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FOREWORD 

This p a p e r  p r e s e n t s  t h e  f i r s t  r e s u l t s  on  a new s ta t i s t i ca l  a p p r o a c h  to t h e  
problem of incomplete information in s tochas t i c  programming. The too ls  of nondif- 
f e ren t i ab le  opt imizat ion used h e r e  he lp  to p rove  t h e  cons is tency  of (approx imate)  
opt imal so lut ions based on  a n  inc reas ing  information on  t h e  t r u e  p robab i l i t y  d is t r i -  
but ion without unnatura l  smoothness assumptions. They also allow to t a k e  ful ly in to  
accoun t  t h e  p r e s e n c e  of cons t ra in t s .  

A lexander  B. Kurzhanski  
Chairman 

System and  Decision Sc iences  P r o g r a m  
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ASYMPTOTIC BEHAVIOR OF STATISIICAL 
ESTIMATORS AND OPTIMAL SOLUTIONS FOR 

STOCHASTIC OPTIMIZATION PROBUDIS 

J i t k a  DupaEov& a n d  Roger Wets 

The calcu lat ion of es t imates  f o r  var ious  s ta t i s t i ca l  p a r a m e t e r s  h a s  been  o n e  

of t h e  main conce rns  of S ta t i s t i cs  s i nce  i t s  incept ion,  and a number of e legant  f o r -  

mulas have  been developed to obta in such  es t imates  in a number of p a r t i c u l a r  in- 

s tances .  Typically such  cases co r respond  to a s i tuat ion when t h e  random 

phenomenon is  un ivar ia te  in na tu re ,  and  t h e r e  are no  "active" res t r i c t i ons  on t h e  

est imate of t h e  unknown s ta t i s t i ca l  pa ramete r .  However, t h a t  i s  no t  t h e  case in 

gene ra l ,  many est imat ion problems are mult ivar ia te in  n a t u r e  and t h e r e  are res- 

t r i c t i ons  on the  cho i ce  of t h e  pa ramete rs .  These could b e  simple nonnegat iv i ty 

cons t ra in ts ,  but  also much more  complex res t r i c t i ons  involving c e r t a i n  mathemati- 

cal re la t i ons  between t h e  p a r a m e t e r s  t h a t  need to b e  est imated.  Classical  tech-  

niques, t h a t  can  s t i l l  b e  used to handle least s q u a r e  est imat ion with l i nea r  equal i ty  

cons t ra in t s  on t h e  p a r a m e t e r s  f o r  example, b r e a k  down if t h e r e  are inequal i ty 

cons t ra in t s  or a nondi f ferent iab le c r i t e r i o n  funct ion. In such  cases one  cannot  ex-  

p e c t  t h a t  a simple formula will yield t h e  re la t ionsh ip  between t h e  samples and t h e  

bes t  est imates.  Usually, t h e  latter must b e  found by solving a n  optimization prob-  

lem. Natura l ly  t h e  solut ion of such  a problem depends o n  t h e  co l lec ted  samples 

and  one  i s  con f ron ted  with t h e  quest ions of t h e  consis tency a n d  of t h e  asymptot ic  

behav io r  of such  es t imators .  This i s  the  sub jec t  of t h i s  a r t i c l e .  

To overcome t h e  techn ica l  problems caused by  t h e  in t r ins ic  lack  of smooth- 

ness,  we r e l y  on t h e  guidel ines and  t h e  tools prov ided by t h e o r y  of nondif ferent i -  

a b l e  optimization. In f ac t ,  t h e  problem of prov ing consis tency of t h e  es t imators ,  

and t h e  s tudy  of t h e i r  asymptot ic  behav io r  i s  c losely  re la ted  to t h a t  of obtaining 

conf idence i n te rva l s  f o r  t h e  solut ion of s tochas t i c  optimization problems when 

t h e r e  i s  only p a r t i a l  information about  t h e  probabi l i ty  d is t r ibut ion of t h e  random 

coef f ic ients  of t h e  problem. In f a c t  i t  was t h e  need to dea l  with t h i s  class of p rob-  



