  D j sets are 

singletons.) Notice that  the drive f o r  each agent to mxirnize the outcome of F 

i s n ' t  needed; we only used the associated mnotonicity fo r  F. Consequently, the 

essence of the Gibbard-Satterthwaite theorem extends to situat ions outside of 

s t ra teg ic  mnipulations as well as the other extensions admitted by the f lex ib i l i t y  

i n  the choice of the range t ha t  is admitted by Theorem 2. Finally, it is worth 

noting t ha t  in [9,17], the level  sets defining the mpssage correspondences are 

based on integrabi l i ty  conditions. This involves "L i e  bracket conditions"; they 

masure the change, o r  d i f fe rent ia l ,  of one vector f i e l d  with respect  to another. 

& examining the usual mt iva t ing examples fo r  the L i e  bracket, you w i l l  f ind a 

strong relat ionship with the proof of Lemna 3. T h i s  is not coincidental; such a 

construction occurs whenever the independence conditions f o r  d iscrete rmdels are 

impl ic i t ly  defined; e. g. , a related arguroent is i n  the last paragraph of the proof 

of the f i r s t  part of Theorem 2. This kind of argument can be atstracted to form 

the discrete version of the L i e  bracket condition. 

Theorem 2 can be extended by a l ter ing the domin and the range overlap 

conditions. There are many ways this can be done; several create interest ing 

theories of independent interest .  Rather than attempting to be complete, I ' l l  
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i l l u s t r a t e  the basic ideas with s o m  p x s i b i l i t y  theorems. In mch the sm 

fashion other extensions , say,  to quasi- transit ive o r  acycl ic rankings can be mde. 

The f i r s t  extension is to d e l  "indifference". The def in i t ion is based on 

the georoetric proycrt.ies i l l us t ra ted  i n  Figure 1. The key feature is t ha t  i f  an 

agent is indi f ferent between cl and c, , then his (c;! ,q) ranking uniquely 

determines his (cl ,  c3) ranking. This deprives h i m  of the freedom la vary between 

P(1,3) classes tha t  is essent ia l  to prove Theorem 2. Consequently, w e  should 

expect other voters to have a say i n  the outcoroe. This happens. 

Definition. The h m i n  overlap d t i a m  w i t h  hdiff- for the k.h voter 

admits added s e t s ,  IJ(k,3) ,  j=1,2,3. For each j ,  tbe added set is disjoint f m  

each of the tm original Ij sets. The ckurain overlap cordi t ion for this new set is 

t b t ,  for each permrtation (a ,b ,c )  of (2,3) and s = 1,2,3, Ia(k,3) f lP(k,s)  mets 

precisely one Ic (k) set, Ic (k,u),  w k . m  s=3 i f f  u = 3. FwAkmmm, if 

Ia(k,3)nD(k,u) meets Ic(k ,v) ,  w3, then P(k,u)nIc(k,v)  meets al l  three of the Ia 

sets. Call I j (k ,3)  the imWferwm? set. 

Theorem 3 extends the version of Arrow's Theorem tha t  admits preferences 

with indifference. To generalize the idea of s-uential d i c t abn - ,  w e  need a 

stronger condition on the range se ts .  

Definition. Assume t ha t  each R j  , j=1,2,3, I n s  tm elemmts. Assume for each 

permrtation (a,b,c) of (1,2,3) t h a t  a m  four sets in R e f W ;  t m  of them 

sa t i s f y  th mnge overlap corditioxs and each of th= 0 t h ~  tm ~t both RC sets. 

Both of th lat- tm - of th= fom R a l f W u  a d  R a 2 f W v  for SOOE  permta tat ion 

(u,v) of (1,2). The range set. R j ,  j=1,2,3, are said to s a t i s f y  th= flexible r m  

overhp c o d t i o n s .  

Most of the choices of R j  used i n  this paper sa t i s f y  the f lex ib le  range 

overlap condition. This is t rue f o r  P ( i  , j) as well as the sets {cj ,Aj ' I .  TIE t e r m  

" f lexible" refers the f l e x i b i l i t y  i n  the range classes similar to t h a t  admitted by 

the dorwin overlap conditions. The res t r i c t i on  allowing R j  to have only two sets 

is not necessary. 

h m m  3. kt N L 2. kt M =  @':I)-> R : the Ij classes s a t i s f y  the dolllain 
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overlap conditions w i t h  Mf - ,  the R j  classes sa t i s f y  the flexible range 

averlap oordi t iars,  anl F: IJ-->RJ is m n  amstant for a t  l eas t  two val- of j.) 

a. Them is a n F E  W t h a t c a n m t  bemqmsentedtyafrnrJtion'of orre 

var iable over IlnI2N3. 

b. Suppose F E H is no t  a function of a siogle variable. T b m  exists a 

pzwmtation of indices, (B(l) ,  B(2) ,. . ,B(s)),  s<N,  a d  rmppims go ( i  ):% ( i  )->R 
w i t h &  f o l l a w b g ~ y .  If xp(l) 6! IJ(B(1),3), then& R j  imge of F is 

detiermirdbthe -of go(,)). M i m l y ,  i f x o ( , ,  E I j (B(a),3),  ar- l , . . , ics,  

*(,+I) 6! Ij(B(*1),3), RJ image of is b &(,+l)- T h e  

are two possible cbices for each go (,). 

An unusual example i l l u s t r a t i ng  Theorem 3b is w h e r e  the P ( i , j )  outcom of 

F:(P(1,2,3)-IN-->P(1,2,3) is d ic ta to r ia l l y  determined by the f i r s t  voter i f f  her 

ranking is not indifference. If she is ind i f ferent  a b u t  som pa i r  P ( i , j ) ,  then 

this ranking is determined by the  second vo-r 's P(i+ 1, j+ 1) ranking. Other examples 

could involve u t i l i t y  functions, etc. 

