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PREFACE

One of the problems that arises in the theory of evolution and control
under uncertainty is to specify the set of all the solutions to a differential
inclusion that also satisfy a preassigned restriction on the state space vari-
ables (the "viability" constraint).

The latter set of "viable” trajectories may be described by either a
new differential inclusion whose right-hand side is formed with the aid of a
contingent cone to the restriction map or by a variety of parametrized dif-
ferential inclusions each of which has a relatively simple structure. The
second approach is described here for a linear-convex differential inclu-
sion with a convex valued restriction on the state space variables.
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ON VIABLE SOLUTIONS FOR UNCERTAIN SYSTEMS

A.B. Kurzhanski, T.F. Filippova

This paper deals with the description of the set of all those solutions of a
linear differential inclusion that emerge from given set X% and satisfy a preas-
signed restriction on the state space variables (the ''viability” constraint). This
problem leads to the analytical description of the evolution of the attainability
domains for the given inclusion under the preassigned 'viability” constraint. The
solution is then reduced to the treatment of a parametrized variety of new dif-
ferential inclusions without any state space constraints. These inclusions depend
upon a functional parameter. The intersection of the attainability domains for the
new inclusions over the variety of all the functional parameters yield the precise
solution of the primary problem. For the specific problem of this paper the tech-
nique given here.therefore allows to avoid the introduction of tangent cones or
other related analytical constructions. It also allows to present the overall solu-
tion as an intersection of "parallel” solutions over a variety of ordinary linear dif-

ferential inclusions without any state constraints.

A similar technique is given for the description of "viable" domains — the sets
of all starting points from which there emerges at least one viable solution that
reaches a preassigned set /. The available results are useful for the solution of

problems of control and observation for uncertain systems [1,2].
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1. The Statement of the Problem. The Basic Assumptions.
Consider the following differential inclusion

%e,«t(t)z +P(t), tosts®, (1.1)

where z € R™, A(t) is a continuous map from T = [t,,%¥] into the set RN of
(n xn )-matrices, P(t) is a continuous multivalued map from T into the set conv R"

of convex compact subsets of R®, [3].

Assuming set X% € conv R™ to be given, denote X(,1(.X() to be the "bundle” of

all Caratheodory - type solutions z (",1 .2 o) to (1.1) that start at
z(ty) =z eXx? 1.2)
and are defined for t € T [4]. The cross-section at instant 't" of X(-,to,Xo) will be

denoted as X (¢ .t 0,X°).

Denote co R™ to be the set of closed convex subsets of R®, Y(-) to be a con-

tinuous multivalued map from T into co R™, [5,6], X0 ¢ Y(tg).

Definition 1.1. A trajectory z[t]l =z (f,ly.x 0y, t €T, of equation (1.1) will

be said to be viableon T, = [ty 7], 7= ¥, if

z[tleY(®), forall t €T,,, (1.3)

We further assume that there exists at least one solution z[t] of (1.1) that
satisfies (1.2) and is viable on T,. The conditions for the existence of those solu-

tions may be given in terms of generalized duality concepts [2,7].

The subset of X(-.to',Xo) that consists of all solutions viable on T, will be
denoted as X.,.(',to,Xo) and its cross-section at instant s €T, as X,,(s,to,Xo). Our
further aim will be to find an analytical description for the evolution of sets
X[7] =X('r,t0,X°) =X.r('r,to.X°) which are actually the attainability domains of
inclusion (1.1) under the phase constraint (1.3). It is known that X[7] € conv R"

[2]. (According to our assumption we further have X[1] # ¢ for all 7 € T).

It is not difficult to observe that sets X(¢ ,to,Xo) satisfy a semigroup property:
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X(7,t0.X% = X(7,5,X(s,£7.X%)) .

They therefore define a generalized dynamic system. The description of this
dynamic system will be given through a variety of new differential inclusions con-

structed from (1.1), (1.3). (See [8]).

2. The Set X[T1].

Introducing some notations let us denote the support function of set X as

pl1X) =supi(l,z) |z €X], Ll €R™.

(here (I ,z) stands for the inner product [’z with the prime as the transpose).

