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PREFACE 

One of the problems that  ar ises in the theory of evolution and control 
under uncertainty is t o  specify the set of al l  the solutions to  a differential 
inclusion tha t  also satisfy a preassigned restr ict ion on the state space vari- 
ables (the "viability" constraint). 

The la t te r  set .of "viable" t rajector ies may be described by e i ther  a 
new differential inclusion whose right-hand side is formed with the  aid of a 
contingent cone t o  the  restr ict ion map o r  by a variety of parametrized dif- 
ferential inc lus i~ns  each of which has a relatively simple structure.  The 
second approach is  described here  f o r  a linear-convex differential inclu- 
sion with a convex valued restr ict ion on the s tate space variables. 
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ON VIABLE SOLUTIONS FOR UNCERTAIN S Y S T m  

A.B. Kurzhanski, T.F. Filippova 

This paper  deals with the description of the set of all those solutions of a 

l inear differential inclusion that  emerge from given set XO and satisfy a preas- 

signed restr ict ion on the  state space variables (the "viability" constraint).  This 

problem leads t o  the  analytical description of the evolution of the attainability 

domains f o r  the given inclusion under the  preassigned "viability" constraint. The 

solution is then reduced t o  the treatment of a parametrized variety of new dif- 

ferential inclusions without any state space constraints. These inclusions depend 

upon a functional parameter. The intersection of the  attainability domains fo r  the 

new inclusions over  the  variety of all the functional parameters yield the  precise 

solution of the primary problem. For the  specific problem of this paper  the  tech- 

nique given here- there fo re  allows t o  avoid the  introduction of tangent cones o r  

o ther  related analytical constructions. I t  also allows t o  present the  overal l  solu- 

tion as an intersection of "parallel" solutions over a variety of ordinary l inear dif- 

ferential inclusions without any s ta te  constraints. 

A similar technique i s  given fo r  the  description of "viable" domains - the  sets 

of al l  start ing points from which the re  emerges at least one viable solution tha t  

reaches a preassigned set M. The available resul ts are useful fo r  the  solution of 

problems of control and observation fo r  uncertain systems [1,2]. 



1. The Statement  o f  the Problem. The Bas ic  Assumptions. 

Consider the  following differential inclusion 

d x  - E A ( t ) x  + P ( t ) ,  t 0 S t  S T ? ,  
d t  

where z E Rn, A ( t )  is  a continuous map from T = [ t  o,T?]  into the  set RnXn of 

( n  xn)-matrices, P ( t )  is  a continuous multivalued map from T into the set conv Rn 

of convex compact subsets of Rn , [3 ] .  

Assuming set X O  E conv Rn t o  be given, denote X(.,to,Xo) to  be the  "bundle" of 

all Caratheodory - type solutions x  (., t  o ,xO)  t o  (1.1) that  start at 

x ( t 0 )  = x 0  €9  (1.2) 

and are defined fo r  t  E T [4 ] .  The cross-section at instant "t" of x ( . , t o , 9 )  will be 

denoted as X(t  ,t o , ~ O ) .  

Denote co Rn t o  be the  set of closed convex subsets of Rn,  Y ( . )  t o  be a con- 

tinuous multivalued map from T into co Rn , [5 ,6 ] ,  X O  L Y ( t  O ) .  

Def in i t ion 1.1. A t ra jectory  x  [ t ]  = x ( t  , t o , xO)  , t  E T ,  of equation (1.1) will 

be said t o  be viable on T ,  = [ t O , r ]  , T S 19, if 

x [ t ]  E Y ( t ) ,  f o r a l l  t  E T, ,  (1.3) 

W e  fu r ther  assume tha t  t he re  exists at least  one solution x  [ t ]  of (1.1) that  

satisfies (1.2) and is viable on T,. The conditions f o r  the  existence of those solu- 

tions may be given in t e r m s  of generalized duality concepts [2,7] .  

The subset of x ( . , t & x O )  that  consists of all solutions viable on T ,  will be 

denoted as x,(. , t  o , ~ O )  and its cross-section at instant s  E TT as XT(s , t  O , ~ O ) .  Our 

fu r ther  aim will be to  find an analytical description fo r  the  evolution of sets 

X [ T ]  = X ( T , ~ ~ , X ' )  = X , ( T . ~ ~ . X O )  which are actually the attainability domains of 

inclusion (1.1) under the  phase constraint (1.3). I t  is known that X [ T ]  € conv Rn 

121. (According to  our  assumption w e  fu r ther  have X [ T ]  + $ f o r  a l l  T E T ) .  

