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ABSTRACT 

A numerical Positive Definite Pseudo-Spectral (PDPS) method for the  
solution of t he  advection equation is presented. The method consists of t w o  
parts.  For each time s tep f i r s t  a solution using a pseudospectral method is 
computed. Then the  solution is corrected by a f i l tering procedure which 
eliminates negative values. The numerical test with t he  rotat ional velocity 
field and dif ferent initial conditions shows that  t he  present method has the  
accuracy of the  pseudospectral one without producing negative values. An 
additional advantage of the  PDPS method is t he  elimination of spurious 
art i f icial shortwaves typical for the  pseudospectral solution. 

- vii - 
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AN EFFICIENT POSlTIYE DEFINITE METHOD 
FOR THE NUMERICAL SOLUTION OF THE 
ADVECTION EQUATION 

Jerzy Bartnicki 

1. INTRODUCTION 

The part ial differential advection-diffusion equation is most frequently 

used fo r  the mathematical description of the long range t ranspor t  of a i r  

pollutants. This equation is also a basic one fo r  the atmospheric pa r t  of the  

IIASA RAINS (Regional Acidification INformation and Simulation) model 

described by Alcamo et. al. (1985) and Hordijk (1985). The atmospheric 

module of RAINS consists of the  source-receptor matrices computed by 

MSC-W (Meteorological Synthesizing Centre-West) in Oslo, using the  Long 

Range Transport (LRT) model developed by Eliassen and Saltbones (1983). 

This LRT trajectory model is  used by the Co-operative Programme fo r  Moni- 

toring and Evaluation of the Long Range Transmission of Air Pollutants in 

Europe (EMEP) fo r  routine calculations. In o rder  t o  use this o r  any o ther  

LRT model within RAINS, i t  is important t o  evaluate the uncertainty and 



credibil ity of the  results. Among different types of sources of uncertainty 

in LRT models the  error introduced by the  numerical method used t o  solve 

the  advection4iffusion equation can be an  important one, especially for 

models with nonlinear chemical reactions. 

The main goal of th is paper  is to present a numerical method which can 

be  used for the  solution of the  advection4iffusion equation without produc- 

ing negative values. Therefore the method could be applied to nonlinear 

problems as w e l l  with high accuracy typical f o r  t he  pseudospectral 

approach and without losing stabil ity (which occurs when negative values 

appear) .  When solving the  advection4iffusion equation, t he  diffusive pa r t  i s  

relat ively less important than the  advective pa r t  concerning numerical 

problems. A l s o  from the  physical point of view, in t he  synoptic scale of 

motions, t he  diffusion term i s  small compared to the  advective one and is 

even neglected in some models (e.g. in t he  MSC-W model). Therefore only an  

application of the  method t o  the  advection equation is presented in th is 

paper,  however, i t  can be  used fo r  t he  advection4iffusion equation as wel l .  

2. NUMERICAL METHOD 

Among many different methods used fo r  t he  numerical solution of the  

advection equation, t he  spect ra l  (Orszag, 1971a) and pseudospectral 

(Gottlieb and Orszag, 1977) approach are relatively efficient and accurate.  

The accuracy of these methods i s  be t te r  compared with finite dif ference 

methods (Orszag, 1971b), and also to other  methods (Long and Pepper ,  1981; 

Chock, 1985). Another advantage of the  spect ra l  methods i s  the simple 

mathematical formulation which makes them convenient f o r  pract ical  appli- 

cations, especially when using numerical Fast Fourier Transform (FFT) (Coo- 



ley and Tukey, 1965). Spectral  and pseudospectral methods have been suc- 

cessfully applied t o  the a i r  pollution transport  models by Christensen and 

Prahm (1976) and Wangle et al. (1978). Unfortunately, the accurate pseu- 

dospectral and spect ra l  methods can produce negative values during the 

numerical solution of the advection equation. For many practical problems, 

like a i r  pollutant t ranspor t  involving nonlinear chemistry, this phenomenon 

makes the pseudospectral method unstable. There are other  methods, like 

the  flux-corrected t ranspor t  (FCT) method (Boris and Book, 1976; Zalesiak, 

1979) and a positive definite algorithm developed by Smolarkiewicz (1984) 

that  can be applied in th is case. However, these methods e i ther  require a 

long computational time o r  are significantly less accurate than the pseudos- 

pectral  solution. This paper  presents a combined numerical method: The 

Positive Definite Pseudo-Spectral (PDPS) method, which eliminates com- 

pletely negative values on one hand, and is of the  same o rde r  of accuracy as 

a pseudospectral approach, on the other  hand. 