Also denote C™(T) (C(T)) to be the set of all m-vector-valued continuous
functions defined on T (respectively the set of & times continuously aifferentiable
functions with values in R™, defined on T). Let M™(T) stand for the set of all n-
vector-valued polynomials of any finite degree, defined on T. Obviously
g() € M™(T,) if

k
g(s) =iZ st seT,, IDerR?

and
M™(T) C C(T) .
Applying some duality concepts of infinite dimensional convex analysis [7] as

given in the form presented in [2] we come to the following relations. For any

L €R™, A(") € C™(T) denote

(L, AC)) = pl’S(ty,T) — f A’(f)S(to,é)dfiX°)+ (R.1)
to

S pST) = [ N(s)S(&,s)ds |P(&) d € +

T

S pON& Y (E)d ¢

ty

Here, in the first variable the function S(f,7) is the matrix solution for the

equation
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s =—=sA(t), S(r.7)=E, t=-T,
the second and third members of the sum (2.1) are Lebesgue-type integrals of mul-

tivalued maps P(£) , Y(£) respectively (see, for example, [4-6]).

In [2], §6, it was proved that
max {({,z) !z €X[1]} = p(l  X[T]) = (2.2)
inf €. (L AC)[IAC) € CMT, 1.

A slight modification of the respective proof shows that the class of functions
C™(T,) in the last formula may be substituted by either CLZ(T,) or even M™(T,).
Hence

inf (& (LAC)IAC) €eC(T)E = (2.3)

inf (@ (LAC|IAC) € CT(T,)] =
inf (@ (LACHIAC) e M™(T,)]

From relations (2.2) it is possible to derive the following assertion

Lemma 2.1. The following equality is true

X[7] = N (R(T.MC) M) € CP™ (T = (2.4)
= N IR(T M) | M) € CTX™M(T ) =
= N R(THC) [ H() € NPT 3.

where

R(TM()) = (S(ty,7) — [ M(ES(te.6)d H)X° +
to
+ [(S(r.&) — [ M(s)S(¢,s)ds) P()d ¢
ty ¢

,
+fM(s)Y(s)ds
to
and CP*™(T), (0 = k < =), M"*"(T) stand for the respective spaces of (nxn)-

matrix-valued functions defined on T.
The proof of Lemma 2.1 follows immediately from (2.2), (2.3) after a substitu-
tion A'() =1'M() for I # 0. The infimum over A(:) in' (2.2) is then substituted by an

infimum over M (). Hence for every I # 0 we have
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p(L I X[7]) < &L, M'()) (2.5)
for any M() € C**"(T,) (or CR*™(T.) or M"*™(T,)). From (2.1) - (2.5) it now fol-

lows that

X[r] CR(T,M())
for any M(-).

Hence

X[l € N R(T, M) M) € CP(T,) (2.6)

(or over CT*™(T,) or M™ *™ (T.)).

Equalities (2.4) now follow from (2.6) and (2.2), (2.3).

3. A Generalized "'Lagrangian’ Formulation -

The assertions of the above yield the ""standard’” duality formulations for cal-

culating 7,() = p(l | X[7]), (see[Z, 8, 9]).

Denoting

PO =lp@:pE)eP(t), t €T}

we come to the following "standard”

Primary Problem

maximize(l , z[7]) (3.1)

over all

u() €P,z% X, (3.2)

where z [t] is the solution to the equation

z[t] =4()z[t] +u(t), z(t,) =2° (3.3)

In other words

7, (0) =max{¥(z®, u() | z° €R™, u(s) €L} (T} (3.4)

under restriction (3.2) where
¥z, u()) =, z[7]) +6(z° | X% +

+ [ (8(x[t] | Y(2)) + 6(u(t) | P(t))) dt
t




Here

0 ifz €Y
toijfz €Y

oz | V)=

The primary problem generates a corresponding "standard”
Dual Problem:

Determine

7)) =inf (&L , A(9)) | A(:) € C™ (T,)} (3.5)

along the solutions s [{] to the equation

s[tl=—-s[t]A¢) + A() ., s[T] =1 (3.6)

where ¢.(l , A(?)) may be rewritten as
e (L, M) = p(slte] | X0 +
+_:f (p(s[t] | P(L)) + p(A(t) | Y(1)) dt
0
Relations (2.2), (2.3) indicate that 7,(l) = ¥%() and that A(s) in (3.5) may be
selected from C% (T.) or even from M™ (T,).
A ""standard’” Lagrangian formulation is also possible here.