lems tha t  originally motivated th is  study. W e  shal l  s e e  in Sect ion 2 t h a t  s tochast ic  

optimization problems as well as t h e  problem of finding s ta t is t ica l  est imators are 

t w o  instances of t h e  following genera l  c lass  of problems: 

find x E Rn t h a t  minimizes Etf(x, 4) j , - 
where f : Rnx Z -4 R y 1 + o o j  i s  a n  extended r e a l  valued function and # i s  a random - 
var iable with values in E; f o r  more detai ls see Section 3. I t  i s  implicit in th is  fo r -  

mulation t h a t  t h e  expectat ion i s  calculated with r e s p e c t  to t h e  t r u e  probabi l i ty 

distr ibut ion P of t h e  random var iable #, whereas in f a c t  a l l  t h a t  i s  known is  a c e r -  - 
tain approximate PV. Our object ive i s  to study t h e  behavior  of t h e  optimal solution 

(estimate) xV,  obtained by solving t h e  optimization problem using P V  instead of P to 

calculate t h e  expectat ion,  when t h e  {PV, v = 1, ... j i s  a sequence of probabi l i ty 

measures converging to P. In Sect ion 3 w e  give conditions under  which consistency 

c a n  b e  proved. Constraints on t h e  choice of t h e  optimal x are incorpora ted in t h e  

formulation of t h e  problem by allowing t h e  function f to take on t h e  value + w. The 

resu l ts  are obtained without expl ic i t  r e f e r e n c e  to t h e  form of these  constra ints.  

There  is  of course  a substant ia l  s tat is t ica l  l i t e ra tu re  dealing with t h e  ques- 

t ions broached h e r e ,  beginning with t h e  seminal a r t i c le  of Wald (1949) and t h e  

work of Huber (1967) on maximum likelihood est imators. Of more d i r e c t  parentage,  

at leas t  as f a r  as formulation and use of mathematical techniques, i s  t h e  work on 

stochast ic  programming problems with par t ia l  information. Wets (1979) r e p o r t s  

some prel iminary resu l ts ,  f u r t h e r  developments were presented at t h e  1980 meet- 

ing on stochast ic  optimization at IIASA (Laxenburg, Austr ia) and reco rded  in Solis 

and Wets (1981), see also DupaEovA (1983a, b )  and (1984b) f o r  a spec ia l  case. In a 

pro jec ted p a p e r  w e  shal l  dea l  with est imates of t h e  convergence rates, as well as 

with t h e  convergence of t h e  associated Lagrangian function. 

2. EXAMPLES 

The resu l ts  apply equally well to estimation or stochast ic  optimization prob- 

lems with or without constra ints,  with d i f ferent iable or nondif ferent iable c r i t e r ion  

function. However, t h e  examples t h a t  w e  detai l  h e r e  are those t h a t  fal l  outside t h e  

classical mold, viz. unconstrained smooth problems. 



Restr ict ions on the stat is t ical  estimates o r  the  optimal decisions of stochast ic  

optimization problems, follow from technical and modeling considerat ions as well as 

natural  s tat is t ical  assumptions. The least  square estimation problem with l inear 

equality constra ints,  a basic stat is t ical  method, see e.g. Rao (1965), can be  solved 

by a usual tools of di f ferential  calculus. The inequality constra ints however intro- 

duce a lack of smoothness t ha t  does not allow us t o  fall back on the  old stand-bys. 

In Judge and Takayama (1966), Liew (1976) the  theory  of quadrat ic  programming is  

used t o  exhibit  and discuss t h e  stat ist ical proper t ies  of least  square  est imates sub- 

ject  t o  inequality constra ints f o r  the  case of l a rge  and small samples. 

In connection with t he  maximum likelihood estimation, t he  case of parameter  

res t r ic t ions in t he  form of smooth nonlinear equations was studied by Aitchinson 

and Silvey (1958) including resu l ts  on asymptotic normality of the  estimates. The 

Lagrangian approach w a s  f u r t he r  developed by Silvey (1959), extended t o  the  case 

of a multisample si tuat ion by Sen (1979) including analysis of t he  situation when the  

t r u e  parameter  value does not fulfill t he  constra ints ( the nonnull case). 

