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Preface

A mathematically elaborated modeling method alone cannot develop useful
models of large-scale systems that involve human activities. What is needed as in-
put to the model-building process, besides measurement data, is the knowledge of
experts in relevant fields. The problem is, then, what types of knowledge should or
can be included in the modeling process and, more important, how do we manage
them. The interactive method of data handling (IMDH) presented in this paper
develops linear models of complex systems through recursive interaction with the
computer, systematically introducing the expert's knowledge about the structure
of the underlying system. It should be emphasized that the more one repeats dialo-
gues with the computer, the more effectively knowledge can be used to develop

and refine the model.
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TOWARD ADVANCED COMPUTER-ASSISTED MODELING

Y. Sa.wa.ra.giz, H Fulcawaz,
M. Ryobu3, and Y. Nakamori?

1. INTRODUCTION

One of the difficulties in identifying multivariable, large-scale systems is the
determination of structural parameters, i.e., the assumption of the forms of equa-
tions. In every mathematical modeling context (e.g., Sage, 1977; Beck, 1979;
Mehra, 1980), the importance of the structure formulation is stressed before
determination of the system parameters. But great difficulties are encountered in

extending the existing methodology to ill-structured problems.

In uncertain environments that involve experimentation and physical laws, two
types of approaches can be used to identify the optimum structure. One approach
is to select a desirable structure from a set of candidate structures using certain
criteria, such as Bayesian comparison (Kashyap, 1977) or pattern recognition
(Vansteenkiste et al., 1979). The second approach is to compound a complex struc-
ture from a combination of simple structures, starting from a linear structure

(Young, 1977) or a nonlinear basic function of coupled variables (Ivakhnenko,
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1968). A doubt, however, remains about the applicability of these approaches to
system-determined (Kalman, 1980) problems wherein the qualitative aspects tend to

dominate.

Data fitting of the regression type that is often used in econometric modeling
requires trial-and-error methods in selecting a set of explanatory variables. The
stepwise or all-subset techniques implemented in a computer reduce the burden on
human effort to some extent. But the interpretation of the results is still a large
task because of difficulties in checking the validity of the hypothesis testing and in
giving meaning to regression coefficients. Rethinking of the resultant equations is
not feasible when the number of equations is large and the cause effect relation-
ships between variables are not known exactly in advance. Moreover, experience
has taught us that statistical reliability does not ensure applicability. To avoid un-
necessary complication and operational insignificance (Altman, 1980), structural

considerations are crucial even in data fitting of the regression type.

As far as linear modeling is concerned, there is the idea that identification
should depend on the data and only on the data (Kalman, 1980, 1983). But the ma-
jority of practical opinion emphasizes that it is difficult to build a model that does
not reflect the outlook and bias of the modeler (e.g., Sage, 1977). The tendency
for practitioners to have doubts about the mathematics and statistics is undeni-
able. A large range of complexity is methodologically undeveloped in the sense
that neither analytical nor statistical methods are adequate for dealing with the
systems that occur in this range (Klir, 1985). Thus, model building in uncertain en-
vironments calls for craft skills (Majone, 1984), where the word craft is used here
to describe the mixture of science and art that is essential for successful applica-

tion.

The most fascinating way to reflect the practical knowledge and experience of
analysts and experts on model building is computer-assisted analysis, which can
develop their ideas and exercise their judgment and intuition. Concepts for ad-
vanced computer-assisted modeling of different viewpoints are flourishing (e.g.,
Klir, 1979; Oren, 1979; Zeigler, 1984) and the actual design and implementation of
interactive modeling systems has become quite active (Gelovani and Yurchenko,
1983; Fedorov et al., 1984), stimulated by the rapid development of computers.
The advance of computer graphics has facilitated the further development of

