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PREFACE

One of the means of modelling a system with an uncertainty
in the parameters or in the inputs 1is to consider a multistage
inclusion or a differential inclusion. These types of models
may serve to describe an uncertainty for which the only avail-
able data is a set-membership description of the admissible

constraints on the unknown parameters.

A problem under discussion here deals with the specification
of the "tube" of all solutions to a nonlinear multistage inclu-
sion that arise from a given set and also satisfy an additional
phase constraint. The description of this "solution tube" 1is
important for solving problems of guaranteed estimation of the
dynamics of uncertain systems as well as for the solution of
other "viability" problems for systems described by equations

involving multivalued maps.
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On the Solution Sets for

Uncertain Systems with Phase Constraints

A. B. Kurzhanskii

INTRODUCTION

This paper deals with multistage inclusions that describe a system with uncer-
tainty in the model or in the inputs [1,2]. In partlcular this may be a difference
scheme for a differential inclusion [3]. The solution to these inclusions is a mul-
tivalued functlion whose cross-section at a speclfic instant of time is the "admissi-

ble domain” for the inclusion.

The problem considered here is to specify a subset of solutions that consists
of those "trajectories"” which satisfy an additional phase constraint. These solu-
tions are said to be "viable" with respect to the phase constraint [3]. The cross
section of the set of all viable solutions is the attainabllity domain under the state
constraint. The derivation of evolution equations for the latter domain is the

objective of this paper.

The problem posed here is purely deterministic. However, the techniques
applied to its solution involve some stochastic schemes. These schemes follow an
analogy between some formulae of convex analysis [4,5] and those for calculating
conditlonal mean values for specific types of stochastic systems [6,7] which was

pointed out in [8,9].

A special application of the resuits of this paper could be the derivation of
solving relations for nonlinear filtering under set-membership constraints on the
"noise’ and the description of the analogies between the theories of "guaranteed”

and stochastic filtering.

1. Discrete-time Uncertain Systems

Consider a multistage process described by an n-dimensional recurrent inclu-
sion

z(k+1) €F(k,z(k)), k2ky=20 (1.1)

where £k €N, z(k)elR", F(k,z(k)) is a given multivalued map from IN xIR"? into
compR® (IN is the set of natural numbers, compIR™ is the set of all compact sub-

setsof R ™),
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Suppose the initial state z (k) = z° of the system is confined to a preassigned

sot:
z%eXx? , {(1.2)

where X° is given in advance. A trajectory solution of system (1.1) that starts from
point 9 at instant k, will be denoted as z (k lko,z . The set of all solutions for
(1.1) that start from z° at instant &° will be denoted as X(k lko.z°) (k €N, kzk™

with further notation

Xk 1k0X% = UiX(klkoz®lz?e€X%], (k eN,k=k9

Let @(k) be a multivalued map from IN into comp R ™ and &G (k) be a single-
valued map from IN to the set of m xn-matrices. The pair G(k), @(k), introduces

a state constraint
Glklx(k)eglk), keky+1 {(1.3)

on the solutions of system (1.1).

The subset of R™ that consists of all the points of IR ™ through which at stage
s €[kg, 7] =lk:kosk =T| there passes at least one of the trajectories
z(k |lcg,a:°), that satisfy constraint (1.3) for k €[k, 7] will he denoted as
X(s ' 1.k0.29).

The aim of this paper is first to study the sets X('r|'r,lco,X°) = X(7,k0.X%) and

their evolution in "time" T,

In other words, if a trajectory z (k lko.z") of equation (1.1) that satisfies the
constraint (1.3) for all k£ €[ko.s] is named "viable untit instant 7" ("relative to
constraint (1.3)"), then our objective will be to describe the evolution of the set of
all viable trajectories of (1.1). Here at each instant k >k° the constraint (1.3)
may "cut off" a part of X{(k lku,zu) reducing it thus to the set X(k.£%29).

The sets X(k .k%z?% may also be interpreted as "attainability domains” for
system (1.1) under the state space constraint (1.3). The objective is loc describe
evolution of these domains.