Typically one must take  into account in the  estimation of var iances and vari-  

ance components nonnegativity restr ic t ions.  Unconstrained maximum likelihood 

estimation in fac to r  analysis and in more complicated s t ruc tu ra l  analysis models, 

s e e  e.g. Lee (1980), may lead to  negative est imates of the  variances. Replacing 

these unappropr iate est imates by zeros gives estimates which a r e  no longer op- 

timal with respec t  t o  the  chosen fitting function. Similarly, t h e r e  is  a problem of 

gett ing negative est imates of var iance components, see Example 2.3. In stat is t ical  

prac t ice ,  these nonpositive var iance estimates are usually f ixed at ze ro  and t he  

da ta  is  eventually reanalyzed. In general ,  such an  approach may lead t o  plausible 

resul ts  in case of estimating one res t r i c ted  parameter  only and i t  is  mostly unap- 

propr ia te  in multi-dimensional situations; see e.g. the  evidence given by Lee 

(1980). 

The possibility of using mathematical programming techniques t o  ge t  con- 

s t ra ined estimates w a s  explored by Arthanari  and Dodge (1981). As mentioned in 

the  introduction w e  use mathematical programming theory  not only t o  ge t  inequali- 

ty  constrained est imates but t o  ge t  asymptotic resu l ts  f o r  a l a rge  c lass of decision 

and estimation problems which contains, i n te r  a l ia,  res t r i c ted  M-estimates and sto- 

chast ic  programming with incomplete information. In comparison with the  resu l ts  

of ad  hoc approaches valid mostly f o r  one-dimensional res t r i c ted  estimation ou r  

method can be used f o r  high-dimensional cases and without unnatural smoothness 

assumptions, in sp i te  of the  fac t  that  the  violation of di f ferentiabi l i ty assumptions 



cannot be  easily bypassed by t he  use of direct ional der ivat ives (in cont ras t  t o  the  

one-dimensional case) .  

EXAMPLE 2.1 Inequality constrained least squares estimation of regres- 

sion coe.f'$icients. Assume tha t  the  dependent var iable y can be  explained o r  

predicted on t he  base of information provided by independent variables 

xl ,  . . . , xp. In the  simplest case of l inear model, t he  observations y, on y are sup- 

posed t o  be  generated according t o  

where el, . . . , pp a r e  unknown parameters  t o  be estimated, E , ,  j = 1, . . . , v, 

denote the  observed values of residual and X = (xl,) i s  a (p, v) matrix whose rows 

consist of t he  observed values of the  independent var iables.  

In t he  pract ica l  implementation of th is model, t h e r e  may be  in addition some a 

pr ior i  constra ints imposed on the  parameters  such as nonnegativity constra ints on 

the  elast ici t ies, see Liew (1976), a required presigned positive d i f ference between 

input and output tonnage due t o  t he  meeting loss, Arthanari  and Dodge (1981). As- 

sume t ha t  these constra ints are of the  form 

where A(m, p), c(m, 1 )  a r e  given matr ices. The use of t he  least squares method 

leads t o  the  optimization problem: 

2 
minimize z y, - f xi, pi] " I  i =1  J = I  

sub jec t  t o  f akl 5 ck, k = 1. . . . . m , 
1 =1 

which can be solved by quadrat ic  programming techniques. 

In o u r  general  framework, problem (2.1) corresponds t o  t he  case of object ive 

function: 

=+ otherwise 



with the  PV t he  empir ical distr ibut ions. 

Alternatively, minimizing t he  sum of absolute e r r o r s  cor responds t o  the  op- 

timization problem 

subject  t o  5 an Pi 5 ck . 1 5 k 5 m . 
i =1 

which can be  solved by means of the  simplex method f o r  l inear programming, see 

e.g. Arthanari  and Dodge (1981). The formulation of (2.3) i s  again based on the  em- 

pi r ical  distr ibut ion function P v ,  the  object ive functions is: 

=+ otherwise 

Note, t ha t  th is function f is  not di f ferentiable on S. 