computer-assisted modeling.
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The interactive method of data handling (IMDH) presented in this paper was
born in such an atmosphere, through a challenge to duplicate experts’ mental
models in the form of mathematical equations. But the practical problems possess
their own characteristic features and await different developments. We are far
from the utopia where any kind of model can be immediately developed with comput-
er assistance. We begin in this paper with the linear modeling of a system in which
the qualitative aspect is dominant, but for which extensive knowledge and cumulat-
ed experience are available. There are three categories of models, depending on
the use: descriptive models, predictive or forecasting models, and planning models.
Efforts to develop the methodology of modeling in order to increase decision-
making capability have been made by several authors (e.g., Elzas, 1983; Zeigler,
1984). Although our ultimate goal is in this direction, the present version of IMDH

is aimed at developing predictive or forecasting models.

In building a predictive or forecasting model we must separate cause from ef-
fect. The graph theoretic approach has been of great benefit in introducing as-
symmetric causal dependence, in which the information as to which variables ap-
pear in which equations is replaced by a directed graph with variables as nodes
(e.g., Lady, 1981). Although graph theoretic t.echniqqes seem to have played a full
part only in the structuring of societal systems (Harary et al., 1965; Roberts,
1976; Warfield, 1976, 1982; Linstone et al., 1979; Lendaris, 1980), wide applications
are also reported in several fields, e.g., model simplification (Lady, 1981; War-
field, 1981), linear systems theory (Tao and Hsia, 1982; Reinschke, 1984), and

economic modeling (Royer, 1980).

IMDH is a new type of linear modeling procedure with computer assistance. It
requires that all the responsibility for judgments as to the structure of the model,
the goodness of fit, the order of the system, and the predictive power should be at-
tributed to the analysts and the experts, instead of using statistical or information
theoretical criteria. IMDH has two extremely different features from the tradi-

tional linear modeling methods.

First, it uses a self-organization method, instead of the stepwise or all-subset
procedures, in selecting explanatory variables, which makes the modeling time
considerably shorter and tolerates the scarcity of data points. The self-
organization method used here is a modified version of the group method of data
handling (Ivakhnenko, 1968, 1970, 1971; Ivakhnenko et al., 1979), that is based on

heuristic principles of self-organization and relies on bioengineering concepts.
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Second, instead of hypothesis testing or information theoretic criteria
(Akaike, 1976; Rissanen, 1976) we use the graph theoretical techniques that are,
to some extent, similar to some aspects of interpretive structural modeling (War-
field, 1974). The digraph gives insight into the cause effect relationships present
in the linear model. It facilitates the interaction between analysts and the comput-

er and then makes rethinking of the model equations quite easy.

IMDH effectively reflects the experts’ knowledge on the model and assists
analysts and experts to modify the model efficiently. Through the modeling pro-
cess IMDH enlightens analysts about the underlying complex system, because the
process of model building itself is a learning experience. IMDH accepts reactions
of the analysts flexibly, and finally finds an elaborate model useful for the purpose

in hand.

2. MODELING INFORMATION

The first craft required is the selection of descriptive variables. Let us write

X=lzZa,..., Ty |

as the set of variables chosen by analysts or experts. The set X can include non-
linear reexpressions or time-delayed variables of initial variables. Following the
traditional usage, we use the term linear model to describe a set of equations
whose structural parameters are embedded linearly. Reexpression and time-
shifting enable us to analyze nonlinear relationships and multiple autoregressive

processes, respectively.

A rigid assumption is imposed here that the corresponding data is complete in
the sense that they are screened in advance to avoid multicollinearity or the influ-
ence of outliers. This does not imply that all the data should be measured abso-
lutely correctly. Soft observation is allowed to compensate for lacking or extraor-
dinary data. Hereafter, we use the term observation instead of measurement,
meaning that observation includes data estimated or modified by the experts. Let

us write the observation sequence for the variable z; as

Dy =col(d;q,d45,...,d¢n ) ©=1,2,..., m

and the whole observation table as
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D=(DyDy,...,Dn)-

