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Abstract

The problem of optimal intertemporal extraction (harvest) of a resource is in-
vestigated. The rescurce stock and the price {(exogenous) are Markov processes.
The expected prasent value of all future profits is maximized. The effects of in-
creasing risk in the process increments in the fulure on the present optimal con-
trol (the present extraction level) are investigated.

It is proved that increasing risk in the increments of the stochastic price -
and growth — processes may imply higher or lower optimal present extraction.

The resuits are dependent on;
a Autocorrelation and stationarity in the price process
The first three derivatives of the extraction cost function
c The first three derivatives of the deterministic part of the growth process

The effect of increasing risk in the process increments on the sign of the op-
timal change in the present extraction level can be unambiguously determined in
several cases.
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1 Introduction

1.1 The problem

The question under investigation is whether or not the present extraction
level should increase or decrease under the influence of increasing risk
in the stochastic price process and/or the stochastic growih process.

The question will be analyzed under the assumption of risk neutrality and
it is hence assumed that the firm maximizes the expected present value of
future extraction over a T period horizon.

The result should be of interest to firms in most resource industries.
Typical applications can be found in the oil, coal and mineral sectors.

However, since both prices and growth are treated as stochastic
processes, other applications are optimal harvesting in agriculture and
fishing.

The general assumptions are the following;

~ Tne aim is to maximize the expected present value of all future
profits from extraction

- Price is a Markov process, exogenous to the enterprise

- The size of the natural resource stock is a controlled diffusion
process, where the control variable is the extraction Tevel.

1.2 Earlier work in the field

The method of dynawic programming was originally presented by Bellman
{1). An early discussion about diffusion processes is given by Ito and
MckKean (6). Fleming and Rishel (4) give a detailed presentation of deter-
minjstic and stochastic optimal control. A well written introduction to
the theory of optimal control of stochastic differential equation systems
is given by Chow (2),.

In this paper we deal with a diffusion process where the living stock
grows according to a stochastic process. The problem of the resource
manager is to choose the optimal harvest level in every moment.



Earlier investigations of similar problems have given unambiguous results
because of very restrictive assumptions about the functional form of the
pay off function and the growth function.

Gleit (5) investigates a problem similar to the one of this paper.
However, he makes very restrictive assumptions concerning the growth
function and the utility function of the resource owner. According to
Gleit, the utility function is of the form (1.2.1) and the growth functioun
of the form (1.2.2). The profit function is defined in (1.2.3).

T
Un) = T (1.2.1)
T

{(n = profit, 0 < T < 1)

dxt = [k(t)xt - h(xt, t) Jdt + xtc(t)dwt (1.2.2)

XO =¢c >0

Xy = size of 1iving stock at time t

k(t) = possibly time dependent constant
h = harvest level

Wi = Wiener process

cz(t) = variance of the growth rate
n = A{tlh(x, t) - B(t)x {1.2.3)
A{t), B(t) = time dependent constants

The result derived by dleit is that the optimal present harvest level is
an increasing function of the variance of the growth rate.

In the present analysis it will be demonstrated that;

- The result derived by Gleit crucially depends on the restrictive

choice of growth function, the choice of profit function and the
assumption that the uncertainty concerns the growth rate and not for

instance the growth.



Furthermore, Gleit assumes price to be deterministic. In the analysis of
this paper, the stochastic properties of the price process are also given
attention. In fact, the relative variations in prices may be much

larger than the relative fluctuations in the resource stock in many
cases. This has often been the case in for instance the mineral sector
and the forest sector. (There may be "o growth at all in the minerals and
the size of the forest resource generally changes less than a few per
cent over a year.)

May, Beddington, Harwood and Shepherd (7) investigate the dynamic aspects
of fish and whale populations under density independent and density
dependent random noise that affects the per capita vital rates. They
conclude that, "the choice of an optimal management strategy clearly
involves a decision about the relative emphasis placed on the magnitude
of the yield compared with its stability". "The search for such robust
strategies is central to the management of fisheries in an uncertain
world."

Clearl_ , there are many factors that affect the optimal extraction level
under risk. Let us now turn to the formal analysis of the question of
this paper.

2 Analysis

2.1 Variables and parameters

wt(Pt-l’ yt-l) txpected present value of all profits from extraction
in the periods [t..., T] at time {t-1) as a function of
the price and the saved resource stock at time t-1 when
all future harvest levels [t, ..., T] are optimally
chosen. (Pt and Qt have not yet been revealed.}

ht harvest level at time t.

?t size of resource stock saved at time t for future
purposes.

P price at time t.



Qt size of resource stock at time t before harvest ht'
F'(Ptht_l) probability density function of Pt conditional on Pt-l'
G‘(Qtiwt l) probability density function of Qt conditional on the
size of the saved stock last period.
P Q - . _ e .
SN stochastic varjiables that are statistically independent
over time. Furthermore, sz and Eg are independent of
P
each other. E(et) = E(eg) = 0.
¢t(ht, Pt’ Qt) expected present value of all profits from extraction
in the periods [t, ..., 7] at time t when Pt and Ot
nave be2n revealed and optimal harvesting is assuied in
period [t+1, ..., T],
r rate of interest in the capital market.
Y (h, P ofit generated at ti t (=P h -~ h .
t( ¢ t) pr generated a me t M Ct( t))
Ct(ht) cost function at time t.
Rt(°} expected marginal present value of the resource stock

at time t when Pt and Qt have been revealed.