Finally, when robustizing t he  least  squares approach,  instead of minimizing a 

sum of squares a sum of less rapidly increasing functions of residuals is  minimized, 

see e.g. Huber (1973): 

minimize p y, - 5 xi, 
J =1 [ i = l  

sub jec t  l o  2 ski PI 5 ck , 1 5 k S m . 
1 =1 

The function p i s  assumed t o  be convex, non-monotone and t o  possess bounded 

der ivat ives of sufficiently high o rde r ,  e.g. 

1 
p(u) = -u2 

2 
f o r  J u (  < c  

1 
= c ) u l - - c 2  f o r  ) u 1 5 c  . 

2 

This a lso f i ts the  general  framework; the object ive function is: 



=+ = otherwise 

and the  empirical distr ibut ion function P V  is again used t o  obtain (2.5). 

EXAMPLE 2.2 Heywood cases in  factor analysis. The model f o r  confirmative 

fac to r  analysis (Joreskog (1969)) is 

where x(n, 1 )  is  a column vector  containing t he  observed var iables,  f is  a column 

vector  containing the  k common fac tors ,  e(n, 1 )  is  a column vec to r  containing the  

individual pa r t s  of t he  observables components and A(n, k) is  the  matrix of fac to r  

loadings. I t  is assumed that  f and e are normally d ist r ibuted with mean zero,  

v a r  f = 8 and v a r  e = Q, which is  diagonal. Consequently, x is  normally distr ibuted 

with mean ze ro  and with t he  var iance matrix 

The parameter  vec to r  consists of the f r e e  elements of A, 9 and cP and i t  should be 

estimated using t he  sample var iance matrix S of observables x. This is done by 

minimizing a suitable fitt ing function, such as 

f l ( z ,  S) = log I + t r (S  C-l)  - log (S I - n (2.8) 

( the maximum likelihood method), o r  

where V is  a matrix of weights ( the weighted least  squares method). Evidently, 

both (2.8) and (2.9) with (2.7) substi tuted f o r  C, are object ive functions of non- 

t r iv ia l  unconstrained optimization problems, which can be solved by di f ferent  

methods such a s  the  method of Davidon-Fletcher-Powell (see Fletcher and Powell 

(1963) o r  by the  Gauss-Newton algorithm. In prac t ice ,  however, about  one th i rd  

of the  da ta  yield one o r  more nonpositive estimates of the  diagonal elements of 

the  matrix 9, which a r e  individual variances. These solutions are called Heywood 

cases and t o  deal with them, (2.8) or (2.9) should be minimized under conditions 

2 0, i = 1, . . . , n. Thus t he  appropr ia te  formulation defines f as follows: 

=+ = otherwise 



and similarly f o r  f2. 

EXAMPLE 2.3 Negative es t imates  of v a r i a n c e  components. Consider a gen- 

e ra l  l inear model with random ef fects 

where y(v, 1 )  is  t he  vec to r  of observations on t he  var iable y,  Z(v, r ) ,  Xi(v, r i ) ,  

i = 1 . . . , p a r e  mutually uncorrelated random vectors  with E pi = 0 ,  

v a r  pi = ufIr, ,  i =1, . . . , p and Er = O .  v a r  r = U ~ I , ,  and 71, . . . 2 2 7rs uoB--.n up  

a r e  unknown parameters  t o  be  estimated. 

One of the  simplest examples is  the  following var iance analysis model f o r  ran- 

dom ef fec t  one-way classification: Consider k populations where t he  j-th measure- 

ment (observation) in the  i-th population is given by 

In (2.11), p i s  the  fixed e f fec t ,  a i ,  i = 1, . . . , k ,  is  the  random ef fec t  of t he  i-th po- 

pulation and el, i s  residual.  Random var iables a l ,  . . . , ak and el l ,  . . . , ekn are in- 

dependent with distr ibut ions N(0, 0:) and N(0, u:), respectively. The parameters  

p, uz, u z  are t o  be estimated. The tradit ional est imates of the  var iance components 

u:, u: in model (2.11) are obtained by a simple procedure:  one equates t he  mean 

squares 

and 

1 1 T k  
where f i e  = - CTzl yi,. i = I .  . . . . k ,  and 7.. = ;;i; Li C;=I yi,, with the i r  ex- 

n 

pectat ions u: and u:n + u: t ha t  give the  est imates 



Whereas sz i s  evidently nonnegative, th is need not  be the  case of si, s o  t ha t  the  

problem of negative est imate of the  var iance component s? comes t o  the  fore .  

