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FOREWORD 

Central limit theorems are derived for mappings that are Lipschitzian a t  a 
given point. This theory results from a new perspective on first-order behaviour- 
the upper pseudederivative, the graph of which is the contingent cone to the graph 
of the mapping a t  a given point. We adopt the general setting of the convergence in 
distribution of measures induced by mappings that may be multi-valued on sets of 
measure zero. By requiring the upper pseudederivative to be single-valued a.s., we 
obtain a central limit theorem under distinctively weaker conditions than classical 
FrCchet differentiability. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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CENTRAL LIMIT THEORY FOR LIPSCHITZ MAPPINGS 

Alan J. King 

I. Introduction 

This paper addresses the question: if f  : Z + IRn is a mapping and { z N )  is a sequence of 

random variables in Z ,  a Banach space, that satisfies a central limit formula 

( 1 . 1 )  f i ( z ~  - T )  + 8 in distribution, 

then under what conditions does there exist a mapping p( - )  such that 

( 1 . 2 )  fi( f  ( z N )  - f  (z ) )  + p(a) in distribution? 

Obviously if f  is FrCchet differentiable one has 

where f  '(B; .) is the linear mapping we call the derivative, and then ( 1 . 2 )  follows with limiting 

distribution f ' ( ~ ;  3) .  Our goal is to derive conditions yielding ( 1 . 2 )  which are more attuned 

to the underlying convergence theory and which are applicable to the sorts of mappings that 

arise naturally in optimization theory. 

Consider the following simple example. Let { z ,  : n = 1,2, .  . .) be independent, identi- 

cally distributed versions of a normal random variable with known mean p and variance a2. 

For each N = 1,2 , .  . ., let xn be the solution to the problem: 

1 N 

minimize - x 12 - zn l 2  over all 2 2 p. 
N 

n=l 

The asymptotic distribution of { x N )  is easily computed from the explicit formula 



it consists of an atom of value 3 a t  zero combined with the right half of a normal distribution 

with variance aZ. The mapping f (.) defined by (1.5) is not differentiable a t  z = p. A closer 

examination reveals that f is directionally differentiable there, 

and the asymptotic distribution is indeed described by f l (p ; j ) ,  where g - N(O,aZ) is the 

asymptotic distribution of the sequence of sample means. In fact it is true that f f (p ;  -) 

satisfies (1.3), as can be directly verified from the explicit representation (1.5). Directional 

differentiability is a more natural property of mappings arising from optimization theory- 

but there are many varieties of directional derivatives, and (1.3) is one of the more restrictive 

properties. 

Our approach to establishing the asymptotic behaviour is not through (1.3), but rather 

through a fundamental examination of the convergence in distribution of the difference quo- 

We extend the classical theory of convergence in distribution for sequences of such mappings 

and we are able to characterize the limiting distribution of (1.2), if it exists, as f$(j), where 

f$(.) is the upper pseudo-derivative of the mapping f (.) at Z. This new object is defined to  

be that mapping whose graph, denoted gph f$ (-), is the contingent cone to the graph of the 

mapping f (.) at T, i.e. 

(1.7) gph f$(-) = lim sup tP1[gph f (-) - (Z, f (T))]. 
tl'J 

The limit is to be understood as a limit of sets in Z x R" (see (1.11) below). Mappings given 

by graph limits of the sort described by (1.7) are not necessarily functions. The "valuen of 

f$ a t  a point h E Z may contain one point, several points, entire subspaces, or no points 

at  all-in general all one can say is that f: is a subset of lR". Such mappings are called 

rnultifunctions; they have long been familiar to students of optimization theory. 

Thus new questions are raised: if f$ is not a function then how are we to  interpret 

f$(g) as the limit of (1.2) in the sense of convergence of distributions in lR"? To answer this 

question we must determine when such a multifunction gives rise to  a distribution-it turns 

out that this is the case if and only if the multifunction is single-valued almost surely. This 

can be interpreted as a differentiability condition that f must satisfy in order for (1.2) t o  

hold; it corresponds, as we shall see, to  almost sure directional Hadamard differentiability a t  
- 
z, i.e. the limit 

lim f ( z  + thf) - f (z) 
tl'J t 

h f d h  



exists for almost all h. This is a generalization of FrCchet differentiability (1.3) but more 

importantly it is a generalization which grows naturally from the underlying probability 

theory. 

Having introduced the machinery of multifunctions to analyze the distribution induced 

by the upper pseudo-derivative, we may as well widen our scope by permitting f itself to  be 

multivalued on sets of measure zero. This additional flexibility is invaluable. Many situations 

in optimization theory give rise to multifunctions. The solution mapping to  a parametric 

optimization problem is generally multivalued, but under natural regularity conditions turns 

out to  be Lipschitzian (Robinson [14]) and single-valued almost everywhere (Rockafellar 

[16]). Therefore we shall adopt the following more general setting: to analyze the asymptotic 

behaviour of selections XN E Rn such that  

where the sequence { zN)  is asymptotically normal (1.1) in the Banach space Z and F 

is a closed-valued, measurable multifunction that is single-valued and Lipschitzian a t  Z E 

intdom F, i.e. we wish to  determine the properties of the asymptotic distribution X, if one 

exists, for which (with Z = F(Z)) we have 

Everything developed in this framework applies also to the case where F = f ,  a measurable 

function that is Lipschitzian a t  Z; and, as we have noted, the machinery of multifunctions is 

required even then. 