A further cbjective will be to describe the sets X(& ]-r.lc 0z ?) and their evelu-

tion.



2. The Attainability Domains

From the definition of sets X(s |7,£9,z° it follows that the following proper-

ties are true.
Lemma 2.1. Whatever are the instanis 1,58k, (t2s=k 20) and the sel

F €compR™, the following relation is true

X2 F)=X({t.sX(s,k,IF)). (2.1)

Here X(t,k,F) = U | X(t k.x)lz €F }.
Lemme 2.2. Whatever are the instants s, i, 7.k l{{ 2s ], T=l=2k;ft2T) and

the set F ecompR™ the following relation is true

X(slt e F)=XGlt . 1.x0lr.e,F). (2.2)

Relation (2.1) shows that sets X(k.T,X) satisfy a semigroup properiy which
aliows to define a generalized dynamic sysiem in the space 2R" of all subsets of
R".

In general the sets X{s ‘.t.k .JF) need not be either convex or connected. How-

ever, it is obvious that the following is true

Lemma 2.3. Assume that the map F is linear in z.
FE)z =& 4+ p
where PeconvR"™. Then for any set F €convR™ each of the sets

X(slt,k,F)econvR™(f =5 =k =0).

Here convIR™ stands for the set of all convex compact subsets of IR™.

3. The One-Stage Problem
Consider the system
zeF(z), Gze@, z €X,
where z €eIR™, X€compIR™, @ €convR™, F{x) is a multivalued map from R™ into
convR™, @ is a linear (single-valued) map from IR" into R™.
It is obvious that the sets F(X) = | UF(z)/z €X | need not be convex.

Let Z, Z® respectively denote the sets of al solutions for the following sys-

tems:



(a) zeF(X), Gz e@,

(b) z*ccoF(X), Gz'eq,

where coF stands for the closed convex hull of F(X).
The following statement is true

Lemma 3.1. The seis Z, coZ, Z° satisfy the following inclusions

ZceoZ¢Z® (3.1)

Let p(l ‘Z) =supil'z |z €Z | denote the support function [4] of set Z. Also

denote
®(1l.p.q) = —C'p.q) +p(—p Q)

Then the function €( ,p,qg) may be used to describe the sets co Z,2°.

Lemma 3.2. The following relations are true
pt|z) = pllcoZ) = sup inf &(l,p.¢) , ¢ €EF(X), p€R™ (3.2)
g P
p(t1Z%) =inf sup &(,p.¢) . g €F(X), p €R™ (3.3)
P [

It is not difficult to give an éxampIe of a nonlinear map F{x) for which Z is
nonconvex and the functions p{ |coZ), p(I,‘Z') do not coincide, so that the inclu-

sions Z CcoZ, coZ cZ'are strict.

Indeed, assume X = {0}, z €R®?
FO)=|z :6z +xp=3,x2,+6x;s53, 2,20,z 20]

G=(0,1,&=(,k62).

Then

Y=jz:60z €Q{i=|z:0s1p=<2]

The set F(0) is a nonconvex polyhedron 0 K D L in Figure 1 while set Y is a
stripe. Here, obviously, set Z which is the intersection of F(0) and Y, turns to be
a nonconvex polyhedron O A B D L, while sets co Z , Z*are convex polyhedrons O A
B L and 0 A C L respectively (see Figures 2, 3). The corresponding points have the
coordinates
A=(0,2),B=(1/2,2),C=01,2,b=(3/7,3/7),K=(0,3).,L=(3,0),
0=(0,0).



Clearly Z cco Z ¢ 2°.

This example may also serve to illustrate the existence of a gap between (3.2)
and (3.3).

1
K
4 B
L i |
T =
M Jr
' T“\ r\\’\\ ' |l I B
\l D f ‘i \\NW'\ | Y
o = L
C L .'r'l
~ Figure 1
T2
%
:cl’

Figure 3
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For a linear-convex map F(zx) =Ax +P (P €convlR") there is no distinction

between Z, coZ, and Z*

Lemma 3.3 Suppose F{x) = Ax + P where P€convIR", 4 is a linear map from

R™"intoR™ ThenZ =coZ =2".

