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Foreword 

A group of eleven Ph.D. candidates from seven countries--Robin Cowan, An- 
drew Foster, Nedka Gateva, William Hodges, Arno Kitts, Eva Lelievre, Fernando 
Rajulton, Lucky Tedrow, Marc Tremblay, John Wilmoth, and Zeng Yi--worked togeth- 
er at IIASA from June 17 through September 6, 1985, in a seminar on population 
heterogeneity. The seminar w a s  led by the two of us with the  help of Nathan Key- 
fitz, leader of the  Population Program, and Bradley Gambill, Dianne Goodwin, and 
Alan Bernstein, researchers  in t he  Population Program, as well as the  occasional 
participation of guest scholars at IIASA, including Michael Stoto. Sergei  Scherbov, 
Joel Cohen, Frans Willekens, Vladimir Crechuha, and Geert Ridder. Susanne Stock, 
our  secretary ,  and Margaret Traber ,  managed the seminar superbly. 

Each of the  eleven students in the  seminar succeeded in writing a repo r t  on 
t he  research they had done. With only one exception, the  students evaluated the  
seminar as "very productive"; t he  exception thought i t  w a s  "productive". The two 
of us agree: the quality of the  research produced exceeded ou r  expectations and 
made the  summer a thoroughly enjoyable experience. W e  were par t i cu l~ r l y  
pleased by the  interest  and spark le  displayed in our  daily, hour-long colloquium, 
and by t he  spir i t  of cooperation al l  the  part icipants, both students and more 
senior researchers,  displayed in generously sharing ideas and otherwise helping 
each other.  

This paper  by Fernando Rajulton deals with the simulation study fo r  a stochas- 
t ic  process model of human mortality and aging. Using the  Monte Carlo method, the 
author generated the survival data and developed the parameter estimation algo- 
rithms in the  case of stochastically changing unobserved covariates. The efficacy 
of the approach is discussed. The resul ts show that  the  model developed is appli- 
cable fo r  many fields where hidden heterogeneity and selection are present. 

James W. Vaupel 
Anatoli I. Yashin 



Abstract 

The recently developed conditional Gaussian diffusion process model is a powerful 
tool of survival analysis. I ts  generality not only encompasses the  survival models 
t o  date but also brings into focus the influence of unobserved variables related to 
"death" of individuals. Further,  that  the  model makes feasible a unique estimation 
of the parameters of the underlying unobserved o r  partially observed process is 
shown in this paper  through a set of simulated data on death times and an  unob- 
served variable. Possibilities of extensive use of the model t o  areas other  than 
mortality are pointed out. 
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INTRODUCTION 

No population is homogeneous and no one individual is l ike unto another. This 

self-evident t ru th defies any mathematical modelling of human behaviour, however 

sophisticated i t  may be. That no population is homogeneous has motivated demogra- 

phers to  take into account at least the differential behaviours of homogeneous 

subgroups of a heterogeneous population. But recent  ef forts directed at examining 

the heterogeneity of individuals under the motif of heterogeneity d y n a m i c s ,  

though mostly restr icted t o  mortality analysis t o  date, have thrown open new vistas 

fo r  fu r ther  research in a reas  other  than mortality. Analytical experience learned 

from recent  ef forts can lead to  developing powerful means of analysing human 

behaviour in general, as data at individual level become more and more available 

and as the mathematical apparatus being developed with a special orientation to  

analysing human mortality becomes more and more generalized in the  light of prac- 

tical applications in many fields. 

This paper  addresses one such application--of the Gaussian diffusion process 

model of physiological change and mortality basically derived in Woodbury and 

Manton (1977) and extended by Yashin, Manton and Stallard (1985) t o  incorporate 

variables, both unobserved and observed at fixed times. The main purpose of this 

paper  is t o  examine whether the  model works-in the  sense that  i t  leads to  unique 

estimation of the parameters involved--through a simulation of data and t o  present 

certain practical guidelines f o r  i ts application. First, as a sor t  of preparation, 

survival models in common use are briefly recalled in the  o rde r  of the i r  complexi- 

ty and the conditional Gaussian model is introduced in i ts generality and with the  



basic notions involved. Second, data on death times and an unobserved variable 

a r e  generated through Monte Carlo simulations with specific values of the parame- 

ters of the model, and then, conversely, the estimation of the parameters is car-  

r ied out with the only information on death times. Finally, possible extensive appli- 

cation of the model t o  other  demographic variables is pointed out. 

SURMYAL MODELS AT A GLANCE 

Variables that  heterogenize a population a r e  many. Some a r e  observed, oth- 

e r s  not. Some a r e  observables, many are not. To deal with the observed variables, 

mathematical tools have long since been developed and refined to  study the impact 

of the explanatory variables on the "death time" of individuals. 