The result ing est imates (2.12), (2.13) of t he  var iance components in (2.11) fol- 

low a lso as a specia l  resu l t  of the  MIVQUE and MINQUE estimation developed f o r  

the  genera l  model (2.10): Unbiased estimates of a l inear  parametr ic  function 

zf,o ofqi a r e  sought in t he  form y T ~ y  where 

AZ = 0, A(v, v) i s  symmetric matrix (2.14) 

and which a r e  optimal in some sense. The MIVQUE estimates cor respond to a matrix 

A t ha t  minimizes t he  var iance of y T ~ y  sub jec t  t o  t he  conditions (2.14) and the  

MINQUE estimates correspond to a matrix A t ha t  minimizes tr(A(1 + zf=l Xi x:))' 

sub jec t  t o  conditions (2.14). In none of the  mentioned approaches,  however, t he  na- 

tu ra l  nonnegativity constra ints on the estimates of the  var iances a:, i = 1, . . . PI 

a r e  introduced explicit ly. 

Again, t h e r e  are two possible explanations of negative est imates of var iance 

components: the  model may be incor rec t  or a stat is t ical  noise obscured t he  under- 

laying situation. Among o thers ,  Herbach (1959) and Thompson (1962) studied vari-  

ance  analysis models with random ef fec ts  by means of d i f ferent  var iants  of the  

maximum likelihood method under  nonnegativity constraints. Correspondingly, in 

terms of t he  genera l  model, w e  have f o r  instance 

nk -- k -- k(n -1) -- 
f(a,2, a:, P, Y) = (.rr) (0: +nu:) (a:) 2 

- -- - otherwise , 

I :  
Similarly, nonnegative MINQUE and MIVQUE estimates are of interest .  

1 
exp  -- 

EXAMPLE 2.4 M-estimates. Let 8 be a given locally compact parameter  se t ,  

(Z, A ,  P)  a probabi l i ty space  and f : E9 x Z -+ R a given function. For a sample 

Itl, . . . , from the  considered distribution, any estimate TV = TV(C1, . . . . Cv) 

E O defined by condition 

k n  

C C ( ~ 1 ,  - P ) ~  - 0: 

20: I = l J = l  U: +nu: "li: = I  .I, - upr]J 



v 
T" E argmin f(T t j )  

j = 1  

i s  called an  M-estimate. In t he  pioneering pape r  by Huber (1967) (see a lso Huber 

(1981)), nonstandard suff ic ient conditions were given under which j l"j converges 

a.s. (o r  in probabi l i ty) to a constant go E 8 and asymptotic normality of 

G ( T '  - go) w a s  proved under  assumption tha t  8 i s  an open set. 

The problem (2.15) i s  evidently a specia l  case of o u r  genera l  framework; the  

P v  again correspond to t h e  empirical distr ibut ion functions and w e  have uncon- 

s t ra ined cr i te r ion function. W e  shal l  aim to remove both of these assumptions to 

ge t  resu l ts  valid f o r  a whole c lass of probabi l i ty measures P v  estimating P ,  which 

contains the  empirical probabi l i ty measure connected with t h e  original definition 

(2.15) of M-estimates, and f o r  constrained estimates. 

EXAMPLE 2.5 Stochast ic  op t im iza t ion  w i t h  incompLete iq fo rmat ion .  Con- 

s ide r  the  following decision model of s tochast ic  optimization: 

Given a probabi l i ty space  (Z, A ,  P),  a random element < on Z, a measurable 

function f : R n  x E -4 R and a set S cRn 

minimize El f (x,  C)j = J f (x ,  C)P(d<) on t he  set S c Rn . (2.16) 
2! 