We begin in Section 2 with a review of the standard concepts of measurability for closed- 

valued multifunctions, using Rockafellar [ IS] as a basic reference, and then establish necessary 

and sufficient conditions that determine when closed-valued, measurable multifunctions give 

rise to  distributions on the range space Rn-this new theorem depends on certain properties 

of analytic sets as developed in Meyer [12] and the Castaing representation of a closed-valued 

measurable multifunction. To treat the convergence of the sequence (1.6) we proceed, in Sec- 

tion 3, to explore the fundamentals of convergence of distributions induced by mappings. The 

crucial insight is achieved through a re-examination of some classical material in Billingsley 

[4], and especially through the analysis of the mysterious exceptional set E that  appears in 

his Theorem 5.5 (attributed t o  H. Rubin). Finally, in Section 4, we apply this insight to  

develop the main result of the paper-the identification of the upper pseudo-derivative as 

the limiting distribution of (1.9) under certain conditions that must be satisfied by F and its 

upper pseudo-derivative, in particular that F be Lipschitzian a t  Z and F-&(~) be single-valued 

almost surely. To complete our investigation we then show that in case F = f ,  a function, 



these conditions amount to  a Hadamard directional differentiability condition that must hold 

for almost all directions. 

Some of the results presented here are from the author's dissertation [ lo ] ,  in which 

this program was developed in complete detail for the asymptotic analysis of solutions t o  

stochastic optimization problems. There, the central limit theorem of Section 4 was applied 

to  selections X N  from the mapping 

where zN(.) is the gradient of the objective function 

and Nx(-) is the normal cone to the constraint set X .  Thus {xN) is the sequence of solutions 

to the constrained optimization problems 

1 
N 

minimize - f (z ,  s,) over all z E X ,  
N 

n= l  

and we ask: In what sense does z~ approximate the "true" solution if that minimizes E f (z ,  s )  

over all z E X ?  It is for the analysis of such sequences that the techniques and ideas 

introduced in the present paper were developed. The asymptotic distribution of the gradient 

estimates {zN(.)) is readily computed as a distribution over C ( X  : lRn). Then the rapidly 

developing theory of pseudo-derivatives is applied to  the mapping F to  achieve, via the main 

result of the present paper, an explicitly computable description of the asymptotic distribution 

of the solution estimates {xN);  it turns out,  of course, that this distribution generally is not 

normal just as in the simple constrained least squares example above. We plan to  report 

these results in future papers. 

The key role of the upper pseudo-derivative is the aspect in which our theory is "at- 

tuned" to the needs of optimization theory. The pseudo-derivative is a powerful new concept 

in optimization-it is linked to the fundamental circle of ideas centered around the epi- 

convergence of convex functions (besides [ lo ] ,  see also Rockafellar [18], [19] and [20] for 

more on pseudo-derivatives). Our work here has discovered the importance of the upper 

pseudo-derivative in matters close to  the heart of statistical theory. We anticipate that  this 

surprising coincidence will eventually be viewed as yet another chapter in the exploration 

of the theory of epi-convergence initiated by Wijsman 1301, and subsequently developed by 

others, for example Wets [29]. 

The problems raised by stochastic optimization stimulated this research. As pointed out 

in [ l o ] ,  the theory of maximum likelihood estimation raises similar issues; however such work 



has almost always emphasized asymptotic normality, which in turn relies on differentiability. 

In maximum likelihood estimation attention has been focussed on the solution as a mapping 

from the space of empirical distributions topologized by the Prohorov metric; see von Mises 

[I31 and the more recent papers of Boos and Serfling [5] and Clarke 161. An alternative 

and more flexible point of view was taken by Huber [9]. All of these eventually rely on 

FrCchet differentiability to  establish the asymptotic behaviour. (But we should note that the 

directional derivative makes a brief appearance in Huber [8].) DupaEovb and Wets [7] applied 

epiconvergence concepts to  obtain consistency and then Huber's approach in 191 to  obtain 

asymptotic normality in the stochastic optimization setting-where the role of constraints 

is emphasized. Constrained maximum likelihood estimation was explored by Aitchison and 

Silvey [I.]; again, differentiability was crucial. Finally, Shapiro [25] examined the asymptotic 

behaviour of solution mappings for parametric optimization problems. In each of these areas 

the results of this paper may be immediately applied to  yield conclusions about asymptotic 

behaviour under conditions where strong differentiability conditions such as (1.3) cannot, or 

should not, be assumed. 

 from a broader point of view, our work here fits into a tradition of analysis that uses 

correspondences between the closed-valued measurable multifunctions and certain functions 

that map into spaces on which distributions may be defined. Artstein [3] studied the corre- 

spondence F H OF, where aF( r )  is the support function of F( r ) :  

Under this correspondence F induces, via OF, a distribution on the space of continuous 

functions on the unit ball in IRn, and a limit theorem of Weil [28] may be used to  analyze 

the asymptotic behaviour. Salinetti and Wets [24] developed a comprehensive treatment of 

convergence in distribution employing the function 7 ~ ,  where 

is to be considered as an element of the power set 2Rn, which is equipped with the topology of 

the Haussdorff metric. The above approaches render conclusions that are indirect, abstract, 

and difficult to  apply to selections; in contrast our approach is specifically designed to  apply 

directly to the study of the asymptotic behaviour of such selections. 

A correspondence that allows the treatment of multifunctions that are not single-valued, 

but which delivers useful information about selections, is given by the one-sided Haussdorff 

metric 

h( r  I F, Z) = sup dist ( z  1 F(F)). 
z€F(z)  



When F is Lipschitzian, h(- ( F, f )  is a Lipschitz function and can be analyzed within the 

framework developed here. The asymptotic distribution can be used to approximate the 

distance of X N  from F(H), since 

This approach was suggested to us by Professor R.J-B. Wets; i t  will be the subject of a future 

paper. 