Other modeling information involved is qualitative, i.e., the mental images of
analysts or experts, among which the pairwise cause effect relationships are fed
to the computer in a matrix form. Let us write C = (cu). i.J=1,2,..., m,asan
incidence matrix that characterizes the pairwise cause effect relationships. In

principle, the elements of C are defined by

0 if x; never affects z;, or i=7
cyy = 12 if z; certainly affects z,

1 otherwise

A basic assumption of our argument is that much of the structure of the
underlying system is ambiguous. Because both the complexity and ambiguity of an
object depend on the interests and capabilities of the individual, filling in the in-
cidence matrix is also a craft. But in-depth considerations are not required ini-
tially, rather, the way to introduce such relationships should be negative. Here,
negative means that the modeler should enter into the computer a part of his
knowledge only, putting the 0s and 2s in the right places. The remaining ambigui-

ties are resolved after some iterative modeling sessions.

Starting with this a priori information, we find a set of linear equations:

Ty =a0+ )Y ayz;, i=12,...,m
TyEX

where X; =X — {z;§,1 =1,2,..., m, with the hope that it could describe the
underlying complex system and be capable of predicting the behavior of the sys-
tem. We say that z, is an explanatory variable for z; if @y # 0, and that z; is an

explained variable if ay # 0 for at least one j(#0).

The modeling sessions are divided into two main stages. The first stage is de-~
voted to finding a trade-off structure between the experts' mental models and the
computer models. The self-organization method is used to obtain linear equations
and graph theoretic techniques are used for interaction. The required human in-
put is knowledge of the structural image of the system. This stage includes part of

the model verification, because the modeler should judge whether the model



behaves, in general as he intends.

The second stage is concerned with judgments about the validity of the model
in terms of its explanatory and predictive powers. Prepared materials are residu-
al plots and predictions. To check the predictive power, some of the original data
are left unused during the model building. But data concerning the results of poli-
cies not implemented are generally not available, so scenario analyses are
prepared. Here, both cumulative experience and deep insight into the system are
required.

Even properly tested models can turn out to be inapplicable if sudden jumps
occur in some variables. The validity of a model of f.he black-box type is usually
assured only when the explanatory variables change within the data range used in
the modeling, having nearly equal correlations with each other. Since any
mathematical model is fatally tentative, the modeling sessions in IMDH are endless

in principle. All of the modeling knowledges:

{ X, D, C, computer models, mental images |

will be refined in modeling sessions tomorrow and so be different from those of to-

day.

3. MODELING PROCEDURES

The first task of the computer is to select the explanatory variables and esti-
mate the coefficients in each equation using the information {X,D,C{. Let us define

two subsets of X; as follows:
Xf=1lz;:icy=2}4

The elements of X.f are always chosen as explanatory variables and those for Xf
are candidates of explanatory variables in ;. Let us call Xf the set of core vari-
ables and X that of optional variables, as is usual in statistical terminology. The
modeler can divide the observation set D into two sets D, and D, ; the former is

used for model building and the latter for checking the predictive power. The divi-

sion can be done arbitrarily as long as the number of data points in D, is enough to



determine the parameters in the model.

First, the coefficients in equations of the form

Ty =agt Xy
IjEXf

are estimated by the method of least squares for the variables z; for which the
core sets Xf are nonempty. Then, the residuals are calculated for these variables;
let us write the residual variables as z; again, noticing that the definite influences
have already been accounted for. Finally, the self-organization method is used to
select additional explanatory variables for the variables z; for which the optional

sets Xf are nonempty. The final form of the equations is written as

Ty =aot+ Y oayz, + Y ey

for the variables z,, with the unions X} () X7 being nonempty.

The self-organization method implemented in the computer is a modified ver-
sion of the group method of data handling proposed by Ivakhnenko (1968) and can
be regarded as a specific algorithm of computer artificial intelligence. The main
idea was inspired by the process of crossing and selecting plants to obtain the best
possible hybrid after raising several generations of the plants. We have adopted
this idea in linear modeling and now explain the self-organization method used

here.