Theorem 3 demnstrates t h a t  several  voters can help determine the outcom 

of F when the f l ex ib i l i t y  i n  the domin is curtai led. This is accomplished here by 

adding se t s  to the admissible domin t h a t  don't  sa t i s f y  the domin overlap 

conditions. In other words, there are si tuat ions where Arrow's t h r e m  doesn 't 

apply because it is I ~ X  m s t s i c t i v e .  A standard way to obtain poss ib i l i t y  t h r e r m  

is to create the r i g id i t y  i n  the  domin by subtsacti tg from the domain by 

imposing res t r ic t ions  on what are admissible preferences. T h e o r e m  4 characterizes 

these domin restr ic t ions.  Essent ia l ly ,  Theorem 4 states t ha t  the overlap pr inciple 

captures the bundary between poss ib i l i t y  and impossibi l i ty conclusions. 

To rmtivate Theorem 4,  reca l l  t h a t  ptzzling phenomna I br ie f l y  mntioned 

a f t e r  Corollary 2.5. C e r t a i n  domain res t r ic t ions  permit p s s i b i l i t y  t h r e n s .  I t  

seem reasonable to expect t h a t  with stricter res t r ic t ions ,  d e l s  permitting even 

mre voter part ic ipat ion w i l l  resu l t .  This need not happen; the stronger 

restrictions can force a re turn  to an impossibi l i ty conclusion! For instance, 

with axioms nxlch l i ke  those studied by Kalai, Mueller, and Satterthwaite, Donaldson 

and Weymrk [2] obtained a poss ib i l i t y  theorem with an independence condition t ha t  

d e l s  a form of " free disposal of g h "  . Yet, when they changed the independence 

condit ion i n  a natural  but s l i g h t  manner, an impossibi l i ty theorem now emrged. To 

see why behavior l i ke  this occurs, consider Arrow's theorem where voter 13 can 



assum any ranking e m p t  cl >c2 >q . According to Theorem 4,  we obtain a 

p x s i b i l i t y  theorem. Now consider what happens i f  we fur ther  restrict 13's rankings 

to (cl >q >% , q >cl >c2 ) . NOW, a d i c ta to r ,  other than 13, is obtained. This is 

because with the or iginal res t r i c t i on ,  the Id (O) classes are the usual P ( i , k )  

classes minus the one specif ied ranking. Because only this one ranking is missing, 

the domin overlap conditions cannot be sa t i s f i ed ,  s o  as Theorem 4 asser ts ,  a 

possib i l i ty  conclusion holds. But, by imposing the stronger res t r ic t ions  on 13's 

rankings, a new set of I j  (O) classes emerges. One class still is P(1,3)  , but the 

two n e w  I j  equivalence classes are singletons - the en t i re  set. Theorem 2 appl ies 

because the stronger res t r ic t ions  (which correspond to mre relaxed independence 

conditions) create a n e w  division of independence classes i n  the domin t ha t  

sa t i s f y  the domin overlap condition. The next def in i t ion,  which is needed f o r  

Theorem 4 ,  captures this impl ic i t  behavior. 

Definition. S- I IJ (k) , j=1,2,3, satisfy th nstricted domFin overlap 

oorditions for I&. A lestrictian for t h  lrth voter is a plroper subset, C, , of I (k) 

= Il(k)nIz(k)nP (k). A nstriction C, ~ 1 i c i t W  defiDes a new set of 

inf~113tim.d equivalence classes I Jj (k) } , j= 1,2,3, if x E IJ (k, s ) % i ff 
x E Jj (k,s)%, j = 1,2,3, s = 1,2. 

As an example, suppose I i ~ d ( k )  = P ( i , j )  = (P (c i>c j ) ,  P(c j>c i ) }  and % = 

(cl >c2 >c3 , c1 >c3 >c2 , q >cl >q 1 .  (These are regions {A, B, C) i n  Figure 1. ) % 
impl ic i t ly defines the overlap classes Ji , j (k) = I i  , j (k) f o r  ( i ,  j) = ( ( 1 ,3  ) , 
(2 ,3) ) ,  and J1,2 is the  singleton equivalence class of the total set. In other 

words, because the restric l ion % forces one of the I1,2 (k) sets to be empty, this 

class could be replaced with a singleton. Notice t h a t  with the res t r i c t i ons ,  

neither the or ig inal  nor the impl ic i t ly  defined classes sa t i s f y  the domin overlap 

conditions. This is because J1,2(k) fWS3(k)  = J 2 , 3 ( k ) G  = { ( c l > ~ > q ) ,  { c l > q > ~ ,  

q > c 1 > c 2 ) ) ,  SO there aren ' t  two sets i n  this intersect ion where each meets both 

J 1 ~ 3  (k) sets. 

Theomin 4. S-e the infonmtional equivalence classes ard the division of the 

range for given D and R satisfy tk overlap prbiple. Assure mtrictions are 

imposed an at least one of th voters that satisfies th mstricted domin overlap 

corditiom, say voter 1. Assume that all of tk hplicitly defined infonmtiod 



equivaleme classes gemrated by C1 either fail to s a t i s f y  th overlap amtitiom 

or they have only tuo classes w i t h  tuo disjoint nomupty sets, say J j ( l ) ,  j=1,2, 

& a t  l e a s t  tuo of lh four  sets in J l ( l ) (Uz( l )  enpty. T k m  exists a 

fumbion F f m m  t b  xtdiricted k i n  of D to R that satisfies th indepembme 

conditions F: I j ->Rj  , j=1,2,3, uh.m F js no-mtant f o r  a t  k t  tuo values 

of j and F cannot be mwerr ted as a f-on of a single variable. 