Let us take the opportunity here to  review a notion that will be fundamental in the 

development to  follow. For a sequence { B k )  of subsets of a topological space we define 

(1.10) lim sup Bk = { b  1 3 subsequence {k,), 6, E Bk, with b, + b )  
k - w  

(1.11) lim inf Bk = { b  I 3bk -+ b with bk E Bk for all sufficiently large k); 
k - w  

and when these are equal to  the same set B, we say B is the "limit", denoted B = lirn Bk. 
k - w  

These definitions and many properties thereof may be found in Kuratowski [Ill. See also 

Salinetti and Wets [22] and (231. We shall also need the limit of sets indexed by [t 1 01, as in 

(1.7). This notion is captured by the general concept of sets indexed by filters, introduced in 

Rockafellar and Wets [21]. For our purposes we need only the following characterizations: 

l imsup At = { a  : 3t,  0, a ,  E At, with a ,  + a ) ;  
t 10 

lirn inf At = {a : Vt, 1 0, 3an E At, with a ,  + a ) ;  
t 10 

and we need only note that these are closed sets. Details may be found in King [ lo, Ch. 11. 

The crucial role of the upper pseudederivative in this investigation was discovered follow- 

ing a suggestion by Professor R.T. Rockafellar. In this and many other fruitful speculations, 

we gratefully acknowledge his contributions. 



2. Measurable Multifunc tiona, Meaaurea Induced by Multifunctiona 

This section determines when a given multifunction F defined on a measure space (Z, Z ,  P )  

induces a measure PF-' on the image space lRn. 

Measurability properties of multifunctions taking values in Rn have been comprehen- 

sively treated in Rockafellar [15]. We begin by citing some facts from this reference. (Most of 

the results quoted here can be generalized beyond the finite-dimensional case; see the survey 

[27] by Wagner.) Let Z be a complete, separable metric space and Z its Borel a-algebra. 

Definition 2.1. A multifunction, F : Z 3 lRn, is a mapping for which F(z)  is in general a 

(possibly empty) subset of IRn. We define also some associated concepts: 

(i) dom F = {z E Z 1 F(z )  # 01, the domain of F ;  

(ii) gph F = {(z, z )  E Z x lRn I z E F(z) ) ,  the graph of F ;  

(iii) F-'(A) = {z E Z I F(z )  n A # 0). 

We say F is closed-valued if F(z)  is closed in lRn, and we say F has closed graph if gph F is 

closed in Z x lRn. 

Definition 2.2. A multifunction F is measurable if for all closed subsets C c lRn one has 

Proposition 2.3. Suppose F has closed graph. Then F is closed-valued and measurable. 

Proof. That F is closed-valued is trivial. By Rockafellar [15; Proposition lA],  F is mea- 

surable if and only if FP ' (K )  E Z for all compact subsets K c IRn. Let K be compact 

in R"; we show that F- ' (K)  is closed in Z. Indeed, define the sequence {(z,, z,)) with 

z, E F(z,) n K ,  n = 1,2 , .  . ., and suppose z, -+ f .  Since the sequence {z,) is contained 

in K we may suppose, by passing to  subsequences if necessary, that z, -t Z in K .  But 

(z,,z,) --t ( t , ~ )  in gph F ;  it follows therefore that Z E  F ( f )  n K ,  i.e. t E F-'(K). 17 

The closed-valued measurable multifunctions satisfy a definition of measurability more 

akin to the usual notions of Borel measurable functions when the measurable space (Z, Z)  is 

complete. We shall need only the following specialized result. 

Theorem 2.4. Let P be a a-finite measure on (Z, Z )  and let Zp be the a-algebra generated 

by all P-measurable subsets of Z (i.e. Z c Zp and if A' c A E Z with P(A)  = 0 then 

A' E Zp). Suppose F is closed-valued and measurable. Then 

F-'(B) E Zp for all B E B; 

where B is the a-algebra of Borel subsets of lRn. 



Proof. The u-algebra Zp is complete and Z c Zp. So F-'(C) belongs to the complete 

u-algebra Zp for all closed subsets C c IRn. The result now follows from Rockafellar [15; 

Thm. 1Ej. 

According to this theorem, F is measurable with respect to Borel sets of IRn whenever 

the measurable space is complete with respect to some u-finite measure P. Our interest is in 

measures induced by multifunctions-in which case there is no loss of generality in assuming 

that Z is complete relative to  P ,  i.e. that Z consists of the P-measurable subsets of Z. 

The next order of business is to determine when a closed-valued measurable multifunction 

F gives rise to  a measure on R". Suppose P is a u-finite measure on (2 ,  2). We define the 

set-function PF-' on the Borel sets B by 

(2.1) PF-'(B) = P{z E Z : z E F-'(B)) for all B E B. 

The sets F-'(B) for B E B all belong to  the class of P-measurable sets, by Theorem 2.4, so 

this definition makes sense. 

Proposition 2.5. Suppose F is closed-valued and measurable, and let P be a a-finite mea- 

sure on (2 ,  2 ) .  Then PF-' is a measure on (IR", B) if and only if 

for every A, B E B with A n  B = 0. 