I t  is not difficult to  observe tha t  sets X(t , to ,xO) satisfy a semigroup property:  



X ( T , ~ ~ , X O )  = X(T,S ,X(S , t O , p ) )  . 

They t he re fo re  define a general ized dynamic system. The descr ipt ion of th is 

dynamic system will be  given through a var ie ty  of new dif ferential  inclusions con- 

s t ruc ted from (1.1), (1.3). (See [8]). 

2. The Set  X [TI. 

Introducing some notations let us denote t h e  suppor t  function of set X as 

p(l  (X)  = s u p I ( l , x )  x  EX^ , 1 ER" . 
(he re  (1 , x )  stands f o r  t h e  inner product  1 'x with t h e  prime as t h e  t ranspose).  

Also denote Cn (T) (CF(T)) t o  be  t h e  set of all n-vector-valued continuous 

functions dsf ined on T (respectively t h e  set of k times continuously dif ferentiable 

functions with values in Rn , defined on T). Let Mn (T) stand f o r  t h e  set of a l l  n - 

vector-valued polynomials of any f ini te degree,  defined on T. Obviously 

g (.) E Mn (T,) if 

and 

Mn (T) s CZ (T) 

Applying some duality concepts of infinite dimensional convex analysis [7] as 

given in t h e  form presented in [2] w e  come t o  t h e  following relat ions. For any 

1 E Rn , A(.) E Cn (T) denote 

Here,  in t h e  f i r s t  var iable the.  function S( t  ,T)  is  t h e  matrix solution f o r  t h e  

equation 



s = - s A ( t ) ,  S ( r , r )  = E ,  t s T ,  

the second and third members of the  sum (2.1) are Lebesgue-type integrals of mul- 

tivalued maps P(<) , Y ( < )  respectively (see, fo r  example, [4-61). 

In [ 2 ] ,  56, i t  w a s  proved that  

max I ( l , x ) ! x  E X [ T ] {  = p ( l  I X [ r ] )  = 

inf !Q,( l ,  A(.)) I A(.) E Cn IT,] I . 
A slight modification of the  respect ive proof shows that  the  c lass of functions 

Cn (T,) in the  last formula may be substituted by e i ther  CE (T,) o r  even Mn (T,). 

Hence 

inj' )Q,(1 ,A(.)) I A(.) E Cn (T,)1 = 
inj' I Q,(1, A(.)) I A(.) E CE (T,) 1 = 

inj' I Q,(1, A(.)) I A(.) E Mn (T,) 1 

From relat ions (2.2) i t  is possible t o  der ive the  following assert ion 

Lemma 2.1. The following equality is t rue  

X[r] = n I R ( r ,  M ( . ) )  I M (.) E C" Xn (T,) 1 = 
= n IR( r ,M(-1)  I M ( . )  E cEXn (T,){ = 
= n IR ( r ,M( . ) )  I M ( . )  E Mn Xn (T,) 1 . 

where 

7 

R ( T , M ( . ) )  = ( S ( t O , r )  - J ~ ( 6 s ( t ~ , t ) d t ) f l  + 
t 0 

7 7 

+ J ( s ( T , ~ )  - J ~ ( s )  S ( t  , s )  d s )  P ( O ~  t 
t 0 4 
7 

+ J M ( S  ) Y ( s  )ds  
t 0 

and Cp ' " (T)  , ( 0  s k s m) , Mn xn (T) stand fo r  the  respect ive spaces of (n xn) -  

matrix-valued functions defined on T. 

The proof of Lemma 2.1 follows immediately from (2.2) ,  (2.3) a f te r  a substitu- 

tion A'(.) = 1 ' M ( . )  fo r  I + 0 .  The infimum over  A(.) in'(2.2) is then substituted by an 

infimum over  M ( a ) .  Hence fo r  every 1 + 0 w e  have 



~ ( 1  I X[TI) Q,U ,M'(.)L (2.5) 

f o r  any M(.) E CnXn(T,) (or  CEXn (T,) o r  MnXn(T,)). Frorri (2.1) - (2.5) i t  now fol- 

lows tha t  

f o r  any M(.). 

Hence 

X [ r l  c n IR(-r,M(.)) I M(.) E Cn Xn (T,)j 

(or  over cEXn (T,) o r  Mn (T,)). 

Equalities (2.4) now follow from (2.6) and (2.23, (2.3). 