2.2 The problem

The problem is to maximize the expected present value of all future
profits in every time period.

WP 8 ) =) max ¢y (hy, Pyo QuIF'(PIP, 1)dp, G (Q, [0, _-n,_, D0,
t (2.2.1)
P
Piep = Pear(Pps B) + & (2.2.2)
- Q
Qt+1 = Qt+l([0t - ht]’ t) + €t (2.2.3)

In the main part of the analysis, the following specifications are used;



_ =rt !
¢t(ht, Pt’ Qt) = @ Vt(ht, Pt) + wt+1(vt, Pt) {2.2.4)
where Vt(°) is defined as
Vt(ht, Pt) = Ptht - Ct(ht) (2.2.5)
and
v =Q -h (2.2.6)

2.3 Optimal policy at time t

Just before Pt and Qt have been observed, the expected present value of
the profits in the periods [t, t+l, ..., T-1, T] is WPy ¥ 1), which
js defined in {2.2.1). When Pt and Qt have been observed, the problem is

to maximize ¢t(') withh respect to the policy variable h_. However, since

t°

W is a function of Yt(= Q - ht), it is most convenient to maximize

t+l t
¢t(') with respect to ht and . Tnhis way many useful results are given
explicitly. Hence, the problem in period t, when Pt and Qt gre revealed,

is given in {2.3.1). An interior solution 1s assumed optimal

ma x ¢t(ht, o Pt’ Qt) {2.3.1)
h ¥

t* 7t

s.t. h, + ¥ =10

t t t

In the following analysis, the notation will be as simplified as
possible.

The Lagrange function corresponding to (2.3.1) is (2.3.2)
L = ¢lh, ¥) + Kt(Q - h - Y} (2.3.2}

The first order optimum conditions are (an interior solution is assumed

optimal)
= - - Y =
Lh Q h
Lh = d?h - A = 0 {2.3.3)
Lo =¢ - A =0



From (2.3.3) we extract {2.3.4) which implies that the marginal value of
present extraction should be equal to the expected marginal value of the
resgurce if it is saved for future purposes.

b = A = ¢ (2.3.4)

A more explicit form of (2.3.4) is (2.3.5). This equation is obtained
through the use of (2.2.4), {2.2.5) and (2.2.6).

e p, - CLl= A = (2.3.5)

t

Define [ D ] as the matrix of second order derivatives.

0 -1 -1
[D]=|-1 ¢, O (2.3.6)
-1 0 byy

The second order maximum condition is (2.3.7)

D ==-9¢,,-¢ >0 {2.3.7)

Assumption 1

¢ww <0 ¢hh <0

Remark 1

From assumption 1 follows that the second ordar maximum condition is
fulfilled.

* *
Let us investigate how thz optimal choice variables ht’ W{ and the
*

expected marginal present value of the resource A, are affected by

t
changes in the parameters at time t!



Total differentiation of (2.3.3) gives (2.3.8)

_d )\*_ p— p—

t -4q,
*

[ D | dhy | = | ~oppdPy (2.3.8)
*

The derivative of the expected marginal present value of the resource at
time t with respect to the price at time t is obtained through Cramer's
rule,

0 -1 -1
. "% %hn O
Ohy - Oyp 0 Pyy
= T (2.3.9)
oP, | D |
“*
Brhy  ~Oppbyy = Oppd
t hpdwy = OhnPup
= T/ {2.2.10)
aPt | D |

From Assumption 1 we know that ¢WW <0, ¢hh <0Dand | D | > 0. From

(2.2.4) and (2.2.5) it is clear that & p > 0. ¢yp is the derivative of
the expected marginal value of the resource saved for future extraction

with respect to the present price.

Assumption 2

The autocorrelation in the price process is nonnegative.

Remark 2
4
b)\t
From Assumption 2 it follows that ®yp > 0. Hence, — > 0.
aP
t

The implication of Remark 2 is that the expected marginal present value

of the resource is strictly increasi.g in the present price. The result
is, however, dependent on the stochastic properties of the price

process.



Should the present harvest level increase when the present price
increases?

0 0 -1

) -1 -opp O
oh, -1 ~byp  Oyy
_t_ L (2.3.11)
P | D |
Bh, -0y +

t_ YP " ThP (2.3.12)
aPt | D |

Assumption 3

¢ >0

hP P

Remark 3

Assumption 3 is a ratner strong assumption, (¢hP > ¢TP)' Consider the two

period extraction problem

-r(T-1)
max Ey_1(n) = e r [P1o1 h1o1 - CT-1(hop) ] +

hr_1

-rT
e [E7-1(PTIPT_07(*) - C7(07(*))]

s.t. Qp = Qo - ho )

T-1

where m denotes the total present value of profits from extraction.

