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One of the means of modelling a system with an uncertainty 

in the parameters or in the inputs is to consider a multistage 

inclusion or a differential inclusion. These types of models 

may serve to describe an uncertainty for which the only avail- 

able data is a set-membership description of the admissible 

constraints on the unknown parameters. 

A problem under discussion here deals with the specification 

of the "tube" of all solutions to a nonlinear multistage inclu- 

sion that arise from a given set and also satisfy an additional 

phase constraint. The description of this "solution tube" is 

important for solving problems of guaranteed estimation of the 

dynamics of uncertain systems as well as for the solution of 

other "viability" problems for systems described by equations 

involving multivalued maps. 



On the Solution Sets for 

Uncertain Systems with Phase Constraints 

A. B. Kurzhansk i i  

INTRODUCTION 

This paper  deals with multistage inclusions that  descr ibe a system with uncer- 

tainty in the  model o r  in the  inputs [1,2]. In particular this may be a difference 

scheme fo r  a differential  inclusion 131. The solution to  these inclusions i s  a mul- 

tivalued function whose cross-section at a speclf ic instant of time is the  "admissi- 

ble domain" f o r  the  inclusion. 

The problem considered he re  is to  specify a subset of solutions tha t  consists 

of those "trajectories" . ~ h i c h  satisfy an additional phase constraint.  These solu- 

t ions are said to be "viable" with respect  to  the phase constraint 131. The Gross 

section of the  set of al l  vlable solutions is the attainabll lty domain under the  state 

constraint.  The derivat ion of evolution equations f o r  the  l a t t e r  domain i s  the 

object ive of th ls paper .  

The problem posed h e r e  i s  purely deterministic. However, the  techniques 

applied t o  i ts  solution Involve some stochastic schemes. These schemes follow a n  

analogy between some formulae of convex analysis [4,5] and those f o r  calculating 

conditlonal mean values f o r  specific types of stochast ic systems [6,7] which w a s  

pointed out  in C8.91. 

A special application of the resu l ts  of th is paper  could be  the  derlvat ion of 

solving re lat ions f o r  nonlinear f i l ter ing under set-membership constraints on the 

"noise" and the  descript ion of the analogies between the  theor ies  of "guaranteed" 

and stochastic fi l tering. 

1. Discrete-time Uncertain Systems 

Consider a multistage process described by a n  n-dimensional r ecu r ren t  inclu- 

sion 

where k EN, z ( k )  €En ,  F(k . z ( k ) )  i s  a given multivalued map from IN XiRn into 

compiRn (IN i s  the  set of natural  numbers, complRn is the set of a l l  compact sub- 

sets of lRn).  



Suppose the  initial s ta te  z ( k , )  = z 0  of the system is confined to  a preassigned 

set :  

where X0  i s  given in advance. A t ra jec tory  solution of system (1.1) tha t  starts from 

point z 0  at instant k o  will be  denoted as z ( k  l ko .zO) .  The set of a l l  solutions f o r  

(1 .1 )  that  start from z O at instant k O  will be denoted as X(k i k , , zO)  ( k  EN,  k l k O )  

with f u r t he r  notation 

Let Q ( k )  be a multivalued map from IN into complRm and G ( k )  be a single- 

valued map from N  to  the  set of m Xn-matrices. The pa i r  G ( k ) ,  Q ( k ) ,  introduces 

a state constraint  

on the solutions of system (1 .1) .  

The subset of IRn tha t  consists of all the  points of IRn through which at stage 

s € [ k o , ~ ]  = I k : k o S k  S T  I t he re  passes at least  one of the  t ra jec tor ies  

z ( k l k o , z o ) ,  tha t  sat isfy constraint  (1 .3)  f o r  k € [ k 0 , r ]  will be denoted as 

X(s l ~ , k ~ . z O ) .  

The aim of th is  pape r  is f i rs t  to  study the  sets X ( T I T , ~ ~ . X O )  = X ( T , ~ ~ , X O )  and 

the l r  evolution in "time" T .  

In o the r  words, i f  a t ra jec tory  z ( k  l ko .zO)  of equation (1.1) that  sat isf ies the 

constraint (1 .3)  f o r  al l  k E [ko ,s ]  is named "viable until instant T" ("relative t o  

constraint (1.3)"), then o u r  object ive will be to  descr ibe the  evolution of the  set of 

a l l  viable t ra jec tor ies  of (1 .1) .  Here at each instant k > k O  the  constraint  (1.3) 

may "cut off" a p a r t  of X(k / k O . z O )  reducing i t  thus t o  t h e  set x ( k , k O , z O ) .  