Proof. It is the requirement of additivity of a measure that necessitates (2.2). Indeed, if 

PF-' is a measure on B and A, B E B with A n  B = 0 then 

on the other hand F-'(A U B) = F-'(A) U F-'(B), and since F-'(A) and F- '(B) are 

P-measurable then 

which implies 

P{F-'(A) n F-'(B)) = 0. 

To show sufficiency we must verify that (2.2) implies the set-function PF-' is a measure. 

Observe that 

~ ~ ' ( 0 )  = {z : F(z )  n 0 is nonempty ) = 0, 



hence PF- ' (0 )  = 0. I t  remains t o  show countable additivity; th is follows from a n  elementary 

disjointing argument. Let A,, n = 1 ,2 , .  . ., be a sequence of pairwise disjoint sets in B. Define 

B , , n = 1 , 2  ,..., by 
B~ = F- ' (A~) ,  

Bz = F-'(A2) \ B1, etc., 

and then 

by the countable additivity of P. Now note tha t  B, c F-'(A,) for every n,  and furthermore 

tha t  

F-'(A,) = B, U [F-'(A,) n B,-,] c B, u [F-'(A,) n F-'(A,-l)]. 

Hence 

P(B,) I PF-'(A,) I P(B,) + P{F-'(A,) n F-'(A,-~)), 

but this last term is zero by our  assumption (2.2). Therefore P(B,) = PF-'(A,), n = 

1,2 ,  . . ., and we conclude from this and (2.3) that  PF-' is countably additive. 

Let us examine condition (2.2) more closely. Notice tha t  

F-'(A) n F-'(B) = {r : F ( r )  n A # 8 and F ( r )  n B # 8). 

If A and B are disjoint then any element of this set will be a point where F is not single- 

valued; hence if F is single-valued except on  a set of P-measure zero then condition (2.2) will 

follow. It turns out  t ha t  the converse is also true. 

Theorem 2.6. Let P be a a-finite measure on ( 2 ,  2) and let the multifunction F : Z 3 IRn 

be closed-valued and measurable. Then PF-' is a measure on (IRn, B) if and  only if 

(2-3) P{z E dom F I F(z )  is not single-valued) = 0. 

Proof. The preceding remarks established the sufficiency of (2.3). Necessity will follow from 

the Castaing representation for closed-valued measurable multifunctions and from certain 

properties of 8-analytic sets. Since F is closed-valued and measurable it  follows tha t  dom F 

is measurable and tha t  there exists a Castaing representation for F-a countable family 

{ z ; ) ; ~ ~  of measurable functions, z; : dom F + IRn, such tha t  

(2-4) F ( z )  = cl{z;(r) I t E I )  for all r E dom F ;  



cf. Rockafellar [15; Thm. IB]. With such a representation we can characterize the set where 

F is not single-valued. Define the sequence of sets Mn c dom F,  n 2 2, by 

Mn = U {Z E dom F I zn(z) - ~ ~ ( 1 )  # 0); 
k<n  

these are all elements of 2. From (2.4), F is not single-valued at z if and only if z is an 

element of Mn for some n = 2,3,. . .. It follows that the set M of points z E d o m r  where F 

is not single-valued is given by 

clearly M is a measurable subset of dom F. 

To prove the theorem we shall show that if P (M)  > 0 then there are disjoint sets 

B1, B2 E 8 such that 

P{F-'(B~) n F-'(B,)) > 0, 

which by the previous result, Proposition 2.5, will establish that PF-' cannot be a measure 

on (IRn, 8). Therefore, assume P ( M )  > 0. From (2.6) we then have P(Mn) > 0 for some n; 

and from (2.5) we then have 

P{z E dom F I zn(z) - zk(z) # 0) > 0 

for some k 5 n. We can renumber the sequence so that k = 1, n = 2; hence, without loss of 

generality, 

P{M2) > 0. 

Therefore we have a set M2 with positive measure and two selections z l  and 2 2  of F such 

that zl(z) # z2(z) on M2. We seek a further subset N c M2, of positive measure, which 

satisfies z l (N )  n z2(N)  = 0. 

To that end, let {p:) and { p i )  be sequences of simple functions that converge pointwise 

to z l  and 2 2 ,  respectively. By an application of Egorov's Theorem we may suppose that 

there is a subset M t  c M2 with P ( M i )  > 0, for which the convergence of both sequences 

is uniform on M i  (we may assume without loss of generality that P(M2) < oo, since P is 

a-finite) Passing to subsequences, if necessary, we may suppose that 

and 



Next, note that there must be a t  least one k for which there exists a subset N c M i ,  of 

positive measure, such that 

(since otherwise we would have p1 -r p2 pointwise, hence zl = 2 2 ,  on Mi ) .  On this set 

N ,  the simple function p: assumes finitely many values. Without loss of generality we may 

suppose that p:(z) - f l ,  a constant, on N .  Now putting all this together, we have a subset 

N c M2 with P ( N )  > 0 and 

sup Izl(z) - f l l  < l l k  but inf Iz2(z) - fll > l /k .  
aEN aEN 

By construction, z l (N)  and z2 (N)  are disjoint subsets of IRn, furthermore these are 

8-analytic sets, according to Meyer 112, Thm. 131. Then, by the separation theorem, Meyer 

[12; Thm. 141, there exist disjoint subsets B1, B2 E B such that 

B1 3 z l (N )  and B2 3 22(N). 

Now we have 

F- '(B~) n F- ' (B~) 3 Z;'Z~(N) n Z;'Z~(N) 3 N, 

hence 

P{F- ' (~1)  n F - ' ( ~ 2 ) )  2 P ( N )  > 0. 

We record for future reference the following observation made in the proof. 