2.1. Problem Formulation 

The multidimensional advection equation t o  be solved has the following 

form: 

where c = c ( z  . t )  is the concentration (could be  arbi t rar i ly scalar) ,  

assumed t o  be  non-negative. 

uj = uj ( z  , t  ) is the  j-th velocity component 

(2, t ) = ( z  l,... ,zN, t ) a r e  the space and t i m e  coordinates 



The numerical method presented in th is paper  involves two basic steps 

at each time s tep when solving equation (1 ) :  

( 1 )  The pseudospectral method is applied t o  equation (1) at time t  and 

a solution which contains also negative values of t he  concentra- 

tion is achieved. 

( 2 )  The fi ltering procedure, which removes all negative values of the  

concentration, is used t o  get the  solution at time t +At.  

Let cm = c  (z .m At)  be the concentration field with periodic boundary 

conditions at time m At. W e  are looking f o r  the  concentration 

cm+l  = c ( z  , (m  + l ) A t )  at time (m +l)At  in t he  uniform mesh of size 

M l  x M 2 ,  ..., X M N  where the  location of the  mesh points is given by: 

where 

fo r  any j = 1,2 ,..., N. 

The pseudospectral method can be represented by an operator  PI 

which, applied t o  t he  d iscrete concentration field cm at time m At, produces 

the  concentration c-+' at time (m + l )At  : 

c- + I  = p l ( p )  (4) 

The concentration r?+l can still include negative values. The f i l tering 

procedure can be represented by the  operator  f which transforms r? t o  

cm containing non-negative values only: 



Thus, the positively defined pseudospectral method can be  defined as: 

In principle the operator  can represent  also other  methods, not only 

the pseudospectral method. However, because of i ts simplicity and accu- 

racy, the pseudospectral approximation is a r a t h e r  efficient one f o r  the 

numerical solution of equation (1). 

2.2. Pseudospectral Solution 

The pseudospectral approach developed by Gazdag (1973) has been - 
chosen as the  operator  P. The principle of Gazdag's method is to approxi- 

m a t e  the  time derivatives by a truncated Taylor ser ies,  and then replace 

the time derivatives by the  space derivative terms, which are computed 

using the spect ra l  method. Mathematically the method can be  described as 

follows. Assuming that  w e  know the concentration cm at time m A t ,  the  con- 

centration cm +' at the  next time step (m +1)At can be  approximated by the 

truncated Taylor ser ies 

Following Gazdag (1973), the time derivatives of c  can be expressed in 

terms of the  space derivatives of c  and uj by making use of equation (1): 



The superscr ipt  m has been omitted in the above equations fo r  con- 

venience. Equations (8-10) show how to compute any o r d e r  time derivative 

of c from the  lower o r d e r  time derivatives of uj  and c.  The f i r s t  o rde r  time 

derivative of c can be computed directly from the  basic advection equation. 

I t  remains only t o  compute space derivatives of c which i s  done with the  

spect ra l  method. Denoting the set of all grid points (Equations 2-3) by R ,  

the finite Fourier transform C of c can be written as 

where i = cl and k is t h e  wave vector 

k = (kl ,..., k j  ,..., kN) 

whose components assume integer values within the  limits 

From C(k ,t ) t he  part ia l  derivatives of c ( z  ,t ) can be computed as 

The numerical computation of t he  space derivatives described by Equa- 

tions (11-14) can be car r ied  out sufficiently fas t  by the  use of the  numerical 

Fast Fourier Transform (FFT, Cooley and Tukey, 1965). According t o  Gazdag 

(1973) i t  gives very accura te  resul ts and therefore h e  called i t  Accurate 

Space Derivative (ASD) method. 



2.3. Filtering Procedure 

The pseudospectral method described in the previous paragraph pro- 

vide the  concentration in the  grid system at time (m +l)At , assuming tha t  

the  concentration at time m At is  known (also the  velocity and i ts  time 

derivatives). Unfortunately, the  new concentration field may contain nega- 

tive values. The presence of negative concentrations i s  a common 

phenomenon f o r  dif ferent numerical methods used f o r  the  solution of the  

advection equation. According to Adam (1985), th is i s  mainly due t o  the  

wrong numerical propagation speed of the  shor test  waves in the  spectrum. 

He suggests, tha t  the situation can be improved by applying digital f i l ters. 