The sets X(k . k D , z O )  may also be  interpreted as "attainability domains" f o r  

system (1 .1 )  under t h e  s ta te  space  constraint  (1 .3) .  The object ive is to descr ibe 

evolution of these domains. 

A f u r t he r  object ive will be  to  descr ibe the  sets X ( s  I r , ko .zO)  and t he i r  evelu- 

tion. 



2. The Atta inabi l i ty  Domains 

From the definition o f  sets X(s I ~ , k ~ . z ~ )  it follows that the following proper- 

ties are true. 

Lemma 2.1. Whatever are the instants t , s , k ,  ( t  a s  >k  2 0 )  and the set 

IF Ecomp I R n ,  thefollowing relation i s  t rue 

Lemma 2.2. Whatever are the instants s ,t , ~ , k  ,l ( t  a s  2 1 ;  ~ a l  a k ;  t > T )  and 

the set F Ecomp IR " t h e  following relation i s  t rue 

Relation (2.1) shows that sets X ( ~ , T . X )  satisfy a semigroup property which 

allows to define a generalized dynamic system in the space 2"" o f  all subsets of 

I R " .  

In general the sets X(s ! t ,k .F ) need not be either convex or connected. How- 

ever, it is obvious that the following is true 

Lemma 2.3. Assume that the map F i s  Linear in z: 

where PEconvIR". Then for any  set F EconvlR" each of the sets 

X ( S ~ , ~ , I F ) E C O ~ V I R " ( ~  a s  a k r o ) .  

Here conv IR" stands for the set o f  all convex compact subsets o f  IR" . 

3. The Onestage Problem 

Consider the system 

z E F ( z ) ,  GZ E Q .  z E X .  

where z E I R  " , X E comp IR" , Q E conv IR m ,  F ( K )  is a multivalued map from IR" into 

conv IR " . G is a linear (single-valued) map from IR " into IR m .  

I t  is obvious that the sets F(X) = I u F ( z ) z  E X  1 need not be convex. 

Let Z ,  Z' respectively denote the sets o f  al solutions for the following sys- 

tems: 



(a) z €F(X),  Gz EQ,  

(b) z ' ~ c o F ( X ) ,  GZ'EQ,  

where c o F  stands f o r  the closed convex hull of F(X). 

The following statement is t r ue  

Lemma 3.1. The se ts  Z ,  c o Z ,  Z' sat is fy  thef i l lowing i nc l us i ons  

L e t  p(l Z )  = sup { l'z z € 2  I denote the  support  function [4] of set Z. Also 

denote 

Then the  function O(1 ,p , q )  may be  used t o  descr ibe t h e  sets coZ.Z0. 

Lemma 3.2. Thefi l lowing re la t ions  a r e  t r u e  

p(l  Z )  = p(l l c o ~ )  = sup inf O(l,p , q )  , q EF(X), p c I R m  
I P 

(3.2) 

p(l 123 = inf sup O( l ,p ,q )  , q EF(X), p E!R 
P v 

(3.3) 

I t  is not difficuIt to give an exampIe of a nonlinear map F ( z )  f o r  which Z i s  

nonconvex and t h e  functions p(l ICOZ), p ( l 2 3  do not coincide, s o  tha t  the  inclu- 

sions Z CcoZ ,  c o Z  c Z b a r e  s t r i c t .  

Indeed, assume X = [0  j , z E R' 

Then 

The set F(0) is a nonconvex polyhedron 0 K D L in Figure 1 while set Y i s  a 

st r ipe.  Here, obviously, set Z which i s  the  intersection of F(0) and Y, tu rns to be  

a nonconvex polyhedron 0 A B D L,  while sets co Z , Z ' a r e  corlvex polyhedrons 0 A 

B L and 0 A C L respectively (see Figures 2 ,  3). The corresponding points have the 

coordinates 

A = (0 . 2), B = (1/2 , 2 ), C = (1 , 2),  D = (3/7 , 3/7), K = (0 , 3) ,  L = (3  . O), 

0 = ( 0 ,  0). 