Lemma 3.1 The value 7,(l) = y(l) may be achieved as the solution to the problem

(1) =inf max L(A), u(d, 2% (3.7)
AL u(y, z°
where
LN, u(®, 2% =(s[te] . 2% + [ ((s[t], u(@®) + (3.8)
ty

P(A(L) | Y(L))) at

and

A €C™(T,) , u) P, z%eXx’.
The passage from (2.2), (2.3) to (2.4) yields another form of presenting X[7].

Namely, denote S[t] to be the solution to the matrix differential equation

S[t]=-S[t]A(t) + M(t), S[T] =E




Also denote
A0, u(), M) =

Sltelz® + [ (S[tlu(t) + M(t) Y(t))dt
to

Obviously

R(THM® = U A u@, M®) | z%eX, u(@) eP()f =
T
=S[tedX% + [ (S[t] P(t) + M(t) Y(t)adt

tg

Lemma 2.1 may now be reformulated as

Lemma 3.2. The set X[ 7] may be determined as

X[tl= N U AE, u@, M)
M@ 29, u(

over all

M@ ecn* (T,), z%eX® u()eP.

This result may be treated as a generalization of the standard Lagrangian formula-
tion. However here one deals with set X[7] as a whole rather than with its projec-
tions p(l | X[7]) on the elements I € R™. The results of the above indicate that the
description of set X[T] may be ’''decoupled” into the specification of sets
R(t, M(?)), the variety of which describes the generalized dynamic system
X(t, tyX9).

However it should be clear that the mapping k(7 , M(+)) may not always be an ade-

quate element for the decoupling procedure, especially for the description of the

evolution of X (¢ , £, , X°) in £. The reasons for this are the following.
Assuming function M (s) to be fixed, redenote R(71, M(9)) asRy (T, t, . X°). Then, in
general, for any fixed M, we have
Ry(T.to, X" #Ry (7,5, Ry(s , ty. X" .
Therefore the map Ry (T, {,, X°) does not generate a semigroup of transfor-

mations that may define a generalized dynamic system. The necessary properties
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may be however achieved for an alternative variety of mappings, each of the ele-

"

ments of which will possess both the property of type (2.4) and the ''semigroup

property, [10].

4. An Alternative Presentation of X [7]

Denote CT**™ (T,) to be the subclass of C™*" (T) that consists of all continu-

ous matrix functions M () that satisfy the condition;

Assumption 4.1 For any ¢ € T, we have

-
det (S(¢. 1) — [ M(s)S(¢.s)ds)#0
¢
In other words, if X [t] is the solution of the equation

K(t)=—K(@)A@) + M(t) , K(T)=E ,(t, st <T) (4.1)
then M(f) must be such that det K[t] # 0 forall ¢t € [{,, T].
We will further denote X[t] = K(t , 7, M () for a given function M () in (3.1).
Consider the equation
Z=(A@)~-L@) Z, t,<sts<T (4.2)
whose matrix solution Z[t] (Z[7] = £) will be also denoted as Z[t] =Z(t, 7; L(v))

Z' @, 7,0} =S(T,1)
Under Assumption 2.1 there exists a function L (s) € C™*® (T,) such that

K[tl=2Z(t,7,L()), VvVt €T,, (4.3)

Indeed, if for ¢t € T, we select L(t) according to the equation

Lt)=4@1) -K1@) K@) = (4.4)
A@R) ~KY@) (k@) A@) + M) =
~KYt)YM@) +24()

then, obviously, equation (4.3) will be satisfied. From (2.4), (4.3), (4.4) it now fol-

lows (M (s) € CT*™ (T,))

R(T, M) =Z(T,ty: L)X + (4.5)
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[ Z(r, t; L() (P(t) + L(t) Y(2)) dt
to

However it is not difficult to observe that the right-hand part of (4.5) is
XL(,)('r, to X =x [T ! L({) ] which is the cross-section at instant 7 of the set
XL(-) («. ¢, X% =x [« ! L ()] of all solutions to the differential inclusion

Z(t) € (A(t) —L(t)z +P +L(t) Y(¢t) (4.6)
z(ty) €X° , t €T, ,

Since the class of all functions L (s) € C™*™ (T.) generates a subclass of func-
tions M(s) € C™*™ (T,) we now come to the following assertion in view of (2.3),

(4.5), (4.8).

Lemma 4.1 The following inclusion is true

X(TIcNIXIT | LI | L() € C™™™ (TS (4.7)
Therefore X[ 7] is contained in the attainability domains at instant 7 for the

inclusion (4.6), whatever is the function L (¢).

