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Preface 

A mathematically elaborated modeling method alone cannot develop useful 

models of large-scale systems that  involve human activities. What is needed as in- 

put t o  the  model-building process, besides measurement data, is the knowledge of 

exper ts  in relevant fields. The problem is, then, what types of knowledge should o r  

can be included in the  modeling process and, more important, how do w e  manage 

them. The interactive method of data handling (IMDH) presented in this paper  

develops l inear models of complex systems through recursive interaction with the  

computer, systematically introducing the  exper t 's  knowledge about t he  s t ructure 

of the  underlying system. It should be emphasized that the more one repeats  dialo- 

gues with the  computer, the  more effectively knowledge can be used t o  develop 

and ref ine the  model. 
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TOWARD ADVANCED COMPUTER-ASSISTED MODELING 

X ~ a w a r a ~ i ~ ,  H ~ukawa', 

M. ~yobu', and X ~akano r i~  

1. INTRODUCTION 

One of the difficulties in identifying multivariable, large-scale systems is the 

determination of structural  parameters, i.e., the assumption of the forms of equa- 

tions. In every mathematical modeling context (e.g., Sage, 1977; Beck, 1979; 

Mehra, 1980), the importance of the s t ructure formulation is stressed before 

determination of the system parameters. But great  difficulties are encountered in 

extending the existing methodology t o  ill-structured problems. 

In uncertain environments that  involve experimentation and physical laws, two 

types of approaches can be used to  identify the optimum structure.  One approach 

is  t o  select a desirable s t ructure from a set of candidate s t ructures using certain 

cr i ter ia ,  such as Bayesian comparison (Kashyap, 1977) o r  pattern recognition 

(Vansteenkiste et al., 1979). The second approach is  t o  compound a complex struc- 

tu re  from a combination of simple structures, start ing from a l inear s t ructure 

(Young, 1977) o r  a nonlinear basic function of coupled variables (Ivakhnenko. 
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1968). A doubt, however, remains about the  applicability of these approaches to 

system-determined (Kalman, 1980) problems wherein t he  qualitative aspects tend to 

dominate. 

Data fitting of the  regression type tha t  is often used in econometric modeling 

requi res tr ial-and-error methods in selecting a set of explanatory variables. The 

stepwise or all-subset techniques implemented in a computer reduce the burden on 

human ef for t  t o  some extent. But the  interpretation of the resul ts is sti l l  a la rge 

task because of difficulties in checking the  validity of the  hypothesis testing and in 

giving meaning to regression coefficients. Rethinking of the resultant equations is 

not feasible when the  number of equations is large and the  cause ef fect  relation- 

ships between variables are not known exactly in advance. Moreover, exper ience 

has taught us that  stat ist ical reliabil ity does not ensure applicability. To avoid un- 

necessary complication and operational insignificance (Altman, 1980), st ructura l  

considerations are crucial  even in data fitting of the  regression type. 

A s  f a r  as l inear modeling is concerned, t he re  is t he  idea tha t  identification 

should depend on the  data and only on the  data (Kalman, 1980, 1983). But the  ma- 

jority of pract ical  opinion emphasizes tha t  i t  is difficult to build a model that  does 

not re f lec t  the  outlook and bias of t he  modeler (e.g., Sage, 1977). The tendency 

f o r  pract i t ioners to have doubts about the  mathematics and stat ist ics is undeni- 

able. A la rge range of complexity is methodologically undeveloped in the  sense 

that  nei ther analytical nor  stat ist ical methods are adequate f o r  dealing with the  

systems tha t  occur  in th is range (Klir, 1985). Thus, model building in uncertain en- 

vironments calls fo r  c ra f t  skills (Majone, 1984), where the  word c ra f t  is  used he re  

to descr ibe the  mixture of science and art tha t  is  essential f o r  successful applica- 

tion. 

The m o s t  fascinating way to ref lect  t he  pract ical  knowledge and exper ience of 

analysts and exper ts  on model building is computer-assisted analysis, which can 

develop the i r  ideas and exerc ise the i r  judgment and intuition. Concepts f o r  ad- 

vanced computer-assisted modeling of dif ferent viewpoints are flourishing (e.g., 

Klir, 1979; Oren, 1979; Zeigler, 1984) and the  actual design and implementation of 

interactive modeling systems has become quite act ive (Gelovani and Yurchenko, 

1983; Fedorov et al., 1984), stimulated by t he  rapid development of computers. 

The advance of computer graphics has facil itated the  fu r ther  development of 

computer-assisted modeling. 