In other words, as long as the res t r ic t ions  don't  impl ic i t ly define a n e w  

c lass  of i n f o m t i o n a l  equivalence classes t ha t  require, via Theorem 2,  a 

d ic ta tor ia l  s i tua t ion ,  then a non-dictatorial F ex is ts .  

Comllary 4.1. L e t  n=3 and I i , J (k) = Ri , j  = P( i ,  j ) .  If C1, th mstrictions on 

voter 1, are s ~ h  tht C1(Ui, j ( l ,s) # B for all (i, j ) ,  s = 1,2, tkn them exists a 

mawk from this ~ t r i c t e d  domain t h a t  oanrrot be mpmsented by a furrction of a 

single variable. 

Exaarple The res t r ic t ion  C1 = {cl >% >Q,  % >c2 >c l )  admits a socia l  welfare 

function t h a t  is not governed by an (ant i )  d ic tator .  This is because each P ( i , j )  

set meets C1. On the other hand, the res t r ic t ions  C1'  = ( c l >%>%,  c 2 > c 1 > 5 }  

cannot avoid a d ic ta to r ia l  s i tuat ion. This is because C1'  meets only one set i n  

each of P(2,3) and P( 1,3) .  As a resu l t ,  both of these classes can be replaced with 

a singleton equivalence class of everything. The overlap conditions are sa t i s f i ed  

and Theorem 2 holds. 

Even though Theorem 4 admits a possib i l i ty  conclusion, the resul t ing F 

need not be a &el of part ic ipatory demracy ;  the remining conditions sti l l  

impose sharp res t r ic t ions  on which F's are admitted. To see th i s ,  suppose 

res t r ic t ions  are imposed only on the f i rs t  voter where C1 = P(1,2,3) - {c1>%>c2) 

(region B i n  Figure 1). I f  F is not determined d ic ta tor ia l ly ,  then the f i r s t  voter 

mt influence the outxome of at  least trm pairs. This is because i f  the voter has 

no influence over a pa i r ,  then the associated F inplicitly d e f i n e s  the associated 

informtional egui~lence class as a singleton. If t h i s  is t rue  fo r  two pairs,  

then the newly defined classes t r i v i a l l y  sa t i s f y  the domin overlap condition, and. 

Theorem 2 applies. Now, the constraint C1 permits f 1exibil i t .y of mvemnt  in the 

P(1,3) and P(2,3) c lasses,  s o  a variat ion of the argument f o r  Theorem 1 shows t h a t  

voter 1 determines the outcorn of these pairs.  Thus, the def ini t ion of F is thrust 
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upon us; the f i r s t  voter (ant i )  dictatorial ly determines the P( 1,3) and the P(2,3) 

outcome. With one exceptional case, the outcorn is e i ther  P ( 5  >cl ) W(c3 >c2 ) = 
{C,D), o r P ( c 1 > c 3 ) W ( ~ > c 3 )  = {A,F). Ine i ther  s i tuat ion,  the P(1,2) outcorn can 

be determined in any desired m e r  by the voters, say, with a majority vote. The 

one exceptional s i tuat ion is when the f i r s t  voter has the ranking c2 >5 >cl .  Here 

the P(1,3)W(2,3) w e  is either the anti-dictatorial  outcorn {B) , or  the 

dictator ia l  {E) - which one occurs uniquely defines b w  this voter determines the 

imge of F. Thus, i f  the f i r s t  voter has tk ranking ~2 >cl , he determines the 

P(1,2) o u k o ~ ~ .  Otherwise the P(1,2) irnage can be determined by a mjor i t y  vote 

(or by any other mxms ) of the remining voters. 

With this construction, it is easy to W e  other si tuat ions that  could 

occur with the appropriate domain restrictions. For instance, si tuat ions can 

occur where tk f i r s t  voter uniquely determi= the P(1,2) and P(2,3) ou tcorn ,  

the second determines the P(1,4) ,  P(1,5) outcorn,  . . . .  If this process does not 

uniquely determine the F outcorn in  P ( 1, . . , n) , then other voters can make the 

f i na l  determination. Such a construction results from an i te ra t ive application 

of Corollary 4.2. 

Comllary 4.2. a. kt N 1 2. Suppose th inforplational equivaleme classes and th 

division of the range for given D and R satisfy the overlap principle. Assuue 

mstrictiom, C1, am imposed on voter 1 and that voter 1 satisfies the mtr ic ted 

doroain overlap mnditiors. Suppose C1 admits a permrtation (a,b,c) of (1,2,3) so 

that Ia(l)rrIt,(l) oontairs the tsn> sets uh.m each mets both Ic(1) sets. If F 

cannot be llepzesented by a fumtion of om variable, t k m  the f i r s t  voter 

deter ' t b R a a n d R b o u t c o m .  

b. kt k-2, ad s- that mt r ic t iom C1 ad C, am given. S-e for 

two different permrtations (a(k),b(k),c(k)), that I a ( k ) )nP(k ) )  oontains th 

mquired t w o  sets that ~t b t h  IC (k) sets hrt th 0 t h  sets in this intersection 

do not. If F is m t  a function of a single variable, t h  for one cbioe of k, t h  

kCh vpter detezmimzs th Ra(k)  and th Rb(k) -. 

hbn bnditiom - &m ~XBOIY 

I've already pointed out that  the informtion used by each voter could 

chmge; fo r  instance, one voter's domain could be ordinal rankings, a second 

voter's domain could be based on a prot-wbility distr ibut ion, while a third is given 



by u t i l i t y  functions. The next feature I w i l l  i l l us t ra te  is that  each inde~ndence  

c lass of each voter could represent a d i f ferent  type of i d o m t i o n ;  the goal is to 

determine whether the interact ion m n g  the f e a t m  are compatible. In this 

mnner, f o r  instance, one could examine resul ts  of the type shown by SameLson 

where a t ransfer  of i n i t i a l  endomn ts  can adversely a f fec t  the f i na l  al locat ion. 