However, the most common l inear f i l ters do not completely remove the  nega- 

t ive values. The main features of a per fect  fi ltering procedure are: (1) To 

remove negative values. (2) To conserve total mass .  (3) To preserve the 

shape of the  function. (4) To preserve the  maxima. (5) To be f r e e  of 

shortwave noise. Unfortunately, none of the  existing numerical f i l ters 

satisfy all above requirements. 

2.3.1. Method 

The multidimensional nonlinear fi ltering procedure developed in th is 

paper  fulfills at least some of the  conditions mentioned above. I t  completely 

removes negative values and conserves the  total mass with an accuracy of 

0.001%. Filtered maxima and the  shape of the  function a r e  relatively close 

t o  the  original ones. The procedure can be  explained as follows. Let c, be 

the concentration in the  j - th point of the one-dimensional grid system con- 

sisting of N points ( j  = 1,. .. ,N). If all c, values are non-negative the  f i l ter  

does not change them. Let us assume now tha t  the concentration field has N1 



positive values (cj >O), N2 zero values (c, = 0) and N3 negative values (cj < 

0). Obviously 

A s  assumed under Equation (1) we have: 

Ml > M 3  
where 

is the "positive" m a s s  and 

is the "negative" mass .  With the above assumptions the fi ltering procedure 

is defined by the following algorithm: 

1. Compute the negative mass M 3  and check if i t  is g rea te r  than zero. 

If not, stop. 

2. Compute the number of positive concentrations N1. 

3. Check the sign of the concentration cj f o r  j = 1 ,  ..., N 

(a) If c j  > 0, subtract  the negative mass divided by the number of 

M3 
positive concentrations: c j  := c j  - - 

N 1 

(b) If i t  is zero, do nothing. 

(c) If i t  is negative, se t  i t  to  zero: cj := 0. 



2.3.2. A One-Dimensional Example 

The f i l ter ing procedure lined ou t  in the  previous paragraph  i s  illus- 

t ra ted  by a simple one-dimensional example with a gr id  system consisting of 

11 points. The init ial distr ibut ion shown in Figure l a  i s  typical f o r  the  

intermediate solution of t he  advection equation with "delta" function (con- 

centrat ions at al l  points except  one are equal to zero)  as init ial condition. 

Two negative values of t he  concentrat ion are present  in the  distribution: -4 

at point number 4 and -5 at point number 8. After t he  f i r s t  i te ra t ion (Figure 

l b )  only one negative value remains: -0.8 at point number 11. The second 

and final i terat ion (Figure I c )  gives a distr ibut ion without negative values. 

The maximum is  sl ight ly lower: 13 instead of 15 but  t he  shape  of the final 

distr ibut ion i s  qui te close to t he  initial one (Figure Id) .  From Figure I d  i t  

can  be  also seen t ha t  t he  s h o r t  waves p resen t  in the  initial distr ibut ion have 

been removed from the  final one. 

The basic fea tu re  of the  algorithm presented above i s  the  conservation 

of mass, which can  be  expressed as 

MI  - M3 = const. (18) 

The algorithm i s  convergent  and s tab le  (this will be  proved in t he  next  sec- 

t ion), and a lso simple in i t s  numerical realization. Numerical experiments 

with d i f ferent  init ial distr ibut ions indicate t ha t  t he  typical number of i te ra-  

t ions necessary  to achieve a non-negative distr ibut ion is  not g r e a t e r  than 

t w o .  Also t he  additional computer-time spent  f o r  f i l ter ing i s  small (5 109.) 

compared to t he  computer-time requ i red by t he  pseudospectra l  method. 



INITIAL CONCENTRATION 

-6 

1 2 3 4 5 6 7 

GRID POINT NUMBER 

Figure l a .  One dimensional tes t  f o r  the  f i l ter ing procedure:  Initial dis- 
tr ibut ion of the  concentrat ion.  



CONCENTRAT ION AFTER FIRST ITERATION 

6 
CONCENTRATION 

4 

Figure l b .  

5 6 7 
GRID POINT NUMBER 

One dimensional test f o r  the f i l ter ing procedure:  Distribu- 
t ion a f t e r  f i r s t  i terat ion.  



CONCENTRAT ION AFTER SECOND ITERATION 

6 
CONCENTRATION 
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Figure l c .  One dimensional test f o r  the  f i l ter ing procedure:  Distribu- 
tion a f t e r  second and final i terat ion. 



