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Foreword

By emphasizing the symmetry of certain set theoretic conditions, shown to be associ-
ated with Arrow’s Impossibility Theorem, a characterization of “kinds of axioms” is ob-
tained. More precisely, if the defining properties of a model satisfies these conditions,
then the model must have a conclusion much like that of Arrow’s theorem. Because the
conditions are described in set theoretic terms, the applicability of these results extends
beyond the usual setting of complete, binary, transitive rankings to space of utility func-
tions, probability distributions, etc. In this manner, not only can new extensions of
Arrow’s theorem be obtained, but it is shown how the same "kinds of axioms” applies to,
say, problems about the aggregate excess demand function, the Hurwicz-Schmeidler dicta-
torial result about Pareto optimal, Nash equilibria, the Gibbard-Satterthwaite theorem

about manipulability, etc.

Alexander B. Kurzhanski
Chairman

System and Decision Sciences Program
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1. INTRODUCTION

Stimulated by Arrow’s seminal work [1], social choice has become an active
research area. There are lists of axioms forcing impossibility statements,
conditions admitting possibility assertions, and the Gibbard [3] - Satterthwaite
[19] theorem about manipulation. (An excellent survey is Sen [20].) What is
missing from the literature is a simple, unifying mathematical explanation - one
that with a single argument can subsume several seemingly different conclusions,
one that easily permits extensions of classical theorems and the derivation of new
results, and one that captures the elusive frontier between possibility and
impossibility statements. A step toward such a description is given here. The
idea is to shift emphasis from what particular set of axioms yield possibility or
impossibility conclusions, to what kinds of axioms cause these results. This
approach is illustrated by showing how Arrow’s Theorem, several other social choice
results, a statistical paradox about contingency tables, the Hurwicz-Schmeidler
study of optimal Nash equilibria, certain questions about economic allocation
procedures, and conclusions from several other disciplines are all closely related.
This assertion may be surprising if only because the examples come from different
disciplines where the sets of underlying assumptions or axioms may have little to
do with each other. What unifies these models is that while the assumptions and
axioms differ, they are all of the same combinatoric kind, consequently, these
models have related properties. For instance, by characterizing what kinds of
axioms give rise to an Arrow-type theorem, as I do here, results from different
literatures can be unified and extended in several directions.

My presentation has a geometric flavor where the goal is to create an
easily used, versatile technique. The idea is this. Often, aggregation models
from social choice, economics, probability, and other areas are described in terms
of the requirements we want the system to satisfy; e.g., the independence
conditions from social choice. But, are these conditions self-contradictory? To
investigate this issue we might examine all logical, combinatoric possibilities.

It turns out that, for several models, the combinatoric analysis of the axioms
involve related arguments. This suggests characterizing “"kinds of axioms" in terms
of the associated combinatoric analysis. This program is started here; I
characterize the kind of axioms that are related to Arrow’s theorem. To do so, 1
introduce a geometric representation that 1 call the binmary owarlap principle. It
is based the geometry of certain sets - the "level sets” of the imposed conditions.

We now know why social aggregation procedures have difficulties. An
agegregation process maps a domain onto a much smaller range, so the problems and
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paradoxes are created by the "squashed overflow”. In an earlier paper [16] (also
see [15]), I demonstrated that this explains the paradoxes for several classes of
social choice, voting, and probability models. To prove my assertion, 1 embedded
"discrete models” into classes of smooth mappings. Then, the existence and the
creation of new paradoxes are obtained with calculus techniques. But certain
discrete problems, such as Arrow’s theorem, cannot be handled in this manner. So,
the results given here can be viewed as extending the discussion of [168]. Indeed,
one can show that the overlap principle corresponds to the rank conditions of [16].

A secondary theme for this paper comes from economics. Sen [20,p. 1074]
points out that "Economists did not .. take much notice of this [social choice]
literature, or of the problem studied in them, until the "informational crisis"
sent them searching for other methods.” One way to study information is with the
mechanisms introduced by L. Hurwicz [8]; an approach that has proved to be a
convenient formulation to analyze incentive problems and organiZational design. A
central issue is to understand the relationship between an allocation process and
the associated mechanisms. For smooth mechanisms, we have answers; in [9,17,18]
geometric tools are created that characterize all possible "message mechanisms”
associated with a given "smooth allocation procedures”. But, because this
characterization is based on the level sets of certain smooth functions, the
techniques do not extend to discrete allocation processes - indeed, the discrete
problem remains open. (Some partial results are in [8].) However, as S. Reiter
[13] recognized, social choice models are discrete examples of Hurwicz ‘s “one
shot” mechanisms. So, in this spirit, a secondary objective of this paper is to
use the analysis of social choice models to understand what kind of mathematics is
needed for the mechanism design of discrete systems. It turns out that the "level
set" approach still applies where the differential geometric techniques developed
to analyze the level sets for smooth allocation procedures are replaced with an
algebraic group theoretic analysis.

The emergence of these algebraic structures reinforces my belief [15] that
they explain the difficulties common to social choice and other discrete decision
and allocation problems. (This runs against Sen’s comment [(20,p. 10781, ".. hut -
bervare - no ‘group theory” Is Involved!") These algebraic symmetries - the wreath
product of certain permutation groups - play a critical role in the development of
the overlap principle; indeed, a complete characterization of other classes of
"kinds of axioms” relies on these structures. However, I decided to suppress these
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complicated, algebraic symmetry structures in order to focus attention on the
overlap principle and to make the paper easier to read. (A brief introduction to
the wreath product is in [15].)

In Section 2, the basic concepts used in this paper are introduced with a
two voter, three candidate formulation of Arrow’s theorem. In Section 3, the ideas
are abstracted into the owverlap principle. The flexibility of the overlap
principle is illustrated by obtaining simple proofs of several known social choice
results as well as to derive some new, and some whimsical ones. In this manner,
the connection among several well known social choice results along with problems
from statistics, economics, and game theory becomes immediate. Because the
emphasis of the overlap principle is on how the imposed properties or axioms divide
information into equivalence classes, rather than on what particular information
used (e.g., complete, binary, transitive rankings), extensions are immediate. To
illustrate how implicitly defined overlap conditions arise, a new proof of the
Gibbard - Satterthwaite Theorem as well as the Hurwicz-Schmeidler theorem [10] about
Pareto optimal Nash equilibria are given. Some extensions of the overlap principle
as well as a description of the frontier between possibility and impossibility
conclusions are given in Section 4. Section b contains the proofs of the major
theorems.

2. A SIMPLE EXAMFPLE

The ideas of this paper can be demonstrated with a geometric proof of
Arrow’s theorem for a two voter, three candidate process. To do this, we need a
geometric representation for the complete, binary, transitive rankings of the
candidates {c;, c;, c3}. Starting with an equilateral triangle, identify each
vertex with a candidate. (See Figure 1.) In this triangle, define a binary
relationship in terms of the proximity of a point to a vertex. Thus, a point p
corresponds to the ranking c,>c, if and only if p is closer to vertex ¢, than to
vertex c,. This relationship divides the equilateral triangle into the regions
displayed in Figure 1. The open regions - the smallest triangles - correspond to
strict rankings without "indifference” among the candidates, while the line
segments and the baricentric point correspond to rankings with indifference. For
instance, region A corresponds to the ranking c,>c,>c;, while the line segment
between regions C and D represents c3>c;=c,. Let P(1,2,3) denote the 3! open
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regions where the rankings do not admit indifference. Let P(i,Jj) denote the two
equivalence classes of rankings in P(1,2,3) where ¢;>c; and where c¢;>c;.
Consequently, P(1,2) = {{A,B,C}, {D,E,F}}. Geometrically, these two equivalence
classes are the two right triangles in Figure 1 separated by the line c¢;=c,. In
general, the two sets in P(i,j) are represented by the two right triangles
separated by the indifference line c;=c;y. 1’11 show how Arrow’s theorem is a
consequence of the geometric positioning of these sets of right triangles.

In a two voter, three candidate context without indifference, a social
welfare function is a mapping
2.1 F: P(1,2,3) x P(1,2,3) ————- > P(1,2,3).
The cartesian product represents the two voters  possible rankings. The standard
Arrowian conditions are replaced with the following requirements.

1. The usual Pareto condition forces all outcomes to be admitted. 1
require only that F is onto.

2. The IIA condition states that for each i and j, the relative ranking of
c; and C; depends only on the voters® relative rankings of these candidates. This
is equivalent to requiring for each choice of i, j, that
2.2 F: P(i,J) x P(i,3) —> P(i,)).

3. If the first voter is a dictator for F, then F can be represented by a
mapping depending only on the first variable. Replace the "no dictator"” axiom with
the condition that F cannot be represented by a function of a single variable.

Theorem 1. There does not exist a mapping of the form given by Equation 2.1 that
satisfies conditions 1, 2, and 3. If a mapping given by Eq. 2.1 satisfies 1 and 2,
then it can be represented by a function of a single variable that is generated
either by mapping each relationship c; >c; to itself (a dictator), or by mapping
each relationship c;>c; to c;>c; (an anti-dictator).

Arrow’s theorem is an immediate consequence. An ealier version of this
result is in Saari [14], and a portion of it was restated in a axiomatic form in

Kim and Rouch [12]. See Sen [20] for added discussion and references.

Outline of the proof. Assume that the theorem is false because such an F
exists. By (3), there are situations where each voter, by changing rankings, can
alter the outcome. According to (2), if the new ranking interchanges the relative
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ranking of c; and c¢;, then it is because the voter changed her relative ranking of
these two alternatives. In fact, from (2), this same P(i,j) change in F occurs
whenever 1) she makes this change in the relative rankings and 2) the other voter
keeps his same ranking of this pair.

This argument reduces the analysis to how F changes the relative rankings
of pairs of candidates. (Thus, the rest of the proof relies on the positioning of
the right triangles in Figure 1.) Because of (3) and symmetry, assume without loss
of generality that there are situations where voter 1 can alter the relative
ranking of c¢; and c; and there are situations where voter 2 can alter the relative
ranking of c, and c;. Namely, if voter 2 has a specified ranking of ¢, and c,,
then as voter 1 varies her rankings between the right triangles representing c,>c,
and c;>cy, so does the image of F (but not necessarily in the same direction.) If
the specified ranking for voter 2 is c,>c;, then let him vary between regions A and
B; otherwise, let him vary between D and E. In either situation, voter 2 has fixed
P(1,2) and fixed P(1,3) rankings while retaining the freedom to change his P(2,3)
ranking. A similar analysis holds for voter 1. In order for voter 2 to change the
P(2,3) outcome, voter 1 may need to have a specific ranking of this pair. If it is
the right triangle c,>c;, let her vary between A and F; if it is c3>c;, then
restrict her to C and D. Again, voter 1 can change her P(1,2) ranking while
keeping her P(2,3) and P(1,3) rankings fixed.

As these voters vary in their assigned regions, the P(1,2) and P(2,3)
images of F (the group outcome) change independent of each other. Thus, there are
situations where the P(1,2) outcome is the right triangle corresponding to c;>c,,
while the P(2,3) outcome is the right triangle corresponding to c;>c;. These two
triangles intersect in region A - c;>c;>c; - which forces the binary ranking of
€;>c3.  On the other hand, there are situations where the two "triangle” outcomes
are cy;>c; and c3>cy. The intersection of these triangles is region D, which
requires cz>c,. Consequently, ewen though both woters have fixed P(1,3) rankings,
the group ranking of these two alternatives, given by the Image of F, changes. This
contradicts (2), and the first part of the theorem is proved.