The interactive method of data handling (IMDH) presented in th is paper  w a s  

born in such an  atmosphere, through a challenge to duplicate experts '  mental 

models in t he  form of mathematical equations. But the  pract ical  problems possess 

the i r  own character ist ic features and await dif ferent developments. W e  are f a r  

from the  utopia where any kind of model can be  immediately developed with comput- 

er assistance. W e  begin in th is paper  with the  l inear modeling of a system in which 

the  qualitative aspect  is dominant, but f o r  which extensive knowledge and cumulat- 

ed experience are available. There are t h ree  categor ies of models, depending on 

the  use: descript ive models, predictive or forecasting models, and planning models. 

Efforts to develop the methodology of modeling in o rde r  to increase decision- 

making capability have been made by several  authors (e.g., Elzas, 1983; Zeigler, 

1984). Although our  ultimate goal i s  in th is direction, the  present version of IMDH 

is aimed at developing predictive or forecasting models. 

In building a predict ive or forecasting model w e  must separa te  cause from ef- 

fect .  The graph theoret ic approach has been of g rea t  benefit in introducing as- 

symmetric causal dependence, in which the  information as to which variables ap- 

pea r  in which equations is replaced by a directed graph with variables as nodes 

(e.g., Lady, 1981). Although graph theoret ic techniques seem to have played a full 

pa r t  only in t he  structur ing of societal systems (Harary et at., 1965; Roberts, 

1976; Warfield, 1976, 1982; Linstone et at.. 1979; Lendaris, 1980), wide applications 

are also repor ted in several  fields, e.g., model simplification (Lady, 1981; War- 

field, 1981), l inear systems theory (Tao and Hsia, 1982; Reinschke, 1984), and 

economic modeling (Royer, 1980). 

IMDH is a new type of l inear modeling procedure with computer assistance. I t  

requi res that  al l  t he  responsibility f o r  judgments as to the  s t ructure of the  model, 

the goodness of f i t ,  the  o rde r  of the  system, and the  predict ive power should be  at- 

tr ibuted t o  t he  analysts and the  exper ts ,  instead of using stat ist ical o r  information 

theoretical c r i ter ia .  IMDH has t w o  extremely different features from the tradi- 

tional l inear modeling methods. 

First,  i t  uses a self-organization method, instead of the  stepwise or all-subset 

procedures, in selecting explanatory variables, which makes the  modeling time 

considerably shor te r  and tolerates the  scarci ty of data points. The self- 

organization method used he re  is a modified version of the group method of data 

handling (Ivakhnenko, 1968, 1970, 1971; lvakhnenko et al., 1979), that  is  based on 

heurist ic principles of self-organization and rel ies on bioengineering concepts. 



Second, instead of hypothesis testing o r  information theoret ic cr i ter ia  

(Akaike, 1976; Rissanen, 1976) w e  use the  graph theoretical techniques that  a r e ,  

t o  some extent, similar t o  some aspects of interpretive s t ructura l  modeling (War- 

field, 1974). The digraph gives insight into the cause effect relationships present 

in the l inear model. I t  facil itates the interaction between analysts and the comput- 

er and then makes rethinking of the  model equations quite easy. 

IMDH effectively reflects the experts '  knowledge on the model and assists 

analysts and exper ts  t o  modify the  model efficiently. Through the  modeling pro- 

cess IMDH enlightens analysts about the underlying complex system, because the 

process of model building itself is a learning experience. IMDH accepts reactions 

of the  analysts flexibly, and finally finds an  elaborate model useful f o r  the  purpose 

in hand. 

2. YODELING INFOWdATION 

The f i rs t  c ra f t  required is the selection of descriptive variables. Let us write 

as the set of variables chosen by analysts o r  experts.  The se t  X can include non- 

l inear reexpressions o r  time-delayed variables of initial variables. Following the 

traditional usage, w e  use the  term l inear model t o  describe a set of equations 

whose structural  parameters are embedded linearly. Reexpression and time- 

shifting enable us t o  analyze nonlinear relationships and multiple autoregressive 

processes, respectively. 

A rigid assumption is  imposed here  that  the  corresponding data is  complete in 

the sense that  they are screened in advance t o  avoid multicollinearity o r  the  influ- 

ence of outliers. This does not imply that  all the data should be measured abso- 

lutely correctly. Soft observation is allowed to  compensate f o r  lacking o r  extraor-  

dinary data. Hereafter,  w e  use the t e r m  observation instead of measurement. 

meaning that  observation includes data estimated o r  modified by the experts. Let 

us write the observation sequence fo r  the  variable xi as 

and the whole observation table as 



Other modeling information involved is qualitative, i.e., the mental images of 

analysts o r  exper ts ,  among which the pairwise cause effect relationships are fed 

to  the  computer in a matrix form. Let us write C = ( c i j ) ,  i , j  = 1, 2 ,  . . . , m , as an 

incidence matrix that  character izes the  pairwise cause effect relationships. In 

principle, t he  elements of C are defined by 

I 0 if zi never q f fec ts  z j ,  or i = j 
cij = 2 if zi certainly qf fects zj  

1 otherwise 

A basic assumption of our  argument i s  that  much of t he  s t ruc tu re  of the  

underlying system is ambiguous. Because both the  complexity and ambiguity of an 

object depend on the  interests and capabilit ies of the individual. filling in the  in- 

cidence matrix is also a craf t .  But in-depth considerations are not required ini- 

tially, r a the r ,  the  way t o  introduce such relationships should be negative. Here, 

negative means tha t  the  modeler should en te r  into the computer a p a r t  of his 

knowledge only, putting the  0s  and 2s in the  r ight  places. The remaining ambigui- 

t ies are resolved a f t e r  some i terat ive modeling sessions. 