The objective is now to prove that (4.7) turns to be an equality. We will there-

fore pursue the proof that an inclusion opposite to (4.7) is to be true.

S. The Exact Formula for X{7].

In order to prove the equality in (4.7) we shall start by some preliminary

results.

Lemma 5.1 Consider the system

£ €PHt), (P*(t) =S(t, 7) P(t)) (5.1)
z(ty) =z° €X™ (X0 =5(t,. TXO) (5.2)
z(t)eY(t), t€T,, (5.3)

(Yt) =S(t . ) Y(t),
Denote the set of its solutions viable on T, with respect to Y*(¢) as X (-, ¢, , X?)

and the cross-section of the latter at instant 7 as
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X2 (T, t, X)) =X*"(1.¢t,.X2) =X"[1]
Then X[T] = X*[T].
The proof of this Lemma follows from definition 1.1 and from the properties of
linear systems (1.1), (5.1).

Assume z *(s) to be a viable trajectory of (5.1) due to constraints (5.2), (5.3),
t €T,. (The existence of at least one viable trajectory z'(o) was presumed ear-
lier.)
Definition 5.1 Denote X* [T]=X""(7,t,.X%) =X1"(T,t,,X%) to be the

cross-section at instant T of the set X** (s, to., X‘.).) of solutions of system

z eP"(t) (P*'(t) = (P* —z°(t)) (5.5)
z(ty) €X%W X% =X0 —z'(ty) .

z(t) €Y' @) (Y*'(t) =Y(t) —z°t)), teT,,

Lemma 8.1 The following equality is true

X[1] =X*[1]

The proof follows from the definition of viable trajectories. Note that sets
P**(t), X% , Y**(t) - all contain the origin as an interior point. Their support
functions are therefore all nonnegative.

The principal result of this paragraph is given by the proposition:
Theorem 5.1. The following equality is true

X[1] = NIX[T | L(H] | L() € C™* (T}

Before passing to the proof of this theorem, denote

X't L] =Xy (T, ¢y, X% to be the cross-section at instant T of the set

X'y (¢ to . X%) of the solutions to the inclusion.

z € —L(t)z +P°(t) + L()Y'(¢t) (5.6)

2 =z(t)ex?, teT, (5.7)
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Hence for any matrix function L (+) € CT*" (T,) we have

X[t | LI =X[T | S(T,)LE)SC¢, )]
Therefore it suffices to prove the following equality
XU[r1=NX" [T L] | L) €CT*™ (T,)] (5.8)
In other words, theorem 5.1 will be already true if it is proved for A(t) = 0 and for
arbitrary x0, P(t), Y({¢) from the respective classes of sets and set-valued maps
introduced in § 1. We will therefore follow the proof of equality (5.8) omitting the

stars in the notations for X*, X9 , P*, Y*.

According to (2.2), (2.1) we now have (4(t) =0)

p(l | X[1]) = (5.9)
=inf (& -A) | M) € C™ (T,); =inf [®(L, A(9) | M) € M (T,)S

where
&L, A@) =p( = [ Ms)ds | X% + (5.10)
to
+ [ o = [ N at | P(s)ds + [ p(A(s) | Y(s))ds
tg s to
Denoting

’
g(s) =1l - [ MHdE, seT,,
s
we may substitute (5.9), (5.10) for

pL | X[t = infi¥(@®)) | g €eCL(T,)  g(7) =] = (5.11)
=inf [(¥(g()) | g() €M™ (T,), g(7) =1

where

Y(g () =p(g(te) | XO) + [ p(g(s) | P(s)) ds +
to

+/[ p@(s) | Y(s))ds (5.12)
tg

Let us further assume that the vector { €R in (5.9), (5.10) and (5.11), (5.12)

is such that its coordinates [; # 0 for alli =1,...,n Let us demonstrate that if
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we substitute the class of functions g (v) that appears in (56.11) for a "narrower”
class M**™ (T,) then the value of the infimum in (5.11) will not change. The class
M XT (T,) which we will consider consists of all functions g (¢) of the form

g'@)y=1"M@), M(T)=E,
M(s) € CTXM (T,) (or M()) € M™*™ (T.))

and

det M(t) #0, WVt € [t,, T]

Hence the following lemma is true. .