3. A General ized "Lagrangian" Formulat ion 

The assert ions of t he  above yield the  "standard" duality formulations for  cal- 

culating 7, (1) = p(l X[T]), (see [2, 8, 91). 

Denoting 

P(-) = Ip(* ) :  p ( t )  E P ( t ) ,  t ET,j 

w e  come t o  t he  following "standard" 

Primary Problem 

over  al l  

u(*)  E P ( * ) ,  z0 EXO 

where s [t ] is t he  solution t o  the  equation 

x [ t ]  = A( t ) z [ t ]  + u ( t )  , z[ tO]  = z0 

In o ther  words 

Y,(L) = maxl*(zO, u(*)  I z0 € R n  , u(*) EL; (Tt)j 

under restr ic t ion (3.2) where 



Here 

0 i f z E Y  
6 ( ~  n = ( + =  i f z  F Y  

The primary problem generates a corresponding "standard" 

Dual Problem: 

Determine 

rO( l  ) = inf I @,(I , A(*)) i A(-) E Cn (T,) 4 

along the  solutions s [t ] t o  the  equation 

s [ t ]  = - s [ t u ( t )  + A ( t ) ,  s[r] = I  

where @,(I , A(*)) may be rewrit ten a s  

Relations (2.2), (2.3) indicate tha t  7, (1 ) = 7O(1 ) and that  A(*) in (3.5) may be 

selected from Cz (T,) o r  even from Mn (T,). 

A "standard" Lagrangian formulation is  also possible here.  

Lemma 3.1 The value yo( l )  = 7( l )  may be achieved as t he  solution t o  t he  problem 

7( l )  = inf max L (A(*) , u (a) , z O )  
A(.) U (.) , z0 

where 

and 

A(*) E Cn (T,) , u (*) E P(*) , z0 E XO . 

The passage from (2.2), (2.3) t o  (2.4) yields another  form of presenting X[T]. 

Namely, denote S [ t  ] t o  be t he  solution t o  t he  matrix differential equation 



Also denote 

Obviously 

Lemma 2.1 may now be  reformulated as 

Lemma 3.2. The set X [ T ]  may be  determined as 

o v e r  all 

M(* )  E Cnxn (T,) , zO EX' ,U (0) E P . 

This resu l t  may b e  t rea ted  as a generalization of t he  s tandard Lagrangian formula- 

tion. However h e r e  one deals with set X [ T ]  as a whole r a t h e r  than with i t s  projec-  

t ions p(L I X [ T ] )  on t h e  elements L E Rn. The resu l ts  of the  above indicate t ha t  t he  

descript ion of set X [ T ]  may b e  "decoupled" into t he  specif icat ion of sets 

R ( T  , M ( * ) ) ,  t he  var iety of which descr ibes t he  general ized dynamic system 

X ( t  , t o? ) .  

However i t  should be  c l ea r  t ha t  t he  mapping R ( T  , M(* ) )  may not  always be  a n  ade- 

quate element f o r  t he  decoupling procedure,  especially f o r  t he  descr ipt ion of t he  

evolution of X ( t  , t o  , p) in t  . The reasons f o r  th is  are t he  following. 

Assuming function M (0) t o  be  f ixed, redenote  R ( T  , M(* ) )  as lRM (T , t  , XO) .  Then, in 

general ,  f o r  any fixed M ,  w e  have 

R M ( ~ ,  t o ,  9 )  + l R M ( ~ ,  S ,  RM(s  , t o ,  x O ) ) .  

Therefore  t he  map RM ( T  , t o  , A&) does not  genera te  a semigroup of t ransfor -  

mations t ha t  may define a general ized dynamic system. The necessary  proper t ies  



may be however achieved fo r  an  alternative variety of mappings, each of the ele- 

ments of which will possess both the  property of type (2.4) and the  "semigroup" 

property,  [ l o ] .  

4. An Alternative Presentation of X [ r ]  

Denote C? Xn (T,) t o  be the  subclass of Cn Xn (T )  tha t  consists of all continu- 

ous matrix functions M ( e )  that  satisfy the  condition; 

Assumption 4.1 For any ( E T ,  w e  have 

7 

det  ( S ( ( ,  r )  - J M ( s ) s ( ( ,  s )  d s )  2 0  
< 

In o ther  words, if K  [ t ]  is  the  solution of the  equation 

K ( t )  = - K ( t ) A ( t )  + M ( t ) ,  K ( T )  = E  , ( to S t  S  r )  

then M ( t )  must be such that  aet K [ t ]  # 0  fo r  al l  t E [to , T I .  