Start ing with th is a priori information, w e  find a set of l inear equations: 

where Xi = X - {zi 1 ,  i = 1, 2 , . . . , m , with the hope that  i t  could descr ibe the 

underlying complex system and be capable of predicting the behavior of t he  sys- 

tem. We say tha t  z j  i s  an  explanatory variable f o r  zi if cry j  + 0 ,  and that  zi i s  an  

explained variable if ay + 0 f o r  at least  one f (+ 0) .  

The modeling sessions are divided into two main stages. The f i r s t  stage is de- 

voted t o  finding a trade-off s t ructure between the  exper ts '  mental models and the  

computer models. The self-organization method is  used t o  obtain l inear equations 

and graph theoret ic techniques are used fo r  interaction. The required human in- 

put i s  knowledge of the  s t ructura l  image of t he  system. This stage includes p a r t  of 

the model verification, because the  modeler should judge whether the model 



behaves, in general as h e  intends. 

The second stage is concerned with judgments about the validity of the  model 

in terms of i ts  explanatory and predictive powers. Prepared materials are residu- 

al plots and predictions. To check the  predict ive power, some of the  original data 

are left unused during the  m o d e l  building. But data concerning the  resul ts of poli- 

c ies not implemented are generally not available, so scenar io analyses are 

prepared. Here, both cumulative exper ience and deep insight into the system are 

required. 

Even proper ly tested models can turn out to be  inapplicable if sudden jumps 

occur  in some variables. The validity of a model of the  black-box type i s  usually 

assured only when the  explanatory variables change within the  data range used in 

the  modeling, having nearly equal correlat ions with each other .  Since any 

mathematical model is fatally tentative, the  modeling sessions in IMDH are endless 

in principle. Al l  of the  modeling knowledges: 

1 X ,  D ,  C ,  computer models, mental images j 

will be refined in modeling sessions tomorrow and so be  different f r o m  those of to- 

day. 

3. MODELING PROCEDURES 

The f i r s t  task of the computer is to select the explanatory variables and esti- 

mate the  coeff icients in each equation using the  information fX,D,  C j . Let us define 

t w o  subsets of & as follows: 

The elements of X: are always chosen as explanatory variables and those for 

are candidates of explanatory variables in x i .  Let us call the set of core vari- 

ables and that  of optional variables, as is usual in stat ist ical terminology. The 

modeler can divide the  observation set D into t w o  sets Db and D, ; the  former is 

used for model building and the  latter for checking the  predictive power. The divi- 

sion can be  done arb i t rar i ly  as long as the number of data points in Db is  enough to 



determine the parameters in the model. 

First, the coefficients in equations of the form 

are estimated by the method of least squares fo r  the variables zi fo r  which the 

core  sets are nonempty. Then, the residuals are calculated fo r  these variables; 

let  us write the residual variables as zi again, noticing that the definite influences 

have already been accounted for.  Finally, the self-organization method is used to  

select additional explanatory variables fo r  the variables zi fo r  which the optional 

sets %are nonempty. The final form of the equations is written as 

f o r  the variables x i ,  with the unions Xf U being nonempty. 

The self-organization method implemented in the computer is a modified ver- 

sion of the group method of data handling proposed by Ivakhnenko (1968) and can 

be  regarded as a specific algorithm of computer art i f icial intelligence. The main 

idea w a s  inspired by the process of crossing and selecting plants t o  obtain the best 

possible hybrid a f t e r  raising several  generations of the plants. W e  have adopted 

this idea in l inear modeling and now explain the self-organization method used 

here. 

Suppose that  ! x i ,  x 2 ,  . . . , x,, 1 is a se t  of candidates of explanatory variables 

fo r  the variable y . The problem is t o  select an optimal subset of explanatory vari- 

ables by which y could be explained satisfactorily in terms of a l inear equation. 

The process consists of several  layers and in each layer new variables are intro- 

duced as hybrids of a pair  of variables from the previous layer. Denote by x t  and 

D: the candidate of explanatory variable and the data s e t  f o r  model building in the 

kth layer,  respectively. The observation set D: is divided fur ther  into the train- 

ing set Dt l  and the testing set 0t2 ; the former is used fo r  model development and 

the la t te r  f o r  selection of the part ial descriptions, i.e., bet ter  hybrids. The algo- 

rithm can be summarized as follows. 