A wide var ie ty  of s tochast ic  optimization problems, e.g., s tochast ic  programs 

with recourse  or probabi l i ty constrained models (see e.g. Dempster (1980), Ermo- 

liev et al .  (1985), Kall (1976), Prdkopa (1973), W e t s  (1983)) f i t  into th is abs t r ac t  

framework. 

In many pract ica l  si tuat ions, however, t he  probabi l i ty measure P need not be  

known completely. One possibility how t o  deal with such a situat ion i s  t o  estimate 

t he  optimal solution x* of (2.16) by an  optimal solution of t he  problem 

minimize J f (x, C) PV(d<) on the  set S c Rn 
P 

where P v  is  a sui table est imate of P based on t he  observed dates.  In th is context,  

t h e r e  are di f ferent  possibil i t ies to estimate o r  approximate P and the  use of em- 

pi r ical  distr ibut ion i s  only one of them. The case  of P belonging to a given 

parametr ic  family of probabi l i ty measures but  with a n  unknown parameter  vector  

w a s  studied e.g. in DupaEovh (1984a, b). 



For problem (2.16), l a rge  dimensionality of t he  decision vector  x is  typical. 

This circumstance together  with nondifferentiabil i ty (or  even with noncontinuity) 

of f and with t he  presence of constra ints ra ises qualitatively new problems. 

3. CONSISTENCY: CONVERGENCE OF OPTIMAL SOLUTIONS 

From a conceptual viewpoint o r  f o r  theoret ical  purposes,  i t  is  convenient as 

well as expedient to study problems of stat is t ical  estimation as well as stochast ic  

optimization problems with par t ia l  information, in t he  following genera l  framework. 

Let (Z, A ,  P)  be a probabi l i ty space,  with Z - t he  suppor t  of P - a closed subset  of 

a Polish space X, and A t he  Bore1 sigma-field re lat ive to Z; w e  may think of Z as 

t he  set of possible values of t he  random element t defined on t he  probabi l i ty space 

of events  ( Q ,  A ', p'). If P i s  known, t he  problem i s  to: 

find x* E R n  t ha t  minimizes Ef (x) , (3.1) 

where 

and 

is  a random lower semicontinuous function; w e  set 

whenever t k f (x ,  t )  i s  not  bounded above by a summable (extended real-valued) 

function. W e  r e f e r  to 

dom Ef :  = [x lEf(x) < - 1  

as t he  eflective doma in  of Ef. Points t ha t  do  not belong t o  dom Ef cannot minimize 

Ef and thus are effect ively excluded from the  optimization problem (3.1). Hence, 

the  model makes specif ic provisions f o r  the  presence of constra ints tha t  may limit 

the  choice of x.  Note that  by definition of the  integral ,  w e  always have 

dom Ef c lxI f(x, t )  < - a.s.1 

An extended real-valued function h :  Rn --, = [- -, -1 is  said t o  be proper if 



h >- 00 and not  ident ical ly + =; i t  i s  lower s e m i c o n t i n u o u s  (1.sc.) at x if f o r  any  
k sequence (x )[=1, converg ing to x 

lim inf h(xk) 2 h(x)  , 
k-+-  

where  t h e  quant i t ies involved could b e  = or -=. The ex tend  real-valued funct ion f 

def ined on  R n  X Z i s  a r a n d o m  lower s e m i c o n t i n u o u s f i L n c t i o n  if 

f o r  a l l  ( E r,  f ( . ,  () i s  l .sc.  (3.31) 

f i s  Bn 63 A - measurab le  (3.3ii) 

where  Bn i s  t h e  Bore1 sigma-field on  Rn. This concep t ,  unde r  t h e  name of "normal 

in tegrand",  w a s  in t roduced by  Rockafe l la r  (1976), as a genera l izat ion of Caratheo-  

d o r y  in tegrands ,  to handle problems in t h e  Calculus of Var ia t ions and Optimal Con- 

t r o l  Theory.  When deal ing with problems of t h a t  type ,  as well as s tochas t i c  optimi- 

zat ion problems such as (3.1), t h e  t rad i t iona l  tools of funct ional analys is  are no 

longer  qu i te  a p p r o p r i a t e .  The c lass ica l  geometr ica l  a p p r o a c h  t h a t  assoc ia tes  func- 

t ions wiLh t h e i r  g r a p h  must b e  abandoned in f a v o r  of a new geomet r ica l  viewpoint 

t h a t  assoc ia tes  funct ions with t h e i r  "ep igraphs"  ( o r  hypographs) ,  f o r  more abou t  

t h e  motivation and  t h e  underly ing pr inc ip les  of t h e  ep ig raph ica l  a p p r o a c h  consul t  