The second part of the theorem also follows from the geometric positioning
of the right triangles. Obviously, a dictator or an anti-dictator can be defined,
so we only need to show that no other mapping exists. Without loss of generality,
assume there is a mapping g:P(1,2,3) --> P(1,2,3) that satisfies (1) and (2), that
preserves the P(1,2) ranking, but reverses the P(2,3) ranking. This forces the
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images of c;>c; and of c3>c; to be the two right triangles containing A. Indeed,
the intersection of these two triangles is precisely A - c;>cy>c;. Because this
intersection defines the relatlve ranking c,;>c;, the definition of g over P(1,2)
and P(2,3) uniquely determines g:P(1,3) --> P(1,3). More precisely, the g preimage
of cy>cy is any P(1,3) ranking meeting the intersection of the triangles for c;>c,
and c3>c,. In Figure 1, this intersection is {B, C}. But, B and C are in
different P(1,3) classes. According to (2), this forces g to be the constant
mapping over P(1,3) that maps both ¢;>c; and c3>c; to cy>c;.  This contradicts (1)
and proves the second part of the theorem.

The proofs of both parts of the theorem depend upon the symmetry properties
of the simplex as captured by positioning of the right triangles in the three
equivalence classes P(i,Jj). Critical to this analysis is that the geometry of the
image space 1s restrictive, e.g., for each triangle from P(1,2) there is one from
P(2,3) where their intersection is in only one triangle from P(1,3). Moreover,
this holds for each triangle in P(1,3). This restrictive effect on the image fixed
the images of F to obtain the contradiction. Similarly, in the second part of the
theorem, these image restrictions limited the options for g. The second critical
element is that the geometry admits flexibility of movement in the domain. For
each triangle from P(1,2) there is one from P(2,3) where their intersection meets
both triangles from P(1,3). This was used in both parts of the theorem to allow a
voter to alter his rankings of one pair while retaining fixed rankings for the
other two. Added flexibility occurs if at least two voters affect the outcome.

The proof of the theorem exploits this contradictory interplay between restrictions
(in the range) and the flexibility (in the domain) admitted by the overlapping
geometry. The fact that this geometry was derived from binary, transitive, ordinal
rankings is incidental. Consequently, the essence of Arrow’s theorem extends to a
surprisingly wide realm of situations. Indeed, whenever a set of axioms can be
described with a similar geometric representation, the same conclusions result. In
other words, the kinds of axioms that lead to an Arrow-like theorem can be
characterized by emphasizing the appropriate geometric - set theoretic conditions

of overlapping regions.

3. THE OVERLAP PRINCIFLE
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In this section, an overlap principle is introduced and illustrated with
several examples. The examples are selected to show why the same basic argument
proves and extends several classical theorems and to suggest other uses of the main
theorem.

Notation: Let |A| demote the cardinality of set A If A= {A;,..,A;} and B =
{B,,..,B,} are collection of sets, let AMB = {A;MBy : 1<j<n, I<kem).

Let D = D;x..xDy be the cartesian product of the N>2 sets D, let R be a
given set, and let

3.1 F:D ---> R
be given. The sets DJ- replace the domain sets P(1,2,3) from Section 2. There is
no restriction on the choice of DJ. —- it could be a set of binary, transitive

rankings, probability measures‘, spaces of admissible strategies, function spaces of
utility functions, or anything else. Indeed, the choice of DJ- could even differ
from agent to agent where, say, D; is a set of transitive rankings, D, is a set of
probability measures, etc. The critical aspect is not what information is
represented by Dy, but how the information is divided into equivalence sets.
Replacing the division of P(1,2,3) into the subsets P(i,j) is the division of each
set Dy into the informational eguivalence classes 13 (k) = {li(k,1),1i(k,2)},
J=1,2,3. The superscript j indices the three "independence conditions” while k
identifies the voter or agent. The cartesian product Ii = X, Ii (k) replaces
{P(i,s)}¥ in the independence condition Eq. 2.2.

Although I replaces the "independence” or IIA conditions of Arrow’s
theorem, these sets can be modified to include models with interdependency among
voters ™ rankings or agents  actions. Such interdependency can be viewed as
defining E, a proper subset of D. If E is given, then the sets IJ are restricted
to E. More precisely, 1i(k), k=1,..,N, is defined by IiNE. For instance,
E={(cy>c; )N, (cy>cy )N) requires all voters to have the same relative ranking of the
candidates c; and c;. With such an E, I1 = P(1,2)NE = E while I2 = P(2,3N)NE =
P(2,3)N, This E models the Pareto condition illustrated in Corollary 2.6.

The range, R, can be any set where the critical aspect is its subdivision
into other equivalence sets. Let this subdivision be given by Ri =
{Ri;,Riz,.. ,Ri}, k2, j=1,2,3. The sets, RJ, replace the earlier subdivision of
the range P(1,2,3) into the three classes of two sets, P(i,j).
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The geometric conditions that provide the interplay between the flexibility
in the domain with rigidity in the range are captured by the following definition.

Definition. The triple {F, {Ii}, {Ri}}, j=1,2,3, satisfies the hinary overlap
principle if the following four conditions hold.

1. For each J ard each k= 1,..,N, the two subsets {li(k,1), Ii(k,2)} are
either disjoint or equal. For each j, there is at least one choice of k where the
sets are disjoint.

2. (Domain overlap) For each choice of k and for each permtation (a,b,c)
of (1,2,3), there is a permutation (u,v) of (1,2) so that each of Ia(k,1)nI® (k,u)
and Ia (k,2)NIP (k,v) meet both Ic (k,1) and Ic (k,2). The restricted domain condition
is where, for each permitation (a,b,c), the domain condition is satisfied for a
unique permutation (u,v). (Thus, Ja(k,1)NIP (k,u) does not meet both Je classes for
both choices of u.) PFor at least one k, the restricted domain dverlap conditions
are satisfied.

3. (Range overlap) Let Ri° denote some pair of subsets of Ri. For each
permutation (a,b,c) of (1,2,3) and for each pair of sulsets, there are two subsets
in Ra "NR* " that do not meet the same subset of Re.

4. (Invariance) a) For j=1,2,3, F: Ii —> Ri.

b) For at least two choices of j, the image of F meets at least two of the
Ri sets.

5. If the domain independence conditions are determined by an
interdependency condition E, then for at least two choices of j where the image of
F is nonconstant, IiNE = I1J.

As in Section 2, the "dictator” is replaced with the more general concept

of a function of a single variable.

Definition. Let m :D —> I} be the natural projection mapping. The mepping
F:D —> R can be represented by a fuimction of a single variable if there exists a
choice of k and a g,:I} ——> R so that F = g ().

This definition does not require F to be a function of a single variable.
For instance, suppose three voters rank the three candidates cy, J=1,2,3, with the
following modification of the Borda Count. The ith ranked alternative for the jth
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voter is assigned (3-1)10J points. The tally for each candidate determines the
ordinal ranking of the alternatives and defines the mapping

F: {P(1,2,3)}8 ----> P(1,2,3). Although F is a function of all three variables, it
can be identified with the identity mapping (dictator) g,:P(1,2,3) --> P(1,2,3).
If P"(1,2,3) denotes all 13 rankings depicted in Figure 1, then F can be extended
to a mapping F: (F(1,2,3))8 -——-> P (1,2,3) by assuming that when the ith voter is
indifferent between two candidates, each of these two candidates receives the
obvious average of the assigned points. This choice of F creates sequential
dictators; if the third voter is indifferent between two candidates, then the
second voter decides the group ranking between them. If both the second and third
voters are indifferent between the same two candidates, then the first voter
decides. (This is generalized in Theorem 3, Section 4. )

The overlap conditions capture the essence of the geometric proof of our
version of Arrow’s theorem. Thus, in light of the proof of Theorem 1, Theorem 2
should be expected. The formal proof in Section 5 is just an abstract version of
the proof in Section 2.

Theorem 2. Assume that F:D —> R satisfies the binary overlap principle with
the sets {Ii} amd {Ri}. When F is viewed as a mapping

3.2 F: I1n12Nn13 —> RINRZMR3,

there is an index k so that F can be represented by a function of a single
variable, g,.

Suppose the image of F meets the pairs {Ri,,Riy}, j=1,2,3.. There are
precisely two ways to define g, and each is uniquely determined by whether 1J (k,1)
or Li(k,2) is mapped to Ri,. The index k satisfies the restricted domain condition
and all three Ili(k) classes have two disjoint elements. If no such index exists,
then F doesn’t exist.

Theorem 2 asserts that the tensions between the flexibility in the domain
and rigidity in the range extend Arrow’s theorem. Moreover, a new feature emerges.
If the domain of each voter admits either too much flexibility or too much
rigidity, as captured by the last sentence, then such an F doesn’t exist even with
only one voter. For F to exist, even as a dictatorship, restrictions on the domain
are required. For most social choice examples, the restricted domain conditions
are satisfied, but this need not be so for examples from probability and economics.
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Applications of Theorem 2

Starting with Arrow’s theorem, 1°11 illustrate the considerable flexibility
offered by Theorem 2. To underscore which overlap feature is being discussed - the
nature of F, the possible definitions for the domain, or the choice of the range -
examples are selected to emphasize only that feature. To start, we extend the
notation in Section 2. For the n candidates, {c;,..,c,}, let P(1,..,n) denote the
set of all n! complete, binary transitive rankings without ties of these
candidates. If A is a subset of these indices, then an element of P(A) consists of
the n!/|A|! rankings of P(1,..,n) that preserves the relative ranking of the
candidates in A. P(A) is the obvious extension of P(i,j) where its elements are
the |A|! disjoint subsets of P(1,..,n). The first corollary extends Theorem 1 to
any (finite) number of candidates and voters.

Corollary 2.1. Let n>3, N>2, and F: (P(1,..,n))N —> P(1,..,n) be given. Suppose
F is onto and that for each pair (i, Jj), F satisfies the independence condition

F: (P(i,j))N —-> P(i,j). F can be represented by a function of a single variable
that corresponds to either a dictator or to an anti-dictator.

Proof. Start with I1(k) = R! = P(1,2), I12(k) = R¢ = P(2,3), and I3 (k) =
R® = P(1,3). The overlap cqnditions are satisfied, so F is represented by a
function of one variable on the domain P(1,2)NNP(2,3)NNP(1,3)N., Next, let 11 (k) =
Rl = P(1,2), I2(k) = Rz = P(2,4) and I3(k) = R3 = P(1,4). It follows from Theorem
2 that F can be represented by a function of a single variable over
P(1,2)NNP(2,4)8NP(1,4)N. Both of these domains include P(1,2)N, so in both cases
the same voter is the dictator or the anti-dictator. The proof is completed with
the obvious induction argument.

The distinction between whether a dictator or an anti-dictator reigns can
be determined with a montonicity condition, such as a pareto condition, on some

pair or even by specifying the image of a single point.

Corollary 2.2. a. Suppose in addition to the assumptions in Corollary 2.1, it is
known that F((c;>cy>...>c,)N) is in the P(1,n) class corresponding to c¢;>c,. The
function F can be represented by a dictator.

b. Let p be a profile in P(1,..n)N. If the assumptions of Corollary 2.1
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are satisfied and F can be represented by g, then, for any (1,Jj), the P(i,Jj)
image of F(p) determines whether k is a dictator or an anti-dictator.