In the simplest case, when only data on death times of individuals a r e  known, 

Kaplan-Meir product-limit estimation procedure is a common-sense tool. When some 

explanatory variables (mainly expressed as covariates) along with death times a r e  

known, proportional hazard model and Cox regression model a r e  at one's disposal. 

More recently, mixed proportional hazard model has been forwarded (Ridder and 

Verbakel 1983) t o  take into account the omitted covariates as well under certain 

assumptions, the main one being the absence of any correlation between the includ- 

ed and the omitted covariates. 

A t  a higher level, when data on death times and LongitudinaL data  on some 

observed variables a r e  available, the Gaussian diffusion process model (Woodbury 

and Manton 1977; Yashin 1984; Yashin, Manton and Stallard 1985a; Yashin 1985; 

Yashin, Manton and Vaupel 1985; Yashin, Manton and Stal lard 1985b; Yashin and 

Manton 1984) can be gainfully employed not only fo r  the usual survival analysis but 

also fo r  predicting more precisely the hazard rate and the "health changes". Be- 

cause, the model in its generality covers most of the  o ther  survival models and ex- 

plicitly takes into account the role and impact of the unobserved variables on 

mortality. 

What has been brought t o  light in recent times is the  influence, though unk- 

nown and hidden, of the unobservables in any heterogeneity analysis (Heckman and 

Singer 1982; Tuma and Hannan 1984). However, in most of the studies which pur- 

por t  t o  examine the influence of the unobserved variables, an  explicit considera- 

tion of the relationship between the  realized hazard r a t e  and the (parameters of 

the) underlying unobservable process has not been considered. This lack of con- 

sideration can lead not only t o  wrong inferences but also to  simplistic attempts at 



using the observed data to  make forecasts merely on the basis of the long- 

recognized age pattern of heterogeneity. On the other  hand, the conditional Gaus- 

sian diffusion process model, drawing from the analytical experience in disciplines 

other than demography (for example, in communication theory, information theory 

and control) is built on the relevance of the relationship between the observed 

r a t e  and the (parameters of the) underlying process both in the presence and ab- 

sence of information. Using any litt le information available on the observed and 

the unobserved processes will surely enhance the precision of analysis and of 

forecasts. 

The basic model as developed by Woodbury and Manton (1977) recognized the 

impact on mortality of the physiological variables such as serum cholesterol, blood 

pressure etc., which evolve over  time in a manner that  can be described by a Gaus- 

sian diffusion process--and hence i ts  name. It  helped in establishing the mathemat- 

ical relationships between the observed mortality and the  parameters of the pro- 

cess governing change in the means a n d  covariances  of the physiological  vari- 

ables related to m o r t a l i t y .  The model w a s  actually based on the Kolmogorov- 

Fokker-Planck Equation, the application of which required the assumption that  the 

underlying process was Markovian. This assumption would imply that  the 

individual's future profile of physiological values is a resul t  of both a determinis- 

t ic  function of his cur ren t  value and a stochastic term. Yashin e t  al.. however, 

generalized this basic model t o  deal with non-Markovian processes (Yashin, Manton 

and Vaupel. 1985; Yashin, 1985) and wi.th the combination of observed and unob- 

served variables. 1 

%'he h i s t o r y  of t h e  development of t h e  Gauss ian  d i f fus ion  p r o c e s s  model goes  back  t o  t h e  i n i t i a l  
a t t e m p t s  by  Cameron and Mar t i n  i n  1940's a t  ca lcu la t ing  t h e  ma themat i ca l  e x p e c t a t i o n  of an ex-  
ponent  which is a func t i ona l  of  a Wiener p rocess .  Much l a t e r ,  i n  1980. M y e r s  developed t h e  approach 
due t o  Novikov and found t h e  fo rmula  f o r  ave rag ing  t h e  exponent ,  whe re  i n s t e a d  of a Wiener pro- 
cess, t h e r e  is a p r o c e s s  s a t i s f y i n g  a l i n e a r  s t o c h a s t i c  d i f f e r e n t i a l  equat ion  d r i v e n  b y  a Wiener 
p rocess .  With t h e  on-set  of h e t e r o g e n e i t y  dynamics,  t h e  concept  of ave rag ing  t h e  exponen t  came 
i n t o  prominence; because a n y  exponent  can  be  cons ide red  a s  a cond i t i ona l  s u r v i v a l  f unc t i on  and 
t h e  obse rved  r a t e  (of t h e  populat ion w i t h o u t  cons ider ing  he te rogene i t y )  is nothing else but  t h e  ex -  
pec ta t i on  of ind iv idua l  r a t e s .  And, Yash in  shows t h a t  i f  t h e  func t iona l  invo lved is of a q u a d r a t i c  
f o r m  one can g e t  a n o t h e r  c o n s t r u c t i v e  w a y  of ave rag ing  t h e  exponent  using t h e  cond i t iona l  gaus- 
s i a n  p r o p e r t y  which a v o i d s  a l l  t h e  compl ica t ions  i nvo l ved  i n  t h e  e a r l i e r  approaches.  F o r  d e t a i l s  
and r e f e r e n c e s  here in ,  s e e  Yash in  (1984). 