Lemma 5.2 The support function p(Il | X[7]) satisfies the condition
p(l | X[T]) = =inf {¥(@®) | g() € M**™ (T,)}
For the proof of this property we will distinguish the cases of n being an even

number and n being odd.

Suppose n = 2. First of all, note that for calculating the infimum in (5.11) it
suffices to restrict ourselves to the class of such functions g(s) = (@1, 920)
that g () € MZ(TT) ,g(m =1, g'(()g(t) #0 for any { € T,. Indeed, for any
g € MZ(TT) (g(T) =1l) it is possible to construct a sequence of functions

g &) e M¥(T,), g¥X(T) =1, & » +0, for which

lim ¥(g{® () = ¥(g () (5.13)
& -+ +0
and

g () g{¥(t) >0, Vvt €T,.

For example, assume

g9 = (9,9, 959(9)

where

952(t) =1,9,(t +8) / g(T+¢), tE€T,.

Since it is assumed that g(T) =1, I;#0, [, =0, the function g () is well-

defined for minor values of ¢ (i.e. g (¥)(:) € M¥(T,), g&X(1) =1) .




-13 -

Since the number of nulls of the polynomials g4(-) , g5(¢) is finite, it is possible to
| select the "shift"” € = €% in go(t + £) so that the nulls of g,(t) and g,(¢ + £) will not
coincide for all £ € (0, €°]. Now for each t € T, g¢®(t) » g(t) and g$et) » g ()
with € » + 0. The sequence g(‘)(t), d"’)(t) is equibounded in ¢t for ¢ € (0, £°].

Therefore (5.12) is true.

It is now possible to demonstrate that any function g () €M2(T.,), with
g(r) =L, 'l #0,9'(t)g(t) #0, VteT,, may be presented in the form

g(d =1 M(s) wheredet M(t) #0, VIeT,, M(T) =F.

It may be verified directly that with [ given

g (t) L5t L (0p(1) =L 1Y g ()Y

M) =gty =1, 151 g N5t g,t) It

(5.14)
satisfies these conditions, namely

det M(t) =gf ()12 +g3®)l;2 #0.
Let us now assume that the dimension of R" is even: n =2k , £ =2 2. Then fol-
lowing the scheme for n = 2, it is possible to verify that it suffices to calculate the
infimum in (5.11), (5.12) over such functions g() =(g.(),..., g(Rk)),

g(r) =1, 'l #0, that g, ,(£) +g%,(1) >0, Vt €T, Vi €[1,k].

Any function g () of the given type may be presented in the form

g(t) =1’ M(t) where the (2k X 2k) - dimensional matrix M(¢) is block-diagonal:

My(t) 0
M) = (5.15)
0 M (1)
and each of the matrices M; (), i =1,...,k,is (2 x 2) - dimensional and may

be calculated due to formula (5.14) where in the place of g,(+) , g,(?) we should sub-
stitute (g5 1(9 . 92;(), (i =1,...,k). The function M(+) belongs to the class
M™*n (T_), M(T) =F and for any t € T, we have

k
det M(t) = N det M;(t) >0 (5.16)
i=1
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Assume now that n is odd: n =2k + 1. Then again we may calculate the

infimum in (5.11), (5.12) over the class of functions.

gD =(@1(D,. .., 92D, 925+1(D) €M™ (T,), g(7) =1

such that

9% 1 () +9Z (1) >0, WVt €tyT]ii =1,... ,k,

Each of such functions may be presented in the formg(f) =1’ M(t) where

My(¢), 0.,.. 0, 0, m(t)
0, Myt),..0, 0, O,
M) = -
0, o0, M), O,
o, e+ 0, 0, 1 |

m(t) = (9o +1(t) —lgp41) 7/ 1y
Here M, () is determined similarly to (5.14) where g,(v) . g 2(9) are to be substituted

by g4 .92 (i =1,...,k). Obviously

M(T) =E , M(s) €M™ (T )

and

k
det M(t) = [ det M;(¢)>0
1=1

forallt € T,

In order to finalize the proof of lemma 5.2 we have to consider the case when
n =1. For n =1 the class Mll"l (T,) may be substituted by all positive functions
m(s) € C},(T,). However, due to (2.3) we will be able to confine ourselves to the
case when m (») € Cl(T.,.).

As before, let C1(T,) stand for the set of such funci.ions m(t), that m(7) =1;

m(t) >0; Vit € T,. We also assume that

0 €Xy N Y(s) N P(O) (5.17)

where obviously X, , Y(s) , P(s) turn to be combact. intervals in RL.