These corollaries extend the standard Arrow theorem. The next corollary
rermits tie votes to emerge. The main feature demonstrated by Corollary 2.3 is the
flexibility offered by Theorem 2 by allowing each Ri to have more than two
elements. For this statement, let P"(1,..,n) be the set of all complete,
transitive, binary rankings of the n alternatives, even those with ties. If A is a
subset of {1,..,n}, then an element of P"(A) consists of all of the rankings in
P"(1,..,n) with the same relative transitive ranking - including possible tie votes
- of the candidates in A. By admitting tie votes, the concept of a dictator is
weakened. So, let gy, a limited dictator over P(i,j), be where g, is either
constant valued over this pair, or where c;>c; is mapped either to c;>c; or to ¢; =

J

cj. A corresponding definition defines a limited anti-dictator. So, a limited

dictator may not be able to get outcomes better than, say, c;>c; and ¢; = cj.
Corollary 2.3. Let n>3, N>2, and F: (P(1,..,n))N ——> P (1,..,n) be given. Suppose
for each pair (i,j), F satisfies the independence condition

F: (P(i,j))N —> P (i,j). If F is nmonconstant for each pair, then F can be
represented by a function of a single variable that corresponds to either a
(limited) dictator or to a (limited) anti-dictator.

Proof. This corollary is proved with the same kind of induction argument
used in the proof of Corollary 2.1. So, we only need to show that the new range,
satisfies the range overlap conditions. Start with Rl = P"(1,2), Rz = P"(2,3), and
R3 = P7(1,3). We know that the strict rankings given by P(i,Jj) satisfy the range
overlap conditions. So, it suffices to consider a pair withsstrict ranking and
another pair with indifference. The set {c;>c;, c;=c;} N {cy>cy, c3>cy} contains
{cy;>cy>c3} and {cy=cy>c3}.  Each of these sets are in different P7(1,3) sets. (See
Figure 1.) Likewise, the intersection {c;>c;, c;=c;} N {cy>cy, c3=cy} contains
{ci1=cy>cy} and {c,=cy=c;}; each is in a different P7(1,3) set. Thus, the range
overlap conditions are satisfied. By symmetry, the same conclusion holds for any
triplet of indices. This completes the proof.

Corollary 2.3 admits many possibilities ranging from a dictator to a
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limited dictator where c;>c; is mapped to itself iff i<j; otherwise it is mapped to
j- If n=3, then the image of F consists of the four rankings {c;>cy>c;,

C1=Cy>Cy, C;>Cp=C3, C;=Cy=Cy3}. By selectively relaxing the nonconstancy condition

c;=c

on F, all sorts of other situations emerge with different fiefdoms. For example,
we could have a dictator over P(1,2,3) and a limited dictator over P(3,4,5). Such
a division into fiefdoms works as long as no pair of candidates are shared by
competing fiefdoms.

For good reasons, the independence conditions for social choice models
wsually satisfy an implicit monotonicity property; e.g., the group’s relative
ranking of ¢; and c; are determined only by the voters’  relative rankings of these
same two candidates. But, does such a tacit assumption contribute to the
impossibility conclusions? Why not let the jth voter’s relative ranking of, say,
c; and c; affect the group’s ranking of, say, c, and c;. (Such a condition
captures some of the flavor of the Hurwicz-Schmeidler "kingmaker” [10].). Corollary
2.4 proves that nothing is gained from this. Also, it shows that the relationship
between the domain and range independence conditions need not satisfy the tacit
monotonicity assumptions standard in the social choice literature. Indeed, the
form of the independence assumptions can change with the voter. (In Corollary
2.4a, if an index has a value greater than 3, then replace it with its remainder
{1,2,3} when divided by 3. For instance, 7 is replaced with 1, and 9 is replaced
with 3.)

Corollary 2.4. a. Let N>2 and F: (P(1,2,3))N —> P(1,2,3) be given. Let li(k) =
P(cys j-1:+ ;) 5-1,2,3, k=1,..,N. Suppose that F is onto and satisfies the
independence conditions F:1i —>P(j,j+1). There is an index s (voter s) so that F
can be represented by a function of a single variable, g,. There are only two
possible ways to define g.

b. Let N>2, n>3, and F: (P(1,..,n))N —> P(1,..,n) be given. For each
k=1,..,N, let m (-) be a permutation of the indices {1,..,N) for the kth voter, let
Ii.s (k) be the set P(m (j),n (s)), and let Ii.®s = X Ii.8(k), j,s=1,..,N. IfF
satisfies the independence conditions F:1i.s —> P(j,s) where F is onto, then there
is an index B (voter B) so that F can be represented by a function of a single
variable, g;. There are only two possible ways to define g;.

Trivially, the overlap conditions are satisfied, so the corollary follows
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immediately from Theorem 2. The function of one variable need not be a dictator
nor an anti-dictator. For instance, in part a, if s=2, then one of the two
possible definitions has g, taking c;>cy to cj,1>cksy; 50, &(Cy>Cy>C3) = ¢;>cy5¢,.
If the range is replaced with P7(1,...,n) and the nonconstancy condition of F is
relaxed, all sorts of other possibilities are admitted.

The Choice of F and Quasi-dictators

The next application of Theorem 2 underscores that F need not be a mapping;
e.g., it could be a correspondence where R is the power set of some other set.
Secondly, it illustrates that while F must be represented as a function of one
variable over the domain IlNI2ZNI3, it need not have this representation over the
full domain D.

Example. Let N>2 and let F be a correspondence with domain P(1,2,3,4)N
with values in P(1,2,3,4). Let Ii(k) = R3 = P(j,j+l1) for j=2,3, and equal to
P(2,4) for j=3. If F satisfies the invariance conditions F:1j-->Ri, j=1,2,3, then,
according to Theorem 2, F can be represented by a function of one variable over the
domain IlNI2NI3. But, this domain imposes no restrictions on the relative ranking
of c; and c;. Thus, it is consistent to define such an F where the relative
ranking of c¢; and c, is determined by, say, a majority vote. So, the relative
ranking of c,, c;, and ¢, must be determined by a particular voter - F is
represented by a function of one variable over the intersection of the equivalence
classes I1NI2NI3 - but majority vote applies for the ranking of {c;,c;}.

This example and Theorem 2 explain why nondictatorial social welfare
functions so often endow some agent with considerable power. Although the
specified independence conditions may not force a dictator over all of D, they may
force a dictator to emerge over the sets in IlNI2NI3 - he is a gquasi-dictator over
the whole domain D. An illustration of this is in a paper by Gibbard, Hylland, and
Weymark [4] where they show that a related nondictatorial function exists if all of
the feasible sets include c,. As we now lnow from Theorem 2, this is the general
situation.

Flexibility in the Choice of the Domain

Because the domain overlap conditions are specified in set theoretic
terms, there is considerable freedom in the modelling. With this flexibility, we
could examine some natural questions about rankings, such as those pioneered by
Weymark, concerning what happens when we relax assumptions of completeness, etc.

As long as the geometry defined by these new restrictions and equivalence classes



Overlap theorems - Main results [Fage 14

of rankings satisfy the overlap conditions, the usual dictatorial conclusions
apply. But, instead of showing how some of Weymarks s nice results are subsumed by
Theorem 2, I will emphasize other kinds of modelling flexibility admitted by this
theorem. The feature illustrated in Corollary 2.5 is that the sets I (k,1),

Ii (k,2) need not be disjoint for all choices of k. This feature admits flexibility
in the modelling because I (k,1) = Ij(k,2) means that the kth voter has no
influence over which Ri equivalence class is selected. (This is because there is
only one IJj(k) component for Ii. This forces the kth voter to have a constant
value over this equivalence set, so he has no influence on the outcome of F: I --
>Ri.) Corollary 2.5 illustrates how such modelling can be used with Theorem 2.
Part a asserts there does not exist a social welfare function where the first agent
determines the group ranking of ¢, and c,, the second agent determines the ranking
of ¢, and c;, while the third agent determines the ranking of ¢, and c3;. Part b
asserts that if we want each agent to be involved with only two pairs, there is a

penalty that a surjective F does not exist.

Corollary 2.5. a. Let N=3 ard F:P(1,2,3)3 —> P(1,2,3) be given. Let li(k) =
P(c;,cj41) iff k=j; otherwise let Ii(k,1)=1i(k,2). Let RizP"(c;,c44,). IEF
satisfies the independence conditions F:Ii-->Ri, j=1,2,3, then F has a fixed
ranking for at least two of the pairs.

b. Let N>2 and let F:P(1,2,3)8—->P(1,2,3) be given. Suppose for each Kk,
one of the 1i(k) equivalence class is the whole set P(1,2,3) while the other two
are Ii(k) = P(j.j+1). If F exists, it is constant valued for at least two of the
pairs.

Proof. a. The overlap conditions are satisfied, so if F is nonconstant
over two or more binaries, then F can be represented by a function of a single
variable. By assumption, this is impossible. This completes the proof of part a.
Part b follows from the last sentence of Theorem 2.

A standard way to obtain a possibility theorem is to restrict the domain.
Corollary 2.5 shows that overly strict restrictions can reintroduce dictatorial
behavior. (See Theorem 4.) For instance if the first voter can vary between only
C;>Cy>cy and cy>¢y>c,; the second voter between c)>c,>cy; and ¢;>c3>c,, and the
third voter between c,>c3>c, and cy3>cy>c,, then Corcllary 2.5 proves that this
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either will not avoid impossibility assertions, or F is constant over two pairs.
Such a result, where certain voters are concerned only about certain outcomes,
contains the spirit of Sen’s theorem on liberalism [21]}. In Sen’s formulation, two
agents have the privileged status to determine the relative ranking of certain
alternatives - presumably their own - while the other alternatives are represented
only through a weak pareto condition. The following version of Sen’s theorem
illustrates how the set E, introduced in the beginning of this section, is used.

Definition. Let F:P(1,..,n)¥ —> P(1,..,n) be given. F satisfies the meak pareto
condition for {c;, ¢} if F((c;>c)¥) = ¢3¢ and F((cy>c;)N) = ¢>c;. Namely,
when everyone has the same relative ranking of these two alternatives, F preserves
this relative ranking.

The weak pareto condition is not an independence condition, but, with the
appropriate E set and Theorem 2, it does define an Ij set. Thus, its connection
with the standard Arrow theorem becomes apparent - both results form the same kind

of axioms.

Corollary 2.6. Let n>3, N>2. Assume that A;, A, A; are subsets of the indices
{1,..,n} such that |Aj|22 and any two of these sets have precisely one index in
common. There does not exist an F:P(1,..,n)N —> P (1,..,n) such that: 1) the
P'(Aj) image of F is nonconstant and it depends solely upon the jth voter’s
rankings of the A; candidates, J=1,2, and 2) F satisfies the weak pareto condition
for the pairs of alternmatives in A,.

If A, and A, have more than one element in common, then, an argument like
that given in Corollary 2.5, shows that such an F doesn’t exist. An induction
argunment, similar to that used in Corollary 2.1, extends this statement to a larger
number of A; sets.

Proof. Without loss of generality, assume that c; is the common element
of A, and A;, c; is the element in A, and A;, while c; is in A; and A;. Let E =
(cy>cy)NU(cy>cy )N, Set E is a proper subset of P(1,3)N requiring all voters to
agree about the relative ranking of these two alternatives. The following sets are
defined on E. Let I1(1) = P(1,2), I2(2) = P(2,3), I3(j) = P(1,3), and all other
Ik (j) sets equal to D;. The interdependency given by set E affects only the I3(j)



Overlap theorems - Main results [Page 16

sets - a voter’'s ranking must agreed with that of the other voters. The overlap
principle, with set E, is satisfied, so it follows from Theorem 2 that if such an F
exists, then it can be represented by a function of a single variable. Namely, the
ranking of one particular voter determines the outcome of F. This contradicts the
first assumption, so the theorem is proved.