We will fu r ther  denote K [ t  ] = K( t  , T , M (e)) f o r  a given function M ( e )  in (3.1). 

Consider the equation 

Z  = ( A ( t )  - L ( t ) )  Z  , t o s t  S r  (4.2) 

whose matrix solution Z [ t  ] ( Z [ T ]  = E )  will be also denoted as Z [ t ]  = Z ( t  , T ; L  (e)) 

(2' ( t  , T , l o ! )  = S ( T  , t ) )  

Under Assumption 2.1 there  exists a function L  (e) E cn Xn (T,) such that  

K[ t l  = Z ( t ,  T , L ( ~ ) ) ,  Vt E T , ,  (4.3) 

Indeed, if f o r  t E T ,  w e  select  L  ( t  ) according t o  the  equation 

L  ( t )  = A ( t )  - ~ - l  ( t )  ~ ( t )  = 
A ( t )  - ~ - l ( t )  ( -K ( t )  A ( t )  + M ( t ) )  = 

- ~ - ' ( t )  M ( t )  + 2 A ( t )  

then, obviously, equation (4.3) will be  satisfied. From (2.4), (4.3), (4.4) i t  now fol- 

lows ( M  (e) E C? Xn (T,)) 



However i t  is  not difficult t o  observe t ha t  t he  right-hand p a r t  of (4.5)  is  

XL( . ) ( r ,  t o  , X O )  = X [ r  L(-)  ] which is  t h e  cross-section at instant T of t he  set 

XL (.) (* , to 9) = X [- i L ( a ) ]  of al l  solutions t o  t h e  dif ferential  inclusion 

Since t h e  c lass of a l l  functions L ( 0 )  E Cn Xn (T,) generates  a subclass of func- 

t ions M(-) E C n X n  (T,) we now come t o  t he  following asser t ion in view of (2.3) ,  

Lemma 4.1 The following inclusion is  t r u e  

X [ T I  c n Ix[r I L(9l I L ( - )  E cnXn (T,)l (4 .7)  

Therefore  X [ T ]  is  contained in t he  attainabi l i ty domains at instant T f o r  t h e  

inclusion (4 .6 ) ,  whatever is t he  function L ( t  ). 

The object ive is  now t o  prove t ha t  (4.7)  t u rns  t o  be  a n  equality. W e  will there-  

f o re  pursue t h e  proof tha t  an  inclusion opposite t o  (4 .7)  i s  t o  be  t rue .  

5. The Exact Formula for X [ T ]  . 

In o r d e r  t o  prove t h e  equality in (4 .7)  we shal l  'start by some preliminary 

resul ts .  

Lemma 5.1 Consider t he  system 

z ( t )  E Y * ( ~ ) ,  t  E T , ,  (5 .3)  

( Y * ( t )  S ( t  , 7 )  Y ( t ) )  , 

Denote t h e  set of i ts  solutions viable on T, with respec t  t o  p ( t )  as X: ( 0 ,  to , x?)  

and t h e  cross-section of t h e  latter at instant T as 



X: ( 7 ,  to x?)  = X *  (T , to , XE)) = x*[T] 

Then X[T] = x*[T]. 

The proof of this Lemma follows from definition 1.1 and from the propert ies of 

l inear systems (1.1) , (5.1). 

Assume x*(-) to  be a viable t ra jectory of (5.1) due t o  constraints (5.2), (5.3), 

t E T,. (The existence of at least one viable t ra jectory x*(*) w a s  presumed ear- 

l ier .  ) 

Def in i t ion  5.1 Denote x ** [TI = x **(T , t , x:,) = x:* (T , t , x:,) t o  be the 

cross-section at instant T of the se t  x** ( 0  , t o  , X :,) of solutions of system 

x ( t )  E y**( t )  ( p * ( t )  = Y*(t) - x * ( t ) )  , t ET, , 

Lemma 5.1 The following equality i s  t r ue  

X[T] = X**[T] 

The proof follows from the definition of viable t ra jector ies.  Note tha t  sets 

P**( t )  , x?, , Y'*(t) - all contain the origin as an inter ior  point. Their support 

functions are therefore al l  nonnegative. 

The principal resul t  of this paragraph is given by the proposition: 

Theorem 5.1. The following equality i s  t rue  

X[TI = n l X [ r  I L (41 I L (9 E Cn Xn (T,)j 

Before passing to  the  proof of this theorem, denote 

X*[T I I,(*)] = x;(.) ( r  , t o  , 9) to  be the cross-section at instant T of the set 

Xi(.) (* , t o  , xO)  of the solutions to  the inclusion. 