A BRKEF REVIEM OF THE MODEL 

The Gaussian diffusion process can b e  descr ibed by ( 1 )  a l inear  auto- 

regress ive model of change in t h e  physiological var iables and (2) a quadrat ic  func- 

t ion describing t h e  re lat ion between t h e  hazard rate and t h e  values of t h e  physio- 

logical variables. In o t h e r  words, Linear dynamics and quadrat ic  dependency 

are t he  key components of t h e  model. These two components have been found t o  

descr ibe human physiological change and mortality in a number of epidemiological 

studies of chronic disease. 

Suppose t ha t  t h e  mortality rate f o r  individual i in a population of N individu- 

als depends on a process Yt which evolves over  time.' Assume t ha t  t h e  process f o r  

each individual evolves independently from tha t  of all o the r  individuals. Fur the r ,  

as mentioned above, t h e  mortality rate f o r  a n  individual denoted by ~ ( t  ,Yt ) i s  as- 

sumed t o  b e  a quadrat ic  function of t h e  set of values Yt : 

Assume also t ha t  Yt sat is f ies t h e  l inear  diffusion t ype  stochast ic  dif ferential  equa- 

tions: 3 

where a o t ,  a l t  and bt are well-bounded functions and Wt i s  a Wiener p rocess  which 

does not  depend on t h e  init ial condition Yo which i s  gaussian dist r ibuted with. 

known mean m and var iance yo. 

The re lat ion between &-the observed hazard rate-and t h e  conditional mor- 

tality rate ~ ( t  ,Yt ) descr ibed by t h e  conditional gaussian process can  b e  expressed 

in t he  form: 

where E denotes t h e  mathematical expectat ion and Ti i s  t h e  death time of t h e  i - th  

individual associated with t he  mortality rate ~ ( t  ,Y t ) .  When Yo - N(mo,yo)  and 

A t  ,Yt )  is quadrat ic ,  then & i s  t h e  age-specific mortality rate among- surv i vors  t o  

time t  with t h e  following re lat ion t o  t h e  parameters  of t he  distr ibut ion of Yt .  

' ~ o t e  that Yt can be generalized to  a multidimensional case by considering appropriate vectors 
and matrices instead of scalars. 

%his process can also be adapted to  the notions of "frailty" introduced by Vaupel et al. (1979) and 
Vaupel and Yashin (1982) and suitable modifications can always be doneto express the mathemati- 
cal relationship. 



where mt and rt satisfy the  non-linear differential equations:' 

dmt -- 
d t  - aot + a1tmt - 7 t h  - 2PZt7tmt 

and 

with the initial conditions m and 7 0 .  

Three points a r e  in o rde r  

(a) The relationship between the observed mortality and the underlying physio- 

logical process expressed in equation (4) can be used t o  develop the  likeli- 

hood function fo r  the estimation of the parameters of the process from the 

distribution of the observed death times of individuals in the  population [see 

equation (21)l. 

(b) Yashin has shown that  this likelihood function can be generalized t o  deal with 

the estimation of the parameters conditional upon the  realized values of a 

process partially observed a t  fixed t imes.  In th is case, the underlying process 

would be a jump process and the same equations (1) through (6) developed fo r  

the continuous case hold good also. Only the likelihood function has t o  be 

modified with an additional t e r m  involving the conditionality [see below equa- 

tion (24)l. 

(c) Further,  the same can be extended t o  the cases where some additional vari- 

ables (covariates) have been measured [see equation (28) f o r  the likelihood.]. 

This paper addresses these th ree  points in the simple case when ht and kt 

in (1) a r e  zero and ht, a o t ,  a and bt are constant over  time: that  is, ht = 
aot = a,, al t  = al and bt = b .  whereby (1) is reduced t o  

' ~heae two equations (5) and (6) are similar to the Kalman f i l ter  equations in communication 
theory used to estimate signals. Here, they have been generalized to  include mortality selection. 
cf. for details Yashin, Manton and Vaupel (1985). 



Before entering into the  application of the  model, the interpretation of the 

parameters ao, al  and b of the  l inear dynamic process deserves one's attention. 

Following the  interpretations given by Woodbury and Manton (1977) t o  t he  parame- 

ters of the  Kolmogorov-Fokker-Planck equation, the  "drift" denoted by a .  is  the  

systematic change in mean values, the  "regression" effect denoted by al  is the  

convergence to mean values due perhaps to homeostatic tendencies and the  "diffu- 

sion" denoted by b is  the  divergence due to random influences. These interpreta- 

tions are comparable t o  the  usual ones adduced to any l inear regression model, as 

the dynamics of t he  physiological variables is assumed to be l inear. 