4. The One Stage Problem - An Alternative Approach.

The description of Z, coZ, Z° may be given in an alternative form which, how-
ever, allows to present all of these sels as the intersections of some varieties of

convex multivalued maps.

Indeed, whatever are the vectors I,p (Ll #0) it is possible to present p =M
where M belongs to the space M ™*"™ of real matrices of dimension m Xxn. Then,

obviously,

o2y = sup inf b M.¢) = p(llcoZ) , @ eFP(X), MeN™*",
)

(4.1)
pllzh = inf sup 8¢ ML,@) g €FCO, M eMmxn
or
p1ZY =int { (L. M) Memm*ny, (4.2)
where
(L M) = | 8, M.q)q ecoF(z)] =
= p((E —G'M)L, coF (X)) +p(=ML | Q) .
From (4.1) it follows that
Z¢c U NEMe)cny U RMg), Mem™ {4.3)
gEF(X) H M gePlx)
where
E(M.q)=(E, —MC)q —MQ.
Similarly (4.2) yields
zZ'cn U (E,-HMG)g -MQ . (4.4)

M gecoF(X)
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Moreover a stronger assertion holds.

Theorem 4.1 The following relalions are true
Z= U NEkMg) {4.5)
geF(X) M
Z' =N\ RMcoFE) (4.6)
M

where M e M™ ™",

Obviously for F{z)=AX +P,{(X,PccolR"™) we have FX) =coF(X) and
Z=2"=coZ.

This first scheme of relations may serve to be a basis for constructing

recurrent procedures. Another recurrent procedure could be derived from the

following second scheme. Consider the system
z €F{x) (4.7)
Gr €@, (4.8)

for which we are to determine the set 2 of all vectors z consistent with inclusions
(4.7), (4.8). Namely, we are to determine the restriction Fy{(z) of F(z) to set Y,

Here we have

F(z)ifzx €Y

Friz)= g itzey

where as before Y = {x:Gx €@ 1.

Lemma 4.1 Assume F(z) €compIR™ for any z and @ €convlR™. Then

Fy(z) =N F(z)-LCz +LQ)
L

over all n Xm matrices L, L eM™*™),
Denote the null vectors and matrices as (0}, € R™, {0{, . €R™*" | the

{(n %n) unit matrix as E,, and the (n xm ) matrix L, as

Em
Lma = |10} na

Suppose z € Y. Then {0}, € ¢ — Gz and for any (nxm) -matrix L we have
f0l, € L (& —Gz). Then it follows that for z €Y.
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Faycn F)+L@ —CGx)) CFiz)
L

On the other hand, supposex € Y.

Let us demonstrate that in this case

NIF(E)+L{Q —-Gz){ = ¢.
L

Dencte 4 =F(z), B =@ —Gx. For any A >0 we then have

N{A+LBY A +Ap BYn (A =N B)

L

Since {0 ], €8 we have §0{, €L,, 8. Therefore there exists a vector { €eR™, [ #0

and a number 7 >0 such that

(l,x)z2y>0 forany =z e€l,F,

Denote

L=lz:(l,z)z71.

Then L 21,5 and

(4 +>\LmB)n(A —MaBYC(A+AL)Y N —AL)

Set 4 being bounded there exists a A >0 such that
(A+2XL)YN{4d —xL) = ¢.
Hence

N (A+LBy=¢
L

and the Lemma is proved.

3. Statistical Uncertainty. The Elementary Problem.

Consider the system
z =g+t Gz =v+m7,
where

geEF(x), ve@ zeX

{5.1)
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and £,m are independent gaussian random vectors with zero means (£F¢=0,En=0)

and with variances E¢f = R, Emn’' =N, where R>0, N>0(ReM, NV o).

Assuming at first that the pair o = {g,v | is fixed, let us find the conditional
mean F{(z \y =0, h =R ") under the condition that after one realization of the values

£, Lthe relations
2=qgq+¢, y=—-Gz+v+n=0
are satisfied. Afler a standard calculation we have
Zyn =E(zly =0, A=h%) = ¢ +PG'N"(~CGq —Cv) +v,

where P! = R+ 'NIG.