Hence f o r  any matrix function L (0) E Cn X n  (T,) w e  have 

X*[T I L (*)I = X[r I S ( r  , -) L (*) S ( - ,  r )1  

There fo re  i t  suff ices t o  prove t he  following equality 

x*[T] = n lx* [r I L (91 I L (9 E CZ xn (T7)l (5.8) 

In o the r  words, theorem 5.1 will be  a l ready t r u e  if i t  i s  proved f o r  A ( t  ) = 0 and f o r  

a rb i t r a r y  9 ,  P ( t )  , Y(t) from the  respect ive c lasses of sets and set-valued maps 

introduced in 5 1. W e  will t he re fo re  follow t h e  proof of equality (5.8) omitting t he  

stars in t he  notations f o r  X* , X? , P *  , Y'. 

According t o  (2.2), (2.1) w e  now have (A ( t  ) = 0) 

~ ( 1  ! X[rI) = (5.9) 

= inf I Q(l ,- A(-)) I A(-) E Cn (T,); = inf IQ(1 , A(*)) I A(*) E I t n  (T,) j 

where 

Denoting 

w e  may subst i tute (5.9), (5.10) f o r  

where 

Let us f u r t he r  assume t ha t  t he  vector  1 E R in (5.9), (5.10) and (5.11), (5.12) 

is  such tha t  i t s  coordinates It f 0 f o r  a l l  i = 1, . . . , n Let us demonstrate t ha t  if 



w e  substitute the class of functions g (a) that  appears in (5.11) f o r  a "narrower" 

class MTxn (T,) then the  value of the  infimum in (5.11) will not change. The class 

M r  xn (T,) which w e  will consider consists of all functions g ( t )  of t he  form 

gl ( t )  = l l M ( t ) ,  M(T) = E  , 

M (m) E CE xn (T,) (or  M(*) E Mn Xn (T,)) 

and 

det  M ( t )  # 0 ,  Vt E [ t o ,  T] 

Hence the  following lemma is t rue.  

Lemma 5.2 The support  function p ( l  I X[T]) satisfies the  condition 

~ ( 1  I X[TI) = = inf I+(g (*>I I g (a> E M'? Xn (T,) I 
For the  proof of t-his proper ty  w e  will distinguish the  cases of n being an  even 

number and n being odd. 

Suppose n = 2. First of all, note that  f o r  calculating the infimum in (5.11) i t  

suffices t o  res t r i c t  ourselves to  the class of such functions g (0) = (gl(*) , g2(a)) 

that  g ( m ) ~ M ~ ( T , ) , g ( ~ ) = l ,  g t ( t ) g ( t ) # 0  fo r  any t ET,. Indeed, f o r  any 

g (a) E M2(~,) (g (T) = 1 ) i t  is  possible t o  construct a sequence of functions 

g(f)(m) E M~(T,) , g ( f ) ( ~ )  = I ,  E -, + 0 , fo r  which 

and 

For example, assume 

where 

g j f ) ( t )  =12  g2( t  + E) / g2(T + E) , t ET,. 

Since i t  is  assumed that g (T) = 1 , 1 # 0 , 1 # 0 , the  function g.#f) (T) is well- 

defined fo r  minor values of E (i.e. g(f)(*) E M2(T,) , g ( f ) ( ~ )  = 1) . 



Since the number of nulls of the polynomials gl ( - )  , g2(*) is finite, i t  is possible t o  

select the "shift" E = E' in g2( t  + E )  SO that  the  nulls of g l ( t )  and g2( t  + E )  will not 

coincide f o r  all E E (0 , E'].  Now fo r  each t  E T,, g( ' ) ( t )  + g  ( t  ) and g ( ' ) ( t )  + g ( t  ) 

with E -, + 0.  The sequence g ( c ) ( t  ), g( ' ) ( t )  is equibounded in t  f o r  E E (0 , &'I. 

Therefore (5.12) is t rue.  

I t  is now possible to  demonstrate that  any function g  (m) E M'(T,) , with 

g ( r )  = 1 , 1 ' 1  # O ,  g r ( t ) g ( t )  # O ,  W E T , ,  may be presented in the form 

g(*) = I ' M ( * )  wheredet  M ( t )  $0, W E T , ,  M ( r )  = E .  