Application of the Model through Simulation 

Case 1: physiological variables  Yt are  unobserved 

(a) Data Simulat ion 

W e  have 

dYt = (ao + a lY t )d t  + bdWt 

The discrete approximation of this equation is 

Yt+6 -? = ( a ,  + a l? )8  + b8Wt 

= (ao + a l & ) 8  + b f i e t + 6  

tha t  is, 

When 8 = 1,  

where e t  - N ( 0 , l ) .  Denoting by Y; the  process up to time t 

w e  generate a uniform random var iate r such tha t  



For details, see Rubinstein (1981). Once w e  have generated r , w e  know that  

that  is, 

I f ,  therefore,  T is  the death time of an individual, then 

Similarly, from (5) and (6) adapted fo r  the constancy of parameters over  time, 

the corresponding means and variances of the process mt and rt will be given by 

(when d = 1 ) :  

and 

Thus, the algorithm fo r  simulation would be as follows: for each individual, 

with fixed ao, a l ,  & mo, 70, 

(a) generate ri , a uniform random var iate 

(b) calculate -log(l - ri ) 
(c) generate E* - N(0, l )  

(dl generate Yo - N(mo,70) 

t 
(e) with the generated Yo, calculate Yt and p ~ i .  When this sum becomes 

s =o 
> - log( l  - ri ) at a part icular value of t , that  value of t is  the required T. 

With ao=0.02, al=--0.1, b =0.001, p=1.0, m 0=0.2 and 70=0.001, the generated 

death times for 100 individuals (with the computer program SIMULl given in the 

Appendix) are shown in Table 1. 



Table 1. Simulated times to  death of 100 individuals with specifications of 

a .  = 0.02, a l  = -4.1, b = 0.001, = 1.0, mo = 0.2, and 70 = 0.001. 

A pract ical  guideline f o r  fixing the parameter values would be as follows: 

under stability conditions, when the random disturbances would be negligible, 

(2') can be written as 

which yields the relat ion 

and hence the mean death time 7 of individuals would be 

This helps in choosing proper  values fo r  the parameters a .  and a l  according t o  

the  situational requirements. Thus, fo r  example, if w e  have information that mean 

death time is 25, then a .  could be given a value of 0.02 and al  a value of -0.1 such 

that  Y = 0.2 when the process becomes stable and hence 3 = 25. The death times in 



Figure 1. Tra jec tory  of Yt f o r  chosen individuals whose death  times are 21, 43, 57, 
66 and 108  years .  

W e  have generated t he  death times of 100 individuals with t he  specif icat ions 

of t he  parameters  as shown in Table 1. Now, if w e  estimate t he  parameters ,  given 

t h e  death times, can w e  get  t h e  est imates to be as close as possible t o  those with 

which w e  generated t h e  death times? Maximizing ( o r  minimizing) the  log likelihood 

(o r  t he  negative log likelihood) function can be  executed with t he  avai lable li- 

b ra r ies .  W e  shal l  h e r e  minimize t h e  function with t h e  IMSL l ib rary  subrout ine 

ZXLSF avai lable at IIASA. W e  shal l  c a r r y  out  t h e  estimation procedure f o r  each  

parameter  while keeping o the rs  f ixed, and f o r  a l l  f ou r  parameters  together .  

I t  is  important t o  note t ha t  mt and yt values are expressed in terms of these  

parameters .  And hence,  mt and yt a r e  a lso t o  be  estimated every  time t h e  estima- 

tion i terat ion is  ca r r i ed  out .  (The computer program SIMUL2 given in t h e  Appen- 

dix may be of some help.) Before car ry ing out  t h e  estimation procedures,  it would 

be  of g r e a t  help to examine t he  behaviour of t h e  -1ogL f o r  various values of t h e  

parameters .  Figures 2 through 5 descr ibe t h e  -1ogL function f o r  various values 



Table 1 have been generated with these values of a .  and a l ,  and hence have the 

mean and standard deviation values as 24.34 and 25.09 respectively. In general, as 

a0 yt = -- , i t  would be bet ter  t o  give values less than zero fo r  al ,  letting a .  be po- 

sitive (the dr i f t  coefficient) and b be ra the r  small. Examining the generated death 

times may be of some help; i t  is desirable, fo r  example, to  get the death times most- 

ly under loo! 

Care should be  exercised on the possibility that  the rt can become negative 

fo r  higher values of t ,  while mt will be normally assured to  be around - a0 . I t  
1 all 

would be practical to  make the rt  equal t o  zero when the actual calculation be- 

comes negative. 

Interests in different applications could specify different values of the 

parameters and examine the trajectory of the physiological process Yt and the 

death times obtained. Figure 1 presents the trajectory of Yt f o r  five individuals 

whose death times a r e  43, 21, 66, 57 and 108 years (these a r e  the 20th, 40th, 60th, 

, 80th and 81st individuals in Table 1 )  and whose start ing Yo values a r e  0.214, 0.169, 

0.227, 0.258 and 0.225, respectively (not given in Figure 1). In o ther  words, the i r  

initial values, say "frailty ", a r e  different. The trajectory of these individuals can 

be seen to  become somewhat stable by t = 45 o r  so. 