Incidentally, this proof illustrates that any interdependency condition
modelled with an E satisfying Theorem 2 is not sufficient to escape the penalties
of Arrow’s theorem. By examining the proofs of Theorem 2 and 4 in Section 5, one
can extend the definition of E so that it is "best possible”. In this manner, one
can characterize the kinds of interdependency conditions that admit a possibility
theorem.

So far, all of my examples are based on the geometry of P(1,..,n). This is
not necessary. To illustrate, Corollaries 2.7, 2.8 show that everything extends to
function spaces. The function spaces are the spaces of utility functions, and the
motivating example is the model of Kalai, Mueller, and Satterthwaite [11]. Let Ec,
be the positive orthant of a c-dimensional Euclidean space, c>2, and let the space
of utility functions be U={u:Ec,-->E: u is a smooth function, and at each point in
Ec, the gradient of u points to the interior of Ec,.} These utility functions are
concave, monotonic, and they do not admit a satiation point.

A classical objéctive is to find a group utility function; to find an
F:UN-->U that satisfies certain properties. If F exists, its image, up, defines a
complete, binary, transitive relationship over Ec,. If for x € Ec,, up(x) is
defined in terms of (u;(x),..,uy(x)), then F satisfies the definition given below
for pointwise binary independence where S = Ec,. Indeed, by setting S = Ec, in the
next definition, we recover the condition used by Kalai, Mueller, and Satterthwaite
to show that such an F leads to a dictator. But, can a dictatorship be eliminated
by using other choices of S, say, by requiring agreement only over some small
subset of points rather than all of Ec,? Instead of defining a ranking over all of
Ec,, how about letting the utility functions define such a ranking only over a
specified set S?

Definition. Let S be a subset of Ec,, and let P(S) be the set of all complete,
binary, transitive rankings on the set S. ILet F;:UN—>P(8) be given. Fy satisfies
the pointwise, binary independence cordition over S if the following comdition
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holds. For for all pairs of points x;, and x;, from S, and for any two choices
wi=(uyd,..,uid), j=1,2, from N, if ul(x)=u?(x), k1,2, then F, (ul(x)) =
F, (2 (%)), k1,2,

Some restrictions need to be imposed upon the set S.

Definition. A set of point, S in Ee,, is nonmnotonic if for x, y € S, some
component. of x is larger than the corresponding component of y, and some component
of y is larger than the correspording component of x. A set S is full if i) there
is at least one nonmonotonic palr of points in S, and ii) for each nonmonotonic
pair of points, there is a third point in S so that the triplet is nonmonotonic.

It is natural to impose a monotonicity condition on F such as requiring
when ul (x) = u2 (x) and ul (y)>u? (y) that the relative rankings of x and y with
Fy (u!) cannot rank y lower than F,(u2). A less restrictive way is to define the
jth agent’s independence sets for points {x;,xy} as Ii.k(j,1) = {u in U: the level
set of u passing through x; passes below x,.} while the definition for Ii.k(j,2) is
that the level set passes above x,. Notice that Ii,i(k,1) = 13,i(k,2). The
independence condition is
3.2 for each pair of nmonmonotonic points (x;,x;) from 5, F:Ii .k —-> P(x;, x4).

Corollary 2.7. Let S be a full subset of Ec, with at least three points. Suppose
Fg:ON —> P(S) satisfies the pointwise binary independence condition, the
independence condition 3.2, and that F; is not constant over at least two
normonotonic pairs of points of S. F; can be represented by a function of a single
variable that corresponds to either a dictator or an anti-dictator.

Can a nondictatorical Fg be constructed with different kinds of economic
information? For instance, the price mechanism depends, in part, on the gradients
of the utility functions. The next definition permits gradients and other
information to be used by replacing a point from S with a subset determined by a
point in 5. In this way, it describes a 'general binary independence condition”
that permits F; to be defined in terms of any kind of differential information
coming from u as well as the behavior of u at neighboring points. Indeed, the
definition of the "B sets” even permits the ranking of two points to be based on
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information coming from elsewhere in Ec,.

Definition. Let S be a subset of Ec,. F :UN-->P(S) satisfies the general binary
Independence condition if for all finite subset of points A={x;,..,x}, x; € S5,
and all n! and Y2 from ON, the following conditions hold:

i) There are nonempty, pairwise disjoint sets {BA(j,k)}, j=1,..,N, k1, .,t,
in Ee, such that if x; and x, are nonmonotonic, then, for each j, any point from
BA(j,i) and any point from BA(j,k) are monmonotonic.

ii) For each pair (x;,x,) from A, if u!; and w2 both agree on BA(5,1i) and
BA(j,k), j=1,..,N, then F; (u!) and F, (4?) coincide on x; and x;.

A pointwise binary independence condition is a special case where BA(j,k) =
{x}. Another special case would be where F; is based on the values of u and its
derivatives at a point. Here, (with a slight modification of the definition) open
sets about each point in S are used to define the germ of the utility functions.
The choice of BA(j,k) can vary with the point, so different types of information
can be employed. For instance, at x; we may use the value of the utility function,
and at x, and x;, the gradient of the utility function. The independence
conditions that replace the usual monotonicity conditions are defined in the
following manner. For a triplet A-{x,,x;,x3}, let Ii(k,1) be the set of all
utility functions for the kth agent that have level sets passing through BA(k, j)
but below BA(k, j+1), while 1i(2) are the utility functions with a level set passing
through BA (k,j) but above BA(K, j+1). The independence condition is
3.3 for all triplets of nonmonotonic points F: Ij-—-»> P(xj,xj,,l).

Corollary 2.8. Let S be a full sulset of Ec, with at least three points.

Suppose that F, :0N—>P(S) satisfies a general binary independence condition, the
independence condition 3.3, and that F; is not constant valued over at least two
nonmonotonic pairs. F; can be represented by a function of a single variable that
corresponds to either a dictator or an anti-dictator.

Corollaries 2.7, 2.8 illustrate that the problem of dictatorial behavior is
not induced by what informaticon is used, but by the division of information. In
these corollaries, the dictatorial conclusions are direct consequences of an

attempt to create an Fg that preserves monotonicity.
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Outline of the Proof. As with Corollary 2.1, the proof is by induction
over triplets. Let A= {X;, x;, X3} be a triplet of points that are nonmonotonic.
All that needs to be proved is that the domain overlap conditions are satisfied.
The proof is outlined for c=2; the extension to ¢>2 is immediate. The proof of the
domain overlap condition is indicated in Figure 2. Because the sets Bx(j,i) are
nonmonotonic, with some choice of the indices, they can be arranged in a fashion
similar to that given in this sketch. Now, for A = {x;,x%,,x3}, it is easy to see
why I1(j,2)NI2(j,1) meets both I3(j,1) and I3(j,2). In the first sketch, there are
three level sets for the same utility function u. The first level set passes
through BA(j, 1), above BA(j,2), but below BA(j,3). This is possible because of the
nonmonotonicity assumption. Such a u is in I1(j,2). To ensure u is in I2(j,1),
the second level set passes through BA(j,2). Because c=2 and because level sets
cannot cross, this level set is forced to be below both BA(j,1) and BA(j,3). There
is still flexibility in the design of u to have a third level set passing through
BA(j,3). Again, geometric constraints force this level set to be above BA(j,1), so
it is in I3(j,2). It only remains to show there is a different utility function
from I1(j,2)NI2(j,1) that is in I3(j,1). This is shown in the second sketch where
the first level set passing through BA(j,1) now passes above both BA(j,2) and
BA(j,3). This forces the level set passing through BA(j,2) to be below BA(j,1)
(for geometric reasons) and BA(j,3) (because it is in I2(j,1)). These two
restrictions force the level set passing through BA(j,3) to have the properties of
membership for IA(j,1). Similar arguments apply to show that the domain
independence conditions hold. The conclusion now follows from Theorem 2.

Some Applications to Kconomics

We now use the independence conditions to characterize the informational
requirements of economic procedures. To see the idea, suppose we wnat to know
whether we can construct a group decision procedure, based on binary comparisions,
that always is immune to a Dutch Book procedure. (See, for instance, [22].) Thus,
we want to know whether the ordering of the pairs is of any consequence. Can such
information be combined so it always yields a transitive ranking of the
alternatives? If the answer is yes, the procedure defines a social choice function
that satisfies certain independence conditions, so Theorem 2 may apply.
Alternatively, for a given economic procedure, we may want to determine whether
certain kinds of partial information are adequate to capture aspects of the
procedure; i.e., of what use is this partial information with respect to the
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procedure? If the choice of partial information defines independence conditions,
Theorem 2 may apply. For instance, when analyzing a solution concept for a
standard trading or exchange model among three agents, can we can recover aspects
of the solution by knowing what would happen in all the possible binary trades
among the three pairs of agents? Suppose externalities are introduced into a
classical allocation procedure. Is the information about how pairs of
externalities effect the classical solution of any use when considering the total
effect?

To illustrate this line of thought (and to demonstrate another feature of
the overlap principle), consider the aggregate excess demand function for a simple
trading society with neo-classical utility functions. For a given price vector,
can we obtain qualitative information about the aggregate excess demand function
from the relative demand for the pairs of commondities? To be more specific, at a
given price, the components of the aggregate excess demand function determine an
ordinal ranking of the commodities in a natural fashion; the larger the demand for
a commodity, the more favored it is. It is reasonable to expect that information
about this ranking can be obtained by finding for each pair of commodities,
considered at these same prices, which one is the more desired. Such a problem can
be analyzed in several ways; 1°11 use Theorem 2. The outcome is that the
information about pairs can be unreliable - even for a single agent.

Suppose the three commodities are {c;, c;, c3}. The qualitative
information we seek is the direction of the aggregate excess demand function. So,
let the two Ri,Jj classes, {Ri,J (g >cj), Ri,J (cJ- >c;)} be determined, respectively,
by whether there is a positive demand for c; or for c¢;. It is easy to show that
the range overlap conditions are satisfied. The domain for each agent is the set
of neoclassical utility functions. The kth ggent is given an initial endowment
(WK, wky, wky), wa->2.. For a specified price, (p;,p;,Pa), pJ->0, the 1i,Jj(k) sets
are defined in the following manner: Ii,J(k,c; >cJ-)) is the set of all utility
functions so that, when the remaining commodity is held fixed, the excess demand
function at the price (p; ,pj) has a net trade between 1 and 2 units in favor of c;.
If the approach of comparing binary information gives qualitative information about
the aggregate excess demand function, then, for the given initial endowments and
price, F:{U}N-->N{Ri.i} satisfies the independence condition that, for each pair
(i,J), F:Ii,j--> Ri,J. Clearly, F is not determined by one agent, so the futility
of such a binary approach follows from Theorem 2 once we establish that the domain
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overlap conditions are satisfied.

It is trivial to show that the domain overlap conditions are satisfied.
Indeed, a new feature arises; the intersection of each I1.2 class with each 12,3
class meets both I1:3 class. Thus, unless restrictions are imposed on the class
of utility functions, no agent satisfies the restrictive domain conditions, so the
last sentence of Theorem 2 applies. To indicate the basic ideas, I will outline
why I1.2 (k,cy>cy) N 12,3 (k,cy>cy) meets both 11,3 classes. In the plane z=wk, in
E3 consider the circle of radius 1.5. In this plane, the line passing through the
initial endowment with normal vector (p,,p,) meets the circle in precisely two
points. Choose the one where c;>wk;. At this point, construct a level set of the
utility function such that the first two components of its gradient is a positive
multiple of (p;,p;). Use a similar construction for a level set of the utility
function in I2,3 (k,c;>cy). So far we’ve specified two level sets at two disjoint
points using only partial information about the gradient. The same construction
for 11,3 (k) specifies two more points. All four points are disjoint; indeed, they
do not even lie in the same plane, and only the last two are on a line passing
through the initial endowment. So, it is trivial to construct a utility function
with a level set satisfying the point information at the first two points and at
either one (but, clearly not both) of the remaining four points. This completes the
proof.