Algor i thm of the  Se l f -Organ iza t ion  Method. 

Step 1. Set  k = 1. 

If p > 1 then go t o  step 2. 

Otherwise estimate the  coefficients of the equation: 

by the  method of least  squares with the data ~t~ . 
Go t o  s tep 6. 

Step 2. Estimate the  coefficients of l inear equations in t he  form: 

using the  training data se t  D t l  and applying the method of least squares,  

where i changes from 1 t o  , C z  , while s moves from 1 t o  p - 1 and t from 

s + I to p. Note tha t  i and the  pa i r  ( s , t )  have one-to-one correspon- 

dence. 

Step 3. Denoting by f f  the  estimated l inear functions, let 

k k k  
yi = f i ( x s , x t )  i =I ,  2 , .  . . , ,Cz 

Calculate the  mean square e r r o r s  between y and the  yis, applying the 

testing data set D t z  . 

Step 4. Let 

if p is even 
if p is  odd 

Select q functions among all of the  5:s so  tha t  the  selected ones provide 

smaller mean square e r r o r s  than the  others.  

If q = 1 go t o  step 6. 

Step 5. Let p = q . Denote again the selected functions by 



Define the hybrid variables f o r  the next layer: 

xf +' = f ~ ( x , " , x ~ )  i = I, 2 , . . . , p 

and use these equations t o  generate new data sets D::' and Dt2" . 
Let k = k +l. Return t o  s tep 2. 

Step 6. Find a function among those obtained in al l  the layers tha t  has the minimum 

mean square e r r o r ;  th is is the  final approximation. Express this final ap- 

proximation using the original variables by successive substitution. 

Obviously, if the  number of candidates p is less than three,  they are chosen 

unconditionally. In o ther  words, if the  number of elements in the  optional set Xf is 

less than th ree ,  these elements are t reated as if they belong t o  the  co re  set . 

From the  pract ical  viewpoint, the  smaller the number of explanatory vari- 

ables is, the bet ter .  In regression o r  time ser ies analysis, the problem of determi- 

nation of the  o r d e r  of the  equation is stimulating and intensive research.  From ou r  

experience, the  self-organization method described he re  chooses a moderate 

number of explanatory variables tha t  a r e ,  for some reason, difficult t o  explain in 

t e r m s  of mathematical terminologies. 

4. STEZUCTURAL ANALYSIS 

Even the exper ts  can hardly tell whether the obtained l inear model is ap- 

propr ia te  o r  not because the  coefficients of a l inear model do not necessarily have 

pract ical  meaning. Therefore, w e  ex t rac t  the  s t ruc tu re  of the l inear model in the 

form of digraphs and show these to the  exper ts  to assist the i r  judgments. 

Let X be the set of variables again and R be a relation on X X X defined such 

that  (x i  , x j )  is  in R if and only if xi is  an  explanatory variable f o r  x j  in the  l inear 

model. W e  introduce a digraph 

where the  elements of X are identified as vert ices and those of R as directed lines. 

The vert ices are represented by points and there  is a directed line, called an  arc, 

heading from xi to  x j  if and only if (x i  , x j )  i s  in R. 



If there  is a path from xi to  z j  , we say z j  is reachable from xi and write 

t, z j  

where the path is a sequence: 

0 ( x i ,  z k  Z k  ' ' ' ' ' (xkt ' Z j ) '  Z j  

If xi k z and z j  k xi , we write 

The digraph GR i s  transitive, i.e., 

if x i  k z j  and z j  t, xk then xi k xk 

Hence the equivalence law holds with respect t o  s, i.e., 

(i) xi g x j  

N 

(ii) xi x j  -+ x j  = xi 

(iii) xi E x j ,  x j E z k  -+ xi E x k  

Let X' be the quotient se t  of X with respect t o  2, i.e., 

We can now define the condensation digraph GC of GR , identifying X' as the 

vertex set.  We draw an a r c  from x ' p  t o  x  ' q  if and only if p f q and, f o r  some ver- 

tices, xi E x  ' p  and x j  E z ' ~  , there  is  an a r c  from xi t o  x j  in GR . Finally, w e  ob- 

tain a skeleton digraph GS, which is a minimum-arc subdigraph of Gc from which 

removal of any a r c  would destroy the reachability present in Gc . W e  show these 

digraphs to  the exper ts  in a session of IMDH and seek modification of the s t ructure 

of the model. 

This process of digraph modeling is carr ied out in the computer by a ser ies of 

matrix operation steps. Many descriptions in the l i terature fo r  obtaining skeleton 

digraphs a r e  very complicated. We show here  simple and efficient algorithms, in- 

cluding transitive closure, pa r t  division, hierarchical ordering, matrix condensa- 

tion, and skeletonizing. Let us use the  same notation R f o r  the  corresponding ma- 

t r ix  to  the relation R ,  defining that  R = ( r i j ) ,  i , j = 1, 2 ,  . . . , m , and 



1 if ( x i s j )  is in the re la t ion R ,  o r  i = j 
0 otherwise. 