After applying a well-known matrix transformation [6]
P =R -RG'K'GR, K =N +CGRG',
we hava
E(zly =0, h =h"Y = (& —RC'K1G)g —RC'K v .
The matrix of conditional variances is
E((z =2, 0)(z ~Zy ) = Py .

It does not depend upon A and is determined only by g¢.v and the elemenl

A = RG’K™'G. Therefore it makes sense to consider the sets
W(hg) = Utzyalv €Q)
WA = Ulzyalg €F(0 v e
and
WoA) = Uiz, nlg €EcOFX), v EQ |

of conditional mean values. Each of the elements of these sets has one and the
same variance P,. The sets W.(A) and W(A,q¢) are obviously convex while W (A) may

not be convex.

Lemma 5.1 The following inclusions are true (Z CZ%)

ZCW(A), Z'CW(A), W(A) CW'(A) . (5.2)
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It can be seen that W(A,¢) has exactly the same structure as R{(M,q) of (4.3)

{with only A substituted by M). Hence for the same reason as before we have

ZC U N WAg)= N (5.3)
geF(X) DeD Deb

Z°C U N WA= W (5.4)
gecoF(X) Deld Deb

where the interseclions are taken over the class I of all possible pairs
D ={R.,N| of nonnegative malrices RN of respective dimensions. However, a
property similar to that of Lemma 4.1 happens to be Ltrue. Namely if by D(a,8) we
denote the class of pairs {R,N] where R = akE,, N = BEym. a>0, >0, then the

element X will depend only upon two parameters a,§.
Theorem 3.1 Suppose mairiz G is of full rank m. Then the following equali-
ties are frue

Z=n{w(NDeDA,8),8>0)CcoZ ¢ (5.5)

crniw{NIDeD@.B), >0 =2..

Here it suffices to take the intersecltions only over a cne-parametric variety

DeD(1,8).

There are some specific differences between this scheme and the one of §4.
These could be traced more explicitly when we pass Lo Lhe calculation of support
functions p{l 12), p(l 12" for Z,2",

Lemma 5.2 The following inequalily is frue

p(1ZY =) <s () = inf { &1, A D €D(1,8),8>0]} (5.8)

where f**(1) is the second conjugate to f (l) in the sense of Fenchel [4].

Moreover if we substitute D(1,8) in (5.6) for a broader class D then an exact

equality will be attained, i.e.
ollzy =7%") =inf 1 ¢, AN)/D eD} (5.7)

More precisely, we come to

Theorem 5.2 Suppose matriz ¢ is of full rank m. Then equality B.7) will be

true together with the following relation

pl/Z)y=p(licoZ) =sup inf § ®(l . A,q)d €Dlg eF(X) (5.8)
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Problems (5.7), {5.8) are "stochastically dual” to (3.3, (3.2).

The results of the above may now be applied to our basic problem for multis-

tage systems.

6. Solution to the Basic Problem

Returning to system (1.1)-{1.3) we will seek for the sequence of sets

X[s]1 = X(5.k5X° together with two other sequences of sets. These are
X'[s]=X"(s.k0.X"

- the solution set of the system

Zp+1 €COF(k X[k]), X'kl =X° (6.1)

Gk+1) e @k +1), k =k (6.2)
and X.[s] = Xu«(5.k.X"% which is obtained due to the following relations:
XJ[s] =coZ(s]
where Z[k +1] is the solution set for the system
z(k+1) eF(k,coZ[k]). Z[&%] =X",

Gl +0)z{k+1) ek +1), k =kyg.