Because no agent satisfies the restrictive domain conditions, such an F
doesn’t exist even for one agent - such information is not reliable even to
determine a single person’s demand function. The same fate holds for any choice
of F based on similar information. This can be illustrated with the next example
that uses a kind of information often considered in economics. Suppose F is a
function of the gradient of the utility function at X5 where the image of F
satisfies the range conditions. Instead of using the monotonicity condition given
in Corollaries 2.7, 2.8, suppose the related domain independence conditions are
Ii(k,1) = {u in U: the jth component of the gradient of u is larger than the other
two components} where Id(k,2) is the set where some other component is larger than
the jtb component. Again, not only are the domain overlap conditions satisfied,
but no agent satisfies the restricted domain conditions. Thus, such an F cannot be
defined even for one agent.

Contingency Tables in Statistics

Theorem 2 can be used with issues from statistics. For instance, by
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treating each data point as a 'voter”, if follows immediately from Theorem 2 that
there isn’'t a statistical method yielding a transitive ranking of three or more
alternatives that respects binary comparisons. As another statistic question
subsumed by Theorem 2, consider the problem of collapsing of contingency tables to
obtain the marginal probabilities. To describe the problem, suppose a new vaccine
is proposed to cure the common cold. This vaccine is to be tested in Evanston and
in Ann Arbor. At each site, a test group and a control group are used and the
probability of a patient regaining health is computed. Let x; and x, denote,
respectively, the difference between these values for the two groups as measured at
Evanston and at Ann Arbor. So, x>0 means that in Evanston the new vaccine had a
better success rate than the standard treatment. Finally, suppose the test results
from both locations are sent to a central location and aggregated where y is the
difference between probabilities of success with the vaccine and with the standard
treatment. We want to compare signs of the triplet (x;,x,,y). Simpson’s paradox
is when the signs (+,+,-) occur; the vaccine was successful both in Evanston and
Ann Arbor, but not in the aggregate.

Simpson’s paradox is an annoying consequence of the combinatoric rules of
conditional probabilities. Can some other measure be invented to avoid Simpson’s
paradox? Namely, can we find a mapping F = (ug,u,,u), depending on all of the
information, where the outcome assumes all sign combinations except (+,+,-) and
{(-,-,%). In this manner, the new measure avoids the pitfall of Simpson’s paradox.
(See [5] for some measures.) Now, we want this measure to be useful on its own at
each site, so we want the sign of g, M, U to depend, respectively, only on the
sign of x;. x,, and y. This defines a binary independence condition, and it is
easy to show that the range overlap conditions are satisfied. Using the results
given in [16] concerning Simpson’s paradox, it follows that the "“one voter"
satisfies the domain overlap condition, but not the restricted domain conditions.
(All signs for (x;,X,,y) are possible.) Hence, according to the last sentence of
Theorem 2, such a measure does not exist.

The Range Condition: Social Choice Functions

Theorem 2 offers flexibility in choice of the range, or outcome space.
Because the range overlap conditions are in a set theoretic form, the range could
be any space - a function space, a space of probability distributions, a lottery,
subsets of alternatives, etc. I decided to illustrate the basic ideas with a
familiar model - social choice mappings. Let the candidates {c,,..,c,} be given,
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let AJ, Jj=1,..,p, be a subset of these candidates, let FS = {A,,.. ,Ap} be the set
of feasible sets of A, and let R be the set of all nonempty subsets of the
candidates. A social choice corresporndence, F:FSx{P(1,..,n)}N--->R, assigns to
each feasible set and preference profile a nonempty subset of the feasible set.
Namely, for A; in FS and x in P(1,..,n)N, F(A;,x) is a nonempty subset of A;. F
satisfies the condition of independence of infeasible alternatives if for A; in FS,
and if for x and y in P(1,..,n)N that agree on A; (they are in the same P(4;)
class), then F(A;,x) = F(A;,y). A social choice correspondence F is strictly
nonconstant over A; if the image of F(AJ- ,~) has at least two disjoint, nonempty
subsets. F satisfies the choice axiom if, for all x, F(Aa-,x) = F({{1,.. y»n}, x)NA;.
The definition of a correspondence of a single variable, a dictator, and an
antidictator are the obvious ones.

The difference between a social welfare function and a social choice
function is that a social welfare function determines the group ranking of the
alternatives, while the social choice function selects only the set of "best”
candidates. So, if a social welfare function exists, the related social choice
function selects the top ranked alternative. This means that the social choice
function is realized by the social welfare function. An important theorem by
Hansson [6] specifies what kind of feasible sets permits a social welfare function
can be constructed to realize a given social choice function. Thus, whenever his
conditions are satisfied, there is a relationship between results for social choice
and social welfare. While the conditions given below can be used to invoke
Hansson’s theorem, the conclusions are proved directly to illustrate how Theorem 2

includes social choice models.

Corollary 2.9. For A = {c,,..,c,} where n>3, let the set of feasible sets include
A and all two element subsets of A. Let F be a social choice correspondence that
satisfies the condition of independence of infeasible alternatives, the choice
axiom, and is strictly nonconstant over the pairs of alternatives. F can be
represented by a function of a single variable.

Of course, Corollary 2.9 could be modified to obtain a result with the
flavor of Corollary 2.4 and some of the other statements.

Proof. As with Corollary 2.1, the proof is by induction. Choose three
candidates, say {c;, c;, c3}. Assume that A; = {c;, c;4,}. Let Li(k) = P(J,j+1),
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and define Ri to be {{c;,A; '}, {c;4;,A; 1} where A;" is the complement of A, in A.
(So, if n=3, R = {{c;,c3}, {cy.,c3}}.) It follows from the condition of
independence of infeasible alternatives and the choice axiom that F: Ii-->Ri. It is
easy to show that the sets Rk satisfy the range overlap conditions. For instance,
again in n=3, RINRZ = {{c;,c3}, {cz,c3}} N {{cy,c;}, {c3,c1}} = {{c3}, {c,},
{c1,c3}, {cy,c33)}. The first two sets are in different R3 subsets. From this, the
conclusion follows from Theorem 2.

Gibbard - Sattertisaite

As a last illustration of Theorem 2, I'11 give a proof of the Gibbard -
Satterthwaite theorem that differs from the standard method depending on the
distribution of power. For simplicity of exposition, restrict attention to three
alternatives. (In much the same manner as described for the earlier corollaries,
the results extend to all values of n23.) Recall that if A = {c;,c;,c3} is the set
of candidates, then a voting scheme is a function F: {P(1,2,3)}N -—~> A. For x; €
P(1,2,3), c;>;¢ iff this is the relative ranking of the two candidates in x;. A
voting scheme is manipulable iff there exists x, ¥y € {P(1,2,3)}N that differ only
in the jth component and F(y) >; F(x). The jth component for y, Y;,» represents
the jth voter’s misrepresentation of his true ranking. We say that j manipulates F
at x with ;-

Corollary 2.10 (The Gibbard-Sattertlsmite Theorem). Let F be a wvoting scheme from
(P(1,2,3)}¥ to {c,, c3, c3} where the range of F is onto. F is either dictatorial
or manipulable.

Proof. Assume F is not manipulable; we show it is dictatorial. For the
pair A; 4 = {c;, c;}, let Ri,j = {{c;, A", ;}, {c;, A’y ;}}. For instance, R1.2 =
{{c;,c3}, {cy,c31). The range overlap conditions are satisfied, Corollary Z.10
follows from Theorem 2 once we show that the Ii.Jj(k) sets are P(i,j). This proof
illustrates how these implicitly defined independence conditions are extracted from
"level set" and monotonicity properties of F. To emphasize the ideas, the proof is
divided into three lemmas. First, note that F-1(c;) # ¢ for all J.

Lerma 1. If F(x) = c¢;, and if x = (x;,..,%y) varies only in the kth
component where this variable, y,, is in the same P(i,j) class, then F remains in
the same Ri.Jj class. If when y, changes P(i,j) classes, the image of F changes
Ri,J classes, then the change is monotonic; e.g., if y, moves from P(CJ- >c;) to
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P(ci>cj), then the image of F moves from {cj,ck} to {c;,c,}.

Proof. Without loss of generality, let k = 1. Suppose the first part of
the lemma is false because the image of F changes Ri.J classes when this voter
changes to y; "~ where both x; and y, " are in the same P(1,2) class. If this voter’s
relative ranking is c;>c;, he can manipulate the outcome of F at x with y,’;
otherwise he can manipulate the outcome of F at (y; ",x%;,..,x%) with x;. Both
contradict the assumption that F is not manipulable, Similarly, if changing the
P(i,j) classes has the reversed effect on the image, then either one way, of the
other, the first agent can manipulate the outcome. If this agent’s relative
ranking is c;>c;, then F is manipulated at x with y,; otherwise F is manipulated at
(¥1,%,..,%y) via x;.

Definition. The change of a ranking x; to y; is called a lewal set change
with respect to c; iff for each choice of k, cy>c; in x; iff the same relative
ranking holds in y;.

In other words, in a level set change, all of the candidates ranked above
C; in x; are also ranked above C; in y; and vice versa. 5o, c; remains at the same
level and all candidates originally above (below) remain above (below). For
instance, c;>cy>c; and c;>c;>c; are level set changes with respect to c;, but not
with respect to cj, J=1,2..

Lemma 2. If F(x) = Sy and y differs from x only in the kth voters ranking
which is a level set change with respect to c;, then F(y) = c;.

Proof. Assume the lemma is false, and that F(y) = c;. Because the kth
agent made a level set change, this agent’s relative ranking of c; ard c; remains
the same. Thus, this voter can either manipulate F at x with y-x or at y with x-y.

Lemma 3. For each i and j, F:Ii,Jj-->Ri,J.

Proof. If this lemma were false, there would be a profile x where F(x) =
c;, and a profile, y, in the same P(1,2)N class as x, where F(y) = c;. Because we
can go from x to y with a series of individual ranking changes in the same P(1,2)
class, it follows from Lemma 1 that there is an intermediate profile, z, in the
same P(1,2)N class, such that F(z) = c;. First, assume that all rankings in x with
c;>c3 have the ranking c;>cy>c,; or cp>cy>c;.  If this isn’t so, it can be achieved
with c; level set changes. According to Lemma 1, if P(1,2) invariant changes alter
the outcome to c3, it is due to P(1,3) changes for a subset of these voters; let
Vi,3° be the indices of these voters, and let z° be the new profile. (Notice,

these are c; level set changes where c,;>c; becomes c3>c;.) Now, to change the
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image from c; to c,, certain voters keep their rankings in the same P(1,2) class,
but they must change P(2,3) from c3>c, to c;>c;. Let V2,3 be the indices of these
voters and let y be the profile. We can assume that Vi.2 and V2.3 are disjoint.
This is because the voters with the x ranking of c,>c;>c; have the wrong P(2,3)
ranking to make this change. For the other voters in V1,2, the P(1,3) change
results in c;>cy. If this doesn’t change the F image to c; (the only possibility),
then this voter wasn’t needed in Vi,2, If it does, then, according to Lemma 1, the
next P(2,3) change cannot change the outcome to c,.

Change y to w by using a c, level set change with all indices in V1,2,
According to Lemma 2, F(y) = F(W) = c;. Profile x differs from w only for the
rankings of the V2.3 voters. So, the changes from x tc w only involve P(2,3)
changes in the same P(1,2) and the same P(2,3) classes. Thus, according to Lemma
1, F(w) is in {c;,c3}. This contradiction completes the proof.