(b) Est imat ion of the Parameters 

The likelihood function f o r  N individuals is given by 

where 

And hence, 





of ao, al, p and b. In Figure 2 the likelihood function is seen t o  be a very smooth 

function f o r  dif ferent values of w, attaining minimum at w = 1.0 as expected. In 

Figure 3 also, the function is found t o  be smooth f o r  dif ferent values of ao, having 

the  minimum at a. = 0.02 as again expected. However, f o r  various values of al the 

function is no longer smooth in Figure 4; i t  attains minimum at two points, one at 

below zero and the  other  at above zero. This "anomaly" however is the  result of us- 

ing the al in the  denominator f o r  the estimate of mo; an arithmetic overflow could 

occur at al = 0 when al is  allowed t o  vary from negative t o  positive values. In 

fact ,  Figure 4 plots the  likelihood function with Yt = 0 when al = 0. I t  is possible 

also to  obtain a smooth curve of the likelihood function by specifying proper  

values of Yt when al = 0, such that  i t  becomes unimodal. 

Figure 5 plotting the likelihood function against various values of b is infor- 

mative. Though w e  have generated the  data on death times with b = 0.001, the  

-LogL attains minimum at about b = 0.04. The random influence of the  process is 

clearly brought out here;  the coefficient of "noise" o r  disturbance cannot be es- 

timated properly. Without being aware of this, one could easily make wrong infer- 

ence about the  random influence with the estimate of b .  What is important t o  note 

here,  however, is  that  the o ther  parameters of the dynamics (dri f t  and regression) 

are Less sensitive t o  the  random influence. 

With these preliminary observations at hand, the minimization program ZXLSF 

of the IMSL l ibrary  is found t o  yield the estimates presented in Table 2. The minim- 

ization has been car r ied  out f o r  each parameter with the  o ther  t h ree  fixed, f o r  

various t r ia l  initial values and BOUNDs (required by the  ZXLSF). The estimates are 

in general very good. 5 

I t  is  worth emphasizing h e r e  that  the parameter p is the most important in 

th is analysis, as i t  is  the  mortality parameter (or  epidemiological coefficient), 

while a. and al are physiological coefficients and b is  the noise coefficient. From 

this experiment, w e  learn tha t  if the BOUNDs are specified properly, p is  very w e l l  

estimated; so too, a,, and al. But b is  always difficult t o  estimate uniquely, i t  has t o  

%he first f e w  t r i a l s  w i t h  t h e  ZXLSF ind icated t h a t  t h e  es t imat ion  depends on t h e  spec i f i ca t i on  o f  
t h e  var iab le  BOUND i n  t h e  program. Th is  BOUND has  t o  be  spec i f ied  proper ly  along w i t h  t h e  i n i t i a l  
e n t r y  f o r  t h e  parameter  t o  be es t imated ,  such t ha t  X - B O m D  S X S Z0 i- B m D .  



Table 2. Estimates of the parameters a o ,  a l ,  b and p fo r  given initial entr ies and 
BOUNDs. 

Variable Initial value BOUND Estimate Comments 
parameter specified 

1.02943 
1.02915 
1.03135 
1.0265 A proper  specifioation of BOUND yields 
1.02991 very good est imate of p, whatever be t h e  
1.03009 init ial value 
1.03113 
1.02915 
1.02937 

The estimate of a .  f luctuates around t h e  
t r u e  minimum point f o r  di f ferent init ial 
values and BOUNDs. Higher initial values 
and BOUNDs lead surprisingly t o  symmetr- 
ically negative estimates. This has t o  be  
examined. 

-2.0 2.5 
-2.0 2.9 

-0.1017 a l  i s  estimated well f o r  di f ferent BOUNDs. 
-0.1035 
-0.1025 

provided init ial values are negative. cf. 
-1.0 2.9 

-0.1025 
Figure 4. 

-1.0 3.9 

-1.0 7.0 -0.1025 

b 0.1 1.0 0.0276 
0.01 1.0 0.0272 The estimate of b i s  very di f ferent from 
0.01 0.1 0.0277 what Figure 5 indiaates. Whatever be t h e  
0.01 0.5 0.0277 init ial values and BOUNDS, estimate of b 
0.01 10.0 0.0277 seems t o  converge t o  0.027. 

be  estimated through some exogenous studies, if they are available (see the  com- 

ments in Table 2). 