Rockafe l la r  and Wets (1984). The e p i g r a p h  of a funct ion h : Rn -+ R i s  t h e  set 

epi  h = [ (x ,  a )  E Rn x R ( h ( x )  5 aj  . 

Rockafe l la r  (1976) shows t h a t  f :  Rn  X E -+ R i s  a random l.sc. funct ion if and  only 

if 

t h e  multi function ( k ep i  f ( . ,  () i s  nonempty, closed-valued , (3.4i) 

t h e  multi function t k epi  f ( - ,  C) i s  measurable ; (3.4ii) 

r eca l l  t h a t  a multifunction ( b r([) : E -+ Rn + l i s  measurable if f o r  a l l  c losed sets 

F C R " + ~  

f o r  f u r t h e r  de ta i l s  about  measurab le  mult i functions see Rockafe l la r  (1976), Casta- 

ing and Valadier (1976), and t h e  b ib l iography of Wagner (1977) supplemented by  

Iof fe (1978). W e  sha l l  use repea ted l y  t h e  following resu l t  due  to Yankov, von Neu- 

man, and Kuratowski and Ryl l  Nardzewski. 



PROPOSITION 3 .1  Theorem of Measurable Selections. If r: E 2 Rn i s  a closed- 

valued measurable m u l t m n c t i o n ,  then there ez is ts  a least one measurable 

selector, i.e. a measurable funct ion x : dom r --, Rn such that  for all E dom r, 
x (C) E r(C), vhere  dom r : = C E Z 1 r(C) # 4 1 = r - ' ( ~ ~ )  E A . 

For a proof see  Rockafel lar (1976), f o r  example. As immediate consequences of the 

definition (3.3) of random l.sc . functions, the equivalence with the  conditions (3.4) 

and t he  preceding proposit ion, w e  have: 

PROPOSITION 3.2 Let f : Rn x E --, be a random 1.sc. funct ion. Then for 

a n y  A measurablefunct ion x : Z --, Rn, t he func t ion  

Moreover, the in f imal  funct ion 

tt-+ inf f ( - ,  C): = in fxERnf(x,  C) 

i s  A-measurable, and the set of optimal solut ion 

t k  argmin f(., C): = fx I f (x ,  t )  = inf f( . ,  C)j 

i s  a closed-valued measurable m u l t ~ n c t i o n  from Z i n to  Rn, and this implies 

that there exists a measurable funct ion 

k x*(t) : dom (argmin f(., ,$)) 2 Rn 

such that  x*( t )  minimizes f ( - ,  C) whenever argmin f (., ,$) + 4. 

For a succinct  proof ,  see  Section 3 of Rockafel lar and Wets (1984). 

If instead of P ,  w e  only have limited information avai lable about  P - e.g. some 

knowledge about the  shape  of the  distribution and a f inite sample of values of C o r  
#.a 

of a function of ,$ - then to estimate x* we usually have t o  re ly  on t he  solution of an - 
optimization problem that  "approximates" (3.1), viz. 

find x v  E Rn tha t  minimizes Evf(x) 

where 

The measure P v  i s  not necessari ly the  empirical measure, but more general ly the 



"best" (in terms of a given cr i te r ion)  approximate t o  P on t he  basis of t he  informa- 

tion available. A s  more information i s  col lected, w e  could ref ine t he  approximation 
* 

t o  P and hopefully find a b e t t e r  estimate of x . To model th is process,  w e  re ly on 

t he  following set-up: l e t  (Z, F, p )  be a sample space  with (Fv ) r= l  a n  increasing se- 

quence of sigma-field contained in F. A sample < --  e.g. < = It1, t'.... j obtained by 

independent sampling of t he  values of t -- leads us t o  a sequence IPv(-, <), ,.. 
v = 1, ... j of probabi l i ty measures defined on (Z, A ). Since only t he  information 

collected up t o  s tage  v can  be used in t he  choice of Pv,  w e  must a lso  requ i re  t ha t  

f o r  al l  A E A 

Since PV depends on <, s o  does the  approximate problem (3.5), in par t icu lar  i t s  

solution x '. A sequence of est imators 

* 
is (strongly) cons is ten t  if p-almost sure ly  they converge t o  x , th is ,  of course,  im- 

plies weak consistency (convergence in probabil ity). 