CONCENTRATION AFTER SECOND ITERATION 
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Figure l c .  
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One dimensional t e s t  f o r  the filtering procedure: Distribu- 
tion a f ter  second and final iteration. 



I NI TI AL AND FINAL CONCENTRAT ION 
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Figure I d .  One dimensional tes t  f o r  t he  fi l tering procedure: Comparis- 
on of initial and final distribution of the concentrat ion. 



2.4. Stability and Convergence 

The PDPS method descr ibed by equation (6) i s  a superposit ion of t h e  

A 

o p e r a t o r  P -- t h e  pseudospectra l  method - and - t h e  f i l ter ing pro- 

cedure .  The stabi l i ty of t h e  pseudospectra l  method i s  discussed in deta i l  by 

Gazdag (1973). He proved t h a t  t h e  stabi l i ty condition i s  sat is f ied f o r  trun- 

ca ted  Taylor s e r i e s  of o r d e r  3,4,7 and 8. 

For  t h e  f i l ter ing p rocedure  t h e r e  are t h r e e  possibil i t ies: ( 1 )  The ini- 

t ia l  value of t h e  concentrat ion is  negative (Zj < 0 )  and becomes z e r o  a f t e r  

f i l ter ing (cj = 0 ) .  ( 2 )  The init ial concentrat ion i s  equal  to z e r o  (zj  = 0 )  and 

remains z e r o  (cj = 0 ) .  ( 3 )  The init ial concentrat ion i s  posit ive (Ej > 0 )  and 

finally remains non-negative, because the  p a r t  of t h e  negative mass sub- 

t r a c t e d  from i t  cannot  be l a r g e r  than t h e  original value (0 S cj < Z j ) .  

Therefore ,  t h e  following condition i s  fulfil led by t h e  f i l ter ing procedure:  

0 5 cj 5 I Ej 1 j = 1, ..., N 

where 

- 
cj - concentrat ion at point j before  f i l ter ing 

cj - concentrat ion at point j a f t e r  f i l ter ing 

A simple implication of re la t ion  (19) i s  t h a t  t h e  amplification f a c t o r s  

are less than one. This means t h a t  t h e  f i l ter ing p rocedure  i s  s tab le  and also 

t h a t  t h e  PDPS method, as a superposit ion of two stab le  opera to rs ,  sat is f ies 

t h e  stabi l i ty condition. 

The f i l ter ing procedure i s  also convergent. This i s  obvious when only 

non-negative values are presen t  in t h e  init ial distr ibut ion. Let  us assume 

now an  init ial distr ibut ion with N1 positive values, N2 z e r o  values and N3 

negative values of t h e  concentrat ion in the  init ial distr ibut ion. Due to 



Equation (16) the negative m a s s  M3 is smaller than positive m a s s  MI. 

According t o  the fi ltering procedure all negative values become equal to  

zero and zero values are not changed. From each positive value of the con- 

centrat ion the negative m a s s  averaged over  the number of positive values is 

subtracted. If each positive value is g rea te r  than the average negative 

mass, the fi ltering procedure is completed a f t e r  the  f i rs t  i teration. If not, 

there  are positive values lower than the average negative mass, and they 

become equal t o  zero during the second iteration. I t  means that  a f t e r  each 

i teration the number of zeros increases at least by the number of negative 

values. Assuming that  the fi ltering procedure is not convergent, t he re  will 

be zeros only a f t e r  less than N -N3 iterations, which is impossible because 

of the conservation of m a s s  (Eq. 18). Thus the fi ltering procedure is con- 

vergent. 

3. ADVECTIVE TEST 

In o rde r  t o  check the accuracy of the method described in the previ- 

ous paragraph, a numerical advective test has been performed. A standard 

art i f icial velocity field has been used with the "frozen" initial shape moving 

around the axis of rotation. Three dif ferent initial conditions have been 

chosen: cone, rectangular block and smooth shape. The test w a s  performed 

both f o r  the Positive Definite Pseudo-Spectral (PDPS) method, and Pseudo- 

Spectral  (PS) approach (Gazdag, 1973). 