I decided to i l l us t ra te  this feature by recapturing sonre of Hurwicz and 

Schmidler's (HS) nice resu l ts  a b u t  infer ior Nash equi l ibr ia. ( In t h i s  way we 

re la te  HS 's resul ts  to Arrow's t h e o r e m .  ) 

HS studied g a r r s ,  o r  al locat ion processes with a f i n i t e  number of 

al ternat ives, where, f o r  each pro f i le  , there is a Nash equilibrium which also is 

Pareto op t im l .  Such an al locat ion procedure is acceptable [10,p. 14471. HS sbwed 

t ha t ,  f o r  two  agents, an acceptable al locat ion function mt be d i c h t o r i a l ,  but 

tht this same conclusion does not hold f o r  three o r  mre agents. Yet, they 

proved tha t  a non-dictatorial solut ion f o r  mre than t w o  agents requires a 

"kingmker". With three players, the role of the kingmaker is to determine which 

of the remining trx, agents is to be the dictator.  Because r r ~ ~  objectives are to 

i l l u s t ra te  Corollary 4 .2 ,  1-11 show kre only why the, dictatorship occurs f o r  N-2. 

(The proof and the c o m n t s  mt i va t ing  Corollary 4.1 and 4.2 suggest the, reasons a 

kingmaker occurs. ) 

Consider al locat ion procedures with two possible outcorn, {a,b}, and t3wo 

agents. The range space is not jus t  the two outcorns; it is each outcome 

associabd with b w  each agent honestly ranks the al ternat ives. For instance, 

typical outcomes are {a,a>lb,b>2a}, {a,b>la,b>2a}, and {b,a>lb,a>2b}. The f i r s t  

outcome implies tha t  a is the select& al ternat ive,  a is the f i r s t  agent-s top 

ranked alternat ive, and it is the second agent's bottom ranked alternat ive. The, 

second and th i rd outcomes do not occur berause of the preto condition. For 

instance, i n  the second outcorn, both agents prefer an available a l ternat ive,  b. 

This leaves 6 outcomes t h a t  do sa t i s fy  the pareto condition, and they are 

represented i n  Figure 3. In this t r iangle,  the edge to the l e f t  represents the 

f i r s t  voter's t rue ranking and defines t h  two R1 classes, th edge to the r ight  

represents the second voter ' s  t rue  rankings and defines the two EP classes, while 

the bottom edge denotes the selected alternat ive and determines the two R3 classes. 

Because tk mapping, f , has only four variables, there are four irnage points, so it 

is not obvious w h e t b r  t h e  range overlap conditions are sat is f ied.  By tb pareto 

assumption, f rmst have an i w e  in regions 3 and E. Because there is an o u t c o r ~  





f o r  each prof i le ,  there is an inrage point i n  (C, D) and i n  (A,  F). If the hmges 

are (A, Dl, then, t r i v i a l l y ,  the  f i r s t  agent is a dictator .  Equivalently, i f  

they are (F, C), then the second agent is a dictator.  For e i the r  of the remining 

two  cases, the range overlap conditions are sat is f ied.  

The domain for  each agent, I&, is represented by a similar t r iangle,  but 

there is a s l i gh t  difference i n  the interpretation. The bottom edge, dividing 

the equi lateral t r iangle into two  r ight  tr iangles, corresponds to this agent's two 

strategies - w i l l  she state a o r  b is her top ranked alternat ive? Of course, this 

depends on the choice of the allocation function and on her opponent's strategy. 

Therefore, this axis corresponds to what appears to be her top choice based on her 

strategy choice. This defines the 13 (k) classes. Obviously, the Ij ( j )  classes 

agree with the R j  classes, j=1,2. The remaining equivalence class f o r  each agent 

consists on what appears to be the t rue belief of the opponent. For instance, the 

point (a l ,b> la ,b>2a)  represents the f i r s t  voter using a st rategy to achieve a, when 

his t rue f i r s t  choice is b, and it appears that  the second agent's t rue f i r s t  

choice a lso is b. Such points are not admitted both under the Nash and Pareto 

assumptions. Thus , the representation of the t r iangle holds. A w n t  the 

al locat ion function, f :  (a, b)2 --- > (a, b) , to define the trapping F: Dl@ -- > R ,  i n  the 

natural m e r .  N m l y ,  F map I j  ( j )  to R j  , j= 1,2,  and f maps the st rategies to the 

R3 class. By construction, F: I J - - > R J ,  j=1,2,3. If f is not d ic ta to r ia l ,  w e  've 

already shown tha t  the range overlap conditions are sat is f ied.  The domin overlap 

conditions remain. 

If f is not d ic ta to r ia l ,  there are only two choices f o r  the irmge set of 

F. Without loss of general i ty,  assuroe it is (A,B,C,E). We need to use the Nash 

and Pareto conditions to determine what sets are, and are not in G. By the Pareto 

condition, (B,E) = ( (ak ,a> lb ,a>2b) ,  (&,b>la,b>2a)) E G. Because of the Nash 

condition, regions (C, Dl E C1. I t  is obvious why D E C1. To see why C = 
{a, , b> la ,  a>2 b) E Cl , note t ha t  the first voter using the st rategy to get  b resul ts  

i n  a .  If by changing strategy,  the agent muld get  b, the or ig inal  outcom 

wouldn't be a Nash equilibrium. Thus, C also is an admissible strategy. Similar 

arguments show tha t  C1 contains a l l  of the regions excxpt. (b, ,a> lbJ  b>2a) because 

this would change the outcorn to b, and this is a personally worse outcom. 

Likewise, = {B,C,D,E,F). 