The sets X.J[T], X'[7] are obviously convex. They satisfy the inclusions
X[T]eX [T]eX[7]
where each of the sets X[7], X.J[7], X*[7] lies within

YT =lz: G{(T)x €@{1)], T=kp+1,

The set X°[7] may therefore be obtained for example by either solving a
sequence of problems (6.1), (6.2) (for every k €[kgs—1] with XTko] =X (the

first scheme of §4) or by finding all the solutions £[k]=Z (k,k 4,z ") of the equation
z (k+1) € (coF Y ypylk .z (k). (ko) €X®, (6.3)

that could be prolongated untkil the instant 7 + 1 and finding the relation of this set
to X[7], X.[7], and X"[T].
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Following the first scheme of §4 we may therefore consider the recurrent sys-

tem
z(k+1) = ([, —M(E+1)C(k +1))F%k .S (kD) + M (k +1)Q (k +1) (6.4)
Sy ={nZ&k)M®E)], k >ky, Sky =X°, (6.5)

where M{k +1) € R ™",
From Theorem 4.1 we may now deduce Lthe result

Theorem 6.1 The solving relations for X[s ], X.Js], X'[s] are as follows

X[s]1=S(s) for F%k,S(k)) =F(k.Sk)) (6.5)
X' [s]=S(s) for F%k,S(k)) =coF{k.S(k) (6.7)
XJ[s]1=coS(s) for FY%k,S(k) =F(k.coSk)). (6.8)

It is obvious that X[7] is the exact solution while X,[7T], X'[T] are convex
majorants for X[T]. Clearly by interchanging and combining relations (6.7}, (6.8)
from stage to stage it is possible to construct a variety of other convex majorants

for X{t]. However for the linear case they all coincide with X[1].

Lemma 6.1 Assume F°(k.S(k)) = 4(k)S(k)+P(k) with P(k), X° being closed
and compact. Then X[k] =X'k] = XJ[k]for any k 2k,

Consider the system
Z(k+1) = (I, —M{k +1)C(k +1)F%k .Z (k)Y =M (k +1)Q (k +1),Z (k) =X°, (6.9)
denoting its solution as

Z{kiM(2)) for FNk.Z) =F(k.,Z)
Z Sk My (s)) for FUk,Z) =F(k,coZ)
Z%k Mg () for FUk.Z) = coF(k,2)

Then the previous suggestions yield the following conclusion

Theorem 6.2 Whatever is the sequence M, (»), the following solving inclusions

are lrue
X[s]1cZ(s, My (*)) (6.10)
X.[S] CZ.(S .M,('))

X's1€Z(s. My (*)), s >ky,
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with Z(s M, (*) € Z.(s . M, (*)) CZ°(s .M, (+)).

Hence we also have

X[s]€ N1Z(s. MM, 603 (6.11)
X[s1C N IZuds M (o)) M, (D)} (6.12)
X's]c MIZ%s M ()M, (o))} (6.13)

over all M,(s).

However a question arises which is whether (6.11)-(6.13) could turn into

exact equalities.

Lemma 6.2 Assume the system (1.1), to be linear: Fik,z) = A(k)x +P(k) with
sets P{k), @{k) convexr and compact. Then the inclusions $.11)-F.13) turn
into the egualily

X(s1=X"Ts] = NIZ, (M) = NS M (D) (6.14)

Hence in this case the intersections over M{k) could be taken either in each

stage as in Theorem 6.1 (see (6.6), (6.7)) or at the final stage as in (6.14).

Let us now follow the second scheme of §4, considering the equation
z(k+1) €Fypyk,z(k)), z°=z(ko), z%cXO, (6.15)
and denoting the set of its solutions that starts at z° € X° as X%(k ,k 4,2 %) with
U lz%k koz®/z%eX®] =X %%k k0. X% = X[k ].
According to Lemma 4.1 we substitute (6.15) by the equation

z(k+1) e N(F'(k.x(k)) —LG(k)x (k) +LY(k)) . z"€X?,
L

and the calculation of X%k ] should thence follow the procedure

Xle+1l= U N (FE.2)—LGk)x +L@(k)), X(ky)=X. (6.16)
zeX(k) L

Denole the whole solution "tube" for kg=k =5 as )?,','o[-]. Then the following

assertion will be true.