3.1. Basic Equation 

The equation describing the rotat ion of the "frozen" initial condition 

has been frequently used fo r  testing numerical methods (Orszag, 1971a; Gaz- 

dag, 1973; Long and Pepper,  1981; Christensen and Prahm, 1976). I t  has the 



following form: 

where o is angular velocity 

and T is  the period of rotation. Equation (1) w a s  solved numerically on a 

grid consisting of 32 X 32 points. The time s tep  w a s  equal - which means 
400 

that  one full revolution required 400 time steps. The analytical and numeri- 

cal solutions were compared a f t e r  10 rotations. In addition, several  param- 

eters were computed during each run. Namely: 

(1) Mass conservation (in X )  - M 

where c, ( i  , j ) is the initial concentration 

(2) Conservation of the square of the m a s s  (in I . )  - SU 

(3) Minimum of c ( i  , j ) - /UI?Y 



(4) Maximumof c ( i , j ) -MAX 

(5) Maximum absolute e r r o r  - MER 

MER = m a x ( I c ( i , j )  - c , ( i , j ) l )  
i lj 

(6) Average absolute error - AER 

1 32 32 
AER =- C C I c ( i l j >  - c , ( i , j ) l  

32x32 ,=, j = ,  

All above parameters  a r e  functions of time and a r e  di f ferent  f o r  each init ial 

condition. The maximum of each tested init ial condition w a s  kep t  constant 

and equal 100. 

3.2. Cone Shape Initial Condition 

The "cone" shape  init ial condition (Figure 2a) i s  a standard one and was 

applied as a t e s t  case  t o  almost a l l  numerical methods used f o r  solving an  

advection equation. In the  gr id  system the  "cone" shape i s  defined as: 

In Figures (2b) and (2c) the  numerical solutions a f t e r  ten  rotat ions a r e  

shown f o r  the  PDPS and PS methods, respectively. The di f ference in shapes 

i s  small and both numerical solutions a r e  quite close t o  the  analyt ical one. 

However, negative values appea r  in the  PS solution. 

The m a s s  conservation M ,  defined by Equation (22), i s  equal t o  100% 

during the  en t i re  r un  f o r  both PDPS and PS with accuracy be t t e r  than 

0.001%. The square  mass conservation SU, defined by Equation (23), i s  



shown in Figure 3. The square  mass i s  well conserved by t h e  PS method 

(99.7% a f t e r  1 0  rotat ions)  and slightly worse by the  PDPS method (92.6% 

a f t e r  1 0  rotat ions) .  In t h e  l a t t e r  case t he  square  mass dec reases  rapid ly 

during t h e  f i r s t  rotat ion and then s tays  almost at t h e  same level. 

The minimum values MJN are shown in Figure 4 f o r  both methods. In 

case of PDPS negative values are not c rea ted  and t h e  numerical minimum is  

equal to t h e  analyt ical one,  which i s  zero.  In case of PS negative values are 

c rea ted ,  reaching -1.81 a f t e r  ten rotat ions.  

The analyt ical maximum MAX i s  equal to 100 and i s  sl ight ly above the  

numerical ones (Figure 5).  After ten rotat ions the  maximum f o r  t h e  PDPS 

method is  equal to 91.75 whereas i t  i s  94.02 f o r  the  PS method. For both 

methods t h e  maximum decreases  mainly during t h e  f i r s t  rotat ion and then 

s tays  at t he  same level. 

For  both PDPS and P S  t h e  maximum absolute error MER, defined by 

Equation (24), occurs  at t h e  top of the  cone. I t  i s  sl ightly h igher  f o r  PDPS 

than f o r  P S  (Figure 6) ,  and i s  less than 1 0  a f t e r  ten rotat ions.  

For  the  P S  method t h e  average  absolute error AER, defined by Equa- 

tion (25), i nc reases  rapid ly during the  f i r s t  rotat ion and then,  with some 

fluctuations, remains at t he  same level of 0.14 (Figure 7) .  In case of the  

PDPS method, AER increases slowly, reaching 0.172 a f t e r  ten  rotat ions.  

9.9. Rectangular Block Initial Condition 

The 'Rectangular  Block" init ial condition i s  shown in Figure Ba. I t  i s  

defined on t h e  gr id  as: 

I 100 if 55i 511 and 135 j 5 1 9  
c ( i , j )  = 0 otherwise i ,  j = 1,...,32 



Figure 2a.  Shape of t h e  cone a f t e r  10 rotat ions: analyt ical solution. 



Figure 2b. Shape of the cone a f t e r  10 rotations: PDPS method. 



Figure 2c. Shape of the cone after  10 rotations: PS method. 
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Figure 3. Square of mass conservation, with the cone shape a s  initial 
condition. 
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Figure 4 .  Minimum values f o r  t h e  PDPS and PS methods with the  cone 
s h a p e  ini t ia l  condit ion. 
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Figure 5. Maximum values f o r  t he  PDPS and PS methods with the  cone 
shape init ial condition. 