Suppose that ixl. To,eon, zpi is a set of candidates of explanatory variables
for the variable ¥v. The problem is to select an optimal subset of explanatory vari-
ables by which ¥ could be explained satisfactorily in terms of a linear equation.
The process consists of several layers and in each layer new variables are intro-
duced as hybrids of a pair of variables from the previous layer. Denote by :cf and
le the candidate of explanatory variable and the data set for model building in the
kth layer, respectively. The observation set Dg is divided further into the train-
ing set D{fl and the testing set D{fz ; the former is used for model development and
the latter for selection of the partial descriptions, i.e., better hybrids. The algo-

rithm can be summarized as follows.



-8 -

Algorithm of the Self~Organization Method.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Setk = 1.
If » > 1 then go to step 2.

Otherwise estimate the coefficients of the equation:

v =a,0+a.1:1

by the method of least squares with the data Dbll .
Go to step 6.

Estimate the coefficients of linear equations in the form:

Y = ay0 + 0y 2 + aypzf

using the training data set D{fl and applying the method of least squares,
where ¢ changes from 1 to ,,C,, while s moves from 1 to p —1 and ¢ from
s +1 to p. Note that i and the pair (s.t) have one-to-one correspon-

dence.

Denoting by f f the estimated linear functions, let

y, =fi@kf) i=1.2,..., ¢

Calculate the mean square errors between y and the y;s, applying the

testing data set Df, .
Let

n/2 if p is even
? =1 (p+1)/2 if p isodd

Select ¢ functions among all of the j’fs so that the selected ones provide
smaller mean square errors than the others.

If ¢ =1 go to step 6.

Let o = ¢. Denote again the selected functions by



-9-

Define the hybrid variables for the next layer:

zk*l = rh(zkzf) i=1,2,...,p

and use these equations to generate new data sets Dglﬂ and D‘fg 1

Let £ =k +1. Return to step 2.

Step 6. Find a function among those obtained in all the layers that has the minimum
mean square error; this is the final approximation. Express this final ap-

proximation using the original variables by successive substitution.

Obviously, if the number of candidates p is less than three, they are chosen
unconditionally. In other words, if the number of elements in the optional set X is

less than three, these elements are treated as if they belong to the core set Xf .

From the practical viewpoint, the smaller the number of explanatory vari-
ables is, the better. In regression or time series analysis, the problem of determi-
nation of the order of the equation is stimulating and intensive research. From our
experience, the self-organization method described here chooses a moderate
number of explanatory variables that are, for some reason, difficult to explain in

terms of mathematical terminologies.

4. STRUCTURAL ANALYSIS

Even the experts can hardly tell whether the obtained linear model is ap-
propriate or not because the coefficients of a linear model do not necessarily have
practical meaning. Therefore, we extract the structure of the linear model in the

form of digraphs and show these to the experts to assist their judgments.
Let X be the set of variables again and R be a relation on X X X defined such
that (z; ,xj) is in R if and only if z; is an explanatory variable for z; in the linear

model. We introduce a digraph

Ggr=(X,R)

where the elements of X are identified as vertices and those of R as directed lines.
The vertices are represented by points and there is a directed line, called an arc,

heading from z; to z; if and only if (z; .z:j) isin R.
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If there is a path from z; to z, , we say z; is reachable from z; and write

z,bH z;
where the path is a sequence:
z, (x0T, ), Ty oo (zg, Ty Ty
Ifz, » z;andz; » z, , we write
zi —ZJ

The digraph Gy is transitive, i.e.,
if z; » z; and z; b z, then z;b z,

Hence the equivalence law holds with respect to &, i.e.,

i) =z 2z

(ii) =z 'Exj -z =z,

(iii) =z 'Ez:j, z; 2z, - =z =z,

Let X’ be the quotient set of X with respect to =, i.e.,

X'=X/ZT={z'y,2'5,.... %'y}, m sm

We can now define the condensation digraph G, of Gp , identifying X’ as the

vertex set. We draw an arc from z 'p toz’, if and only if p # ¢ and, for some ver-

q

tices, z; € ', and z; € z’ there is an arc from z; to x4 in G . Finally, we ob-

p g’
tain a skeleton digraph Gg, which is a minimum-arc subdigraph of G, from which
removal of any arc would destroy the reachability present in G, . We show these
digraphs to the experts in a session of IMDH and seek modification of the structure

of the model.