Corollary 2.10 follows from Lemma 3 and Theorem 2. (Of course, we could
have streamlined the proof by showing, for example, that the Vi,J sets are
singletons.) Notice that the drive for each agent to maximize the outcome of F
isn’t needed; we only used the associated monotonicity for F. Consequently, the
essence of the Gibbard-Satterthwaite theorem extends to situations outside of
strategic manipulations as well as the other extensions admitted by the flexibility
in the choice of the range that is admitted by Theorem 2. Finally, it is worth
noting that in [9,17], the level sets defining the message correspondences are
based on integrability conditions. This involves "Lie bracket conditions”; they
measure the change, or differential, of one vector field with respect to another.
By examining the usual motivating examples for the Lie bracket, you will find a
strong relationship with the proof of Lemma 3. This is not coincidental; such a
construction occurs whenever the independence conditions for discrete models are
implicitly defined; e.g., a related argument is in the last paragraph of the proof
of the first part of Theorem 2. This kind of argument can be abstracted to form

the discrete version of the Lie bracket condition.
4. Extensions amd Possibility Theorems.
Theorem 2 can be extended by altering the domain and the range overlap

conditions. There are many ways this can be done; several create interesting
theories of independent interest. Rather than attempting to be complete, 1°11
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illustrate the basic ideas with some possibility theorems. In much the same
fashion other extensions, say, to quasi-transitive or acyclic rankings can be made.

The first extension is to model "indifference”. The definition is based on
the geometric properties illustrated in Figure 1. The key feature is that if an
agent is indifferent between c; and c;, then his (c;,cy) ranking uniquely
determines his (c,, c3) ranking. This deprives him of the freedom to vary between
P(1,3) classes that is essential to prove Theorem 2. Consequently, we should
expect other voters to have a say in the outcome. This happens.

Definition. The domin owerlap conditions with indifference for the kth voter
admits added sets, Ii(k,3), j=1,2,3. For each j, the added set is disjoint from
each of the two original 1 sets. The domain overlap condition for this new set is
that, for each permutation (a,b,c) of (2,3) and s = 1,2,3, Ia(k,3)NnIb(k,s) meets
precisely one Ic (k) set, Ic(k,u), where s=3 iff u = 3. Furthermore, if

Ia (k,3)NIb (k,u) meets Ic(k,v), 3, then Ib(k,u)Nlc (k,v) meets all three of the Ia
sets. Call 1J(k,3) the indifference set.

Theorem 3 extends the version of Arrow’s Theorem that admits preferences
with indifference. To generalize the idea of sequential dictators, we need a

stronger condition on the range sets.

Definition. Assume that each Ri, j=1,2,3, has two elements. Assume for each
permutation (a,b,c) of (1,2,3) that there are four sets in RanRb; two of them
satisfy the range overlap comditions and each of the other two meet both Re sets.
Both of the latter two are of the form R2,MRP, and R=,MRd, for some permitation
(u,v) of (1,2). The range sets Ri, j-1,2,3, are said to satisfy the flexible range

owverlap conditions.

Most of the choices of Ri used in this paper satisfy the flexible range
overlap condition. This is true for P(i,j) as well as the sets {c;,A;'}. The term
“flexible" refers the flexibility in the range classes similar to that admitted by
the domain overlap conditions. The restriction allowing Ri to have only two sets

is not necessary.

Theorem 3. et N> 2. Let M= {F:D—> R : the I classes satisfy the domin
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overlap conditions with indifference, the Ri classes satisfy the flexible range
overlap conditions, and F: Ii-->RJ is non constant. for at least two values of j.}

a. There is an F € M that canmot be represented by a function of one
variable over I1NI2NI3.

b. Suppose F € M is not a function of a single variable. There exists a
permutation of indices, (8(1), B(2),..,B8(s)), s<N, and mappings & (;):Ds (1)—>R
with the following property. If x5(,, & 1i(8(1),3), then the Ri image of F is
determined by the image of B (1))- Inductively, if X (a) € Ii(B(a),3), a=1,..,i«s,
but X5 (q+1) & I3 (B(at1),3), then the R image of F is determined by & (q41)- There
are two possible choices for each gy (4)-

An unusual example illustrating Theorem 3b is where the P(i,j) outcome of
F: {P(1,2,3)7}N-->P(1,2,3) is dictatorially determined by the first voter iff her
ranking is not indifference. 1If she is indifferent about some pair P(i,j), then
this ranking is determined by the second voter’'s P(i+l,jt+1) ranking. Other examples
could involve utility functions, etc.

Theorem 3 demonstrates that several voters can help determine the outcome
of F when the flexibility in the domain is curtailed. This is accomplished here by
adding sets to the admissible domain that don’t satisfy the domain overlap
conditions. In other words, there are situations where Arrow’s theorem doesn’t
apply because it is too restrictive. A standard way to obtain possibility theorenms
is to create the rigidity in the domain by subtracting from the domain by
imposing restrictions on what are admissible preferences. Theorem 4 characterizes
these domain restrictions. Essentially, Theorem 4 states that the overlap principle
captures the boundary between possibility and impossibility conclusions.

To motivate Theorem 4, recall that puzzling phenomena 1 briefly mentioned
after Corollary 2.5. Certain domain restrictions permit possibility theorems. It
seems reasonable to expect that with stricter restrictions, models permitting even
more voter participation will result. This need not happen; the stronger
restrictions can force a return to an impossibility conclusion! For instance,
with axioms much like those studied by Kalai, Mueller, and Satterthwaite, Donaldson
and Weymark [2] obtained a possibility theorem with an independence condition that
models a form of “"free disposal of goods”. Yet, when they changed the independence
condition in a natural but slight manner, an impossibility theorem now emerged. To
see why behavior like this occurs, consider Arrow’s theorem where voter B can
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assume any ranking except c;>c;>c;. According to Theorem 4, we obtain a
possibility theorem. Now consider what happens if we further restrict 8°s rankings
to {c;>cy>cy, cydcy>c,}. Now, a dictator, other than 3, is obtained. This is
because with the original restriction, the 1i(B) classes are the usual P(i,k)
classes minus the one specified ranking. Because only this one ranking is missing,
the domain overlap conditions cannot be satisfied, so as Theorem 4 asserts, a
possibility conclusion holds. But, by imposing the stronger restrictions on 8°s
rankings, a new set of Ij(B) classes emerges. One class still is P(1,3), but the
two new 1J equivalence classes are singletons - the entire set. Theorem 2 applies
because the stronger restrictions (which correspond to more relaxed independence
conditions) create a new division of independence classes in the domain that
satisfy the domain overlap condition. The next definition, which is needed for
Theorem 4, captures this implicit behavior.

Definition. Suppose {Ii(k), j=1,2,3, satisfy the restricted domin overlap
conditions for D,. A restriction for the kth voter is a proper subset, G, of I(k)
= IN(k)NI2 (k)ND3 (k). A restriction G, implicitly defines a new set of
informational equivalence classes {Ji(k)}, j=1,2,3, if x € 1li(k,s)NC, iff

x € Ji(k,s)NG, j = 1,2,3, s = 1,2.

As an example, suppose Ii.d(k) = P(i,3J) = {P(c;>c;), P(cy>c;)} and G =
{cy>cy>cy, cy>cyrc,, c3>cy>cy}. (These are regions {A,B,C} in Figure 1.) G
implicitly defines the overlap classes Ji,Ji(k) = Ii,J (k) for (i,3) = {(1,3),
(2,3)}, and J1.2 is the singleton equivalence class of the total set. In other
words, because the restriclion C, forces one of the I1,2 (k) sets to be empty, this
class could be replaced with a singleton. Notice that with the restrictions,
neither the original nor the implicitly defined classes satisfy the domain overlap
conditions. This is because J!.2(k)NJ2,3 (k) = J2,3 (k)NC; = {{c;>cy>c3}, {c;>cy>cy,
Cc3>C;>Cy}}, so there aren’t two sets in this intersection where each meets both
J1,3 (k) sets.

Thoorem 4. Suppose the informational equivalence classes and the division of the
range for given D and R satisfy the overlap principle. Assume restrictions are
imposed on at least one of the voters that satisfies the restricted domain overlap
conditions, say voter 1. Assume that all of the implicitly defined informational
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equivalence classes generated by C, either fail to satisfy the overlap conditions
or they have only two classes with two disjoint nonempty sets, say Ji(1l), j=1,2,
where at least two of the four sets in J1(1)NJ2 (1) are empty. There exists a
function F from the restricted domain of D to R that satisfies the independence
conditions F: Ii—>Ri, j=1,2,3, where F is non—constant for at least two values
of j and F cannot be represented as a function of a single variable.

In other words, as long as the restrictions don’t implicitly define a new
class of informational equivalence classes that require, via Theorem 2, a
dictatorial situation, then a non-dictatorial F exists.

Corollary 4.1. let n=3 and Ii,j(k) = Ri,J = P(i,j). If C,;, the restrictions on
voter 1, are such that C,Nli,i(1,s) # ¢ for all (i,j), s = 1,2, then there exists a
mapping from this restricted domain that cannot be represented by a function of a
single variable.

Example The restriction C;, = {c;>c,;>c3, c3>¢cy>c,} admits a social welfare
function that is not governed by an (anti) dictator. This is because each P(i,j)
set meets C;. On the other hand, the restrictions C,” = (c;>c;>cy, ¢3¢ >c;3}
cannot avoid a dictatorial situation. This is because C,  meets only one set in
each of P(2,3) and P(1,3). As a result, both of these classes can be replaced with
a singleton equivalence class of everything. The overlap conditions are satisfied
and Theorem 2 holds.

Even though Theorem 4 admits a possibility conclusion, the resulting F
need not be a model of participatory democracy; the remaining conditions still
impose sharp restrictions on which F’'s are admitted. To see this, suppose
restrictions are imposed only on the first voter where C; = P(1,2,3) - {c;>c3>cy}
(region B in Figure 1). If F is not determined dictatorially, then the first voter
must influence the outcome of at least two pairs. This is because if the voter has
no influence over a pair, then the associated F implicitly redefines the associated
informational equivalence class as a singleton. If this is true for two pairs,
then the newly defined classes trivially satisfy the domain overlap condition, and
Theorem 2 applies. Now, the constraint C; permits flexibility of movement in the
P(1,3) and P(2,3) classes, so a variation of the argument for Theorem 1 shows that
voter 1 determines the outcome of these pairs. Thus, the definition of F is thrust
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upon us; the first voter (anti) dictatorially determines the P(1,3) and the P(2,3)
outcome. With one exceptional case, the outcome is either P(c,;>c;)NP(cz>cy) =
{C,D}, or P(c;>c3)NP(cyd>cy) = {A,F}. In either situation, the P(1,2) outcome can
be determined in any desired manner by the voters, say, with a majority vote. The
one exceptional situation is when the first voter has the ranking c;>cy>c;. Here
the P(1,3)NP(2,3) image is either the anti-dictatorial outcome {B}, or the
dictatorial {E} - which one occurs uniquely defines how this voter determines the
image of F. Thus, if the first voter has the ranking c;>c;, he determines the
P(1,2) outcome. Otherwise the P(1,2) image can be determined by a majority vote
(or by any other means) of the remaining voters.

With this construction, it is easy to image other situations that could
occur with the appropriate domain restrictions. For instance, situations can
occur where the first voter uniquely determines the P(1,2) and P(2,3) outcomes,
the second determines the P(1,4), P(1,5) outcomes, .... If this process does not
uniquely determine the F outcome in P(1,..,n), then other voters can make the
final determination. Such a construction results from an iterative application
of Corollary 4.2.