Clearly Z c co Z C Z' 

This example may also serve to illustrate the existence of a gap between (3.2) 

and (3.3). 

? 
F i g u r e  1 

F i g u r e  2 

'7- 

1 

F i g u r e  3 



For  a l inear-convex map F ( z )  = Az +P ( P  Econv IR " )  t h e r e  is no dist inct ion 

between Z ,  c o Z ,  and 2': 

Lemma 3.3 S u p p o s e  F ( z )  = Az + P w h e r e  P Econv IR ", A is a l i n e a r  m a p  prom 

IRn i n  to IRn. T h e n Z  = c o Z  = 2'. 

4. The One S t e ~ e  Problem - An Alternative Approach. 

The descr ip t ion  of Z,  coZ. Z 'may  b e  given in a n  a l t e rna t i ve  fo rm which, how- 

e v e r ,  allows to p r e s e n t  all of t h e s e  sets as t h e  in te rsec t ions  of some var ie t ies  of 

convex multivalued maps. 

Indeed, whatever  are t h e  v e c t o r s  1 .p (1 #0) I t  i s  poss ib le to p r e s e n t  p =ML 

where M belongs to t h e  s p a c e  lh4 m x n  of real mat r i ces  of dimension m X n .  Then, 

obviously, 

p ( l 1 ~ )  = sup  inf O(l,ML,q) = p ( ~  C O Z )  , q EF(X),  MEW.^^". 
v Y 

p(L Iz') = inf sup  #(L , M L , ~ )  q EF(X). M EIM" '~"  
hJ g 

or 

where  

p ( L 2 3  = inf 1 O(1.M) I M ~lh4"" "  ) ,  

From (4.1) I t  follows t h a t  

Z r  u n R ( M , q ) C n  u R ( M . ~ ) ,  M cNrnXn  
v<F(XJ Y M ~ E F ( X J  

where  

Simi lar ly (4.2) y ields 



Moreover a stronger assertion holds. 

Theorem 4.1. Thefollowing relations are t rue 

where M EIM"~ " .  

Obviously for F ( z )  = .4Y +P , (X ,P  E C O R " )  we have F (X)  = coF(X) and 

Z = Z' = c o z .  

This first scheme o f  relations may serve to  be a basis for constructing 

recurrent procedures. Another recurrent procedure could be derived from the 

following second scheme. Consider the system 

for  which we are to  determine the set Z o f  all vectors z consistent with inclusions 

(4.7), (4.8). Namely, we are to  determine the restriction F r ( z )  o f  F ( z )  to  set Y .  

Here wehave 

F ( z ) i f z  EY 
F r ( z )  = I 4 i f z  E Y 

where as before Y = [ z : G z  E Q  1 .  

Lemma 4.1 AssumeF(z )  EcompIRn for a n y  z and Q EconvR "'. Then 

over all n x m matrices L ,  (2 € I M n  

Denote the null vectors and matrices as [ D i m  ERm , [ O l m , n  €Rmxn , the 

(n x n )  unit matrix as En and the (n x m )  matrix Lmn as 

Suppose z € Y .  Then f O j m  E Q - Gz and for  any (n xm)  -matrix L we have 

) O l n  E L (Q - G z )  . Then it follows that for  z E Y.  



On t h e  o t h e r  hand, suppose z ? Y. 

Let  us  demonst ra te  t h a t  in th is  case 

n I F @ )  + L ( Q  -Gz)  1 = 4 
L 

Denote A  = F ( z ) ,  B = Q  - G z .  F o r  any  A > O  we then  have  

Since f 0 I,?B we have f 0 jn ?L,B. There fo re  t h e r e  ex i s t s  a v e c t o r  L SIRn, L # O  

and  a number y  >O such t h a t  

( ~ , z ) z y > O  f o r a n y  z €L ,B ,  

Denote 

L  = f z : ( L , z ) > y j  

Then L 2L,B and  

( A  +XL,B) r , (A  -XL,B)C(A + U )  n ( A  - U )  

S e t  A  being bounded t h e r e  ex i s t s  a A > 0 such t h a t  

( A  + A L ) n ( A  - A L )  = 4 .  

Hence 

and  t h e  Lemma i s  p roved.  