I t  may be verified directly that  with 1 given 

satisfies these conditions, namely 

det  M ( t )  = g f ( t )  11' + g z ( t )  12' f 0 .  

Let us now assume tha t  the dimension of Rn is even: n = 2k , k  2 2. Then fol- 

lowing the  scheme fo r  n = 2,  i t  is  possible t o  verify that  i t  suffices t o  calculate the 

infimum in ( 5 . 1 )  (5.12) over  such functions g  (0) = (g . . . . , g  (2k )), 

g ( r )  = 1 , 1 ' 1  f 0 ,  that  g z i - l ( t )  f g Z i ( t )  > 0 ,  V t  E T,, Vi E [ I  , k ] .  

Any function g  ( 0 )  of the  given type may be presented in the  form 

g ( t )  = I '  M ( t )  where the (2k x 2 k )  - dimensional matrix M ( t )  is  block-diagonal: 

be calculated due t o  formula (5.14) where in the place of gl(*) , g2(*) w e  should sub- 

st i tute (gZi  , gz i  (*)), (i = I ,  . . . , k ) .  The function M(* )  belongs t o  the  class 

Mn Xn (T,), M ( T )  = E  and fo r  any t  E T, we have 

M ( t )  = 

k 
d e t M ( t )  = n det Mi( t )  > 0  

i =1 

and each of the matrices Mi ( t  ) , i = 1, . . . , k ,  is (2  x 2 )  - dimensional and may 

Ml(t 0  

0  Mk ( t  
d 

(5.15) 



Assume now that  n is odd: n = 2k + 1.  Then again we may calculate the 

infimum in (5.11), (5.12) over  the class of functions. 

g ('1 = (gl( ') , . , g2k (*) t g2k+ l ( * ) )  Mn (T7) I B ( T )  = 1 

such that 

ggi -1 ( t )  + g & ( t )  > 0 ,  v t  E [ t o  T ]  ; i = 1,.  . . , k ,  

Each of such functions may be presented in the form g ( t  ) = 1 ' M ( t  ) where 

by g z i  -l , gzi (i = 1, . . . , k  ). Obviously 

M ( t ) =  

M ( T )  = E , M ( - )  E M~ Xn (T,) 

and 

* 
M i ( t ) ,  0  .... 0 ,  0 ,  m ( t )  

0  , ( 1  . 0 , 0 , 0 , 
. - .  . . . 9 . .  

0 ,  . . . 0 ,  M k ( t ) ,  0  I 

, 0 ,  . . . 0 ,  0 ,  1 ,  

k 
d e t M ( t )  = det Mi( t )  > 0 

i = 1  

m ( t )  = ( 6 2 k + l ( t )  - l 2k+ i )  l 1 .  

Here Mi ( t )  is  determined similarly to  (5.14) where gl(a) , g 2 ( 4  are to  be substituted 

fo r  all t  E T,. 

In o rder  to  finalize the proof of lemma 5.2 w e  have t o  consider the case when 

n = 1. For n = 1 the class M t X 1  (T,) may be substituted by al l  positive functions 

m (a) E C ;  (T,). However, due to  (2.3) w e  will be able to  confine ourselves to  the  

case when m (m) E c~(T,) .  

A s  before,  le t  C ;  (T,) stand fo r  the set of such functions m ( t ) ,  that  m ( ~ )  = 1; 

m ( t  ) > 0 ;  V t  E T,. W e  also assume that  

0 E xO n n P(O) (5.17) 

where obviously X o  , Y ( s  ) , P ( s )  turn t o  be compact intervals in R'. 

Recall that  in view of (5.12) the function 



where 

W e  shall demonstrate that  

With t  decreasing from the value T ,  denote T* t o  be f i rs t  instant of time where 

m  ( t )  turns t o  zero ( m  ( T * )  = 0) .  Therefore m  (T * )  = 0  , m  ( t )  = 1 and 

Denote 

K ( t ) = m ( t )  f o r 7 ' 5 t  57  

E ( t )  = O  fo r  t o  t  < T *  

In view of (5.17) w e  have 

Hence 

*(l m  (*)) 2 *(l  Gi(*)) 

whatever is the  function m  (*) E C; (T,) 

A number E > 0  being given i t  is  possible f o r  every m(*)  t o  select  a 

6  = 6 ( ~  , m(*))  > 0  such that  the  function m  ,(t) defined as 

m ,  ( t )  = G ( t )  fo r  T *  ( 6 )  5 t  5 T , 

m 6 ( t )  = 6  f o r  t o  s t  s ~ * ( 6 ) ,  

satisfies the inequality 



1 *(L ('1) - *(L m 6(')) 5; E 

Here ~ ~ ( 6 )  is  the f i rs t  instant of time where m ( ~ ~ ( 6 ) )  = 6 with t decreasing from T 

to  ~ * ( 6 ) ,  SO that  ~ ~ ( 0 )  = T*. 