CONE - MAXIMUM ABSOLUTE ERROR 

Figure 6. Maximum absolute e r r o r  f o r  the  PDPS and PS methods with 
the  cone shape initial condition. 



Figure 7. 
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Average abso lu te  error f o r  t h e  PDPS and PS methods with 
t h e  cone  s h a p e  ini t ia l  condit ion. 



The numerical solution a f t e r  ten rotat ions is shown in Figure 8b  f o r  the  

PDPS method, and in Figure 8c f o r  t he  PS method. The di f ference between 

t h e  analyt ical and t h e  numerical solutions is  g r e a t e r  than f o r  the  cone 

shape init ial condition discussed ear l i e r ,  but  t h e  initial shape is  kept  quite 

well. An important advantage of t he  PDPS method is  t h e  absence of 

shortwave noise, p resen t  in t he  solution given by t he  PS method. 

The square mass is  be t t e r  conserved by t h e  PS method (95% a f t e r  ten 

rotat ions) than by t h e  PDPS method (69.36% a f t e r  ten  rotat ions). Again, l ike 

in t h e  case of t h e  cone shape, t he  square mass decreases mainly during t he  

f i r s t  rotat ion (71.42%) f o r  PDPS, and then remains at t h e  same level 70% 

(Figure 9). 

The minimum f o r  t he  PIIPS method equals t o  ze ro  during t h e  en t i re  run.  

For PS i t  var ies  from -9.28 a f t e r  t h e  th i rd  rotat ion t o  -13.07 a f t e r  t en  ro ta-  

t ions (Figure 10). The minimum value produced by t h e  PS method is h igher 

(in absolute value) in case of t he  rec tangular  block initial condition than in 

case of t h e  cone shape initial condition. 

The maximum f o r  t h e  PDPS method (Figure 11) increases t o  105.6 a f t e r  

t he  f i r s t  rotat ion and then continuously decreases t o  101.0 a f t e r  ten  ro ta-  

tions. The maximum f o r  t h e  PS method (Figure 11) is  relat ively high, 

reaches  120.16 a f t e r  t h e  fourth rotat ion and remains lower afterwards. 

The maximum absolute e r r o r  is  much higher compared t o  t h e  cone 

shape initial condition, both f o r  PDPS and PS (Figure 12, cf.  Figure 6). In 

case of PDPS the  maximum absolute error increases rapidly t o  38.91 a f t e r  

t h e  f i r s t  rotat ion and then slowly goes t o  47.08 a f t e r  ten  rotat ions. The 

maximum absolute e r r o r  increases also in case of t h e  PS method (Figure 12) 



Figure 8b. Shape of the rectangular block a f ter  10 rotations: PDPS 
method. 



Figure 8c. Shape of the rectangular block a f t e r  10 rotations: PS 
method. 



Figure 9. 
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Square  of mass conservat ion, with the  rec tangu lar  block in- 
i t ial  condition. 



t o  38.8 a f t e r  seven rotat ions. 

The average  absolute error (Figure 13) i s  about  1.5 t imes smaller f o r  

t he  PDPS (0.161-0.181) than f o r  the  PS method (0.232-0.314). 

Compared t o  t he  cone initial condition, t h e  rec tangular  block initial 

condition i s  a more cr i t i ca l  test f o r  t he  numerical methods. Differences 

between numerical and analyt ical solution are higher and negative numbers 

are bigger. In t he  PS solution, t h e r e  are also sho r t  range waves present ,  

which did not  occu r  before.  In th is case t h e  PDPS method passed t h e  test 

quite well, and especial ly,  i t  p reserved  the  numerical maximum close t o  

analyt ical one and did not  produce the  shortwave noise, p resen t  in PS solu- 

tion. 

3.4. Smooth Initial Condition 

Contrary to t h e  two previous cases t he  last numerical test was per -  

formed with t h e  following smooth init ial condition: 

The shape of t h e  distr ibut ion defined by Equation (28) is  shown in Fig- 

u r e  14a. 

The numerical solution a f t e r  ten  rotat ions i s  shown in Figure 14b f o r  

t h e  PDPS method, and in Figure 14c f o r  t h e  PS method. In both cases t h e  

di f ferences between t h e  analyt ical and t he  numerical solutions are smal l .  In 

case of t he  PS method negative values appeared  again but  shortwaves can 

not be  seen on t h e  grid. The shortwaves are also not p resen t  in t he  PDPS 

solution. 
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Figure 10. Minimum values f o r  the PDPS and PS methods with the rec -  
tangular block initial condition. 
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Figure 11. Maximum values for t h e  PDPS and PS methods with the  r e c -  
tangular  block init ial condition. 
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Maximum absolute e r r o r  f o r  the  PDPS and PS methods with 
the  rec tangular  block initial condition. 