The first order optimum condition is;

20,

-r{T-1) . -r . =
e '{}PT-I - Cpogl+ e T Ery PriPrp) - Cpl - 0
T-1

Hence, the following equation should hold;

r

[PT-l - Ci-l] = [ET-I (PrIPr_y) - Cf] e Q7



*
Assume that Ct(-) is identical in both periods, that h and that

117 0
ET_I(PT) =a + bPr ;. Then it follows that;
|- 1 “n
PT_l -C' = (a + pr"l -C ) e QT
Assume further that PT_1 = E(PTlpT-l) for PT-l = pO

Then we get the equality;
" 1 -r |
Pp -C' =(Py-C e Qf

Obviously,

at this point. (The marginal relative growth is equal to the rate of
interest in the capital market.)

tet us determine and at time (7-1)!
tet u rmi ¢hP ¢wP (T-1)

-r(T-1)
¢hP e

oup = be-r(T-l)

Assumption 3 hence implies that b < 1.

Observation; In some cases Assumption 3 implies that the price
process is not a martingale or a submartingale but
perndaps a stationary first order autoregressive
process.

From Assumption 3 it follows that the present optimal extraction level is
a2 strictly increasing function of the present price. Note that, at least
*

ah
in the 2 period case, — = 0 under the assumption of martingale prices!
GPt
0 -1 0
. -1 *hn ™ *hp
ay -1 0 -0
wp
t - — (2.3.13)
ap | D |
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(2.3.14)

Once more, we make use of Assumption 3. We conclude that the optimal
amount of the resource that should be saved for future purposes is a
decreasing function of the present price. The price process assumptions
are however critical to the results.

* * *
dA dh o¥
oP o
aPt t Pt
Yalue >0 >0 <0
Critical
assumptions 1,2 1,3 1,3

Table 1 Derivatives with respect to Pt

*x ¥
and A.! From [2.3.8)

*x
Let us investigate how changes in Qt affect hes ¥ t

we get (2.3.15).

I R |

. 0 o O
e 10 R (2.3.15)
%0, X

%
Oht - hntyy (2.3.16)
aQt | DI

“*
From Assumption 1 it is clear that Rt is a strictly decreasing function

of the resource quantity Q..
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0 -1 -1
-1 0 0
ah 1 0 ¢
t - vy
_t. L (2.3.17)
E)Qt | D |
3" ¢
“Yyy
__t - _Fr (2.3.18)
3Q, 101
0 -1 -1
. -1 O%n O
oY -1 0 0
— - — {2.3.19)
Q
v o
“%hn
_t__hn (2.3.20)
aQt | O |

* *
Obviously, both hy and ¥, are strictly increasing functiaons of the
available resource stock. The results are summarized in table 2.

Table 2 Derivatives with respect to Qt

o h A
e Nt t
aQt aQt aQt
Value <0 >0 >0
—_— D
Critical
assumptions 1 1 1
2.4 The expected marginal present value of the resource stock saved

for the future under increasing risk in the process_increments

N (P LY, )
In this section, the aim is to investigate how -t Xzl 1 s

By
t-1
affected by increasing risk in the price and growth processes between
period t-1 and t. Increasing risk thus occurs in & _; and & ;.
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WP _, ¥ m h, Vv; P, F'(P P . )dp G %
ePerr Beer) T I ax ot % P QIFTPIP )1 GTQLTY, ) )d0
tt (2.4.1)
If it can be shown that the expected marginal present value of the
resource saved for future purposes increases {is unchanged) (decreases)

P . .
as the risk in €¢-1 and/or 52_1 increases, then it can be proved that the
optimal extraction level in period t-1 decreases {is unchanged)
(increases). ~

In some cases, the risk effect on the expected marginal value of the
“saved" resource affects earlier time periods. This problem will be
discussed in some detail in the following sections.

Equation (2.4.1) is identical to (2.4.2) when G'(*) denotes the proba-

bility density function of Eg-l‘

. A
WelPe_1s Bpog) = Jlmax oplhy, %5 Poy (B, {00 M)+ g 1 D)
ht,wt
{2.4.2)

FUPLIPy_)dPyG" (1) dego

The expected marginal present value of the saved resource at time t-1 is

given in (2.4.3).

aw (P

17 “t-1 - . . Q
= {jfmin A (h, v ;P ,[ @ty V) e D)
t Tt ot t “t-1 T-1

i1 hes ¥
(2.4.3)

oF, ,(Q,)

a1

1 ! Q Q
FriplPy )Py leg e g}

Remark 4

%, _,10,)

If we assume that > 0, which is a very weak growth condition,

ov
v Wy Py ¥goq)
it is clear from (2.4.3) that ——— —— is an increasing function
avy
t-1
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oW, ()

oy
P Q t-1 *
€1 and e, 4 can be extracted from tne changes in E (k ). In order to
*
determine if Et l(k } increases or decreases from r1sk increases in the

From Remark 4 we notice that the change in from increasing risk in

parameters, we must investigate if kt is strictly convex, linear or
strictly concave in the parameters!

*
First, we investigate the second order derivative of M with respect to

P.. From (2.3.10) we got (2.4.4).