Hence fo r  any m ( 0 )  E c1 (T,) and any E > 0 there  exists a function 

m 6(*) E C: (T,) such that  

*(L m ( 0 ) )  r *(L m 6(@)) - E 

Comparing (5.19) with the obvious relat ion 

inf [+(I m (-)) 1 m (a) E C1 (T,) { S inf I+(L m (a)) I m (-1 E C: (T,) 

w e  ar r i ve  at the equality (5.18). 

Note that  the  class C: (T,) in (5.18) might well be substituted by CL (T,) 

where 

n xn c:, (T,) = IM(a) : /M(-) E C, (T,) ; M(T) = E  , det  M(t) > O  Vt E (T,){ 

From the proof of the  above w e  came t o  the assertion: 

Lemma 5.2 The set X[T] may be described as 

Following the suggestions that  led to  Lemma 2.2 w e  may deduce 

Corollary 5.1 Relation (5.20) is  equivalent to 

P(L / X[TI = inp IP(L I X [ T  I L  (')I) I L  ('1 E cZXn (T,) I . (5.21) 

In o rde r  to  finalize the proof w e  will make use of the  following lemma. 

Lemma 5.3. Assume !Xu{ to  be a variety of convex compact sets that  depend 

upon the index a E A with X = n !Xu ( a E A{ + q5. Denote 

Then 

p(1 !X) = p ' * ( l )  

where p" (1) i s  the Fenchel second conjugate to  ~ ' (1 ) .  



In o the r  words 

f " ( 1 )  = (co f ) ( 1 )  

where (co f )  ( 1 )  stands f o r  the  function whose epigraph i s  t h e  closed convex hull 

f o r  the  epigraph of f  (1 ) (1 E Rn ), [7 ] .  

Applying th is lemma t o  X[T I L  ( + ) I  with L  (-) acting as t h e  parameter  w e  f ind tha t  

P U !  n l x [ ~ I L ( . > l l ~ ( . >  E cZxn (T,>l> = (co h )  ( 1 )  (5.21) 

where 

h(1) = i n f  I &  IX [T IL ( ' ) ] )  IL( - )  E CZXn(T t ) j  (5.22) 

and 

h(1) = p(1 ] X [ T ] )  f o r  1 E A .  

From (5.21) - (5.23) i t  now follows t ha t  

X [ T I  = n I x [ ~ l L ( - > l  IL(9 E c",n(~,>l . 
Indeed, s ince always 

X [ T ]  r X[T L  ( - ) I  , L  (.) E cn Xn (T,) . 
assume tha t  t h e r e  exists a point x  ' = X [ T ]  such t ha t  

X '  E n l x [ ~ i L ( . ) I l L ( . )  E cZXn(~,)j 
Then t h e r e  exists a vector  1 ' t ha t  ensures t he  inequality 

(1 ' ,x '1 > p(18 IXCTI) 

( X [ T ]  being a convex compact set w e  may always assume 1' E A). Hence t h e r e  

exists a vector  1 * E A such t ha t  

~ ( 1 '  i n IX[T IL (.)I iL (-1 E c"," (T,>l> > P ( ~ ' ( X [ T I >  . 
However, th is  is  in contradict ion with (5.23), (5.22). 

Thus (5.21) is  t r u e  and in view of (5.24) Theorem 5.1 i s  now fully proved. More- 

ove r  we have establ ished 

Lemma 5.3. The following equality i s  t r u e  



A di rect  consequence of the relat ions of the above is 

Lemma 5.4. Assume that  in (1.1) the matrix A ( . )  E CF Xn(T). Then 

X [ T I  = n IX<T IL(.>> IL (9 E CF Xn(T)]  . 

6. The V iab le  Domains. 

Consider system (1.1), (1.3) fo r  t E [ s  ,191, with se t  M E comp Rn . 