Corollary 2.7. Let F be closed-valued and measurable. Then the sets 

S = {z I F(z)  is single-valued), and 

M = {z E dom F I F(z)  is not single-valued) 

are measurable subsets of dom F. 

The theorem (and corollary) remain true when (2, 2) is an arbitrary measurable space 

and IRn is replaced by any complete, separable metric space; cf. Wagner [27; Thm. 4.2(d)] 

and the references to Meyer [12] cited above. 

The importance of this theorem is that i t  completely characterizes when PF-' can be 

studied as a measure on (IRn, B) in a manner that is directly verifiable in many applications. 

Condition (2.3) states that F is "almostn a function with respect to the measure P (or, more 

graphically speaking, that F is thin relative to  P). In the following corollary we see that all 

selections f of F are P-measurable functions that give rise to the same distribution. 



Corollary 2.8. Let P and F be as in Theorem 2.6. Let 

be any selection of F ,  i.e. f (z) E F(z)  for all z E Z. Then f is P-measurable and 

Proof. We have already noted that 

M  = {z E dom F I F is not single-valued) 

is a measurable subset of dorn F. Now 

since f = F on MC (complementation is taken with respect to dom F).  The first set in this 

union is P-measurable by 2.4 and the second set is of P-measure zero by assumption. Hence 

f is P-measurable. Finally, 

3. Convergence of Distributions Induced by Multifunctions 

The starting point for the asymptotic analysis is a thorough re-examination of the weak 

convergence of the sequence {pk F; ') where {Pk) are measures on (Z, Z) ,  Pk- P ,  and Fk 
w 

map Z into I . " .  Our goal is to rework the classical result, emphasizing the role of the graphs 

of the mappings Fk, and in this way obtain a more precise and illuminating theorem that is 

directly applicable to  the central limit theory presented in the next section. 

First we review the fundamental concept of convergence of measures from Billingsley 141. 

Let Z be a complete, separable metric space and Z the class of Bore1 subsets. All measures 

are assumed to be finite, hence regular [4, Thm. 1.11. We shall need only the definition and 

the following theorem. 

Definition 3.1. Let P, Pk , k = 1,2 ,  . . . be finite measures on (Z, 2 ) .  We say Pk converges 

weakly to P, Pk-P, provided 
w 

for all bounded, continuous functions g : Z + IR. 

A trivial adjustment to the argument in 14; Thm. 2.11 yields the following modification 

of the Portmanteau Theorem. 



Theorem 3.2. Let P and Pk,  k = 1,2,. . ., be finite measures on Z satisfying Pk(Z) + P(Z) .  

Then Pk-P if and only if 
w 

lirn sup Pk(C) 5 P ( C )  
k-+w 

for all closed C c Z. 

Now let {Fk) be a fixed sequence of closed-valued, measurable multifunctions mapping Z 

into IRn and suppose that  each Fk is almost surely single-valued relative to  a given measure Pk. 

We ask-if {Pk) converges weakly to  a measure P then when is it true that Pk Fil- PF-', 
w 

i.e. for which F ?  We begin with a reworking of the classical result (for functions), Billingsley 

[4, Thm. 5.51, generalizing it slightly to  cover the multivalued case. Let F be a given closed- 

valued, measurable multifunction that is almost surely single valued relative to  the measure 

P, and set 

E = {z E Z 1 32, + z, 3 subsequence {kn} and 32, E Fkn(zn) such that 

{z,) has no cluster points in F(z)) .  

Theorem 3.3. Let Pk - P and suppose Pk(dom Fk) 4 P(dom F) .  If the exceptional set 
w 

E has P-measure zero, then 

P~F,-'-PF-' w 

Proof. We shall apply the Portmanteau theorem. Note that  Pk(dOmFk) = pkF;'(IRn), 

hence we have pk Fi'(IRn) + PF-'(IRn) as required. Let C be an arbitrary closed subset 

of IRn, we will show that lim P~F~ ' {c )  5 PF-'{C). Let us define the set 

Then Ec is a measurable set since F-'(C) is a measurable set and lim sup F ~ ' ( c )  is always 

a closed set. A more explicit description is 

Ec = { z  : 3{kn}, z, + z with zn E Fin1(C)) \ F-'(c) 

= {z : 3zk + z with Fk(zk) n C # 0 infinitely often but F(z)  n C = 0) 

We claim that Ec c E. Let z E Z \ E ,  and suppose zk + z. If Fk(zk) n C = 0 for all 

but finitely many k then, vacuously, z E Z \ Ec. On the other hand if Fk(zk) n C # 0 for 

infinitely many k, we may choose a subsequence {zkn) with zk, E Fkn(zkn) n C .  Since z is 

not in E and zkn + z i t  follows that  {zkn) must have a limit point, say z ,  with z E F(z) .  

But C is a closed set and zk, E C ,  hence z E C also. Thus z is not in Ec, proving the claim. 

By assumption P{ E) = 0 and since Ec is a measurable subset of E ,  we have P{ Ec) = 0. 

Hence 

P{lim sup F;'(C)) 5 PF-'{c). 
k-+w 



iFrom Kuratowski 111; 25.IV.81 

00 

lim sup F;'(c) = n cl U F; '(c) . 
k-00 J 

For convenience we let B = lim sup F ~ ' ( c )  and 

The sequence of closed sets { B k )  decreases to  B .  Now we argue exactly as in Billingsley, 

cited above. For any E > 0 we have for all sufficiently large k that 

Since Pt- P and B k  is closed, Theorem 3.2 yields 
w 

lim sup Pt (Bk)  5 P ( B k ) .  
L-+ 00 

Noting that Bk  > F;'(C) for all sufficiently large A!, we have 

for arbitrary E > 0. This and (3.3) prove the theorem. 