Case 2: physioLogicaL variabLes partiaLLy observed at fixed times 

With the physiological variables observed at fixed times, the same formula- 

tions hold good except fo r  a minor adjustment in the  calculation of mt and yt 

values and an  additional conditional t e r m  in the likelihood function. Let us assume 

that  the  data on physiological variables have been observed at every fifth year .  



and the likelihood function becomes 

where 

Note the difference in the suffices t ,  and t, -1. In o ther  words, i t  is a jump pro- 

cess at every 5-th year,  and f above has the mean and variance of the  year previ- 

ous to  the observed one. 

The estimation procedure can be carr ied out in the  same way as before, f o r  

each parameter with the others fixed o r  f o r  al l  four p3rameters together. For sim- 

plicity, only the  estimates carr ied out f o r  al l  4 parameters together with the pro- 

gram ZXMIN of the IMSL l ibrary a r e  given below. The minimization has been car- 

r ied out with the initial values fo r  ao, a l ,  b and p equal t o  0.05, -0.05, 0.05, 0.5 

respectively and with parameter IOPT = 2 (causing ZXMIN to  compute the diagonal 

values of the Hessian matrix). The estimates a re :  

(1) a , =  0.01959 

(2) a ,  = -0.0922 

(3) b = 0.0483 

(4) p = 0.9155 

The estimates a r e  quite close t o  the values we expect t o  obtain. Note also that  the 

estimate of b is, as in Figure 5,  at about 0.04. 

Case 3: one c o v a r i a t e  has been observed  

When some additional informations on covariates which af fect  mortality a r e  

available, i t  is easy t o  extend the above formulations. For convenience, let us con- 

s ider one dichotomous covariate whose exponential parameter is @. To start with, 

death times have to  be  simulated with the inclusion of the covariate parameter, and 

t 
thus the algorithm given fo r  data simulation has to  be modified to  read p e p X ~ :  

0 

fo r  finding the death time T of an individual. With these data on death times, the 



estimation can be carr ied out as before. The likelihood function then will be a s  fol- 

lows: 

where 

And hence, 

with 

If w e  maximize (or minimize) the  logL (or -LogL) with 6 = 0 ,  w e  get the estimate fo r  

~1 If w e  maximize (or minimize) with 6 + 0,  w e  would get the  estimates fo r  both p 

and 6 .  

DISCUSSION AND POINTERS TO FURTHER APPLICATIONS 

In a ra the r  simple (simulated) application of the  Gaussian diffusion process 

model which takes into account the  influences of both the observed and unobserved 

variables on mortality, the resul ts are encouraging especially with respect to  the 

unique estimation of the  parameters of the  underlying and yet unknown (possibly 

partially known) processes. I t  is a simple experiment in that  the  parameters of the 

processes have been held constant over  t ime.  

The next complicated application would be to  let the  parameters change over  

time t as described in equation (1). This would obviously requi re a more sophisti- 

cated minimization o r  maximum likelihood program than those used here.  The au- 

thor  is aware of an  efficient computer program fo r  minimization - MINUIT from the  

CERN l ibrary. This program executes the minimization through sophisticated pro- 

cedures (of Monte Carlo, Nelder and Mead and Fletcher). The program also of fers 



an e r r o r  analysis through covariance matrix and confidence intervals and a multi- 

plicity of possibilities f o r  fixing and varying the  parameters at one's pleasure. If 

such a program is available, more complicated experiments on varying parameters 

over time and both Xt and 3 evolving over  time could be car r ied  out. But what is 

presented here  is basic to any experiment, whether simulated or not, on the  Gaus- 

sian model. What has been achieved through this simple experiment shows tha t  the 

model can be a powerful tool for survival analysis. 

If o ther  studies indicate a functional form fo r  &. tha t  is, the  nature of the 

functional dependence of population hazard rate on the  means and variances of Yt , 

this functional form could be be t te r  utilized for purposes of forecasting. For ex- 

ample, the functional form of & has often been confirmed to be a Gompertz func- 

tion especially for older ages. If this knowledge could be exploited, i t  would un- 

doubtedly make forecasts of health changes and mortality more precise. 

Various other  exogenous factors  and the i r  effect on mortality forecasts, such 

as environmental pollution, economic condition etc., may be included in the model. 

Very often these exogenous forces are observable. And Yashin, Manton and Stal- 

lard (1985) indicate the  way this could be utilized in t he  model by extending the 

vector Yt to include such factors. 

Much m o r e ,  the  endogenous component Yt could be modelled as dependent on 

the  exogenous components. For example, consider the  climatic factors  influencing 

human mortality. These variables (sometimes re fe r red  to as "state variables") on 

climatic changes, economic conditions etc., would form t h e  exogenous component in 

the  vector Yt. And changes in 3 could be dependent on these exogenous com- 

ponents. For example, these factors  could have g rea te r  impact on certain popula- 

tion groups, say, older people. In such a case, interaction between these factors 

and age would have to be included in the  hazard function. This implies a more rapid 

selection of certain groups under certain changes in these factors. However, the  

(l inear) dynamic equations describing the changes in these factors (these perhaps 

could be gathered from econometrics and o ther  disciplines) would not be affected 

by selection so  tha t  no fu r ther  modification of the time ser ies  (auto-regressive) 

equations fo r  these factors  would be necessary, as the added stochasticity is not 

due to diffusion process describing Yt but to the  stochasticity of these factors 

alone. 