+*
dh, b pbyy * Oy 0
hpPry ¥ Phn®ep
_t_ (2.4.4)

oP, dgy ¥ Oy

Denote the total derivative of (2.4.4) with respect to Pt as in (2.4.5);

*
oA

§(—} 2 * 2 % * 2 * *
aPt 3 kt ) Kt bht o) ht aTt

o . Tt _t (2.4.5)
§ P 2 P oh P P oY ap
t oPt £ Tt U0 Tt
2*
o) Kt 1
= [ohpp by + Sppoywp * Gppogp + tnp oupp ]
ap2 (6 + 0 )2
hh
(2.4.6)
Logy * ol = Lopoyy * o 0] Log, + o o]

Assumption 4

—rt[

[¢t(.) = p ht - Ct(ht)} + Ht(Pt’ Tt)] * ¢hPP = 0, qhhp =0

Remark 5

From {2.4.6) and Assumption 4 we get;

2 *
fal Kt
ap2

t >0 < < Q >0

= {x} opp {owpplory + opnl + oyyplopp - owpl)
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where {x} = { L - } > 0)
(dyy + o))
al >
Obviously, the sign of ——-E—depends on ¢ypp andg dyryp -
aPt
aaxz )
A [ohnpdwe * ®hpoyun * dnpndep * Onpdypy |
Pydhy Loy, + o)
vy hh
(2.4.7)
+ - + ‘ +
Logy * oyl = Lopogy * & oo log, + o]
Remark 6
{Assumption 4) »
= = 0 = =
e = 00 Oy T 0 Ggpp = 0s Oy, = 0
From Remark 6 it is clear that (2.4.7) reduces to (2.4.8).
2 * .
0 N Shhhtweltewp = opp )
. = ) (2.4.8)
dh
t7't (°ww + ¢hh)
Remark 7
62?\*
From (2.4.8) it is clear that sgn { ) = sgn {¢_,.) since oy y < 0 {by
hhh vy
Assumption 1) and [¢TP - ¢hP] < 0 {by Assumption 3). See also Remark 3!
aln"
t . 1 + + +
= [onpudwy ¥ ppouwyy * oppudep * oppoup ]
P Rle,. + ¢ )2
¥y hh
{2.4.9)
+ - +
[¢W¥ ¢hh] [¢hP¢YY ¢hh¢WP][¢?W¥ ¢th]

Remark 8

{Assumption 4) +
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bpy = 00 Yy = O

From Remark 3 it is clear that (2.4.9) reduces to (2.4.10)

*
bzkt ¢hh
- [bywel tpp = oup) + dyupldyy + onp) ] (2.4.10)
OPLOY:  \(g 4+ ¢ )2 —_—— —
vy hh > 0 <0
\.—v-—/
<0
Remark 9
*
bzh
From (2.4.10) it is clear that sgn ( ) depends on — and dyep
thb‘i’t -

since ¢hh <0, (d:\pir + ¢hh) < 0 by Assumption 1 and (¢hP - ¢wP }) > 0 by

Assumption 3. Se also Remark 3!

*
BA

§(—)
op
§ Py
(2.4.8), (2.4.10), (2.3.12) and (2.3.14), we can express (2.4.5) as
{2.4.11):

Now the time has come to write explicitly! By using Remark 5,

230
{ —)
. op, -
OA
S(zpo) o & [6 +6 1+0o o [6_ -0 ]
t . |_¥PP'hh™"¥¥ 'hh-  "¥¥P hh "hP _ "¥P°
§p 2
t (bgy + Opp)
2 * *
.a }\t (&)
oP,3h, o,
+ j&ﬂﬂfﬁﬂifﬂﬂi_:_fnﬂl _E_TEE:_f}ELl_ (2.4.11)
(6 + ¢ )
(¢gy + onp) ¥¥  hh
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2.x
) Rt

aPtht

{ )

+ ] == .

(2.4.11) can be simplified to (2.4.12):
*

axt)

S{zp—

t

§ Py

<0 <0 <0

+ ¢ )+ o (0
YPP' Y hh YYP
\_-——-v-.——-J

<0 >0

where;é? andjé? are defined in (2.4.13).

2

%_(_Q)W_P-_qanp_)_<0
b 3
+
(¢YY q)hh)
¢
Tp-—" o
2
(¢YY + ¢hh)

Remark 10

From {2.4.12) and (2.4.13) it is clear that sgn (

byyp-

Result 1

Sgn (51

e~ Yy

P)(1 +

${zp—

*
g

(—%)
th

(¢w + ¢hh)

*

B
t

t

§ Pt
unambiguously determined in som2 cases and depends on ¢

hhh’

) has been determined in the proceeding analysis.