Based on the res t r ic t ions G,  Corollary 4.2 holds. Consequently, e i ther  f 

is dic ta tor ia l ,  o r  (according to Corollary 4.1) two of the R j  classes of F are 
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determined by one agent. Obviously , these tuo classes cannot be R 1  and R2 , s o  one 

of them rmst be R3. This returns us to the d ic ta tor ia l  s i tua t ion  because this 

agent determines the {a,b} outcom. 

For two  agents and several  al ternat ives, the ideas remin the same. If 

there are mre than two agents, there are differences i n  the construction. 

S t i l l ,  based on what has been shown, intui t ion suggests (and supporting de ta i l s  

prove) tha t  when a voter determines the outcome fo r  two  classes, one could 

determine which of the other voters prevails, and then t h i s  designated voter 

selects m n g  tw classes. This last voter is a dictator ;  the f i r s t  is a HS 

kingmaker. 

R%@ -lap 

If the range overlap conditions are not sa t is f ied ,  f l e x i b i l i t y  is 

introduced into the range. A possib i l i ty  theorem emrges. 

h m l l a r y  4.3. In tbe sta- of Theorem 4, assm tht tbe dormin owz lap  

oordi t iom am sa t i s f i ed  and at  least txm voters sa t i s f y  tbe -trick3 domain 

oordit iom. Suppose tbe ~.ange overlap c d t i o m  am mt sat is f ied  becam, for 

soue parmrtation (a,b,c) of (1,2,3), t h m  am not txm sets in R a m  in d i f femnt  

sets of Rc.  BE exists a mapping F:D-->R satisfying tbe hdepedeme oorditio~s 

F: U->Rj, j=1,2,3, tht canmt be =-tied as a function of a single variable 

over 11mf-iP- 

Outline of the proof. Assum tha t  h t h  R11T'IR2 and Rl2fRz2 meet both R3 

classes. Because the range overlap conditions are not sa t i s f i ed ,  either both 

R l  and R 1 2 W  are i n  the s m  R3 class, o r  a t  l eas t  one of t h e m  meets both 

R3 classes. The f i r s t  cannot occur. For instance, suppose both intersect ions 

miss the R31 class. That is {R31m11}m2 and {R31fR12}Mi21 are empty. This 

contradicts the assumption t ha t  a t  l eas t  one of the R31m1j classes nust meet 

both R2 classes. In the l a t t e r  se t t ing ,  i f  a l l  four sets meet tk two s e t s  i n  

R 3 ,  then let the  first agent's ranking determine tk R 1  and R2 outcom by mpping 

I j (1 ,k )  to RJk, j=1,2, k-1,2, and let the R3 outcome. be determined by any desired 

metbd; say a m j o r i t y  vote, o r  the second voter's ranking of this se t .  The 

remining s i tuat ion is where one of the sets, say R12 fX2, meets R3 but not m 2 .  

F i r s t ,  suppose there is a set i n  I1 (1) nI2 (1) t ha t  meets only one of the I3 se ts .  

With a relabel l ing of the indices, w e  can assm that  I1 (1,2) nI2 ( 1 , l )  mts only 
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13(1,1).  'I'kn, let the F be defined by having I j ( l , k )  mpped to RJk  f o r  j=1,2, 

k 1 , 2 .  If the  f i r s t  v o k r ' s  ranking is in I3(1 ,1) ,  then the  irmge is R31. 

Otherwise, let the  second voter 's  choice of I3 (2, k) be mpped to R3 k .  Final ly,  

suppose a l l  sets i n  I1 ( 1) nI2 ( 1) meet both I3 ( 1) sets. The sam def in i t ion of F 

applies. 

The purpose of this sect ion  is to pmve the  m i n  theorem. 

k n m  4. kt IJ (k) , j=1,2,3, s a t i s f y  the dcxmin overlap mndit ion. For each 

permrtation (a,b,c) of (1,2,3),  each the selx in I a ( k ) m ( k )  met a t  least one 

I= (k) selx. 

Proof. Supmse fa lse .  Without loss  of general i ty ,  assm t h a t  

11 (1,1)nI2 ( 1 , l )  does not meet I s ( 1 ) .  Namely, (11 (1, l )n Iz  (1,1)}nI3 (1, j) = @ f o r  j = 
1,2. In turn,  this mans t h a t  11(1,1)f113(1,j) can ' t  mset I 2  ( 1 , l )  f o r  j=1,2. This 

contradicts the  domin overlap asswaption. 

b f  of Theorem 2. Let Lj {k: f o r  s 1 k, there is an % '  i n  a Ij(s) 

class so  t h a t  F (x1 ' , . . ,+ , . . XN ' )  changes R j  classes as xk changes Ij (k) classes}. 

N m l y ,  this is a s i tua t ion  w h e r e  when only the  kth voter changes c lasses,  the  R j  

outcom changes. F is non-constant over at  least two sets Rj, so ,  fmm the range 

overlap condition, f o r  a t  least two choices of j , Lj is nonempty. 

Suppose there are a t  least two indices i n  tk union Uj Lj. Without. loss of 

general i ty,  assume t h a t  1 E L1 and 2 E Lz . For this to occur, voters 3 to N, m y  

need to be i n  spec i f i c  Ij (k) classes , j= 1,2. According to t he  l e m  , these voters 

can s a t i s f y  both conditions sirmltaneously. Hold these domin points f ixed. For 

voter 1 to be i n  L1, x2 ' nust be in a spec i f i c  11 (2) c lass ,  say 11 (2 ,u) .  Likewise, 

f o r  2 to be i n  Lz, x l '  rmst be i n  Iz (1 ,v )  f o r  a spec i f i c  choice of v. For k 1 , 2 ,  

choose the 13 (k,B(k))  class s o  t h a t  I 2  ( l , v )n Is ( l , I3 (1) )  mts both Il(1) classes and 

11 (2, u) n13 (2,B (2) ) mts both 1 2  (2) c lasses. According to the  domin overlap 

conditions, this is possible. 