An interesting fact used in t he  matrix condensation i s  that  if R is  a reachabil i ty 

matrix, then the  following are equivalent: 

(i) xi E x ,  

(ii) the i t h  row (respective column) and the j t h  row (respective column) a r e  

identical. 

The list of prepared a r r a y s  and the i r  initial values a re :  

R = (r i j ) ,  i , j = 1 , 2 , . . . , m : the given incidence matrix 

S = (sij) : the  skeleton matrix with undefined size n x n 

Q = (qij), qij = rij, i , j = 1 , . . . , m : a dummy matrix 

v = (vi),  vi = i ,  i = 1,  2.. . . , m : the  index set 

a = (ai ) ,  ai = 0, i = 1 , 2. . . . , m : the p a r t  indicator 

b = (bi), bi = 0, i = 1 , 2 , . . . , m : the  level indicator 

c = (ci), ci = 0, i = 1 , 2 ,  . . . , m : the  group indicator 

q = (qi), qi = 0, i = 1 , 2, . . . , m : a dummy vector 

The final values of a r r a y s  are: R becomes the transit ive closure of the  origi- 

nal one and i ts rows and columns are arranged in the hierarchical  order .  Rear- 

ranged variables are stored in the  index set v ,  and a r rays  a ,  b,  and c s to re  the 

parts,  levels, and groups to which the corresponding variables belong, respective- 

ly. The algorithms to develop a digraph model are summarized as follows. 

ALgorithm fir Trans i t i ve  Closure. 

Step 1. S e t i  = 0, s = 0. 

Step 2. Let i = i + 1. Set  j = 0. 

Step 3. Let j = j + 1. Set  t = 0, k = 0. 

Step 4. Let k = k + 1. 

If rU: x qt j  = 1, then let t = 1,  k = m .  

If k < m , then repeat  s tep 4. 

otherwise if t = 1 and rij = 0, then le t  rij = 1, s = 1. 

If j < m , then re tu rn  to step 3, 



otherwise if i < m , then re tu rn  t o  s tep 2, 

otherwise if s = 1, then re tu rn  t o  s tep 1, 

otherwise stop. 

Algorithm for Part Division. 

Step 1. Let qij = maxf r i j t r j i  1, i , j  = 1 , 2 , .  . . , m .  

Step 2. Take the  transit ive closure of Q = (q i j ) .  

Step 3. Set part  = 1. 

Step 4. Let i = i + 1. 

If i > m ,  then go t o  s tep 6, 

otherwise if ai + 0, then repeat  s tep 4,  

otherwise let ai = p a r t ,  and set j = i . 

Step 5. Let j = j + 1. 

If j < m and a j  + 0, then repeat  s tep 5, 

otherwise if qij = 1, then a j  = par t .  

If j < m ,  then repeat  s tep 5, 

otherwise if i < m , thenpart = part  + 1 and re tu rn  t o  s tep 4. 

Step 6. Let part  = maxt q { .  

If part  = 1, then stop, otherwise set s = m .  

Step 7. Let s = s - 1. Set  t = 0. 

Step 8. Let t = t + 1. 

If at > at then 

swap a t  and at , swap vt and vt , 

swap r t j  andrt+l , j ,  j = 1 ,  2 . .  . . , m ,  

swap r j t  andrjtt j = 1 ,  2 ,..., m .  

If t < s ,  then repeat  s tep 8, 

otherwise if s > 1, then re tu rn  t o  s tep 7, 

otherwise stop. 

Algorithm for Level Division. 

Step 1. Set  Level = 0, part = 0, t = 0. 



Step 2. Let part =part  + 1. S e t s  = t + 1, c = 0, d = 0. 

Step 3. Let t = t + 1. 

If at = p a r t ,  then le t  c = c + 1, 

and if t < m ,  then repeat  step 3. 

If at  # p a r t ,  then le t  t = t -1. 

Set h = t .  

Step 4. Let LeveL = LeveL + 1. Set  i = s - 1. 

Step 5. Let i = i + 1. 

If i > t , then go to  step 9, 

otherwise if bi # 0, then repeat  step 5, 

otherwise se t  r = 0, a = 0, j = s - 1. 

Step 6. Let j = j + 1. 

If j > t , then go to  s tep 7, 

otherwise if bj  # 0, then repeat  step 6, 

otherwise let  r = r + rij and a = a + rij X rji . 
If j < t , then repeat  step 6. 

Step 7. If r = a ,  then le t  d = d + 1, qd = i .  
If i < t , then re tu rn  to  step 5, otherwise set L = 0. 

Step 8. L e t  L = L + 1. 