The exceptional set E in this theorem breaks up into two parts: one concerning whether 

the graph of F is large enough, the other concerning local unboundedness of the sequence 

Fk . 

Proposition 3.4. Define the multifunction G by 

gph G = lim sup gph Fk. 
k-00 

Then 

E = { z  : G ( z )  \ F ( z )  # 0) u { z  : 32, -+ z ,  z, E Fkn(zn)  with lznl -+ +a). 

Proof. From the definition of G we have z E G ( z )  if and only if there is a subsequence {k,) 

and a sequence (z,, z,) E gph Fkn with (z,, z,) -+ ( z ,  z) .  Now suppose z is a point where 

there is z E G ( z )  but z F ( z ) .  Then, trivially, z E E. In the second case if there is a 

sequence z, -+ z and z,  E Fkn(zn)  with 12,) -+ +oo then {z,) has no limit points and, 

vacuously, z E E. For the other direction suppose z E E ,  i.e. there are sequences z ,  -+ z 

and z ,  E Fkn(zn)  but no limit point of {z , )  lies in F ( z ) .  If {z , )  has no limit points then 



lznl -+ +m (since all this takes place in IRn). If (2,) does have a limit point, say z, then 

z E G(z) in which case G(z) \ F(z)  # 0. 

This decomposition of the mysterious set E is extremely useful in characterizing the 

appropriate limit mapping F. Clearly any mapping F whose graph contains lim sup gph F k  

will suffice, provided it is also single-valued P-a.s.; thus, the limit multifunction is determined 

by these conditions only up to sets of P-measure zero. We summarize these observations, 

Proposition 3.4, and Theorem 3.3 in the key result of this section. 

Theorem 3.5. Let P and Pk, k = 1,2, . . . be finite measures on a complete, separable metric 

space Z,  and let F and Fk, k = 1,2, .  . ., be closed-valued measurable multifunctions mapping 

Z into IRn that are single-valued relative to  P and Pk, respectively. Suppose 

gph F > lim sup gph Fk; 
k-+w 

and 

(3.6) P{E1) = 0, where E' = {z : 32, -+ z, z, E Fkn(zn) with 12-1 -+ +m}. 

Then P~F;'-+PF-'. 
w 

To aid in the interpretation of condition (3.5) we make the following observation. (The 

proof is an easy application of the ideas of this section-the reader is encouraged t o  try an 

alternative proof based on classical techniques!) 

Proposition 3.6. Let P and Pk,  k = 1,2 , .  . ., be probability measures on ( 2 ,  2 ) .  The 

following statements are equivalent 

(i) Pk-P; and 
w 

(ii) For every sequence {Ck} of sets in Z with 

(3.7) P lim sup ck n lim sup C; = o ( k-+m k-+m 

one has Pk(Ck) -+ P(l im  SUP^-+^ Ck). 

1 
Proof. (i) =+ (ii): Let h and hk be the indicator functions of l imsupCk and Ck ,  k = 1,2 , .  . ., 
respectively. Define the multifunction H : Z =t IR by the formula 

gph H = lim sup gph hk. 
k-+m 



Since dom H = dom hk = Z and since the images of hk are uniformly bounded, it follows 

that {hk) and H satisfy conditions (3.4-6) of Theorem 3.5. Now suppose H is multivalued 

a t  z. The only possible values of H(z)  are 0 and 1, so H(z)  = {0,1). Since 1 E H(z) ,  there 

must exist a subsequence (zkn, 1) E gph hkn with zk, + z. Hence z E IimsupCk. On the 

other hand, since 0 E H (z) , there must exist a subsequence (zkt, 0) E gph hkt with zkt + Z. 

Hence z E lim sup C;. Therefore 

{z : H (z) is not single valued) = lim sup Ck n lim sup C;, 

which by assumption (3.7) has P-measure zero. Applying Theorem 3.5 yields 

It is easily shown that gph h c gph H (i.e. that h is a selection of H ) ,  hence Ph- '  = PH-' 

by Corollary 2.8. It follows that 

which proves (ii). 

(ii) + (i). According t o  Billingsley [4; Thm. 2.11, Pk-P if and only if Pk(C) + P ( C )  
w 

for all P-continuity sets C, i.e. for all C such that P(c1C n c lCc)  = 0. Let C be a P- 

continuity set and let Ck = C, all k. From Kuratowski Ill; 25.1V.61, l imsupCk = c l C  

and limsupCE = cl(Cc). Hence the statement (ii) implies that Pk(C) + P(c1C) for all 

P-continuity sets C and, since P(c1 C )  = P(C)  for all such sets, we conclude that  Pk-P.0 
w 

To complete our preparations for the asymptotic theory of the next section we translate 

Theorem 3.5 into the terminology of random variables in the usual way. 