5. Sta t i s t i ca l  Uncerta inty.  The Elementary Problem. 

Consider t h e  system 

z = q +( ,  Cz = v  + 7 ) ,  

where  



and t.7 are independent gaussian random vectors  with zero means ( E t = O , E v  = O )  

and with var iances E t t '  = R.  E v v '  = N ,  where R > O n  N > O  (R EIM,. N E N  ,). 

Assuming at f i r s t  that  the  pa i r  h = [ q . v  1 i s  f ixed, le t  us find the  conditional 

mean E ( z  y =0, h =ha) under the condition tha t  after one real izat ion of the  values 

t.7 the relat ions 

a r e  satisfied. After a standard calculation we have 

where P-' = R-I + G'N-lG. 

After  applying a well-known matrix transformation [6] 

we have 

The matrix of conditional var iances is 

I t  does not depend upon h and is determined only by q , v  and the element 

A = RG'K-'G. Therefore i t  makes sense to  consider the  sets 

and 

of conditional mean values. Each of the elements of these sets has one and the  

same var iance P,. The sets W.(A) and W ( A , q )  are obviously convex while W ( A )  may 

not be  convex. 

Lemma 5.1 Thefo l lowing i n c l u s i o n s  a r e  t r u e  ( Z  c Z 7  

z C W ( A ) ,  z'c w'(A), W ( A )  CW'(A)  , (5.2) 



I t  can be seen that  W(h,q )  has exactly the  same s t ruc tu re  as R(M,q)  of (4.3) 

(with only hsubst i tuted by M). Hence f o r  the same reason as before w e  have 

where the intersections a r e  taken over  the c lass D of al l  possible pa i rs  

D = f R,N j of nonnegative matrices R,N of respect ive dimensions. However, a 

proper ty  similar Lo that  of Lemma 4.1 happens to  be t rue.  Namely if by D(a,@) w e  

denote the  c lass of pa i rs  [ R,N j where R = aE, , N = @Em, a > 0,  @ > 0,  then the  

element X will depend only upon two parameters a,@.  

Theorem 5.1 Suppose matr iz  G is  o f f u l l  rank m.  h e n  the following equali- 

t ies are t rue  

Here i t  suff ices Lo take  the intersections only over  a one-parametric variety 

D eD(1,B).  

There are some specif ic d i f ferences between this scheme and the one of 54. 

These could be  t raced more explicitly when we pass Lo the calculation of support  

functions p(l I z ) ,  p( l /Z ' )  f o r  Z,Z'. 

Lemma 5.2 Thefollowing inequal i ty  is  t rue 

~(1123 = f " ( l ) s f ( l )  = inf [+ ( l , h ) lD  € D ( l , @ ) , @ > O j  (5.6) 

where f "(1 ) is  the second conjugate to f ( 1 )  in the sense ofFenche1 [ 4 ] .  

Moreover if we substi tute D(1,@) in (5.6) f o r  a broader  c lass D then an exact  

equality will be  attained, i.e. 

~ ( 1 1 ~ 3  = f " ( 1 )  = inf ftJ(1,h)jD ED  j (5.7) 

More precisely, w e  come t o  

Theorem 5.2 Suppose matr iz  G is of fu l l  rank m .  Then equal i ty  (5.7) will  be 

t rue together w i th  thefollowing relation 

p(l I z )  =p( l  l c o ~ )  = sup inf I tJ(l . h . q )d  E D I ~  eF (X )  I (5.0) 



Problems (5.73, (5.8) a r e  "stochastically dual" t o  (3.3.  ( 3 . 2 ) .  

The resul ts of the  above may now be applied t o  ou r  basic problem fo r  multis- 

tage systems. 

6. Solution to the Basic Problem 

Returning t o  system (1 .1 ) - (1 .3 )  we will seek f o r  the  sequence of sets 

X [ s ]  = X ( s , k , . ~ ~ )  together  wlth two o the r  sequences of sets. These a r e  

- the  solution set of t h e  system 

zk.1 ~ c o F ( k  . X 0 [ k ] ) ,  X ' [ k  01 = X' 

G ( k  +1)  E Q ( k + l ) ,  k a k ,  

and X . [ s ]  = X.(s . k , . ~ ' )  which is obtained due to  t h e  following relations: 

X. [ s ]  = C O Z [ S ]  

where Z [ k  +1] i s  t h e  solution set f o r  the  system 

z ( k  +1)  E F ( k  , c o Z [ k I ) ,  Z [ k o ]  = X u .  