If bQl = 0, then le t  bQ1 = LeveL. 

If L < d ,  then repeat  step 8, 

otherwise if d < c , then re tu rn  to  step 4. 

Step 9. Let h = h - 1. Set  k = s - 1. 

Step 10. L e t  k = k + 1. 

If bk > bk+l ,  then swap bk and bk+l , 

swap ak and ak , swap vk and vk , 

swap rkj and rk + l , j ,  j = 1 , 2, . . . . m , 

swap rjk  and^^,^+^, j = 1 ,  2,. . . , m .  

If k < h , then repeat  s tep 10, 

otherwise if h > s, then re tu rn  t o  step 9, 

otherwise if t < m ,  then return t o  s tep 2, 

otherwise stop. 



Algorithm for Group Division. 

Step 1. Let group = 1, level = 0, t  = 0. 

Step 2. Let level = level + 1. Set  s  = t  + 1. 

Step 3. L e t t  = t  + 1. 

If t  < m and bt = level ,  then repeat  step 3. 

If bt + level ,  then let  t  = t  - 1. 

Set  h = t .  

Step 4. Set  i = s  - 1. 

Step 5.  L e t i  = i + 1. 

If i > t  , then go to  step 8, 

otherwise if ci + 0, then repeat  step 5 ,  

otherwise se t  ci = group ,  j = i . 

Step 6. Let j = j + 1. 

If j > t  then re tu rn  t o  step 5 ,  

otherwise if c j  + 0, then repeat  step 6, 

otherwise se t  q = 0, c  = 0.  

Step 7.  Let q = q + 1. 

If rip = r j q ,  then c  = c  + 1. 

If q < m ,  then repeat  s tep 7, 

otherwise if c  = m , then c j  = group.  

If j < t  , then return to  step 6, 

otherwise if i < t  , then group = group + 1 and return t o  step 5.  

Step 8. Let h = h - 1. Set  k = s  - 1. 

Step 9. Let k = k + 1. 

If ck > ck then 

swap ck and ck , swap bk and bk , 

swap ak and ak , swap vk  and vk , 

swap r k j  and rk  j ,  j = 1 , 2 , . . . , m , 

swap r j k  andr j ,k+ l ,  j = 1, 2 , .  . . , m .  

If k < h ,  then repeat  step 9, 

otherwise if h > s  , then re tu rn  to  step 8, 

otherwise if t < m ,  then re tu rn  t o  step 2, 

otherwise stop. 



ALgorithm f i r  Condensation and  Skeletonizing. 

Step  1. S e t  q l  = 1, i = 1. 

Step  2. Let i = i + 1. 

If ci = ci t hen  l e t  qi = 0, otherwise le t  qi = 1. 

If i < m ,  then r e p e a t  s tep  2. 

Step  3. Let n = c,. S e t  i = 0, k = 0 .  

Step  4. Let i = i + 1. 

If i > m ,  then go to s tep  6, 

otherwise if qi = 0, then repea t  s tep  4, 

otherwise le t  k = k + 1 and set h = 0, j = 0. 

Step  5. Let j = j + 1. 

If j > m , then r e t u r n  t o  s tep  4,  

otherwise if q j  = 0, then repea t  s tep  5, 

otherwise let h = h + 1 .  

If k # h , then l e t  skh = r i j  . 
If j < m , then r e p e a t  s tep  5, 

otherwise if i < m , then re tu rn  t o  s t ep  4. 

Step 6. S e t  i = 0. 

Step? .  L e t i  = i + 1. Set  j = i .  

Step  8 .  Let j = j + 1. S e t  k = j. 

Step  9. Let k = k + 1. 

If s j i  x sk j  = 1, then l e t  ski = 0. 

If k < n , then r e p e a t  s tep  9, 

otherwise if j < n - 1, then re tu rn  t o  s tep  8, 

otherwise if i < n - 2. then re tu rn  t o  s tep  7,  

otherwise stop.  

The skeleton digraph can b e  drawn as follows. F i rs t  w e  write elements of t h e  

group indicator c one by one in a c i rc le  from top to bottom, excep t  f o r  t h e  same 

elements as appeared  before.  Then w e  draw an  arc between t h e  c i r c les  if t h e  

corresponding en t r y  of t h e  skeleton matr ix i s  1. Finally, w e  amend t h e  format of 

t he  h ie ra rchy  t o  faci l i ta te interpretat ion of t h e  skeleton. 



5. INTERACTIVE MODELING 

Here w e  summarize the  whole process of IMDH. A s  mentioned already, the 

modeling sessions consist of two main stages. The f i rs t  stage i s  devoted t o  finding a 

trade-off s t ruc tu re  between the computer models and the  experts '  mental models. 