The Gaussian diffusion process model is so general tha t  i t  can be  applied to 

any type of survival analysis. Since Yt follows Gaussian, modifications of could 

afford a variety of applications in many fields. Consider, fo r  example, the nuptiali- 



ty. Hernes (1972) in developing a (diffusion) model t o  describe the  process of en- 

t r y  into marriage estimated the unobservable "marriageability" at the population 

level (he called i t  the "initial average marriageability"). Rajulton (1985) made use 

of this model in the context of estimating the parameters of the  f i r s t  passage pro- 

babilities of a semi-Markov model and extended the concept t o  divorceability and 

remarriageability as wel l .  Now, the unobserved heterogeneity in marriageability 

of the single o r  the  divorceability of the married could easily be  incorporated into 

the Gaussian model, as much as these unobservables are part icular cases of the 

Gaussian diffusion process. In part icular, if Yo follows N(mo,yO),  then i t  is well 

known that  y2 follows a I? distribution (Kendall and Stuar t  1977). This I? distribu- 

tion could be used profitably, as Vaupel and Yashin (1982) have shown, t o  study 

the influence of the  varying marriageability o r  divorceability over  time (in con- 

trast t o  the  constant decline in the Hernes model). Further,  if certain covariates 

a r e  found to  influence this unobserved heterogeneity (for example, employment 

status o r  the number of children in the case of divorce), they could also be includ- 

ed in the model and the heterogeneous reali ty could be captured more precisely. 

The Gaussian diffusion process model proves to  be  s o  useful a tool f o r  fu r ther  

applications that  i t  is certain that  i ts extensive application in many fields would 

throw more light on the heterogeneity dynamics recently born. 
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Appendix: Computer Program 

program simull ........................................................ 
this is a program for simulating the times to death of 
588 individuals and the unobserved Y( t) values, the 
maximum death time being allowed is 158 years. 

Remarks: n = no. of individuals considered 
nl= value of maximum death time allowed 

a maximum of 500 individuals and 150 years (death time) is given 
in the program. Modify the dimension specification if necessary. 

The parameter values are to be specified at the beginning 
of the program on the terminal. The parameters are a(@), a( 1) , 
b ,  mu, g(0), delta. 

The seed for simulation is taken to be 151245. Anyother 
seed, which is odd and less than 9 digits can be used. 

The death times on output are stored in tape8 in the format 
format(3x, 10(i3,5x)). Tape7 contains the sample of individuals' 
r ,  -log(l-r), y(0), eps, and t. Tape9 stores the data on trajectory 
of 20,40,60,80,81st individuals for plotting if desired. 

real eps(150),y1(588,25),y(158),y2(158),y0(588),r(500),r1(588) 
real mu, var(150), m(150),m0 
integer t (500) 
oall usearg 
wri te(6,ll) 

1 1  format(42hgive parameter values, a@,al,b,mu,g0,delta) 
read(5,') n, nl, a0, al, b,  mu, g0, delta 
m0  = a0/(abs(al)) 
wri te(8,12) a0,al,b,mu,m0,g0,del ta 

12 format(23hwith the initial values,/23(lh-),/4ha0 = , l x , f8 .4 ,2~ ,  
8 4hal =,lx,f8.4,2x,3hb =,lx,f8.4,/4hmu =,lx,f8.4,2x,4hm0 =, lx,  
$ f8.4,2x,4hg0 =,lx,f8.4,/7hdelta =,lx,f8.4) 

write(8,66) 

.......................................................... 
calculate the mean and variance of the conditional distn 
of y. cf. text .......................................................... 

do 7 i=l,nl 
if(i.eq.1) m(i)=(aoedelta) +((l+al*delta)*m0) -(2*g0*mu*delta*m0) 
if(i .eq. 1) var(i)=((1+2*al*del ta)*g0) +((b**2)*delta) 

S -(2* (g0w2)*mu*del ta) 
if(i.ne.1) rn(i)=(aB*delta) + ((l+al*delta)*m(i-1)) 

$ -(2*var(i-l)*mu*m(i-1)'del ta) 
if (i.ne. 1) var(i)= ((1+2*al*del ta)*var(i-1)) +((b9*2)*del ta) 

-(2*(var(i-l)**2)*mu*delta) 
7 continue ....................................................... 

i x= 151245 
do 1 i=l,n .......................................................... 

generate the uniform random variate r(i) and find rl(i)= 
-alog(l-r(i)). 

call randu(ix,iy,yfl) 
r(i)=yfl 
rl(i)=-alog(1-r(i)) .......................................................... 