Recall that in view of (5.12) the function
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¥ (L m()) =L(p(m(0) | X°) + [ p(m(s) | P(s))ds +
0

+/[ p(m(s) | Y(s)))
0

where

r
m(t) =1 - [ N d¢, N9 € ¢XT,)
t
We shall demonstrate that
inf (¥l m(9)) | m() € CY (T = inf (¥ m(9) | m() € CT (T}
With ¢ decreasing from the value T, denote T* to be first instant of time where
m(t) turns to zero (m(7%) =0). Therefore m(t*) =0, m(t) =1 and
m(t)>0, T° <t =T
Denote
m(t)=m(t) forT’ st =<s-T

m(t) =0 fortyst <T°

In view of (5.17) we have

Te

pl m (to) | X% + [ pl m () | P(2)) dt
tg

Te

+ [ pm () | Y(£))dt = pl 7 (tg) | Xo)
to
Hence

Yl m(s)) = ¥ m(v)
whatever is the function m (s) € €} (T,)
A number & >0 being given it is possible for every m(s) to select a
6 = 6(¢, m(9)) >0 such that the function m 4(¢) defined as
ms(t) =m(t) forr’ () stsr7T,
mg(t) =8 fortyst <t’(9),

satisfies the inequality



-16 -

¥A m@) ~¥U mg() | s ¢

Here 7°(6) is the first instant of time where m (7°(8)) = é with ¢t decreasing from T
to 7°(6), so that T°(0) = 7°.
Hence for any m(s) € cl (T,) and any & >0 there exists a function

mg(s) € CL (T,) such that

V(I m@))2¥(I myu0) —¢ (5.19)

Comparing (5.19) with the obvious relation

inf {¥(l m(9)) | m() € CL(T,)) sinf (¥ m()) | m() € C (TP}
we arrive at the equality (5.18).
Note that the class C} (T.,) in (5.18) might well be substituted by C.l_, (T,

where

CP (T,) = {M(s) 1| M(s) € CR*™ (T,); M(T) =E , det M(t) >0 WVt € (T,)}

From the proof of the above we came to the assertion:

Lemma 5.2 The set X[ 7] may be described as

p(l | X[1]) =inf { ¥’ M(9) | M() € CT. (T} (5.20)
foranyl e A={l :1; #0, i=1...,n}

Following the suggestions that led to Lemma 2.2 we may deduce

Corollary 5.1 Relation (5.20) is equivalent to

pLIX[T] =inf tp |XITILODIL() € CTX™(THY . (5.21)

In order to finalize the proof we will make use of the following lemma.
Lemma 5.3. Assume {X,} to be a variety of convex compact sets that depend

upon the index a € AwithX = N (X, | a € A} # ¢. Denote

S@) =inf {pl1X,)|a €A).
Then

p(L1X) =77 ()

where f " (1) is the Fenchel second conjugate to f (1).
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In other words

S =(co £) )

where (co f) (I) stands for the function whose epigraph is the closed convex hull

for the epigraph of f(I) (I € R™), [7].

Applying this lemma to X[7|L (-)] with L (-) acting as the parameter we find that

PUINXITILOIL(E) € CT*™ (T)Y) = (o k) (1) (5.21)
where
h() =inf {p(l |X[TILC)DIL() € CTX™(T )] (5.22)
and
h() =p( |X[T]) forl € A. (5.23)

From (5.21) - (5.23) it now follows that

X[1]1 =N XITILOIILE) € CTT(THL.

Indeed, since always

X[l € X[TIL()], L () €eC™™™(T,) . (5.24)

assume that there exists a point £~ € X[7] such that

" € N IX[TILGIIL(C) € CRX™(T Y.

Then there exists a vector [’ that ensures the inequality

@z’ > pd’X[T])

(X[T] being a convex compact set we may always assume " € A). Hence there

exists a vector I° € A such that

P IN XITILOIILE) € CTX™M (TN > pl KD

However, this is in contradiction with (5.23), (5.22).