The dialogue continues until the  cause effect relat ion in the  computer model be- 

comes satisfactory. The second stage is related t o  judgments of the  explanatory 

and predict ive powers of the  computer model obtained in t he  f i r s t  stage. If the 

model is not satisfactory, then the modeling process is repeated from the  begin- 

ning. The whole process is schematized in Figure 1 and the dialogues are summar- 

ized as follows. 

The F i r s t  Stage Dialogue. 

Step 1. (Ezper t )  edits the  set of descript ive system variables and p repares  the  

observation table. 

Step 2. (Expert )  introduces the  cause effect relationships between variables. 

Step 3. (Computer)  finds a l inear model, i.e., a set of l inear equations using the  

self-organization method. 

Step 4. (Computer)  displays the  cause ef fect  relationships embedded in the  l inear 

model in terms of hierarchical  digraphs. 

Step 5. (Expert )  amends the  digraph by adding o r  removing arcs in i t ,  if neces- 

sary .  If the  amendments cause changes in the cause effect relationships in 

the  l inear model, then the  modeling session re tu rns  t o  s tep 2. otherwise i t  

proceeds t o  t he  second stage dialogue. 

The Second Stage Dialogue. 

Step 6. (Computer) provides residual plots and predictions, and also assists the  

scenar io analysis. 

Step 7. (Exper t )  looks f o r  the equations that  have weak explanatory and predic- 

tive powers. If t he re  are such equations, the  modeling session re tu rns  t o  

the  beginning. 



There are several  points that  are fascinating in computer-assisted modeling 

and require sophisticated computer software fo r  effective interaction. They in- 

clude: 

(1) Data screening and transformation of variables. 

(2) Introduction of the  initial version of cause ef fect  relationships. 

(3) Format of and substantial amendments to  digraphs. 

(4) Reflection of amendments in the  digraphs on the  incidence matrix. 

(5) Graphic displays of the  residuals and predictions. 

(6) Interactive scenario analysis. 

W e  are now developing the  computer software fo r  the method proposed in th is 

paper. The detailed treatments of these points are described in a separate publi- 

cation (Nakamori, et at., 1985). 

A s  an important application of IMDH, w e  have been engaged in a regional 

economic-forecasting model f o r  Kyoto, Japan. Here we present a brief summary of 

a resul t  obtained using IMDH. The selected variables a r e  shown in Table 1. Be- 

sides these original variables, one- and two-year time-delayed variables are taken 

into consideration. After four-time repetitions of the process of IMDH, we and the 

exper ts  reached a final agreement on the incidence matrix, as shown in Table 2, 

where the time-delayed variables are assumed to  have the same dependencies as 

the  original ones. From this matrix the forecasting model w a s  obtained, as shown 

in Table 3, and the corresponding digraph is shown in Figure 2. 

The data used in the model is from 1960 and 1976 and the predictions of the 

obtained model a r e  summarized in Table 4. This resul t  i s  fairly satisfactory from 

the viewpoint of the consumed time f o r  modeling, which w a s  about 27 hours, includ- 

ing calculations and discussions. Generally, i t  is  very difficult t o  modify a large- 

scale model once obtained because of the cost and time. IMDH overcomes this diffi- 

culty. 



OBSERVATION TABLE RELATIONSHIPS 

LINEAR MODELING 0 

I RES I DUAL PLOTS. PRED I CT I ONS , SCENAR 10 ANALYS I S I 

1 yes 

Figure 1 .  Structure of the i n t e r a c t i v e  method of data handling. 



Table 1. Selected variables in modeling. 

The population in Kyoto City 
Little age (age: 0-14) 
Productive age (age: 15-64) 
Old age (age: 65- 
Birth 
Daytime population of the primary industry 
Daytime population of the secondary industry 
Daytime population of the tertiary industry 
Usual population of the primary industry 
Usual population of the secondary industry 
Usual population of the tertiary industry 

1 1 .  The population within Kyoto zone (except Kyoto City) 
11.LAOU Little age out of Kyoto City (age: 0-14) 
12.PAOU Productive age out of Kyoto City (age: 15-64) 
13.OAOU Old age out of Kyoto City (age: 65- 
14.BIOU Birth out of Kyoto City 
15.DPOUl Daytime population of the primary industry out of 

Kyoto City 
16.DPOU2 Daytime population of the secondary industry out of 

Kyoto City 
17.DPOU3 Daytime population of the tertiary industry out of 

Kyoto City 
18.UPOUl Usual population of the primary industry out of Kyoto 

City 
19.UPOU2 Usual population of the secondary industry out of 

Kyoto City 
20.UPOU3 Usual population of the tertiary industry out of 

Kyoto City 

1 1 1 .  The industries 
(Primary industry) 
21.PI Primary industry 
(Secondary industry) 
22. CON Construction industry 
23 .TEX Textile industry 
24.MAC Machine and metalworking industry 
25.OTSE Other industry 
26.MIN Mining industry 
(Tertiary industry) 
27. WHO Wholesale trade 
28.RET Retail trade 
29. SER Service 
30. PUB Public service 
31 .OTER Others 

0 
32. COL Commercial 
33. INL I ndus try 
34. HOUL Hous i ng 
35. OTL Others 

V. The others 
36.CIN Civil income 
37.GAP General accounts of Kyoto prefecture 
38. SAP Special accounts of Kyoto prefecture 
39. GAC General accounts 
40. SAC Special accounts 
41 .SIGH Sightseer 
42.ROAR Road area 



Tab le  2. 