According to the construction, as + changes I k  c lasses,  the  irmge of F 

changes Rk classes,  k 1 , 2 .  Assum t h a t  Rk ' is the  pa i r  of irmges of F caused by 
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t h i s  change of + , k= 1,2.  According to the construct ion, a1  1 o u t c o r n  i n  R l  ' fB2 ' 

occur with appropriate choices of x, and x, . But, accoxding to the range over lap 

condit ion, two sets i n  t h i s  intersect ion mt d i f f e ren t  R3 classes. This forces 

the  R3 imge to vary even though each + remains i n  a f ixed I3 (k) c lass ,  k-1, . . , N. 

This contradict ion proves t h a t  each Lj has only one index, say 1. 

To complete t he  proof , we need to show that  f o r  any choice of x, , k 2 ,  . . , N, 

the  R j  W e  of F(x, , . . , x,,) depends only on which I j (1) c lass  contains x,. I f  

f a l s e ,  then tkre are {xk ' I ,  C+ " 3 ,  k12, s o  t h a t  F (x l ,  x, -, . . ,XN ' )  and 

F (x, , x2 " , . . , x,,") are i n  d i f f e ren t  L j  classes. By holding x ,  f ixed and going 

through the various permta t ion  of interchanging xk ' with + " , the irmge of F rms t 

change R j  classes. This forces an index other than 1 to be i n  L j  . This 

contradict ion completes the  proof. 

Next, ue show tha t  there  are only two w a y s  g, can be defined. bsm the 

imges are R j  , i=1 ,2 ,  and c h s e  the indices on the  range sets s o  t h a t  F ( I l ( 1 ,  u) ) 

= Rl,, u=1,2, and t ha t  Rl,ruR2,  is i n R 3 ,  but not inR3, .  Thus, R11m1m32 is 

empty. To def ine the  1 2  ( 1,  v) imge, note there is a choice of v s o  t h a t  

11 (1 , l )n I z ( l , v )  meets b t h  I3(1) classes. L e t  v' be the  other  index. Then, F = gl 

rmst m p  IZ(1,v ' )  to R2,. I f  not,  t h e n F m s t  m p  IZ(1,v) to R2,.  Because 

I1 (1 , l )n Iz  ( 1 , ~ )  meets b t h  13 (1) c lasses,  it follows from the  invariance property 

of F t h a t  R l  , nR2  , meets b t h  R3 classes. This contradict ion proves the  asser t ion.  

The determination of the  I3 ( 1) imge  is done in the  sm fashion. Note t h a t  t h i s  

proof shows tha t  the imge of gk cannot be constant valued over any Rj. Thus, each 

I j (k) rmst have two d i s j o i n t  elements. 

I t  remins to prove the  l a s t  sentence of Thwrem 2. S u p m e  voter 1 always 

satisfies the domin over lap condit ion f o r  al l  permta t ions  of (1,2,3) and both 

perrmtations of (u ,v) .  This mans t h a t  in the  a r m n t  of the  preceding paragraph, 

there  are two choices of I z ( l , v ) ,  and each choice gives rise to t he  contradict ion. 

Thus, F cannot be defined. Next, assume t h a t  voter 1 determines the  outcome of F, 

bu t  one of the Ij (1) c lasses ,  say I3 ( I ) ,  consis ts  of only one equivalence c lass .  

The same ar-nt as given above shows t h a t  the W outcorn w i l l  vary. This creates 

a contradict ion because gl (I3 (1)) is only one R3 class. (On the  other hand, if a 

res t r i c t i on ,  C, , is imposed on I(1) = I1 (1)nIZ (1)W (1) tha t  remves one of the 

four  s e t s ,  then gl is well defined. I f  C1 has only two sets from I1 but each 

Ij (1 ,s )  , j , s = 1,2,  then a non-dictatorial F can be defined. ) 
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Proof of Theorem 3. F i r s t  we establ ish tha t  there are choices of F tht. 

can not be expressed as a function of a single variable over the total domin. So, 

assume the domin and range sets are specified whem the ms t r i c t ed  domin 

conditions are sa t i s f i ed  f o r  agents 1 and 2. Fu r t hemre ,  assum t h a t  the indicing 

is such t ha t  R11T\R21T\R31 I @ .  We w i l l  define an F t h a t  is a function of the two 

variables, xl and x2 from I j to Rj, j=1,2,3. 

As shown i n  T h e o r e m  2 ,  them are only two  ways to define a roapping gk from 

{Ij (k, 1) , Ij (k,2) ] to R j  . For k = 1,2 ,  l e t  gk be one of these choices. Define F in 

the following IMnner. If xl B I j (1,3) , then the R j  outcome of F is given by the R j  

imwe of g l .  If xl E I j (1 ,3 )  and x2 B I j ( 2 , 3 ) ,  then the R j  imge  of F is the R j  

imge of g2. If xl E I j ( 1 , 3 )  and x2 E I j ( 2 , 3 ) ,  then the R j  image of F is R j l .  

I t  remins to show t h a t  F is well defined. If either agent 1 never is 

ind i f ferent ,  o r  i f  when agent 1 is indi f femnt over a l l  sets, agent 2 is not 

ind i f ferent  over any s e t ,  then there is no d i f f i cu l ty  with the def in i t ion of F. 