1 can be

¢

(2.4.12)

{2.4.13)

Pypp-
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oA
e f;tr. convex
B.= |t (K= }0 2 is {Vinear in P,
1 § P < i t
t [str. concave
Now the time has come to investigate the second order derivative of l:
with respect to Qt! From (2.3.16) we got (2.4.14);
aa* Lo}
Py
t . _hh (2.4.14)
+
0y gy * O
Denote the total derivative of (2.4.14) with respect to Qt as in
(2.4.15);
x*
b)\t
§(_) 2 * 2 * x* 2 x x*
30, p°h,  dTAL ohy  ®TAL B,
et Ly by — (2.4.15)
2 80 oh 80 d¥ B
SO Q¢ Qone My ¥ %Y
2 *
2, > Lo ®ve * *hneeuq!
+
aQt (¢w ¢hh)
(2.4.16)
+ - +
[ogg * 0] = Loy 0gyMloggy + 0 0]
2 2 2
oA +
pd 2
Remark 11

From Assumption 4 it folliows that ¢YWQ = ¢th = 0. If, on the other hand,
the cost of extraction is dependent on the resource stock, ¢YTQ and ¢th

may be different from zero.

Hote tnat d may be zero even if the cost of extracti i
ot ¢?YQ an ¢hh0 y er ction is

dependent on the resource stock!
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*
Finally we conclude that azxt/a QE = 0.

2. %
) Rt 1
= >~ { Uonnnbey * onntwen)
2Q,h, Cog® o)
+ -
Cogy * o) = (9 009) Logy + 60
Remark 12
rrom Assumption 4 follows that ¢¥Wh = 0,
Hence, (2.4.18) is equal to (2.4.19)
2 *
B Rt ( Ogry )2¢
= @+ ¢ ! "hhh
50, 3h, vy~ °hn
*
= (“““““;) ( (onnydwy + opnduyy)
80 ov +
Qt t (¢¥¥ ¢hh)

(8 *+ 0,00 = (0, 0,0 (0, + 0 ) )

Remark 13

From Assumption 4 follows that ¢hhT = 0,

Hence, (2.4.20) is equal to (2.4.21).

2
0 At %hh 2
= { ) dyyy
0Q 2%y Ogy * yp

Finally, there is a possibility to express

oA
§ (—1)
3Q
t explicitly !
§ Q4

(2.4.18)

(2.4.19)

{2.4.20)

(2.4.21)
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(2.4.22) follows from (2.4.15), (Remark 11), (2.4.19), (2.4.21), (2.3.17)
and (2.3.19).

DA
§ (—)
LTS, SO s S0 TS O P .
§ q, oyt p hh 8™ &on eyt Y Yy S
{2.4.22)
(2.4.22) can be simplified as {2.4.23}.
b?\*
t
§ (Ea—)
t 1 3 3
= [ ———3) ( Logs) tppn * Copp) " ouwy ) (2.4.23)
YQ (ogg* op)
Remark 14
From (2.4.23) it is clear that
{ - sgn (o) = a} |
sgn (¢hhh) = §gn ¢Erw =
6}\*
t
§ (—)
OQt
{sgn (Ohpp) = @ dyyy = 0} > +  sgn = q
§ Qt
{¢hhh =0 sgn (¢?WT) = a} )
Result 2

sgn (32) has been determined in the proceeding analysis.

t
§ ( 66; ) S . str. convex
8y = ————=24 = }0 > A is{ linear in Q¢
S Qt < str. concave
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Let us reconsider the problem of this section. We wanted to know if the
expected marginal present value of the resource saved for the future will
increase or decrease under the influence of increasing risk in the
process increments. (Recall also Remark 1.)

¥*
Now we know that under some assumptions it is possible to determine if kt
is strictly convex, linear or strictly concave in Py and Qt. The present
question is if increasing risk in eP'I and/or €4_1 {which implies
1ncreasrng risk in P and Q ] will increase or decrease the expected
value of kt[ t-1 (K )).

Approximate the continuous distributions F({.) and G(.) by discrete
distributions with n prices and quantities. The probabilities of price
pjand quantity Qj are denoted by f(Pi) and E(Qj) respectively. Again,
notation is simplified.

DF(P) =1 (2.4.24)
i
£ G(0;) = 1 (2.4.25)
J
The expected marginal value of the resource in period t is;
* * - -
Et-l“‘t) = Z Z Kt(Pi, QJ) F(Pi) G(QJ) (2.4.26)

13

A Rotschild/Stiglitz (38) mean preserving spread (MPS) in the variable x
is defined according to (2.4.27).

rdXA=0for(AlA#a,A3¢ﬁ) A
{ - Prob()(a)d)(a = Prob (xﬁ)dxﬁ =k > 0 r (2.4.27)
an < XB -’

iet us use the definition (2.4.27) in the analysis of increasing risk in
price and quantity! kp and kQ denote increasing risk in Pt and Qt'
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> *
8E, .(A.) dr (P, Q.) - 2P 3h_ (P,, Q.) - dP . |-
_tlt ot Flp ) —%+ L B3 F(Py) _# 6(0,) (2.4.28)
3k ] d P 3
p il kp 3 P akp
BE, J(A)) [ Dhi(P , Q.) @A (P . Q.)
Ll S 3 I S MIPUR SN M RO (2.4.29)
3k j d P d P J
p -
by symmetry, it is ¢lear that;
2. ((A) B (P, Q) OA(P., Q)
., ax, (P., )
B L I e L R R R Fie) (2.4.30)
akQ i 2 Q 3 Q
Remark 15
*
. str. Cconvex oE (A 5
. . t-1""t -
Ao  linear inxg + — =3» 0
str. concave akx <
Result 3