Definition 3.7. Let {zk) be a sequence of random variables taking values in Z ,  i.e. each 

zk is a measurable function from a probability space ( a k ,  Fk,/.ik) into (Z, 2 ) .  We say zk 

converges in distribution to a random variable z on Z ,  zk-z, if the induced measures 
D 

Pk(A) = P{zk E A) for all A E 2, 

converge weakly to the measure P induced by z, i.e. Pk-P. 
w 

The only possible misunderstanding in the translation will be the meaning attached t o  

Fk(zk) and F(z)-we do not regard these as random sets, but rather as versions of the random 

variables (in IRn) whose distributions are given by P{zk E ~ i ' ( - ) )  and P{z E Fd'(.)), 

respectively.  from Corollary 2.7, these are distributions if and only if Fk and F are single- 

valued almost surely relative to  the distributions of zk and z respectively. Now, appealing t o  

Corollary 2.8, any selection x k  E Fk(zk) and x E F(z)  is a version of Fk(zk) and F(z).  Thus 

we have the following corollary t o  Theorem 3.5. 



Coro l la ry  3.8. Let zk-z, and F and Fk, k = 1,2, .. ., be as above. Assume that F 
D 

satisfies (3.4), that P(zk E dom Fk) --+ P(z E dom F) ,  and that P{z E El) = 0, where El is 

given in (3.6). Then if xk is any selection of Fk(zk), k = 1,2, . . ., and x is any selection of 

F(z)  one has 

Xk'X. 
D 

4. Pseud+Derivatives and the Central Limit Theorem f o r  L ipschi tz  M a p p i n g s  

The theory of the preceding sections is applied to  determine the asymptotic behaviour of 

select ions 

X N E F ( ~ N ) ,  N = 1 , 2  ,..., 

where ZN = k c$, zn is the sample mean of the N independent and identically distributed 

random variables z l , z ~ , .  . ., ZN E 2. 

We assume that 2 is a separable Banach space equipped with the Bore1 sets 2. In this 

section we are concerned primarily with establishing rather general conditions on the closed- 

valued measurable mapping F that  ensure the existence of a random variable X with values 

in IRn and a point Z E IRN that satisfy 

under the assumption that  the sample means ZN, N = 1,2 , .  . ., (we shall henceforth drop the 

"bar") satisfy a central limit theorem in 2-i.e. there exists a (normal) 2-valued random 

variable j, with zero mean and covariance equal to cov z l ,  that satisfies 

These notions of normal random variable, expectation, and covariance for Banach spaces are 

the counterparts of the usual objects in IRn, cf. Araujo and Gin6 [2]. Not all Banach spaces 

give rise t o  central limit theorems. In applications the formula (4.1) must be proved for the 

appropriate Banach space. 

For convenience denote E z l  by 7. We make the following simplifying assumption: 

(4.2) F(7)  = {Z), a singleton. 

Strictly speaking (4.2) is not necessary; however without it the complications are great. One 

has, somehow, to  be able to  select 3 E F(7) to allow convergence of xN to  Z at  the appropriate 

rate when XN is not uniquely determined. On the other hand if 7 itself is only an estimate 

and if F(7)  is single-valued a.s. then (4.2.) may as well be assumed anyway. We shall also 

assume that F is Lipschitzian a t  Z in the following sense due to  Robinson [14]. 



Definition 4.1. A multifunction F : Z =t IRn is said to be Lipschitzian with modulus X a t  

t if there exists a neighborhood U of t such that 

where B is the closed unit ball in IRn. This reduces to the usual definition of Lipschitz 

behaviour when F = f ,  a function. 

We shall apply the theory of the previous section to the sequence of difference quotients 

F ( t +  th) - F ( t )  
A@; h) = 

t 

Recall that when F = f ,  a FrCchet differentiable function, then 

Clearly (4.5) is a statement about the convergence of the sequence of distributions 

A ( ( z  t ) )  N = l , 2 ,  . .  .. 27 
Therefore, with Corollary 3.8 and condition (3.4) in mind, we make the following definition. 

For completeness we also define, although we shall not need them, the lower pseudo-derivative 

and the pseudo-differentiability property. 

Definition 4.2. (Rockafellar [20]) The upper pseudo-derivative, F&(.), of a mu1 tifunction 

F mapping Z into IRn, a t  a point (z,T) in the graph of F (i.e. i? E F(z))  is given by the 

formula 

The lower pseudo-derivative, FgZ(.), is given by 

(4.7) gph FgZ = lim inf t-'Igph F - ( t ,  z)], 
tl'J 

and if these are equal then we say F is pseudedirerentiable at (z, T) and denote their common 

limit as Fin:(-). 

It is not necessary that  F be single-valued a t  T for these definitions to  make sense. 

In general, one obtains very different pseudederivatives for different choices of i? E F ( t ) ,  

therefore our notation must indicate which choice has been made. When F is single-valued 

a t  Z we simply write F:, etc. We note that the lirnsup and liminf of any collection of sets are 

closed, hence it follows that F;~ and FiZ have closed graph and are therefore closed-valued 

and measurable by Proposition 2.3. We record this as: 



Propos i t i on  4.3. Let F : Z 3 Rn and (8,Z) E gph F. Then the multifunctions F& and 

F--- are closed- val ued and measurable. 

If F is Lipschitzian a t  5 and F(8) is a singleton then we can establish an important 

boundedness property of the difference quotients At  (5; a ) .  

Propos i t i on  4.4. Let F : Z 3 Rn be Lipschitzian a t  8, and suppose F(5) = {Z). Then 

there exists a compact set K such that 

for all h with llhll 5 1 and all t sufficiently small. 

Proof .  Let the modulus X > 0 and neighborhood U of 5 be given as in 4.1. Then 

F(z)  c Z + Xllz - ZJJ B,  all z E U 

where B is the unit ball in Rn. Let h be given and put z = 8+ th. Then if Ilh(( 5 1 and t is 

sufficiently small we have Z + th E U,  so 

At(% h) = t-'(F(z + th) - Z) c XB 

and B is compact in R". The conclusion follows. 