The potent ial  problems are on the complement of this subset of the domin. To 

start, supmse i f  agent 1 is ind i f ferent  over one set, say,  she is i n  I1 (1,3) , and 

she isn 't ind i f ferent  over one other set, say I 2  (1, u) , u 1 3. According to th 

domin overlap conditions, agent 1 is i n  I 3  (1, v) , v # 3 ,  and I 2  (1, u) nI3 (1, v) mets 

a l l  three I1 (1) classes. In tu rn ,  t h i s  forces the R2 and R3 imges (determined by 

agent 1) to be such t h a t  R2MI3 mets both R1 classes. ( I f  not,  then, gl is not 

well defined f o r  agent 1. This is because i f  agent 1 is i n  12'(l,u)nI3 (1,v) she 

still can vary between the two I1 (1, w) classes, w # 3. Now, i f  the irmge contains 

only one R1 c lass ,  this forces gl to be constant over {11(1,1),11(1,2)) - which 

leads to a contradiction.) The choice of R1 class is determined by agent 2. 

The remining s i tua t ion  is i f  both agents are ind i f ferent  over som I j 

c lass ,  say 11. The sare argwoent given i n  the preceding paragraph shows tha t  if 

one of the agents is not indi f ferent  over some other I j c lass ,  then there is 

f l e x i b i l i t y  in the choice of R1 class. One has k e n  selected. If both agents are 

ind i f ferent  over two Ij classes,  and, hence, indif ferent over a l l  three classes, 

then the image is well defined. This completes the proof. 

The remining part of the part a is to show tha t  the above construction 

captures the s p i r i t  of a l l  possible choices of F. Namely, any F can be represented 

by a function of a s ingle variable over the non- indifference sets. The proof of 
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this assertion is simple i f  I had required F to be nonconstant over 

&{I j  (k, 1) , I j  (k,2)} for  a t  leas t  tuo choices of j. Because I did not, I need to 

show that  F can't be constant valued over 13 except when everyone but the jth agent 

is indifferent, and then the jt h agent is a dictator for  R j  . 

h m a  5. Let Lj = .Clr: for 5 I k, t b m  is an x,' in I j (s) so tha t  

P(xl ' , . .  ,&,.. ,%-) cbenges R j  classes as & varies be- Ij (k, l )  and U(k,2)}. 

Suppxse that  ( U j L j ) > l  and that u,v a m  in UjLj. ThE?1.e exists a cbice of j ,  say 

j=3, so that th ranking for one of *e -ts, say v, need not be in P (v,3) 

wben u infl- th R3 C&COIE. 

Proof. Suppose j E L j  , j= 1,2,  and that  the l e m  does not hold for  these 

values of j. Thus, whenever j influences the R j  outcome, the other agent, k, nust 

be in Ij (k,3). Of c o m e ,  the Ij rankings of agents k 2 3 my be specified. 

According to the domain overlap conditions, the restr ict ions fo r  agents 3 to N can 

be satisf ied for  both j  classes. Also, by the. indifference overlap conditions, 

agent 1 can vary between se ts  I 2  (1,3) nil (1, u) , u = 1,2, w h i l e  agent 2 varies 

betweensets 11(2,3)nI2(2,v), v=1,2. Th is  forces bothagents to be in  

I3 (k, 1)UI3 (k,2). The sm armrent used in  the proof of Theorem 2 proves that  the 

the R3 outcome changes even though a l l  voters remin in fixed I3 classes. This 

proves the lem.  

To prove the theorem, assm that  j E L j  , j = 1, 2. Fur themre,  assm 

tha t  there is a profi le where agent 2 need not be in I1(2,3) when agent 1 can 

influence the R1 outcome. (According to Lem 5, such profi les can be found with a 

relabell ing of indices.) Now, suppose there is a prof i le where agent 1 need not be 

i n  12 (1,3) when agent 2 influences the R2 outcorn. I t  follows from the domain 

overlap conditions with indifference that  whatever are the requirements on agents 3 

to n, they can be similtaneously satisf ied. Thus, the essence of the problem is 

the same as in  the proof of Theorem 2, and t.he same contradiction is arrived a t .  

This mans that. agent 1 mt be indifferent (and there may be added constraints on 

the other agents) when agent 2 has an influence on the R2 outcome. T h i s  mans that  

1 E Lz. The rest of the proof, to f ind the ordering on the indices that  defines 

the sequential dictators, is the obvious induction and ordering argument using 
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Proof of Theorem 4. Suppose the res t r ic t ion on the domin is imposed on 

agent 1. The def ini t ion of F depends on which se ts  are omitted from 1 ( 1) .  The 

following lenm ident i f ies each set i n  this intersection in  a useful rmnner. 

b m m  6. h u m  tht lib thme IJ sets sa t i s f y  the restr ic ted damin oorrditicm ard 

t h  dcumin overlap c a n d i t h ,  ard for each cbice of j, IJ consists of t m  

disjoint c-. For e a c h s e t ,  2, in I ( l ) ,  t h m  is a permrtation (a,b,c) of 

(1,2,3) so t h a t  Z is a singleton in Ia ( l )n Ib ( l ) ,  lm t  A is mt a singleton in 

Ia(l)fUc(l) or in Ib(l)fUc(l). Irdex c is called lh "pivotdl index" for Z. 

Example: For Z = B = Ccl>c3 >cz3, the pivotal index corresponds to the class 

P(1,Z). As a quick way to determine the pivotal index, notice from Figure 1 tha t  

the two regions adjacent to this ranking ~ g i o n ,  B, a l l  l ie i n  one of the P(1,2)  

classes, but t h i s  group IA,B, C3 does not l ie i n  only one P ( i ,  j) class f o r  any other 

choice of (i , j ) . 

The proof of the l e m  is rmch the sam as that  of Lem 4. Notice tha t  

fo r  each choice of Z, there are two perrmtations, but b t h  give rise to the sam 

pivotal index. 