MW (P ., ¥ ) .
_t_t-1" t-1" 5 an increasing function of Et (At). The effect of

-1
Y
t-1

*
increasing risk in e4_; and €$-1 on E4_1{A¢) has been analysed. In some
*
cases, the sign of the change in Ey_1{Ay) is unambiguous. In table 3 the

results are sumnarized with respect to risk increases in €Q
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*
Table 3  Changes in Et_ltlt) when the risk in Eg-l increases (see remark
14). A similar table can be constructed for increasing risk in
P .
Et-l' Then, however, ¢YPP and ¢¥WP must also be taken into
consideration (see remark 10}.
M (P, ¥ )
Sign of change in E, 1(1:) and —-t_t-1' t-1
- 13
. . O . t"‘l
% hh Sypy when the risk in e, _; increases
>0 >0 >0
>0 =0 > 0
>
> 0 <0 =0 2
=0 > 0 >0
=0 = [ =0
=0 <0 <0
>
<0 >0 z0 7
<0 =0 <0
<0 <D <0
2.5 limplications of increasing risx in the process increments in the

Let us do some comparative static analysis in period t. We want to Know
* *

future for the optimal present extraction level

p

in what direction hy and Ay will change when the risk increases in g
and/or sg. Let & denote risk in ez and/or Eg.
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- -~ .
dr 0
t |
[D } dhy | = O (2.5.1)
*
_dwt* ¢wgd§J
0 -1 -1
L o, 0
oA -0 0 0
t ¥ vy
= : = (2.5.2)
BE | o |
. ¢
- ¢, 0
t hh®y
—t- id (2.5.3)
33 | o |
Remark 16

*
h

(2.5.3) » {sgn (—5) = sgn (owe) )
£

*
DN

Tarough induction, it is easily verified that sgn ( 1) = sgn (¢W§) nz0

Heace, the following induction argument should hold;
1. The expected marginal present value of the resource saved in period

P
t is ¢ . The risk in g and/or eg increases.
2. We know the signs of ¢ and ¢TWW. In table 3 it is possible to

hhh
determine if ¢ incredses or decreases (at least in the case of
increasing r1sk in cQ)
3. In remark 16 we observe tnat Xt increases {is unchanged) (decreases)
if o increases (15 unchanged) (decreases).
00, _ 1 L B2 (0
—— =k l(k )
%1 b‘*’t 1
dE,_ . (Q,) 3¢
Hence, if we assume that — t-1 't >0, (see remark 4) t-1
oY fad'd
t-1 t-1

increases {is unchanged)} {decreases).
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4. From above, it is clear that an increase {no change)} {decrease) in

Y : 2¢
_t implies an increase (no change) (decrease} in t-n’ n> 0,
oy oY
t t-n
Result 4
6¢t
An increase [no change) (a decrease) in -— implies an increase (no
¥
20, _ t
change) {a decrease) in N n> 0. The assumption that %p < 0 is
bWt_n
critical to the result.
0 ¢ -1
-1 0 ¢
ah. S
¥
t. S L L (2.5.4)
3 E | o |
*
dhy - dur
_—t _ == {2.5.5)
¢ ||
Result 5
*
dhy
sgn { — ) = - sgn (¢yg)
(4

*
dence, from result 4, we odserve that the present extraction level ht
Q
+n (Et+n)
is strictly concave [linear) {strictly convex) in Pt+n

wWwith respect to

should increase (be unchanged) {decrease) if the risk in 52

*
increases and Kt+n ¢
T . . . . N
(Qt+n} The sign of the second order derivatives of t+n
Qt+n can be determined in some cases from the signs of ¢hhh and ¢TTT in

*
period t+n. The sign of the second order derivative of Kt+n with respect
¢ ¢

hhh® Cvee and ¢TTP (see table 3}.

to Pt+n depends on ¢ wp

2.6 Lan the signs of ¢ and ¢Y¥Y be unambiguously determined?

hhh

As we recall from table 3, the signs of ¢ and ¢ must be known in
r e s19 hhh vey

period t+l if we are interested to know in what direction th2 optimal
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harvest level changes in period t-n, n > 0 when the risk increases in EP

t
Q .
and/or Et'

In this section we will investigate some cases when the signs of ¢hhh and

Ogyry AN be unambiguously determined in all time periods.

In period t, we expect the present value of future profits to be egqual to

Nt+1(.).

W (P, %)= [/max ¢ _(

t+1 t7 ot t+1’ Pt+1' Qt+1)F (Pt+1|Pt)dPt+

1

G'(Qt+1|Yt)th+1 {2.6.1)

(2.6.1) can be replaced by {2.6.2}. Some notational simplification will
be undertaken.