This process of digraph modeling is carried out in the computer by a series of
matrix operation steps. Many descriptions in the literature for obtaining skeleton
digraphs are very complicated. We show here simple and efficient algorithms, in-
cluding transitive closure, part division, hierarchical ordering, matrix condensa-
tion, and skeletonizing. Let us use the same notation R for the corresponding ma-

trix to the relation &, defining that £ = (r,u), i1,7=1,2,..., m,and
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'1 if (z4.25) is in the relation R,or i =j
T35 = (0 otherwise.

An interesting fact used in the matrix condensation is that if R is a reachability

matrix, then the following are equivalent.:

i) =, 'E:cj

(ii) the ith row (respective column) and the jth row (respective column) are
identical.

The list of prepared arrays and their initial values are:

R = ("tj)- 1,7=1,2,..., m:thegiven incidence matrix

S = (stj) : the skeleton matrix with undefined size n xn

Q@ =(g44) @45 =Ty, ¢, J =1,..., m :adummy matrix
v =(vy), v, =1, 1=1,2,..., m :theindex set

a =(;),a; =0 7=1,2,..., m:the part indicator
b=(;).5;=0,1=1,2,..., m :thelevel indicator
c=(y)c; =0 1=1,2,..., m:the group indicator
g =(g).9,=0,%¢=1,2,..., m:adummy vector

The final values of arrays are: R becomes the transitive closure of the origi-
nal one and its rows and columns are arranged in the hierarchical order. Rear-
ranged variables are stored in the index set v, and arrays a, b, and ¢ store the
parts, levels, and groups to which the corresponding variables belong, respective-

ly. The algorithms to develop a digraph model are summarized as follows.

Algorithm for Transitive Closure.
Step 1. Seti =0, s =0.
Step2. Leti =i +1. Setj =0.
Step3. Letj =5 + 1. Sett =0,k =0.
Step 4. Letk =k + 1.
If 7y X qgy =1, thenlett =1,k =m.
If « <m, then repeat step 4,
otherwise if ¢ =1and ry; =0, thenlet ry; =1, s =1.

If 7 <m, then return to step 3,
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otherwise if i < m, then return to step 2,
otherwise if s = 1, then return to step 1,

otherwise stop.

Algorithm for Part Division.
Step 1. Let g4 = max} Tij Ti i =1,2,..., m.
Step 2. Take the transitive closure of @ = (qU).

Step 3. Set pari =1.

Step 4. Leti =1 + 1.

If i > m, then go to step 6,

otherwise if a; # 0, then repeat step 4,

otherwise let a; = part, andset j =1,
Step 5. Letj =7 + 1.

If 7 <m and a; # 0, then repeat step 5,

otherwise if Q5 = 1, then a; = part.

If 7 <m, then repeat step 5,

otherwise if i < m, thenpari = part + 1 and return to step 4.
Step 6. Let part = max{ a; {.

If part = 1, then stop, otherwiseset s =m.
Step7. Lets =s ~ 1. Sett =0.
Step 8. Lett =¢ + 1.

If a; > a; 44, then

swap a; and @; ;4 , SWap v; and vy 44,

swapry;and 7y, 5, J=1.2,..., m,

swap ry andry 44, J =1,2,....m.

If{ <s, then repeat step 8,

otherwise if s > 1, then return to step 7,

otherwise stop.

Algorithm for Level Division.