generate the initial random variate Y O ( ~ )  ~N(m0,gO) ........................................................... - 



am = m 0  
s = sqrt (80) 
call gauss ( i  x, s ,  am, V )  
y0( i )  =v 
yy=y0(i)Q*2 
do 2 k=l,nl ........................................................... 

generate the error random variate eps( i) - N(0,l) ........................................................... 
am=@. 
s=l. 
call gauss(ix,s,am,v) 
eps (k) =v .......................................................... 

find the sequence of y variates given the initial y 0  
and the sum of squares of y to examine whether this sum 
becomes greater than rl(i) for individual i at what time 
to death .......................................................... 

if (k.eq. 1) y(k) =(aOadel ta)+((l+alSdel ta)*yO(i))+(b'deltaeeps(k) I 
if (k.ne. 1) y(k) =(aB9del ta)+((l+al*del ta)*y(k-l))+(b*del taeeps(k)) 
w=k/5.0 
j = k/5 
if(w.eq.j) yl(i,j)=y(k) 
if(w.eq.j) write(10,65) i,k,j,yl(i,j) 
y2(k) = y(k)**2 
yy. = yy + 92(k) 
if(yy.gt.rl(i)) t(i)=k 
if(k.eq.l50.and.yy.lt.rl(i)) t(i)=k 
if(yy.gt.rl(i)) g o  to 3 

2 continue 
3 continue 
1 continue 

write(7,64) (t(i) ,i=l,n) 
do 99 i=l,nl 
w=i/5.0 
j=i/5 
if(w.eq.j) m(i)=yl(Sl,j) 
write(ll,*) m(i) 

99 continue 
64 format (3x, 10(i3,2x)) 
66 format(1x) 
65 format(i3,2x,i3,2x,i3,2x,f10.6) 

stop 
end ................................................... 
subroutine gauss 

purpose : to compute a numerically distributed 
random number with a given mean and 
standard deviation 

usage : call gauss(ix,s,am,v) 
parameters: ix - ix must contain an odd integer 

number with 9 or  less digits on the 
first entry to gauss. thereafter it'll 
contain a uniformly distributed integer 
random number generated by the subrout 
for use on the next entry to the subr. 

remarks : this subr. uses randu which is machine 
specific 

method : uses 12 uniform random numbers to compute 
normal random numbers by central limit 
theorem. the result is then adjusted to 
match the given mean and s.d. the uniform 
random numbers computed wi thin the subr. 
are found by the power residue method. 



cI---"---------------------------------------------- 
subrout ine gauss ( i  x, s, am, v )  
a=@. 0 
do 50 i =1 ,12  
~ a l !  randu(ix, iy,y) 
1x=1y 

58 a=a+y 
v=(a-6.0)*s+am 
re turn 
end 

o----------------------------------------------------- 
o subrout ine randu 

subrout ine randu(ix,iy,yfl) 
iy= ix*65539 
if (iy)5,6,6 

5 iy= iy+2147483647+1 
6 yf l= iy  

yfl=yfl*.4656613e-9 
return 
end 



program q. 3~ i 2 
external func 
common/data2/t ime(l00~,rn0,a0,al,b,g0,delta 
real m0 
integer maxfn,ier,time 
data step/@. l/,xacc/.01/,maxfn/lB8/, 

t a0/0.02/, al/-0. l / ,b/0.~1/,g0/0.001/,del ta/l./ 
oall usearg 
m0  = a0/(abs(al)) 
wri te(6,ll) 

1 1  forrnat(4lhgive the initial value of x and the bound) 
read(5,') x, bound 
read(3,10) (time(i),i=1,100) 

10 format(l0(i3,2x)) 
oall zx ls f ( func,x ,s tep,bound,xacc,maxfn, ier )  
write(6,*) ier, x 
stop 
end 

real function func(x) 
real m( 125) ,m2( 125) ,var( 125) ,b1( 100) ,sum( 1 0 0 )  
common/data2/t ime(l00),m0,a0,a1,b,g0,delta 
real x,m,m2, m0  
integer time 
f=0. 
do 2 i=1,100 
nl=time(i) 

C ------------------"'--------------------------------------- 

$ -(2*var(k-l)*x*m(k-l)*del ta) 
if (k.ne. 1) var(k)= ((1+2*al*del taIqvar(k-1)) +((b**Z)*delta) 

$ -(2*(var(k-l)"2)*x*del ta) 
m2(ki = m(k)**2 
if (var(k) . l  t.O) var(k)=0. 

7 continue 
sum(i)=m0**2 + g0 
do 4 k=l,nl 

4 sum(i)=sum(i) + x*(m2(k)+var(k)) 
bl(i) = -(alog(x * (m2(nl) + var(n1))) - sum(i)) 
f = f + bl(i) 

2 continue 
func=f 
re turn 
end 