RECT. BLOCK - AVERAGE ABSOLUTE ERROR 

Figure 13. Average absolute e r r o r  f o r  the PDPS and PS methods with 
t he  rectangular  block initial condition. 



Figure 14a.  Smooth shape a f t e r  ten rotat ions: analytical solution. 



Figure 14b. Smooth shape a f t e r  ten rotations: PDPS method. 



Figure 14c. Smooth shape  a f t e r  t en  rotations: P S  method. 



The square  mass, shown in Figure 15, is  well conserved by both t he  

PDPS method (98.91% a f t e r  ten rotat ions) and t h e  PS method (99.76% a f t e r  

ten rotat ions). Again, l ike in both previous cases,  t h e  square  mass 

dec reases  mainly during t h e  f i r s t  rotat ions f o r  t h e  PDPS method. 

The minimum is ze ro  f o r  t h e  PDPS method during en t i re  r un  (Figure 

16). For PS, i t  slowly dec reases  from -0.19 a f t e r  t h e  f i r s t  rotat ion t o  -0.43 

a f t e r  ten rotat ions. However, t he  absolute values of t h e  minimum are r a t h e r  

low compared t o  t h e  cone shape and rec tangular  block init ial conditions. 

The maximum, shown in Figure 16, is  very  c lose t o  t h e  analyt ical value 

100 f o r  both methods. After t en  rotat ions t h e  maximum is equal t o  99.32 f o r  

t he  PDPS method and 99.70 f o r  t h e  PS method. 

The maximum absolute e r r o r  (Figure 17) is 0.70 f o r  t h e  PDPS method 

and 0.69 f o r  t he  PS, a f t e r  ten  rotat ions. I t  increases f as te r  f o r  t h e  PS 

method (0.27 a f t e r  t h e  f i r s t  rotat ion)  than f o r  PDPS (0.53 a f t e r  t h e  f i r s t  

rotaton). 

The average  absolute e r r o r  is pract ical ly  t h e  same f o r  both methods 

and i t  slowly increases from 0.04 a f t e r  t h e  f i r s t  rotat ion t o  0.05 a f t e r  ten 

rotat ions. 

3.5. Comparison o f  Di f ferent  Initial C o n d i t i o n s  

The resu l ts  of t h e  advective test depend both on t h e  numerical method 

appl ied t o  t h e  advection equation and on t h e  shape  of t h e  init ial condition. 

For  each of t h e  t h r e e  di f ferent  init ial conditions t h e  PDPS and PS methods 

conserve init ial m a s s  with a n  accuracy be t t e r  than 0.001%. Also, f o r  a l l  of 

them, t h e  PDPS method does not produce negative values and th is  i s  t h e  

most important fea tu re  of t he  method. However, t he  values of t h e  o the r  
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Figure 15. Square of mass conservat ion: smooth init ial condition. 
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Figure 16. Minimum values f o r  the  PDPS and PS methods with the  
smooth initial condition. 
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Figure 17. Maximum values f o r  the  PDPS and PS methods with the  
smooth init ial condition. 



measures (SM, MlN f o r  t h e  PS method, MAX, MER and AER), defined in Sec- 

tion 3.1, depend on t h e  shape  of init ial condition. 

The square  mass i s  be t t e r  conserved (Figure 15) f o r  t h e  smooth shape 

than f o r  t h e  cone shape  (Figure 3)  and t h e  rec tangular  block (Figure 9). 

After ten  rotat ions,  only 0.46% of t h e  square mass i s  lost in t h e  PS solution 

and 1.09% in t h e  PDPS solution. For  t h e  rec tangular  block t h e  square  mass 

dec rease  a f t e r  ten  ro ta t ions is: 4.28% f o r  PS and 30.64% f o r  PDPS. The 

corresponding numbers f o r  t h e  cone init ial conditions are: 0.93% f o r  PS and 

7.33% f o r  PDPS. 

The minimum values generated by t h e  PS method are smaller (Figure 

16),  -- in absolute units - f o r  t h e  smooth shape (-0.43 a f t e r  seven rotat ions) 

than f o r  t h e  rec tangular  block (-13.07 a f t e r  ten  rotat ions), and f o r  t he  cone 

(-0.181 a f t e r  ten  rotat ions). 