Theorem 6.3 Assume )?,:0 (k] to be the cross-section of the tube )?:O [+] at instant

k. Then

X(s]1=X"(s] if Fkz)=F(k.z)
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X=X s] if Flkx)=coF(k.x)

Here J?,fo [s] 3}?,,’;’ [s]and the set }?io[s] may not lie totally within Y(s).

The solution of equation (6.16) is equivalent to finding all the solutions for the

inelusion

zk+)ENFk,2)—LGk)x +LQk)) ., =z (ky)eX® (6.17)
L

Equation (6.17) may be substituted by a system of "simpler” inclusions
z(k+1) €F(k,z (k) —L(k)C(k)x(k)+L (k)QKk)., =z(ky) €XP (6.18)
for each of which the solution set for kgsk =5 will be denoted as
Xy (ko XL () = R [+.L(+))
Theorem 6.4 The sel X;o[-,L (»)] of viable selutions to the inclusion
Tpa €EFk 2 (k) z(kg)€XO
Glk)x(k)e@(k), ky<skss
is the restriclion of set
Rl = A XEeL]

defined for stages [kyg, ....s+1] to the stages [kg,...,§] The intersection is

taken here over all constant matrices L.

However a question arises, whether this scheme allows also to calculate

X;o [¢]. Obviously

X, € MRS s LT (6.19)
L[]

over all sequences L[] = {L(ky), L{ky+1),....L(s+1)}. Moreover the following
proportion is true,

Theorem 8.5 Assume F(k,z) to be linear-convez: F(k.z) = A(k)z +P(k), with
Pk), @(k) convex and compact. Then .19) turns to be an equalily.
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7. Solution to the Basic Problem. "Stochastic’" Approximations.

The caleculation of X[s], X.J[s ], X*[s] may be also performed on the basis of the

results of §5. Namely system (6.6), (6.7) should now be substituted by the following

Z{k+1) = (I, ~F(k +1)G(k +1))F (k H(k)) —F (k +1)Q (k +1) (7.1)
H(k +1) = {nZ(k +1)|D(k +1) € D(1,B) | (1.2)
F(k+1) = R(k)G'(k +1)K Mk +1), F(kg) =X° (7.3)

Kk +1) =Nk +D)+GE+1)RK)G (kK +1)

Dk +1) = {R(k).N(k +1) ]

Theorem 7.1 Assume that in Theorem 6.1 S(k) is substituted by H(k) and
M{k) by F(k). Then the result of this theorem remains true.

If set @ (k) of (1.3) is of specific type
Qk) =y (k) —Q(k)
where y (k) and é(k) are given, then (1.3) is transformed into
v (k) €G(k)x (k) + 3 (k) (7.4)

which could be treated as an equation of observations for the unceriain system
(7.1). Sets X[s], XJ[s]. X'[s] therefore give us the guaranteed estimates of the
unknown state of system (1.1) on the basis of an observation of vector ¥ (k),
k €[kg,&] due to equation (7.4). The result of Theorem 7.1 then means that the
solution of this problem may be obtained via equations (7.1)—(7.3), according to
formulae (6.8)—(6.10) with M (k), S (&) substituted respectively by F(k), H(k). The
deterministic problem of nonlinear "guaranteed" filtering is hence approximated

by relations obtained through a "stochastic filtering" approximation scheme.

8. TheSetXx(s |t &k, ).

Assume that the sequence ¥ [k , t] is fixed. Let us discuss the means of con-
structing sets X(z | ¢t , &k ,IF), withs €[k, £]. From the respective definition one

may deduce the assertion

Lemma 8.1 The following equality is true

X(s it .k, F)=X(s | s,t,X(t . k,F) (8.1)
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Here the symbol X(s | s , ¢t , IF), taken for s < t, stands for the set of states z(s)
that serve as starting points for all the solutions z(k , s , £ (s)) that satisfy the

relations
zk +1)eFk ,2zk)).z{{)eF

z(k) € Y(k), s <k <t

Corollary B.1 Formula (B.1) may be substiluted for

X(s |t ., 2, F)=X(s . k. F)MmX(slt, k. R) (8.2)

where R is any subset of R" that includes X(t , &£ , IF).