Step 1. Set level =0, part =0, ¢t =0.
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Step 2. Letpart =part +1. Sets =t +1,¢c =0,d =0.
Step 3. Lett =¢ +1.
Ifa; =part,thenletec =c¢ +1,
and if { < m, then repeat step 3.
Ifa, #part, thenlett =1{-1.
Set h =1¢.
Step 4. Let level =level + 1. Seti =5 ~1.
Step 5. Leti =1 + 1.
Ifi >t, then go tostep 9,
otherwise if b; #0, then repeat step 5,
otherwiseset r =0, a =0, j =s —1.
Step6. Let j =7 + 1.
If 7 >t, then go to step 7,
otherwise if bj # 0, then repeat step 6,
otherwiselet r =r +r;,;, anda =a + Tii X Ty

If 7 <, then repeat step 6.
Step7. If r =a, thenletd =ad +1, g5 =1.
Ifi <t, thenreturn to step 5, otherwiseset I =0.

Step 8. Letl =1 + 1.
If b?t = 0, then let b?l = level .

Ifl <d, then repeat step 8,

otherwise if d < ¢, then return to step 4.
Step 8. Leth =h —1. Setk =5 —1.

Step 10. Letk =% + 1.
Ifb, >by,q. thenswap b, and b, ,
swap a, and Q; ;; , swap v, and vg .4 ,
swapryy and rpyq 4. F =1,2,..., m,
swap Ty and ry p4q, J =1,2,..., m.
If ® < A, then repeat step 10,
otherwise if A > s, then return to step 9,
otherwise if ¢ < m, then return to step 2,

otherwise stop.
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Algorithm for Group Division.
Step 1. Let group =1, level = 0,1 =0.
Step 2. Let level =level + 1. Sets =1 + 1.
Step 3. Leti =¢ + 1.
Ift <m and b, = level, then repeat step 3.
If b; # level, thenlett =¢ —1.
Set h =1¢.
Step 4. Seti =s —1.
Step 5. Leti =1 + 1.
Ifi{ >t, then go to step 8,
otherwise if ¢; # 0, then repeat step 5,
otherwise set ¢; = group, j =1.
Step 6. Letj =7 + 1.
If 7 >t then return to step 5,
otherwise if cy # 0, then repeat step 6,
otherwiseset ¢ =0, ¢ =0.
Step 7. Letg = ¢ +1.
If ryqg =744, thenc =c +1.
If ¢ <m, then repeat step 7,
otherwise if ¢ = m, then c; =group.
If 7 <t, then return to step 6,
otherwise if ¢ <t, then group =group + 1 and return to step 5.
Step8. Leth =h —1. Setk =s —1.
Step 9. Letk =k + 1.
If ¢, >c¢pyq. then
swap ¢, and ¢, .4 , swap b, and &, 4 ,
swap a, and a, ,4 , swap v, and v, .4,
swap 7'y andr,cﬂ,j, J=1.,2,...,m,
swap ry and 7y, J =1,2,..., m.
If * <h, thenrepeat step 9,
otherwise if A > s, then return to step 8,
otherwise if £ < m, then return to step 2,

otherwise stop.
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Algorithm for Condensation and Skeletonizing.

Stepl. Setgy=1, i =1.

Step 2. Leti =% +1.
Ifc; =c4_4, thenlet g; =0, otherwise let ¢; = 1.
If ¢ < m, then repeat step 2.

Step 3. Letn =c¢,,. Seti =0,k =0.

Step 4. Leti =1 + 1.
If ¢ > m, then go to step B,
otherwise if ¢; =0, then repeat step 4,
otherwiselet k =k +1andset A =0, 7 =0.
Step 5. Let 7 =37 + 1.
If 7 >m, then return to step 4,
otherwise if q; = 0, then repeat step 5,
otherwiselet h =h + 1.
Ifk #h, thenlet s =14y .
If 7 <m, then repeat step 5,

otherwise if ¢ <m, thenreturn to step 4.

Step 6. Set 0.