Assume tha t  the res t r ic t ions are imposed on voter 1, and let 2 be one of 

the s e t s  tha t  is not i n  C1. The f i rst  assert ion is that ,  with a pxsible 

relabdling of t h  indices and with a passible CI- of clwice of Z B Cl, w e  can 

assume tkt j = 1 is t k  pi mtal index for Z and that Cl nIj (1, s) # @ for j = 2, 3, 

s= 1, 2. To see t h i s ,  assum tha t  1 is the privotal index f o r  Z. Now, by 

defini t ion, Z is not a singleton in I l ( l ) n I2 (1 )  nor in  I l ( l ) n I 3 ( l ) .  If the other 

t e rm  i n  each intersection is i n  C1, then, by use of the domin overlap conditions, 

it follows t ha t  the assert ion is sat is f ied.  So, suppose e i the r  one, o r  b t h  

intersect,ions have no term in C1. If b t h  intersections f a i l  to meet C, , then C, 

mts only one of the I1 ( 1) classes,  s o  I1 (1 ) can be replaced with J1( 1) - the 

singleton equivalence class of everything. If one other class f a i l s  to have C1 

met b t h  se t s ,  then it too can be replaced with the singleton equivalence class. 



Here the overlap conditions are t r i v i a l l y  sa t i s f i ed ,  so  this cannot occur. Thus, 

C1 mts both I j ( l , s ) ,  j = 2 ,3 ,  s=1,2  classes, and t w o  of the se t s  i n  I j ( l ) n I 3 ( l )  

are not i n  C, . This mans t ha t  the assert ion holds. 

The remining s i tua t ion  is t ha t  f o r  one choice, say 11 ( l )nI2 ( I ) ,  the set 

accompanying Z is in C, ,  ht in I l ( l ) n I 3 (1 ) ,  the s e t  accompmying Z, Y, is not i n  

C1. The pivotal index f o r  Y is 2. We already know, from this construction, t ha t  

the s e t  accompanying Y i n  12 ( l )n I1(1)  is not in C1. If the set accompanying Y i n  

I2 ( 1) 1313 ( 1) is not i n  C1 , then w e  are i n  the same s i tuat ion  analyzed above f o r  Z , 
s o  the assert ion holds with Y and 2 i n  place of Z and 1. If this set is i n  C, ,  

then we have e lemnts  of C1 i n  both 11 (1) and both I 2  (1) classes. This completes 

the proof of the assertion. 

Choose the indices on the I j ( 1 )  classes so t h a t  before the res t r ic t ions  are 

imposed, I 2  (1, s) nI3 (1, s )  mets both 11 (1) classes. Likewise, choose the indices i n  

the range so t ha t  R Z s  fR3, , S= 1 ,2 ,  mets both R1 classes. Choose the indices on 

I j  (1) so t ha t ,  before the res t r ic t ions ,  a = 11 (1,l)I'IIt (1, l )nIa (1,2)  j @ and El = 
I 1 2 1  ( 1 2 1  1 j . Define F so t h a t  the Rj irmge of F is Rj ,  i f f  x, is 

i n  I j ( l , s ) ,  j=2,3,  s = 1,2. Note t ha t  A is e i the r  a o r  D. If b o t h a  and 13 are i n  

the restricted se ts ,  then define the R l  imge i n  any desired m e r  based on the 

entr ies i n  11. For instance, it can be determined by which 11 (2 ) class contains 

x2,  o r  by a m j o r i t y  vote of a l l  voters, etc. I f  one of these s e t s ,  say D,  is not 

i n  the res t r ic t ions ,  then let the  R1 hmge of F be the unique R1 class t ha t  

contains R22fE31 when x, is in I1(1,2) .  When x, is i n  I1(1,1) ,  let the R1 i w e  be 

determined i n  any desired mnner. 

To see t ha t  F is well defined over IlnI2nI3, note t ha t  i f  x, is not 

e i the r  a o r  8 ,  then it rmst be i n  1 2 ( l , s ) n I ~ ( l , s )  f o r  one choice of s. Thus, 

the irnage of F is R2, fX3, , which mets both R1 classes. If x, is a o r  8, 

then the intersect ion of the  R2 and R3 iwes uniquely defines the  R1 irmge. 

This is the def in i t ion of F. Both values are not i n  the domin of x, ,  so  this 

completes the proof. 

Next, suppse  t ha t  11 (1) consists of a single equivalence set, and I2 (1) and 

I3(1) each have two sets. C1 has only two sets i n  12( l )nI3(1) ,  SO c b s e  the 

indicing so  t h a t  12 ( l , s )n I3 ( l , s )  I $  f o r  s = 1,2. The R j  imge of F is R j ,  i f f  x, 

E I j ( l , s ) ,  j = 2,3, s = 1,2, and the R1 i w e  is determined i n  any desired n m e r .  

If the  res t r ic t jons  leave three sets i n  I2 (1)nI3 ( I ) ,  then F always can be 
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 presented as a funct ion of one variable. This is because, as I have already 

shown, i f  F is not  represented by a function of one var iab le,  then voter  1 mrst 

have an inf luence on tk outxom of tw classes. Clear ly,  this mwt be sets R2 and 

R3.  But, no mtter how the R j  inrages of F are defined i n  tern of which 

I j  ( 1)class , j = 2 ,3 ,  contains xl , there needs is one case w h e r e  t he  image is not 

R2sfR3,, s 1,2.  This forces a s i t ua t i on  w k r e  the  R1 w e  is uniquely 

determined, and it is determined by xl . Because F: 11-- >R1 and because I1 (1) is a 

singleton, it follows t h a t  tk R 1  image of F is f ixed. T h i s  completes the  proof. 

Proof of Corollary 4.2. T h i s  is a straightforward argument using the  ideas 

m t i v a t i n g  the  statement. As i n  the proof of Theorem 4 ,  we need to have tw R j  

s e t s  where the  t h i r d  Ra outxome is not determined. This forces th def in i t ion  of 

F. Incidently, when becomes s m l l e r ,  but it still admits a non-dictatorial 

s i t ua t i on ,  the  combinatorics usual ly restrict the  de f in i t ion  of F. 
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