Thus the set X(s | t , £ , F) is described through the scolutions of two praob-
lems the first of which is to define X(s , & , F) (along the techniques of the above)
and the second is to define X{s | ¢ , ¢ , R). The solution of the second problem will

be further specified for I € compR" and for a closed convex Y.

The underlying elementary operalion is to describe X - the set of all the vec-

tors x € R" that satisfy the system
ze€F(z), =zeY
X'=fz :Flz) NY # ¢
In view of Lemma 4.1 we come to
Lemma 8.2 Th set X* may be described as
X'=yylniEz —MFE)+ MY | M e M™"*"{ | x € R"]
From here it follows:

Theorem 8.1

The set X(s | s , £ , R) may be described as the solulion of the recurrent system

(in backward "time")
X[el=Y(k) N X[k] (8.3)
where
XMel=yUt N Ez —MF(z)+ MX[k +1] | M eM™™ | | z € R"{,

ssk<st X[t]l1=Y[t].
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Finally we will specify the solution for the linear case

zlk + ) cAk)zk) +PR)Y(k) =iz : Gk)x €Q(k)].
Assume

X=lxz:z€dr —P,zcY,z2ze€Z| , Y=z Gr €q] (8.4)

where 4 e M™" ., ¢ €M™ ™ , P @, Z are convex and compact.

Lemma 8.3 The set X may be defined as
pll | Xy =inflp(A | P)+p(A | Z) + p(p ! @)}

over all the vectors A € R" , p € R™ that satisfy the equality I = 4" A + G'p.
The latter relation yields:

Lemma 8.4 The set X may be defined as

XL Z+P)+MQ=HFL , M (8.5)

whatever are the matrices L € M™*™ and M € M ™*" that satisfy the equality

L4 + MG =E,. Moreover the following equalilies are true
X=INHL ML M (8.6)
p(l | X) =inf {p{t | H(L . M)) | L M |

overallL e M™"™ Y cM™*",

Corollary 8.2 Suppose | 4 | # 0. Then conditions (8.5), (8.6) may be substituted

for
XC(E, —MGYAV(Z +P)+M'Q=HUI,
X = MHM) LMy et X) =inf {p | H (M) | MY
where

M emMm

The latter relations may be used for recurrent procedures. These are either

Xlkl=nN{He (L M) | L AGKR)+MGk)=E,}. (8.7)
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HL, M) =LX[k+1]+PE&) +M'@k), X[t] =7L],

s skt
with
X(s |'s.t,Y[t]) =X[s] (8.9)
or
X[k]CH (L{k), M(k)), X[t]=Y[t] (8.10)
s skt
with
X(s 18,0, YN =NIX[s]|L, (9. M (D} (8.11)
where
Ly =), ..., L)) Myn=ME),..., MQ1))

Theorem B.2 The set X(s | 5 , ¢ . Y) may be derived due to either equations (8.7)
- (8.9) or (8.10), (8.11).
Remark As mentioned in the sequel to § 7, set Y{¢t) may be generated due to a

measurement equation
Glk)z € y(k) —@k) = Qk)

where é(lc) is the restriction on the "noise” in the observations. Then each of the
sets X(7 , kq X?) gives a " guaranteed" estimate for the unknown state of the system
{1.1) on the basis of the available measurement y (+) = (¥ {k,), ..., ¥w(k)) obtained

due to equation
Y{k) € G(k) z (k) + Q'(k)

kp=sk =T

Thus sets X(T , kg, X% solve the "filtering” problem, whilst X(s | T, ko, X gives
the solution of either the interpolation {'refinement”} problem (if kg<s < T) or

the extrapolation problem (if kg < 7 < 5).

In § 7 the approximation of X(71, &£, X”) was given Lthrough stochastic filter-

ing procedures. The same approach may be propagated to give an alternative
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approximation scheme for sets X(s | s , ky, X%).

The schemes of this paper allow to treat nonlinear systems. However in the
linear case they do not coincide with the procedures given in {2,10] for solving

guaranteed estimation problems with set-membership instantaneous constraints.
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