Step 7. Leti =¢ +1. Setj =1.
StepB. Letj =7 +1. Setk =7.
Step 9. Letk =&k + 1.
If 544 X sy =1, thenlet si; =0.
If & < n, then repeat step 9,
otherwise if § < n —1, then return to step 8,
otherwise if i < n —2, then return to step 7,

otherwise stop.

The skeleton digraph can be drawn as follows. First we write elements of the
group indicat.of‘ ¢ one by one in a circle from top to bottom, except for the same
elements as appeared before. Then we draw an arc between the circles if the
corresponding entry of the skeleton matrix is 1. Finally, we amend the format of

the hierarchy to facilitate interpretation of the skeleton.
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S. INTERACTIVE MODELING

Here we summarize the whole process of IMDH. As mentioned already, the
modeling sessions consist of two main stages. The first stage is devoted to finding a
trade-off structure between the computer models and the experts’ mental models.
The dialogue continues until the cause effect relation in the computer model be-
comes satisfactory. The second stage is related to judgments of the explanatory
and predictive powers of the computer model obtained in the first stage. If the
model is not satisfactory, then the modeling process is repeated from the begin-
ning. The whole process is schematized in Figure 1 and the dialogues are summar-

ized as follows.

The First Stage Dialogue.
Step 1. (Expert) edits the set of descriptive system variables and prepares the
observation table.

Step 2. (Ezpert) introduces the cause effect relationships between variables.

Step 3. (Computer) finds a linear model, i.e., a set of linear equations using the

self-organization method.

Step 4. (Computer) displays the cause effect relationships embedded in the linear

model in terms of hierarchical digraphs.

Step 5. (Ezpert) amends the digraph by adding or removing arcs in it, if neces-
sary. If the amendments cause changes in the cause effect relationships in
the linear model, then the modeling session returns to step 2, otherwise it

proceeds to the second stage dialogue.

The Second Stage Dialogue.

Step 6. (Computer) provides residual plots and predictions, and also assists the

scenario analysis.

Step 7. (Ezxpert) looks for the equations that have weak explanatory and predic-
tive powers. If there are such equations, the modeling session returns to

the beginning.
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There are several points that are fascinating in computer-assisted modeling
and require sophisticated computer software for effective interaction. They in-

clude:
(1) Data screening and transformation of variables.
(2) Introduction of the initial version of cause effect relationships.
(3) Format of and substantial amendments to digraphs.
(4) Reflection of amendments in the digraphs on the incidence matrix.
(5) Graphic displays of the residuals and predictions.
(6) Interactive scenario analysis.

We are now developing the computer software for the method proposed in this
paper. The detailed treatments of these points are described in a separate publi-

cation (Nakamori, et al., 1985).

As an important application of IMDH, we have been engaged in a regional
economic-forecasting model for Kyoto, Japan. Here we present a brief summary of
a result obtained using IMDH. The selected variables are shown in Table 1. Be-
sides these original variables, one- and two-year time-delayed variables are taken
into consideration. After four-time repetitions of the process of IMDH, we and the
experts reached a final agreement on the incidence matrix, as shown in Table 2,
where the time-delayed variables are assumed to have the same dependencies as
the original ones. From this matrix the forecasting model was obtained, as shown

in Table 3, and the corresponding digraph is shown in Figure 2.

The data used in the model is from 1960 and 1976 and the predictions of the
obtained model are summarized in Table 4. This result is fairly satisfactory from
the viewpoint of the consumed time for modeling, which was about 27 hours, includ-
ing calculations and discussions. Generally, it is very difficult to modify a large-
scale model once obtained because of the cost and time. IMDH overcomes this diffi-

culty.
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Figure 1. Structure of the interactive method of data handling.
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Table 1. Selected variables in modeling.