Corollary 4.2. a. Let N > 2. Suppose the informational equivalence classes and the
division of the range for given D and R satisfy the overlap principle. Assume
restrictions, C,, are imposed on voter 1 and that voter 1 satisfies the restricted
domain overlap conditions. Suppose C; admits a permutation (a,b,c) of (1,2,3) so
that Ia(1)NI* (1) contains the two sets where each meets both Ic (1) sets. If F
cannot be represented by a function of one variable, then the first voter
determines the Ra and Rb outcome.

b. Let N=2, and suppose that restrictions C, and C; are given. Suppose for
two different permrtations (a(k),b(k),c(k)), that Ja(k))NId(k)) contains the
required two sets that meet both Ic(k) sets but the other sets in this intersection
do not. If F is mot a function of a single variable, then for one choice of k, the
kth voter determines the Ra(k) and the Rv (k) outcomes.

Non Standard Independence Corditions - Game Theory

I've already pointed out that the information used by each voter could
change; for instance, one voter s domain could be ordinal rankings, a second
voter s domain could be based on a probability distribution, while a third is given
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by utility functions. The next feature I will illustrate is that each independence
class of each voter could represent a different type of information; the goal is to
determine whether the interaction among the features are compatible. In this
manner, for instance, one could examine results of the type shown by Samuelson
where a transfer of initial endowments can adversely affect the final allocation.

I decided to illustrate this feature by recapturing some of Hurwicz and
Schmeidler’s (HS) nice results about inferior Nash equilibria. (In this way we
relate HS's results to Arrow’s theorem.)

HS studied games, or allocation processes with a finite number of
alternatives, where, for each profile, there is a Nash equilibrium which also is
Pareto optimal. Such an allocation procedure is acceptable [10,p. 1447]. HS showed
that, for two agents, an acceptable allocation function must be dictatorial, but
that this same conclusion does not hold for three or more agents. Yet, they
proved that a non-dictatorial solution for more than two agents regquires a
“kKingmaker". With three players, the role of the kingmaker is to determine which
of the remaining two agents is to be the dictator. Because my objectives are to
illustrate Corollary 4.2, 1711 show here only why the dictatorship occurs for N-=2.
(The proof and the comments motivating Corollary 4.1 and 4.2 suggest the reasons a
kingmaker occurs. )

Consider allocation procedures with two possible outcomes, {a,b}, and two
agents. The range space is not just the two outcomes; it is each outcome
associated with how each agent honestly ranks the alternatives. For instance,
typical outcomes are {a,a>;b,b>;a}, {a,b>,a,b>;a}, and {b,a>,b,a>,b}. The first
outcome implies that a is the selected alternative, a is the first agent’'s top
ranked alternative, and it is the second agent s bottom ranked alternative. The
second and third outcomes do not occur because of the pareto condition. For
instance, in the second outcome, both agents prefer an available alternative, b.
This leaves 6 outcomes that do satisfy the pareto condition, and they are
represented in Figure 3. In this triangle, the edge to the left represents the
first voter’s true ranking and defines the two Rl classes, the edge to the right
represents the second voter s true rankings and defines the two R2 classes, while
the bottom edge denotes the selected alternative and determines the two R3 classes.
Because the mapping, f, has only four variables, there are four image points, so it
is not obvious whether the range overlap conditions are satisfied. By the pareto
assumption, £ must have an image in regions B and E. Because there is an outcome
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for each profile, there is an image point in {C, D} and in {A, F}. If the images
are {A, D}, then, trivially, the first agent is a dictator. Equivalently, if
they are {F, C}, then the second agent is a dictator. For either of the remaining
two cases, the range overlap conditions are satisfied.

The domain for each agent, I}, is represented by a similar triangle, but
there is a slight difference in the interpretation. The bottom edge, dividing
the equilateral triangle into two right triangles, corresponds to this agent’s two
strategies - will she state a or b is her top ranked alternative? Of course, this
depends on the choice of the allocation function and on her opponent’s strategy.
Therefore, this axis corresponds to what appears to be her top choice based on her
strategy choice. This defines the I3 (k) classes. Obviously, the Ii(j) classes
agree with the RJ classes, j=1,2. The remaining equivalence class for each agent
consists on what appears to be the true belief of the opponent. For instance, the
point (a;,b>;a,b>;a) represents the first voter using a strategy to achieve a; when
his true first choice is b, and it appears that the second agent’s true first
choice also is b. Such points are not admitted both under the Nash and Pareto
assumptions. Thus, the representation of the triangle holds. Augment the
allocation function, f:{a,b}2 ---> {a,b}, to define the mapping F:D;xD,-->R, in the
natural manner. Namely, F map 1Jj(j) to Ri, j=1,2, and f maps the strategies to the
R3 class. By construction, F:I1i~-->RJj, j=1,2,3. If f is not dictatorial, we ve
already shown that the range overlap conditions are satisfied. The domain overlap
conditions remain.

If £ is not dictatorial, there are only two choices for the image set of
F. HWithout loss of generality, assume it is {A,B,C,E}. We need to use the Nash
and Pareto conditions to determine what sets are, and are not in Cy. By the Pareto
condition, {B,E} = {(ag,a>;b,a>,b), (b ,b>a,b>,a)} € C;. Because of the Nash
condition, regions {C, D} € C;. It is obvious why D€ C;. To see why C =
{a;,b>,a,a>,b) € C;, note that the first voter using the strategy to get b results
in a. If by changing strategy, the agent could get b, the original outcome
wouldn't be a Nash equilibrium. Thus, C also is an admissible strategy. Similar
arguments show that C, contains all of the regions except (b;,a>;b,b>;a) because
this would change the outcome to b, and this is a personally worse outcome.
Likewise, C, = {B,C,D,E,F}.

Based on the restrictions C,, Corollary 4.2 holds. Consequently, either f
is dictatorial, or (according to Corollary 4.1) two of the Ri classes of F are
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determined by one agent. Obviously, these two classes cannot be Rl and R2, so one
of them must be R3. This returns us to the dictatorial situation because this
agent determines the {a,b} outcome.

For two agents and several alternatives, the ideas remain the same. If
there are more than two agents, there are differences in the construction.
Still, based on what has been shown, intuition suggests (and supporting details
prove) that when a voter determines the outcome for two classes, one could
determine which of the other voters prevails, and then this designated voter
selects among two classes. This last voter is a dictator; the first is a HS
kingmaker.

Range Overlap

If the range overlap conditions are not satisfied, flexibility is
introduced into the range. A possibility theorem emerges.

Corollary 4.3. In the statement of Theorem 4, assume that the domain overlap
conditions are satisfied and at least two voters satisfy the restricted domain
conditions. Suppose the range overlap conditions are not satisfied because, for
some permrtation (a,b,c) of (1,2,3), there are not two sets in RRMRb in different
sets of Re. There exists a mapping F:D—>R satisfying the independence conditions
F: Ii—>Ri, j=1,2,3, that cannot be represented as a function of a single variable
over I1NIZ2NI8.

Outline of the proof. Assume that both R!;NR2, and R1,MR2, meet both R3
classes. Because the range overlap conditions are not satisfied, either both
R1;MR2, and R1,MR2¢, are in the same R3 class, or at least one of them meets both
R3 classes. The first cannot occur. For instance, suppose both intersections
miss the R3, class. That is {R3;MR1,}NR2, and {R3,MR1,}MR2, are empty. This
contradicts the assumption that at least one of the R3;MR!; classes must meet
both Rz classes. In the latter setting, if all four sets meet the two sets in
R3, then let the first agent’ s ranking determine the R! and R2 outcome by mapping
Ii(1,k) to Ri,, j=1,2, k=1,2, and let the R3® outcome be determined by any desired
method; say a majority vote, or the second voter’s ranking of this set. The
remaining situation is where one of the sets, say R1,MR¢; meets R3®; but not R3,.
First, suppose there is a set in I1(1)NI2 (1) that meets only one of the I3 sets.
With a relabelling of the indices, we can assume that I11(1,2)NI2(1,1) meets only
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I13(1,1). Then, let the F be defined by having IJ(1,k) mapped to R, for j=1,2,
k=1,2. If the first voter’s ranking is in I3(1,1), then the image is R3,.
Otherwise, let the second voter’s choice of I3(2,k) be mapped to R3,. Finally,
suppose all sets in I1(1)NI2 (1) meet both I3 (1) sets. The same definition of F
applies.

5. PROOFS
The purpose of this section is to prove the main theorens.

lemm 4. let 1i (k), j=1,2,3, satisfy the domein overlap condition. For each
permitation (a,b,c) of (1,2,3), each the sets in Ia (k)NIP (k) meet at least one
Ic (k) sets.

Proof. Suppose false. Without loss of generality, assume that
I1(1,1)NI2(1,1) does not meet I3(1). Namely, {I1(1,1)NI2(1,1)}NI3(1,j) = ¢ for j =
1,2. In turn, this means that I1(1,1)NI3(1,j) can't meet I12(1,1) for j=1,2. This

contradicts the domain overlap assumption.

Proof of Theorem 2. Let LJ = {k: for s # k, there is an x; " in a Ii(s)
class so that F(x;",..,%,..Xy ) changes RJ classes as x, changes Ii(k) classes}.
Namely, this is a situation where when only the kth voter changes classes, the RiJ
outcome changes. F is non-constant over at least two sets RJi, so, from the range
overlap condition, for at least two choices of j, LJ is nonempty.

Suppose there are at least two indices in the union U_j Li. Without loss of
generality, assume that 1 € L1 and 2 € [2. For this to occur, voters 3 to N, may
need to be in specific IJ (k) classes, j=1,2. According to the lemma, these voters
can satisfy both conditions simultaneously. Hold these domain points fixed. For
voter 1 to be in L1, %, " must be in a specific I!(2) class, say 1!(2,u). Likewise,
for 2 to be in 2, x; " must be in I2(1,v) for a specific choice of v. For k=1,2,
choose the I3 (k,B(k)) class so that I2 (1,v)NI3 (1,B8(1)) meets both Il (1) classes and
I1(2,u)NI3(2,B8(2)) meets both 12 (2) classes. According to the domain overlap
conditions, this is possible. v

According to the construction, as X, changes Ik classes, the image of F
changes Rk classes, k=1,2. Assume that Rk  is the pair of images of F caused by
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this change of x,, k=1,2. According to the construction, all outcomes in R1°NRz”’
occur with appropriate choices of x; and x,. But, according to the range overlap
condition, two sets in this intersection meet different R® classes. This forces
the R image to vary even though each x, remains in a fixed I3 (k) class, k=1,..,N.
This contradiction proves that each L3 has only one index, say 1.

To complete the proof, we need to show that for any choice of x., k=2,..,N,
the RJ image of F(x;,..,xy) depends only on which Ii(l) class contains x,. If
false, then there are {xk'}, {x,"}, k22, so that F(x;,x",..,xy ) and
F(x;,%x,",..,%xy") are in different LJ classes. By holding x; fixed and going
through the various permutation of interchanging x, " with x.”, the image of F must
change Ri classes. This forces an index other than 1 to be in Li. This
contradiction completes the proof.