* Ay
Weoy P ) = S o GLIEL(Qu (¥ ve IFP (P 1 IPLYAPL

6 (ed)des (2.6.2)

MW ()
2 R T T B (2.6.3)
ts) Yt

2
8 MWyy(-)

2
6 ?t

= H(q:“(o')z +4'Q") ... (2.6.4)

3
Ml

3
t

3]

J’J’ (¢“.(QI)3 + 3¢||Q|Q|| + ¢lQlll) . (2.6.5)
a v

It should be clear from (2.6.5) that if the expected growth is a linear
function of the saved resource quantity (»Q'>0, Q''=0, Q'''=0), then
(2.6.6) holds.

3 3 * 2.*
8 Wiy 0 41 0 A+l

sgn ( X ) = sgn ( ) = sgn | > ) (2.6.6)
bYt aQt+1 60t+1
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(2.6.6) will hold also if growth is assumed to be a concave function
where the third order derivative is nonnegative (»Q'>0, Q''<0, Q'''>0}

and ¢'**>0.
Remark 17
a3wt+
In general, the sign of is dependent on the signs and absolute
awt
bor . OC6r . 30... E.(Q,.,) 3% ) ok
Opel O fpa1 O fpa1 Fyllen ¢+ £{Q¢+1)
values of w2 3w ) » and 3
t+l 2Qp,; 0i4p t oYy oY,

The sign can be determined through (2.6.5).

Now, the method of induction will be used to show that the signs of ¢hhh

and dyyy can be determined in all time periods if some conditions are
satisfied.
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Stage Assumption Result _ Remark o
a, ¢T(,,QT)EVT(PT,QT) since no quan-
tity can be
saved until T+1
*
63\4-]- 63
by sgn { ) = sgn {(—} Depends on the
oy 3 203
T-1 T growth function
and ¢{.) see
(2.6.5) and re-
mark 17
*
2oy -1 53¢T
Cq sgn ( } = sgn { ) Follows from
ah3 203
T-1 T the assumption
that sgn (V}) =
ai for all t
and o = VT
3 +* 3 *
2 411 "¢
dj sgn (— } = sgn (—) Follows from by,
303 2Q3
T-1 T ¢y, (2.4.23)
3 3 *
® W, 3 71
bo sgn ( ) = sgn { ) As in by
oy3 aq3
T-2 T-1



Stage Assumption Result o Remark
3 3 *
S 5oy . B}
Cy sgn ) = sgn ( ) since ¢ =V
T
ah3 203
T-2 T-1 and from dy
* *
63¢T_ 63¢
do sgn ( ) = sgn ( ) Follows from b,
203 3Q
T-2 T Cos (2.4.23)
+*
B3NT 63¢T
i -1 ]
bj+1  sgn ( ) = sgn ( ) as in b,
a3 303
T-1-i T+1-7
3 3 *
0 V1a1-j 0014 ,
Cip1 S9N (———) = sgn { ) since #rV, and
ah3 803
T-1-1 T-i from dy
3 * 3 *
0 41-1-4 3
di+] sgn {— ) = sgn {( ) Follows from
303 3
505 0 Py Sy

(2.4.23)

Remark 18

If the assumptions a bi’ ¢, are valid for al) i, then the signs of ¢

l!
and Pyyry Can be unambiguously determined in all time periods.

hhh
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2.7 An example

In order to illustrate the use of the results in sections 2.1-2.6, we
consider the following situation. The profit from extraction is defined
in (2.7.1), the growth process in (2.7.2) and the price process in
(2.7.3)

(1+aft))
V,{(P., h,) = P.h, - k(t)h 1 fo<a(t) <l (2.7.1)
et t t (0<k(t) )
Quep = c(t) + BIOIN(E,) + oo (0<B(t)) (2.7.2)
_ p a<h (t) <1
Pt+1 = aft) + b(t)Pt + €4 Ll<a(t) ) (2.7.3)

From (2.7.1), (2.7.2) and (2.7.3), we extract the following derivatives
and signs;

¢h >0 (Assumption) Q'' <0
¢ < 0 [ > 0
hh Q
op
4. >0 pri=— Ly = p(t) (2.7.4)
hhh ap
t

ol
Q' {(=_t*1) >0 0<P' <1

th

The analysis is made in the following order;

1. Through induction we can verify that ¢ > 0 and ¢WTT >0 in all

hhh
time periods (see section 2.6).
*

2. Et_l(kt) is strictly convex in eg for 211 t such that t < T

{see (2.4.12), (2.4.23), remark 10 and remark 14).
*

3. Increasing risk in eg increases E¢_1(A¢) for all values of
p and ¥ {see remark 15).
t-1 t-1
4, h: " decreases and h:—n increases for a1l n» 1 (see section 2.5).
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Hence, in this case, increasing risk with unchanged expectation in the

growth process during some future period t (t < T} implies that
the present extraction level should decrease. The other result is that

the expected marginal present value of the resource increases. Both

effects are unambiguous.