Finally, if 5 E int dorn F, then we have the following important property. 

P ropos i t i on  4.5. Let F : Z 3 R" be Lipschitzian and single-valued a t  5, and suppose 

Z E int dorn F .  Then 

(i) Z = lim suptlo dorn At(5; .) = dorn F:; and 

(ii) lim suptlo(dom At(Z; .))" = 0. 

Proof .  Note that h E dorn A t  (5; a )  if and only if 8 + th E dorn F .  Hence 

Since 5 E int dorn F, then for any s 2 0 and all sufficiently small t the set domAt(Z; -) 

contains sB ,  where B is the unit ball in Z .  From this we obtain (ii) and the first equality 

in (i). Now let h E Z be given (without loss of generality, since gph F$ is a cone, assume 

llhll = 1). For all sufficiently small t we have Z + th E dorn F (since T E int dorn F )  and 

for some compact K ,  by Proposition 4.3. Hence there are kt  E At( i ;  h) for all sufficiently 

small t >_ 0, and a t  least one limit point, say k. By definition this k belongs t o  ~ $ ( h ) ,  i.e. 

h E dom F$, which proves the second equality in (i). 

We are ready to  state the main result. We suppose that Z N ,  N = 1,2 , .  . ., are ran- 

dom variables in a separable Banach space Z ,  and that F is a closed-valued measurable 

multifunction mapping Z into Rn with F(zN)  single-valued a.s.; and we put Z = Ez l .  



Theorem 4.6. Suppose that O [ z N  -z] -3, and that the following conditions are satisfied: 
D 

(i) F (Z) = {E), a singleton; 

(ii) F is Lipschitzian a t  t; 

(iii) Z E int dom F; and 

(iv) F$ (3) is a.s. single-valued. 

If x N  is a selection from F (z N )  and X a selection from F; (b) then 

Proof. Clearly 0 [ x N  - El is a selection from A (q O ( z N  - t ) ) .  The conclusion will 37 
follow from Corollary 3.8. From (i) and (ii) we have via Proposition 4.4 that the set 

El = {h : 3hN + h and tN 1 0, z~ E AtN(Z; hN) with (zNl + foo) 

is empty, hence P(3 E El) = 0. From (i), (ii) and (iii) and Proposition 4.5 we have 

lim sup dom A ( t ;  -) n lim sup dom(A 1 (f; .))" = 8 
N 4 o o  h N-+m 777 

and 

dom F; = lim sup dom A1 (z; -) , 
N-+m dv 

hence by Proposition 3.6 

~ ( f i [ z ~  - f ]  E dom A ( f ;  -)) + P(3 E dom F:). 37 
The condition (iv) assures that F$(~) induces a distribution on IR". It remains only to show 

gph F; 3 lim sup gph A 1 (Z; -). 
N-rm 777 

But this follows trivially from the definition: Let (hn,  zN) E gph A 1 ( t ;  .), N = 1,2 , .  . ., 
777 

with ( hN ,zN)  + (h, 2). We have only to show that z E F$(h). But 

where we set 0 = t N ,  or in other words 

( h ~ ,  Z N )  E t i l [gph F - (t, T)]. 

Thus, by (1.12) and (4.6), (h, z) E gph F:. 

In case F = f ,  a measurable function, the conclusions of this theorem may be given a 

more definite form by analyzing the connections between the pseudederivative and ordinary 



directional derivatives under the conditions (ii) and (iv). Following Rockafellar (171, we say 

f is directionally differentiable a t  Z and in the direction h in the ordinary sense if the limit 

fl(t; h )  = lim 
f ( z+  t h )  - f ( z )  

t 10 t  

exists, and in the Hadarnard sense if this limit can in fact be taken as 

lim 
f ( Z +  th ' )  - f ( Z )  

h'-h t 
t 10 

Proposition 4.7. Suppose that f : Z -, IRn is Lipschitzian at Z. Then fz ( h )  is single-valued 

if and only if f l ( t ;  h )  exists in the Hadarnard sense, and in either case fz ( h )  = { f l ( f ;  h ) )  . 

Proof. Suppose f g ( h )  = { k ) ,  and let t n  1 0  and hn -t h be arbitrary. Then, by 4.4, there 

is a compact set K such that 

for all n sufficiently large. Hence {k,) has a limit point, say kt .  Thus we have a sequence 

(h,, k,) + ( h ,  k t )  that satisfies 

hence, by (1.12) and (4.6),  k' E f $ (h ) ;  so in fact kt = k .  Thus the limit in (4.9) exists and 

is equal to k .  

For the other direction we note that (4.9) holds iff for all sequences t n  1. 0 and hn + h 

one has 

Hence there is only one element in f$(h) and this must be f l (Z ;  h ) .  

It follows as a direct corollary that if f l ( f ;  A )  exists a.s. in the Hadamard sense, then the 

conclusion of Theorem 4.6 holds. We record this as 

Corollary 4.8. Suppose f : Z -, IRn is measurable and f ' ( f ;  A )  exists a.s. in the Hadarnard 

sense. Then 

f i [ f  (zN) - f (a ~f ' (z ;  3 ) -  

As we progressively strengthen the differentiability conditions we reach something like 

(1.3). If f l (Z;  h )  exists in the ordinary sense for all h and fl(z; -) is continuous then it is well 

known that (1.3) implies (4.9) and if, additionally, Z is finite-dimensional then (1.3),  (4.8) 

and (4.9) are all equivalent; see, for example, Shapiro [26]. 
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