The sets X.[T].  X T T ]  a r e  obviously convex. They satisfy the  inclusions 

X [ T ]  ~ X . [ T ]  c X ' [ T ]  

where each of the  sets X [ T ] ,  X.[T]. X * [ T ]  l ies within 

Y ( T )  = [ z : G ( T ) z  E Q ( T ) I ,  ~ > k , + l ,  

The set x'[T] may the re fo re  be  obtained f o r  example by e i the r  solving a 

sequence of problems ( 6 . 1 ) ,  ( 6 . 2 )  ( for  every k E [ k , .s  -11 with X t k o ]  = x u )  (the 

f i r s t  scheme of 54) o r  by finding al l  the  solutions z [ k ]  = E ( k . k O , z o )  of the  equation 

tha t  could be prolongated until t he  instant T + 1 and finding t h e  relat ion of th is set 

LO X [ T ] ,  X . [T ] ,  and X.[T].  



Following the  f i r s t  scheme of 54 w e  may there fo re  consider the recu r ren t  sys- 

t e m  

z ( k  + I )  = ( I ,  -M(k + l ) G ( k  + l ) )F" (k  ,S (k  )) +M(k  + l ) Q ( k  +1)  (6.4) 

where M ( k  +1) E IR mX". 

From Theorem 4.1 w e  may now deduce the resul t  

Theorem 6.1 The so lv ing re lat ions por X [ s  1, X.[s], X*[s ] are  a s  pollows 

~ [ s ]  = s ( s )  f o r  ~ O ( k , s ( k ) )  = F ( k  . S ( k ) )  (6.6)  

x 0 [ s ]  = ~ ( s )  fo r  ~ ' ( k  , S ( k ) )  = c o F ( k  , S ( k ) )  (6 .7)  

x.[s] = c o S ( s )  f o r  ~ O ( k , s ( k )  = F ( k  , c o S ( k ) ) .  (6.8) 

~t is obvious thrlt X [ T ]  is the exact  solution while X.[T], X'[T] are convex 

majorants fo r  X [ T ] .  Clearly by interchanging and combining relat ions (6.7) ,  (6.8) 

from s tage t o  stage i t  is possible t o  construct  a var iety of o the r  convex majorants 

f o r  X[T ] .  However for the l inear case they al l  coincide with X [ T ] .  

Lemma 6.1 Assume F O ( k , s ( k ) )  = A ( k ) S ( k )  + P ( k )  w i t h  P ( k ) ,  X O  being closed 

a n d  compact. Then X [ k  ] = X'[k ] = X.[k ] por a n y  k r k 0. 

Consider the system 

z ( k  + I )  = ( I ,  -M(k + l )G(k  +1))F0(k , Z ( k ) )  -M(k + l )Q (k  + l ) , Z ( k d  =xO,  (6 .9)  

denoting i ts  solution as 

z (k ;Mk ( . ) )  f o r  F o ( k , Z )  = F ( k , Z )  

z.(k .Mk(.)) for FO(k , Z )  = F ( k , c o Z )  

Z*(k.Mk(.)) fo r  FO(k ,z )  = c o F ( k , Z )  

Then the previous suggestions yield the  following conclusion 

Theorem 6.2 Whatever i s  the sequence hi,(.), thepol lowing solv ing i n c l u s i o n s  

a re  t r u e  



with Z ( S  ,M.(-)) ~ Z . ( S  ,Ma(-)) CZ.(s.M,(.)) 

Hence we also have 

over  a l l  M, ( s  ) 

However a question a r i ses  which is whether (6.11)-(6.13) could tu rn  into 

exact  equalit ies. 

Lemma 6.2 Assume the sys tem (Z.Z), to be l inear :  F ( k , z )  = A ( k ) z  + P ( k )  w i t h  

sets P ( k ) ,  Q ( k )  convez a n d  compact. Then  the  i nc l us i ons  (6.11)-(6.13) turn 

i n t o  the  equa l i t y  

Hence in th is case  the  intersections over  M ( k )  could be taken e i ther  in each 

s tage as in Theorem 6.1 (see (6.6) ,  (6 .7) )  o r  at the final stage as in (6.14). 