If b(t) = 0 or it can be shown that ¢ypp and ¢yyp are close to zero,
then increasing risk in the increments of the price process some time

in the future ( ci ) implies that the present extraction level should
decrease and that the expected marginal present value of the resource

increases.,
oWy ? T oVo_,
8711 3hr_,
+4
-4
AT
— e ————
- or s —
Figure 5.1 Increasing risk in the price in the last period (T) does
* *

not affect hy_; or A_1+ The reason is that the expected
marginal value of the resource ET llh;) is independent of

the price risk
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v r'y oW,
ahTT_1 V" <0 _ oy A+ P
—1 wnr < 0 = A > T
+A
—4
12
I\ —
A \

|
1

Qr_

—

Figure 5.2 a Increasing risk in the price in period T-1 will generally
affect ET-Z(k;-l)' In the figure, arice is assumed Eo be
independent over time, ¥'''<0, W'''<0Q. Then, ET-Z(KT-l)
dacreases as the price risk in period T-1 increases. (See
(2.4.12) and figure 5.2 b!)

A
GL
av_, 4 - -1
ahy_p T-2
—1
-
-
-
-~
e
A _,<0 ¥ g
/
/
/
L /
—p
ahy ,>0
]
t Oy !

- . . ] *
Figure 5.2 b In figure 5.2 a we obtained a decrease in Ev_o{n_q). This,
oW
T- , .
l, whicn is illustrated
oY
¥ T-2 *
aboye. Hence, Ar_p will decrease and Ny.p Will increase.

in turn, implies a decrease in
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ow
Y74

I Qr_, |

Figure 5.3 a Exactly as figure 5.2 a except for that V'''>0, W'''>0.
*

Here, Eq_olA7_1) increases as the price risk in period T-1
increases (see(2.4.12) and figure 5.3 b!)

&
Vs, 4
W, _,
Ohy_, -
N7z
-
e |
[ ]
AhY_, <0
— o, i

*
Figure 5.3 b In figure 5.3 a we obtained an increase in Eq_o{? ;).
oW
This, in turn, implies an increase in , which is
oY
* T-2 *
illustrated above. Hence, Ay_p will increase and hy_p will
decrease.
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1442
_ o_ M FA
v, ? {¢hp-¢w}='7\ = 2 ? a:vtﬂ
Bh1 Ty
| + A
+ A I
Rz 1 —4
\li
20
! /

Figure 5.4 Let us assume that ¢hP ¢ . A change in the price in

¥pP

period t will then not affect the optimal harvest level

since the expected marginal profit from the saved resource
%

changes equally much. This, in turn, implies that Et_l(kt)

. . . . *

is unaffected by increasing risk in Pt' and ht " {(n > 1)

will nolt chaay:. {5ee remark 3.)

. A
ht (¢1p < ¢hp?
/ (@15 = Prp)
—>
P,
Figure 5.5  Optimal oresent harvest level as a function of the present

price. {See remark 3 and figure 5.4.)
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R ,0 ,2
Wi Wi W}
Vi, ? ? A ? ‘A ?

My d

—
-

//M

I‘—‘ Er_ythr_y +Qp) ’_——f

Figure 5.6 Increasing risk in the linear growth process (Eg-l)
] ) Q.. .
OT c(QT_1 hT-l) *oer s illustrated above. The risk
* *
increase implies that hy.q increases. Since Ey_2(Ay_1)
decreases, h; (n > 1) increases. A critical assumption is

that V'''<0, W'''<0 (see table 3}.

3 Discussion

The oroblem under investigation is fairly general. Still, some rather
strong results have been obtained.

As can be seen in the example of section 2.7, the effect of increasing
risk some time in the future in the price and/or the growth process
(ei, eg such that t < {T-1)) on the optimal present extraction Jevel is
unambiguously negative. Note that the set of unambiguously determined
derivatives in (2.7.4) can be obtained from a large set of assumptions
concerning the stochastic processes and the cost function. Furthermore,
many other combinations of derivatives and signs give unambiguous
results. One such example is;
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= p -
vt tht ct(ht)

(0 < 8(t)) (3.1)

]
|

Q

= + Yoo+

clt) + B(t) c g
_ P 0 < alt)

Prep = alt) +D(0IPy + gy 0 < b{t) <1

Here, we assume density independent (but possibly time dependent) growth

and a stationary first order auto regressive price process (with possibly
time dependent parameters).

The assumptions should be realistic in for instance the 0i%, coal and
mineral sectors (if price is stationary) since these resources generally
have no growth at all. If we make use of the methodology described in
section 2.7, we will find that the present extraction level should
increase (be unchanged) (decrease) if the risk increases in the price
and/or the growth process some time in the future (ai, ag such that

t < [T-1)) and the marginal cost function is progressive (linear)
{regressive).

(It is important to be aware of the discussion in the end of section 2.7.)
The question of how the stochastic component should enter the growth
process has been discussed by May, Beddington, Harwood and Shepherd. The
main question is whether or not the risk {or uncertainty) is density
dependent. They state that the optimal harvesting decision is dependent
on that.

Obviously, this is true. Under the assumption of density dependent risk,
the risk is no longer exogenous to the enterprise. The risk can be
affected through the harvest level. However, they also write that there
are arguments why it is likely for environmental unpredictability to be
associated predominantly with dansity independent, rather than density
dependent, nopulation processes. (Also in the study by Doubleday (3), the
noise is independent of population size.)
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