1 1 .  LAOU 
12. PAOU 
13.OAOU 
14.BIOU 
15.DPOUl 

26.MIN 
27.WHO 
28. RET 
29. SER 
30. PUB 

3 1 . OTER 
32 .COL 
33.INL 
34.HOUL 
35. OTL 

36.CIN 
37.GAP 
38. SAP 
39.GAC 
40. SAC 

41 .SIGH 
42. ROAR 

The  incidence matr ix  just before the f inal session. 



Table 3. A regional economic forecasting model using IMDH. 

PAOU) - I 
1.5125(UPOU2)-I-0.0092(DPOU2) 
DPOU2)-2-1.8641(DPOU2)-2 
0.5823(UPOU3)-I-0.0549(DPOU3) 
8(DPOU3)-1+0.1079(DPOU3)-2+0. 
1.0062(DPOU1)-1+1.71O6~UPOU1) 
DPOU3)-2+0.2951(DPOU3)-1 
3.7767(UPOU2)-I-1.9758(DPOU2) 
UPOU2)-2-0.0001(BIOU)-1 
1.2461(UPOU3)-i-0.2813(OAOU)- 
0.4257(GAP)-1+0.3160(PI)-i+O. 
GAC) - I 
.7281(HOUL)-2+12.0319(INL)-2- 
3.8366(UPOU3)-1+0.2085(PAOU)- 
.6142(DPOU3)-1+0.2901(TEX)-1 
2.9858(INL)-2+0.2786(1NL)-i+O 
CON)-1+0.9670(ROAR)-1 
2.0803(CIN)-1-1.4501(CIN)-2+0 
CON) - :, 



L e v e  1 

L e v e  1 

L e v e  1 

L e v e  1 

L e v e  1 

Leve l  

L e v e  1 

Leve l  

L e v e  1 

L e v e  1 

F i g u r e  2. T h e  s k e l e t o n  d i g r a p h  c o r r e s p o n d i n g  to the inc idence  mat r ix .  
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Table 4 .  Economic forecasting by the obtained model. 

 ate of Growth(%) ( Pa;i7;ecords Forecasts 
Year 1976  1 1 9 7 7  1 9 7 8  1979  

Pure production 
Primary industry 
Secondary industry 

Manufacturing 
T E X  
M A C 
O T S E  

C O N  
M I N  

Tertiary industry 
W H O  
R E T  
S E R  1 ~ o m ~ o n e n  t Rat i o ( %  Past records Forecasts 

Yea: -976 1 1977- 

1 pure product i on 
Primary industry 
Secondary industry 
Manufacturing 

T E X 
M A C 
O T S E  

C O N  

1 Amount (lO6yen) 1 Past records Forecasts 
Year 1975  1 9 7 6  1 1 9 7 7  1 9 7 8  

1 0 0 . 0  
0 . 4  

3 4 . 6  
2 8 . 6  

8 . 8  
8 . 6  

1 1 . 2  
6 . 0  

M I N  
Tertiary industry 

W H O  
R E T  
S E R  

Pure production 
Primary industry 
Secondary industry 

I Manufacturing 
T E X  
M A C  
O T S E  

C O N  
M I N  

Tertiary industry 
W H O  
R E T  
S E R  

0 . 0  
6 5 . 0  
2 0 . 3  

6 . 9  
3 7 . 8  



6. CONCLUSION 

IMDH starts with a belief in the  prepared observation and, a f t e r  i terat ive 

modeling sessions, i t  develops and ref ines both the  computer models and the  human 

mental models. Computer models can be obtained even when the  amount of data is 

scarce,  owing t o  the  self-organization method, and easily modified with the  assis- 

tance of graph-theoretic techniques. 

Because the  modeling can be  done at low cost and in a shor t  time and because 

this method intends t o  develop tentative models, a variety of applications is ex- 

pected. Actually, w e  are now engaging in the development of regional economic 

forecasting models of Kyoto. Japan, as presented briefly in the previous section. 

Also, as a collaborative work with the  IIASA Regional Water Policy Pro ject  (Pro- 

ject Leader: S.A. Orlovski) and i ts successive project  (Decision Support  Systems 

fo r  Managing Large International Rivers), w e  are developing and elaborating a 

computer system t o  obtain water resources models usable in decision support sys- 

tems. 
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