Next, we show that there are only two ways g, can be defined. Assume the
images are RJ;, i=1,2, and choose the indices on the range sets so that F(I!(1,u))
= Rl,, u=1,2, and that R1,MR2, is in K3, but not in R¥,. Thus, R!;MR2 ,MR3, is
empty. To define the I2(1,v) image, note there is a choice of v so that
I1(1,1)nI2 (1,v) meets both I3 (1) classes. Let v° be the other index. Then, F = g,
mast map I2(1,v’) to R2;. If not, then F must map 12 (1,v) to RZ,. Because
11 (1,1)nI2 (1,v) meets both I2 (1) classes, it follows from the invariance property
of F that R1;NR2, meets both R3 classes. This contradiction proves the assertion.
The determination of the I3 (1) image is done in the same fashion. Note that this
proof shows that the image of gy cannot be constant valued over any Ri. Thus, each
Ii (k) must have two disjoint elements.

It remains to prove the last sentence of Theorem 2. Suppose voter 1 always
satisfies the domain overlap condition for all permutations of (1,2,3) and both
permutations of (u,v). This means that in the argument of the preceding paragraph,
there are two choices of 12(1,v), and each choice gives rise to the contradiction.
Thus, F cannot be defined. Next, assume that voter 1 determines the outcome of F,
but one of the 1j(1) classes, say I3(1), consists of only one equivalence class.
The same argument as given above shows that the R® outcome will vary. This creates
a contradiction because g, (I3 (1)) is only one R3 class. (On the other hand, if a
restriction, C,, is imposed on I(1) = I1(1)NJ2(1)NI3 (1) that removes one of the
four sets, then g; is well defined. If C; has only two sets from I! but each
Li(1,s), j,s = 1,2, then a non-dictatorial F can be defined.)
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Proof of Theorem 3. First we establish that there are choices of F that
can not be expressed as a function of a single variable over the total domain. So,
assume the domain and range sets are specified where the restricted domain
conditions are satisfied for agents 1 and 2. Furthermore, assume that the indicing
is such that R1;MR2;NR3, # ¢. We will define an F that is a function of the two
variables, x; and x, from IJ to RJ, j=1,2,3.

As shown in Theorem 2, there are only two ways to define a mapping g, from
{Ii(k,1),Ii(k,2)} to Ri. For k = 1,2, let g, be one of these choices. Define F in
the following manner. If x; & I3(1,3), then the Ri outcome of F is given by the Ri
image of g;. If x;, € 1i(1,3) and x, & 1i(2,3), then the Ri image of F is the RJ
image of g,. If x; € 13(1,3) and x, € 13(2,3), then the Ri image of F is RJ,.

It remains to show that F is well defined. If either agent 1 never is
indifferent, or if when agent 1 is indifferent over all sets, agent 2 is not
indifferent over any set, then there is no difficulty with the definition of F.

The potential problems are on the complement of this subset of the domain. To
start, suppose if agent 1 is indifferent over one set, say, she is in I1(1,3), and
she isn’t indifferent over one other set, say I2(1,u), u # 3. According to the
domain overlap conditions, agent 1 is in I3(1,v), v # 3, and I2(1,u)NI3 (1,v) meets
all three I1(1) classes. In turn, this forces the R2 and R3 images (determined by
agent 1) to be such that R2NR?® meets both Rl classes. (If not, then, g, is not
well defined for agent 1. This is because if agent 1 is in I2(1,u)NI3 (1,v) she
still can vary between the two Il(1l,w) classes, w # 3. Now, if the image contains
only one R! class, this forces g, to be constant over {I1(1,1),I1(1,2)} - which
leads to a contradiction.) The choice of Rl class is determined by agent 2.

The remaining situation is if both agents are indifferent over some IJ
class, say Il. The same argument given in the preceding paragraph shows that if
one of the agents is not indifferent over some other 1J class, then there is
flexibility in the choice of Rl class. One has been selected. If both agents are
indifferent over two Ij classes, and, hence, indifferent over all three classes,
then the image is well defined. This completes the proof.

The remaining part of the part a is to show that the above construction
captures the spirit of all possible choices of F. Namely, any F can be represented

by a function of a single variable over the non-indifference sets. The proof of
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this assertion is simple if I had required F to be nonconstant over

X {13 (k,1),I3(k,2)} for at least two choices of j. Because I did not, I need to
show that F can’t be constant valued over 1i except when everyone but the jth agent
is indifferent, and then the jtb agent is a dictator for RJ.

Lemma 5. Let LJ = {k: for s # k, there is an x; " in [i(s) so that
F(x,",..,%,..,% ) changes Ri classes as x, varies between Ii(k,1) and IJ(k,2)}.
Suppose that |UjLJ‘|>1 and that u,v are in UjL.i. There exists a choice of j, say
j=3, so that the ranking for one of these agents, say v, need not be in I3 (v,3)
when u influences the R outcome.

Proof. Suppose j € Li, j= 1,2, and that the lemma does not hold for these
values of j. Thus, whenever j influences the Ri outcome, the other agent, k, must
be in Ti(k,3). Of course, the I rankings of agents k = 3 may be specified.
According to the domain overlap conditions, the restrictions for agents 3 to N can
be satisfied for both j classes. Also, by the indifference overlap conditions,
agent 1 can vary between sets 12 (1,3)NnI1(1,u), u = 1,2, while agent 2 varies
between sets 11(2,3)NI2(2,v), v=1,2. This forces both agents to be in
I3 (k,1)0I3 (k,2). The same argument used in the proof of Theorem 2 proves that the
the R3 outcome changes even though all voters remain in fixed I3 classes. This

proves the lemma.

To prove the theorem, assume that j € Li, j = 1, 2. Furthermore, assume
that there is a profile where agent 2 need not be in I1(2,3) when agent 1 can
influence the R! ocutcome. (According to Lemma 5, such profiles can be found with a
relabelling of indices.) Now, suppose there is a profile where agent 1 need not be
in I2 (1,3) when agent 2 influences the R2 outcome. It follows from the domain
overlap conditions with indifference that whatever are the requirements on agents 3
to n, they can be simultaneously satisfied. Thus, the essence of the problem is
the same as in the proof of Theorem 2, and the same contradiction is arrived at.
This means that agent 1 must be indifferent (and there may be added constraints on
the other agents) when agent 2 has an influence on the R2 outcome. This means that
1 €12, The rest of the proof, to find the ordering on the indices that defines
the sequential dictators, is the obvious induction and ordering argument using
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Lemma 5.

Proof of Theorem 4. Suppose the restriction on the domain is imposed on
agent 1. The definition of F depends on which sets are omitted from I(1). The
following lemma identifies each set in this intersection in a useful manner.

Lemm 6. Assume that the three 1J sets satisfy the restricted domain condition and
the domin overlap conditions, and for each choice of j, Ii consists of two
disjoint classes. For each set, Z, in I(1), there is a permrtation (a,b,c) of
(1,2,3) so that Z is a singleton in Ia(1)nIt (1), but A is mot a singleton in
Ia(1)nI= (1) or in IP(1)NIc(1). Index ¢ is called the "pivotal index” for Z.

Example: For Z = B = {c;>c3>cy}, the pivotal index corresponds to the class
P(1,2). As a quick way to determine the pivotal index, notice from Figure 1 that
the two regions adjacent to this ranking region, B, all lie in one of the P(1,2)
classes, but this group {A,B,C} does not lie in only one P(i,j) class for any other
choice of (i,]3).

The proof of the lemma is much the same as that of Lemma 4. Notice that
for each choice of Z, there are two permutations, but both give rise to the same
pivotal index.

Assume that the restrictions are imposed on voter 1, and let Z be one of
the sets that is not in C;. The first assertion is that, with a possible
relabelling of the indices and with a possible change of choice of Z ¢ C;, we can
assume that j = 1 is the pivotal index for Z and that C;nlj(1,s) # & for j = 2, 3,
s= 1, 2. To see this, assume that 1 is the privotal index for Z. Now, by
definition, Z is not a singleton in I!(1)NI2 (1) nor in It (1)NI3(1). If the other
term in each intersection is in C;, then, by use of the domain overlap conditions,
it follows that the assertion is satisfied. So, suppose either one, or both
intersections have no terms in C,. If both intersections fail to meet C,, then C,
meets only one of the I1(1) classes, so I1(1) can be replaced with J1(1) - the
singleton equivalence class of everything. If one other class fails to have C,
meet both sets, then it too can be replaced with the singleton equivalence class.
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Here the overlap conditions are trivially satisfied, so this cannot occur. Thus,
C, meets both 1i(1,s), j = 2,3, s=1,2 classes, and two of the sets in 1J(1)NI3 (1)
are not in C;,. This means that the assertion holds.

The remaining situation is that for one choice, say I1(1)NI2 (1), the set
accompanying Z is in C;, but in I1(1)NI3 (1), the set accompanying Z, Y, is not in
C,. The pivotal index for Y is 2. We already know, from this construction, that
the set accompanying Y in J2 (1)NI1(1) is not in C,. If the set accompanying Y in
I2 (1)NI3 (1) is not in C;, then we are in the same situation analyzed above for Z,
so the assertion holds with Y and 2 in place of Z and 1. If this set is in C,,
then we have elements of C; in both I!(1) and both 12 (1) classes. This completes
the proof of the assertion.

Choose the indices on the 1J (1) classes so that before the restrictions are
imposed, I2(1,s)NI3(1,s) meets both I1(1) classes. Likewise, choose the indices in
the range so that R2,NR3;, s=1,2, meets both K! classes. Choose the indices on
Ii (1) so that, before the restrictions, a« = I1(1,1)NIz(1,1)NI3(1,2) # ¢ and B =
I1(1,2)nI2(1,2)NI3(1,1) # ¢. Define F so that the Ri image of F is Rjg; iff x; is
in Ii(1,s), j=2,3, s = 1,2. Note that A is either a or 8. If both a and 8 are in
the restricted sets, then define the Rl image in any desired manner based on the
entries in Il. For instance, it can be determined by which I1(2) class contains
Xy, or by a majority vote of all voters, etc. If one of these sets, say 8, is not
in the restrictions, then let the Rl image of F be the unique R! class that
contains Re,MR3; when x; is in I1(1,2). When x; is in I1(1,1), let the Rl image be
determined in any desired manner.

To see that F is well defined over IINI2NI3, note that if x; is not
either a or B, then it must be in 12 (1,s)NI3 (1,s) for one choice of s. Thus,
the image of F is R2;NR3,, which meets both R! classes. If x; is a or B,
then the intersection of the R2 and R® images uniquely defines the Rl image.

This is the definition of F. Both values are not in the domain of x;, so this
completes the proof.

Next, suppose that I1(1) consists of a single equivalence set, and 12 (1) and
I3 (1) each have two sets. C; has only two sets in I2(1)NI3(1), so choose the
indicing so that I2(1,s)NI3(1,s) # ¢ for s = 1,2. The RJ image of F is Ri; iff x,
€ Ii(l,s), j=2,3, s =1,2, and the Rl image is determined in any desired manner.

If the restrictions leave three sets in 12 (1)NI3 (1), then F always can be
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represented as a function of one variable. This is because, as I have already
shown, if F is not represented by a function of one variable, then voter 1 must
have an influence on the outcome of two classes. Clearly, this must be sets Ré and
R3. But, no matter how the Ri images of F are defined in terms of which
Ii(l)class, j = 2,3, contains x,, there needs is one case where the image is not
RegMR3,, s = 1,2. This forces a situation where the R! image is uniquely
determined, and it is determined by x;,. Because F:I1-->R1 and because I1(1) is a
singleton, it follows that the Rl image of F is fixed. This completes the proof.

Proof of Corollary 4.2. This is a straightforward argument using the ideas
motivating the statement. As in the proof of Theorem 4, we need to have two Ri
sets where the third Re outcome is not determined. This forces the definition of
F. Incidently, when C; becomes smaller, but it still admits a non-dictatorial
situation, the combinatorics usually restrict the definition of F.
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