Let us now follow the second scheme of 54, considering the equation 

and denoting the  set of i ts  solutions that  starts at z0  EX' as ~ ' ( k  , k O , z 0 )  with 

(, ~ z ~ ( k , k ~ , z ~ ) l z o ~ ~ ~ j  =Xo(k  , kO,xo)  = X o [ k ]  . 

According t o  Lemma 4.1 w e  substi tute (6.15) by the equation 

z ( k  + l )  E n ( P ' ( k  ,Z ( k ) )  - L G ( k ) z ( k )  + L Y ( k ) )  , z0  E X ' ,  
L 

and the  calculation of X O [ k ]  should thence follow the  procedure 

Denote the  whole solution "tube" f o r  k o 5 k  S s  as fro[.]. Then the  following 

assert ion will be t rue .  

Theorem 6.3 Assume Z o [ k  I to be t he  cross-section of the  tube ei;,[.] a t  i n s t a n t  

k .  h e n  



Here 3 z o [ s ]  2%;' [ s ]  and the set f ; , [s]  may not l ie totally within Y ( s )  

The solution of equation (6.16) is equivalent t o  finding al l  the solutions f o r  the 

inclusion 

~ ( k  + I )  E n (P(k  , z )  - L G ( ~ ) z  + L Q ( ~ ) )  , z (k , )  E X ,  (6.17) 
L 

Equation (6.17) may be substituted by a system of "simpler" inclusions 

f o r  each of which the  solution set  f o r  k o S k  S s  will be denoted as 

Theorem 6.4 The set Yt.,[..L ( . ) I  of viable solutions to the inc lus ion 

is  the restrict ion of set 

defined for stages [ kg ,  . . . . s  + l ]  to the stages [k, ,  ..., s ] .  The intersection is  

taken here over all constant matrices L .  

However a question ar ises,  whether this scheme allows a lso t o  calculate 

&', [s  1. Obviously 

over  a l l  sequences L [ a ]  = L ( k  ,). L (k,+l) , .  . .,L ( s  +1) j .  Moreover the  following 

proport ion i s  t rue .  

Theorem 6.5 Assume F (k  ,z) to be linear-convez: F ( k . 2 )  = A ( k ) z  +P (k  ), wi th  

P ( k ) ,  Q ( k )  convez and compact. Then (6.19) t u r n s  to be a n  equal i ty.  



7. Solut ion t o  the Basic Problem. "Stochast ic" Approximations. 

The calculation of X [ s ] ,  X . [s ] ,  X'[s]  may be also performed on t he  basis of t he  

resul ts  of 55. Namely system (6.61, (6.7) should now be substi tuted by t he  following 

z ( k  + l )  = ( I ,  - ~ ( k  + I ) G ( ~  + I ) ) F ~ ( ~  , ~ ( k  )) - ~ ( k  + l ) ~ ( k  + l )  (7.1) 

Theorem 7.1 Assume that in Theorem 6.1 S ( k )  i s  substituted by H ( k )  and 

M(k)  by F(k ). Then the result of th is  theorem remains true. 

If set Q ( k )  of (1.3) i s  of speci f ic  type 

where y ( k )  and 6 ( k )  a r e  given, then (1.3) is transformed into 

which could be t rea ted  as an  equation of observations f o r  the uncertain system 

7 Sets  X [ s ] .  X. [s ] .  X ' [ s ]  t he re fo re  give us the guaranteed est imates of the 

unknown s ta te  of system (1.1) on t he  basis of an  observation of vector  y ( k ) .  

k E [k , , s ]  due t o  equation (7.4). The resu l t  of Theorem 7.1 then means t ha t  t he  

solution of th is problem may be obtained via equations (7.1)-(7.3), according t o  

formulae (6.8)-(6.10) with M(k ) ,  S ( k )  substituted respectively by F ( k ) ,  H(k) .  The 

deterministic problem of nonlinear "guaranteed" f i l ter ing is hence approximated 

by relat ions obtained through a "stochastic f i l ter ing" approximation scheme. 