Similarly, t h e  maximum f o r  both methods i s  closer to t he  analyt ical 

solution in case  of t h e  smooth shape (99.32 f o r  PDPS, 99.70 f o r  PS; Figure 

17) than in case of t h e  rec tangular  block (101.00 f o r  PDPS, 114.04 f o r  PS), 

and t h e  cone shape (91.45 f o r  PDPS, 94.02 f o r  PS). 

The maximum absolute error a f t e r  ten  ro ta t ions (Figure 18) i s  a lso  

smaller f o r  t h e  smooth shape  (0.70 f o r  PDPS, 0.69 f o r  PS) than f o r  t h e  rec- 

tangular  block (47.08 f o r  PDPS, 35.08 f o r  PS) and t h e  cone (8.55 f o r  PDPS, 

5.98 f o r  PS). 

Finally, t h e  average  absolute error (Figure 19) i s  slightly h igher  f o r  

t h e  smooth shape  (0.05 f o r  PDPS and PS, a f t e r  ten rotat ions) than f o r  t h e  

cone shape  (0.172 f o r  PDPS, 0.146 f o r  PS) and t h e  rec tangular  block (0.181 

f o r  PDPS, 0.301 f o r  PS). 



Figure 18. 

SMOOTH SHAPE - MAXIMUM ABSOLUTE ERROR 

0 1 2 3 4 5 6 7 8 9 1 0  

ROTATION 

Maximum absolute e r r o r  Tor the  PDPS and PS methods with 
the  smooth init ial condition. 
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Figure 19. Average absolute error f o r  t h e  PDPS and P S  methods with 
t h e  smooth ini t ia l  condit ion. 



Comparing dif ferent intial conditions, i t  seems that  the  rectangular 

block shape is the  most cri t ical test f o r  the numerical methods. I t  is  also 

confirmed by the generation of the  art i f icial shortwave noise, with the high 

amplitude fo r  the rectangular block initial condition (Figure 8b-c), smaller 

f o r  the  cone initial condition (Figure 2b-c) and practically invisible for the  

smooth initial condition (Figure 14b-c). 

4. CONCLUSIONS 

The PDPS method presented in this paper  is simple and comprehensive 

both in mathematical formulation and in pract ical  application. I t  does not 

produce negative values and conserves initial mass  with 100% accuracy. The 

method consists of two basic parts:  (1) The pseudospectral solution, and (2) 

the  fi ltering procedure. Compared t o  the  pseudospectral approach the  

additional computer-time fo r  the  PDPS method is only about 10% higher. The 

multidimensional fi ltering procedure is general enough to be combined with 

methods o ther  than PS, and especially with explicit time integration algo- 

rithms. The PDPS method can also be  applied t o  the advection-diffusion 

equation in the  same way as t o  the  advection equation. 

From the  numerical tests,  performed with the  PDPS and PS methods in 

the rotational velocity field, i t  seems that  - f o r  both methods - resul ts 

depend on the  initial condition. The most commonly used cone shape gives 

relatively good resul ts concerning accuracy and shortwave noise. From the  

th ree  dif ferent conditions tested, the  most cr i t ical  one is the  rectangular 

block shape with very steep gradients. In this case, the  magnitude of the  

negative values generated by the PS method is la rger  (Figure 10) than fo r  

the o ther  initial conditions (Figures 8c and 14c). Also the  amplitude of the 



shortwaves on t h e  en t i re  grid system is l a rge r  (Figure 8c) .  Both, negative 

values and shortwaves noise (except  some small d isturbances close t o  t he  

rec tangular  block) a r e  not present  in t he  PDPS solution. 

Also t h e  average  absolute e r r o r  i s  smaller f o r  t h e  PDPS method, 

except  in t h e  cone case,  when i t  i s  slightly h igher compared t o  t he  PS solu- 

tion. 

Summarizing, t h e  accuracy  of t h e  PDPS method i s  ve ry  close t o  t h e  PS 

one. The advantage of PDPS is  a complete elimination of negative values 

from t h e  solution and the re fo re  i t s  possible application t o  non-linear prob- 

lems (e.g. chemical react ions during t he  t ranspor t ) .  An additional advan- 

tage of PDPS is  t h e  absence of shortwaves, typical f o r  t h e  PS solution, in 

case of s teep  gradients in t he  concentrat ion field. 
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