Def in i t ion  6.1. The viable domain f o r  system (1.1), (1.3) a t  time s i s  the set 

W(s , d )  that  consists of all vectors w E R n  such that 

Z ( ~ ~ , T , W )  c M .  (6.2) 

Using the duality relat ions of convex analysis as given in [2]  i t  is  possible t o  

observe that  

W(s,19) L R- (s ,M( . ) ) ,  V M ( . )  E 

where 

Similar to  52 w e  come t o  

Lemma 5.1. The se t  W ( r , I 9 )  may be determined a s  

Returning t o  equation (3.6) denote 

X- [s ,  IL ( '11 = XL7.) ( S  ,d,M) 

t o  be the cross-section a t  instant s of the set Xj,<.) ( - , 2 9 , M )  of al l  the solutions 

ZL ( t  ,19,z6) to  the inclusion (3.6) that  are generated a t  instant 19 by point z6 E M 

and evolve in backward time until the instant T < I9 , (T  5 t 5 19). Along the 



schemes of 554, 5  i t  is possible t o  a r r i ve  at the  analogy of Theorem 5.1: 

Theorem 6.1. The following relat ions are t rue  

7. The S ta te  Estimation Problem 

Assume inclusion (1.1) ,  (1.2) is considered together with a measurement equa- 

tion 

Y ~ G ( t ) z  + Q ( t ) ,  t o s t  S T ,  (7.1)  

where y  € R m ,  G ( t )  is a continuous matrix and Q ( t )  a continuous multivalued map 

from T, into conv Rm.  

Suppose that  due t o  equations (1.1), (1.2) and (6.1) (that substitutes f o r  (1.3)) 

an "observation" y  ' ( t )  , t E T ,  has appeared. (The function y *  ( t )  is obviously 

generated due t o  equations 

z = A ( t ) z  + u  , y  = G ( t ) z  + #  (7.2)  

by tr ip let  z 0  , u (-) , #(.), where z 0  E x O ,  u ( t  ) E P ( t  ) , # ( t )  E Q ( t  ) and u ( t  ) , # ( t )  

are measurable functions.) 

The estimation problem will consist in specifying the  set X ( . ; y 8 ( . ) )  of all the  

solutions z ( . , t o , z O )  of inclusion (1.1) that  start at t o  from points z0  €9 and 

satisfy both (1.1) and (7.1) fo r  y ( a )  = y  '(.), t o  S t  S T ,  (being therefore consistent 

with both the  system equation (1.1) and the measurement equation (? . I ) ,  

y  (.) = y  * ( a ) ) .  The la t te r  problem then reduces t o  the one of $51 - 4: the  specifica- 

tion of set X [ T ]  and i ts evolution in T where the  set-valued map Y ( t )  of (1.3) 

appears in t he  form 

Y ( t )  = j z : G ( t ) z  E ~ ' ( t ) j  

and 

~ ' ( t )  = ~ ' ( t )  - Q ( t ) .  

This specif ic type of set Y ( t )  may be t reated along the  schemes of the  above. 



The resul ts reduce t o  the  following relations. Consider the inclusion 

denoting i ts solution as 

and taking 

% ( . ) ( t , t O , X )  = u ~ z L ' ( t , t ~ , z O ) z ~  E x 0 ]  

Along the schemes of 482-4 w e  ar r i ve  at the proposition. 

Theorem 7.1. The cross-section X *  [ T I  at time T of the set X ( - ,  y * (.)) of all 

solutions to  the system (1.1), (7.1), y ( t  ) = y * ( t  ) , t  5 t  5 T ,  may be described as 

X *  [ T I  = n I x ; ( ~  ,to.?) I L( . )  E C" Xn (T,) 1 . (7.4) 

Thus if the information on an uncertain t ra jectory  z ( t  ,t o,z O )  of (1.1), (1.2) is 

reduced to  the  knowledge of the function y * ( t  ), t  E [ t  0 , ~ ] ,  then the set X' [ T I  gives 

a "guaranteed" estimate f o r  z [ r ]  = z ( T  ,t o,z O ) .  

Remark From the assumption that  the function ( ( t )  in (7.2) is measurable, i t  

follows that  set ~ ' ( t )  is measurable in t  (with values in comp Rn).  This leads to 

the fact that  the  respect ive set 

Y ( t )  = I z : G ( t ) z  E Q e ( t ) ]  

may be also measurable r a t h e r  than continuous in t  as required by the  assumptions 

fo r  Theorem 5.1. The proof of Theorem 5.1 however allows a modification that  

ensures Theorem 7.1 t o  be t rue.  

The scheme presented h e r e  i s  o ther  than those suggested in e i ther  [2 ]  o r  [ I l l .  
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