8. T h e S e t X ( s  1 t , k , I F ) .  

Assume that  the sequence y [k , t ]  is f ixed. Let us discuss t he  means of con- 

st ruct ing sets X(z ! t , k , I F ) ,  with s E [k , t ] .  From the  respect ive definit ion one 

may deduce t h e  assert ion 

Lemma 8.1 The following equality is t r u e  



Here the  symbol X(s I s , t , IF), taken f o r  s 5 t ,  stands for  the  set of states z ( s )  

that  se rve  as star t ing points f o r  a l l  the  solutions z (k , s . z (s ) )  tha t  sat isfy the  

relat ions 

Corol lary 8.1 Formula (8.1) may be substituted f o r  

where R is any subset of W" that  includes X(t . k , IF). 

Thus the  set X(s 1 t , k , IF) is  described through the  solutions of two prob- 

lems the  f i r s t  of which is t o  define X(s , k , IF) (along t h e  techniques of the above) 

and the second is t o  define X(s I s . t , R). The solution of the second problem will 

be  f u r t he r  specified for  IF 6 compRn and f o r  a closcd convex Y. 

The underlying elementary operation is t o  descr ibe X* - the  set of a l l  the  vec- 

t o r s  z E W" t ha t  satisfy the  system 

In view of Lemma 4.1 w e  come t o  

Lemma 8.2 Th set X' may be  described as 

From h e r e  i t  follows: 

Theorem 8.1 

The set X(s 1 s , t , R) may be described as the  solution of the  recu r ren t  system 

(in backward "time") 

where 



Finally w e  will specify the solution for the l inear case 

z ( k  +I) E ~ ( k ) z ( k )  + ~ ( k )  ~ ( k )  = : G ( ~ ) z  E Q ( ~ ) I  

Assume 

where A E i M n X n  , G E IM , P , Q , Z are convex and compact. 

Lemma 8.3 The se t  X may be defined as 

P(L I X) = inf lp(X I P )  + P(X I Z )  + P@ I Q ) I  

over  al l  the vectors  X € R n  , p € R m  that  sat isfy the equality t  = A' X + G ' p .  

The la t te r  relat ion yields: 

Lemma 8.4 The set X may be defined as 

X r L ' ( Z  + P )  + M'Q = H(L  , M )  ( 8 . 5 )  

whatever are the matr ices L € i M n X n  and M E IM mxn tha t  sat isfy the equality 

L '  A  + M'G = E n .  Moreover the following equalit ies are t r ue  

over  a l l  L E i M n X n  , M E h( mXn 

Corollary 8.2 Suppose I A / # 0 .  Then conditions (8 .5 ) ,  (8 .6)  may be substi tuted 

f o r  

X r (En - M ' G )  A-' ( Z  + P )  + M ' Q  = H ( M )  , 

where 

M E ~ M ~ ~ .  

The la t te r  re lat ions may be  used f o r  r ecu r ren t  procedures.  These are e i ther  

X [ k ] = n ( H k ( L , M ) L A ( k ) + M G ( k ) = E n I ,  ( 8 . 7 )  



with 

or 

with 
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Hk(L , M )  = L ' ( X [ k  + 11 + P ( k ) )  + M ' Q ( k )  XLt1 = Y [ t l  3 

s s k s t  

where 

Theorem 8.2 The set X(s  1 s . t  , Y)  may be derived due t o  either equations ( 8 . 7 )  

- (8 .9 )  or (8 .10 ) ,  (8 .11 ) .  

Remark As mentioned in the sequel to  5 7 ,  set Y ( t )  may be generated due to a 

measurement equation 

where 6 ( k )  is the restriction on the "noise" in the observations. Then each o f  the 

sets X(T , k ,  XO) gives a " guaranteed" estimate for the unknown state of the system 

(1 .1 )  on the basis o f  the available measurement y (.) = ( y  ( k o )  , . . . , y  ( k ) )  obtained 

due to  equation 

Thus sets X(T , k ,  , xO) solve the "filtering" problem, whilst X(s  1 T , k o  , Xu) gives 

the solution o f  either the interpolation ("refinement") problem ( i f  k ,  s s s T )  or 

the extrapolation problem ( i f  k ,  5 T S s ) .  

In $ 7 the approximation of X ( T  . k g ,  x') was given through stochastic fi lter- 

ing procedures. The same approach may be propagated to  give an alternative 



approximation scheme fo r  sets X(s 1 s , k D  , XD). 

The schemes of this paper  allow to treat nonlinear systems. However in the  

l inear case they do not coincide with the  procedures given in [2.10] f o r  solving 

guaranteed estimation problems with set-membership instantaneous constraints. 
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