Thus (5.21) is true and in view of (5.24) Theorem 5.1 is now fully proved. More-

over we have established

Lemma 5.3. The following equality is true

p(LIX[TD=R""U), L €R™.
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A direct consequence of the relations of the above is
Lemma 5.4. Assume that in (1.1) the matrix 4(-) € C}*™(T). Then
X[T) = N XETILEDILE) € G .
6. The Viable Domains.
Consider system (1.1), (1.3) for t € [s,9], with set ¥ € comp R".
Definition 6.1. The viable domain for system (1.1), (1.3) at time s is the set

W(s,?) that consists of all vectors w € R" such that

z(t,T,w)CcY({), s=st=9v, (6.1)
z(ty, TwW)CM. (6.2)

Using the duality relations of convex analysis as given in [2] it is possible to

observe that

W(s,) CR_(s.M()), VHM() e CM*"[T3],

where
TO=ft:s <t =<v}.

R_(s.M() = (S(¥,7) — [ M(t)S(,t)dt) M +
L
+ f (ST = [ H@)S(E,Hdt)P(H)d ¢ +
L2 ¢

,
+ [ p(M(E) | Y(t))at .
L]
Similar to §2 we come to

Lemma 5.1. The set W(7,7%) may be determined as

w(T.%) = N (R_(s, M) | M() € M [T
Returning to equation (3.6) denote
X_[s.]L ()] =Xy (5,8,
to be the cross-section at instant s of the set XL'Z.)(-,'t?.M) of all the solutions
z; (t,V,z4) to the inclusion (3.6) that are generated at instant ¥ by point z4 € M

and evolve in backward time until the instant 71 <19, (7=t <414). Along the
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schemes of §§4, 5 it is possible to arrive at the analogy of Theorem 5.1:

Theorem 6.1. The following relations are true
W(T) = N (X0 (T OM)[L() € CrXn(T3)].
7. The State Estimation Problem

Assume inclusion (1.1), (1.2) is considered together with a measurement equa-

tion
v ECGH)z +Q(), tygstsT, (7.1)
where v € R™, G(t) is a continuous matrix and @(¢) a continuous multivalued map

from T, into conv R™.

Suppose that due to equations (1.1), (1.2) and (6.1) (that substitutes for (1.3))
an "observation" y (), t € T, has appeared. (The function v (¢) is obviously
generated due to equations

z =A(t)z +u, y =CG@{)x +¢& (7.2)
by triplet 2%, u ("), £(), where z® € X°, w(t) € P(t), £(t) € Q(t) and u (t), &(t)

are measurable functions.)

The estimation problem will consist in specifying the set X(:;% " (*)) of all the
solutions z(-,to,zo) of inclusion (1.1) that start at ¢, from points z°% € X% and
satisfy both (1.1) and (7.1) for y () = v (), to=t =7, (being therefore consistent
with both the system equation (1.1) and the measurement equation (7.1),
v () =y (). The latter problem then reduces to the one of §§1 - 4: the specifica-
tion of set X[7] and its evolution in T where the set-valued map Y({) of (1.3)
appears in the form

Y(t) = {z:G(t)z € Q" (1)}
and

Qt)y=vy"(t) -Q(t).

This specific type of set Y(¢) may be treated along the schemes of the above.
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The results reduce to the following relations. Consider the inclusion

z =(A(t) —L@)G(ANz +P() + L(t)(y () — Q1)) (7.3)
z(ty) =z°, z%e€X®, tysts<srT

denoting its solution as

Zi() (t,to,xo)
and taking
Xy (E,20X) = U lz(t,tg,20) |20 € X0,
Along the schemes of §§2-4 we arrive at the proposition.
Theorem 7.1. The cross-section X'['r] at time T of the set X(-,y'(-)) of all

solutions to the system (1.1), (7.1), y(t) =v (&), to=t =< T, may be described as

X'[1]= N X (.10.X0 L) € CP (T Y. (7.4)
Thus if the information on an uncertain trajectory z (¢ ,to,zo) of (1.1), (1.2) is

reduced to the knowledge of the functiony ' (¢), t € [to.7], then the set X"[1] gives

a "guaranteed” estimate for z[7] =z (7,t.7 °).

Remark. From the assumption that the function £(¢) in (7.2) is measurable, it
follows that set @' (¢) is measurable in t (with values in comp R™). This leads to
the fact that the respective set

Y(t) = [z:6(t)x €Q (1)}
may be also measurable rather than continuous in ¢ as required by the assumptions
for Theorem 5.1. The proof of Theorem 5.1 however allows a modification that

ensures Theorem 7.1 to be true.

The scheme presented here is other than those suggested in either [2] or [11].
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