1. The population in Kyoto City
1.LA Little age (age: 0-~14)
2.PA Productive age (age: 15-64)
3.0A Old age (age: 65~ )
4.Bl Birth
5.DP1 Daytime population of the primary industry
6.DP2 Daytime population of the secondary industry
7.DP3 Daytime population of the tertiary industry
8.UP1 Usual population of the primary industry
9.UP2 Usual population of the secondary industry
10.UP3 Usual population of the tertiary industry

II. The population within Kyoto zone (except Kyoto City)

11.LAOU Little age out of Kyoto City (age: 0-~14)

12.PAOU Productive age out of Kyoto City (age: 15~64)

13.0A0U 0Old age out of Kyoto City (age: 65~ )

14.BIOU Birth out of Kyoto City

15.DPOU1 Daytime population of the primary industry out of
Kyoto City

16.DPOU2 Daytime population of the secondary industry out of
Kyoto City

17.DPOU3 Daytime population of the tertiary industry out of
Kyoto City

18.UPOU1 gs%al population of the primary industry out of Kyoto

ity

19.UPOU2 Usual population of the secondary industry out of
Kyoto City

20.UPOU3 Usual population of the tertiary industry out of
Kyoto City

III. The industries
mary industry)

1 Primary industry
ondary industry)
0 Construction industry
Textile industry

e

cdolk 4o ToleRae Ly
jea)
>4

e

AC Machine and metalworking industry
.OTSE Other industry
.MIN Mining industry
ertiary industry)

. WHO Wholesale trade
.RET Retail trade
.SER Service

.PUB Public service
.OTER Others

IO ANININNN AN~
OO AhWNN-T

IV. The size of land

32.COL Commercial
33.INL Industry
34.HOUL Housing
35.0TL Others
V. The others
36.CIN Civil income
37.GAP General accounts of Kyoto prefecture
38.SAP Special accounts of Kyoto prefecture
39.GAC General accounts
40.SAC Special accounts
41 .SIGH Sightseer
42 .ROAR Road area
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incidence matrix just before the final session.

The

Table 2.

0 00000 00000 O
1 00000 00000 1
1 00000 00000 O
0 00000 00000 O
0 00000 00000 1

00000 00000
00000 00000
00000 00000
00000 00000
00000 00000

00000 00000 00000 00000 OO
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00101 00000 01111 11111 11

[olelololo)
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1 00000 00000 00000 0O
0 00000 00000 00000 0O

[elololole)

[elelolole)
[olololole}
[olololole)
[olofolole]
[elelolelo]
[olololole]
[elelelole]
(elolololo
[olololole]
[ololslolo]
AN —NM
o e o o o
0000
A 000,
AADDDo
Or~comOo

1
1
1
1
2

0 00000 00000 1
0 00000 00000 O
0 00000 00000 O
0 00000 00000 O
0 00000 00000 O

[olelelele]
COOOO

00000 00000 000
00000 00000 001
00000 00000 001
00000 00000 001
00000 00000 00O

00000 01001 00000 0000

00000 00000 00000 0000
00000 00000 00000 0000
00000 00000 00000 0000
00000 00000 00000 0000

OTER
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INL
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aaaaa
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A regional economic forecasting model using IMDH.

Table 3.
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Figure 2. The skeleton digraph corresponding to the incidence matrix.
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Economic forecasting by the obtained model.

Table 4.
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6. CONCLUSION

IMDH starts with a belief in the prepared observation and, after iterative
modeling sessions, it develops and refines both the computer models and the human
mental models. Computer models can be obtained even when the amount of data is
scarce, owing to the self-organization method, and easily modified with the assis-

tance of graph-theoretic techniques.

Because the modeling can be done at low cost and in a short time and because
this method intends to develop tentative models, a variety of applications is ex-
pected. Actually, we are now engaging in the development of regional economic
forecasting models of Kyoto, Japan, as presented briefly in the previous section.
Also, as a collaborative work with the IIASA Regional Water Policy Project (Pro-
ject Leader: S.A. Orlovski) and its successive project (Decision Support Systems
for Managing Large International Rivers), we are developing and elaborating a
computer system to obtain water resources models usable in decision support sys-

tems.
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