The following resu l ts  extend the  classical Consistency Theorem of Wald (1940) 

and t he  extensions by Huber (1967), t o  the  more genera l  sett ing laid out  h e r e  

above. Consistency is  obtained by relying on assumptions t ha t  are weaker than 

those of Huber (1967) even in t he  unconstrained case.  To do  so, w e  re l y  on t he  

theory  of epi-convergence in conjunction with the theory  of random sets (measur- 

able multifunctions) and random l.sc. functions. 
- 

A sequence of functions Ig ': R n  -+ R, v = 1,. .. j is  said t o  epi-converge t o  

g : R" -+ R if f o r  a l l  x in Rn, we have 

lim inf g "(x ') 2 g(x) for  a l l  I xV j r= l  converg ing  to  x , 
v + m  

and 

for  some IxVj  converg ing  to x,  lim supgV(xV) EG g(x) . 
v + -  

(3.8) 

Note t ha t  any one of these conditions imply tha t  g is  lower semicontinuous. W e  then 

say  tha t  g is  the  ep i - l im i t  of t he  gV,  and write g = epi-lim,, ,gv. W e  r e f e r  t o  th is 

type of convergence as epi-convergence, s ince i t  i s  equivalent o t  t he  set- 

convergence of t he  epigraphs.  For more about  epi-convergence and i t s  proper t ies ,  

consult Attouch (1984). Our in teres t  in epi-convergence stems from the  fac t  that  



from a variational viewpoint i t  is the weakest type of convergence that possesses 

the following propert ies:  

PROPOSITION 3.3 [Attouch and Wets (1981), Salinetti and Wets (1986)l. Sup- - 
pose 1g; gV:Rn -+ R, v = 1, ... j i s  a collection of functions such that g = 

epi -1im ,, , ,gV. Then 

lim sup (inf gV) s inf g , 
v + -  

and, ig 

xk E argmin gVk for some subsequence 1 vk, k = I , . .  . j 

and x = limk ,,xk, i t  follows that 

x E argmin g , 

and 

lirn (inf gVk) = inf g ; 
k + -  

so in particular ig there exists a bounded set D c Rn such that for some subse- 

quence 1 vk, k = 1, ... j, 

argmin gVk n D + $ , 

then the minimum o f g  i s  attained at some point in the closure of D. 

Moreover, ig argmin g + $, then lim, , , (inf gv) = inf g ig and only ig 

x E argmin g implies the existence of sequences I&, r 0, v = 1 ,  ... j and lxV E Rn, 

v = 1 ,  ... j wi th  

lirn E,, = 0, and lirn x V  = x 
v +- v + -  

such that for all u = 1, ... 

x V  E E, - argmin gV :  = Ix (gV(x) s E,, + inf g v j  . 

The next theorem that proves the p-almost su re  epi-convergence of expecta- 

tion functionals, is build upon approximation resul ts fo r  stochastic optimization 

problems, f i rs t  derived in the case f(., C) convex (Theorem 3.3, Wets (1984)), and 

la te r  fo r  the locally Lipschitz case (Theorem 2.8, Birge and Wets (1986)). W e  work 

with the following assumptions. 



ASSUMPTION 3.4 "Continuities" of f .  The f i n c t i o n  

w i t h  

dom f :  = { ( x ,  # ) l f ( x ,  #) < ={ = S  X E ,  S c R" closed a n d  nonemp ty  , 

i s  s u c h  that for a l l  x E S ,  

# t-b f ( x ,  #) is  c o n t i n u o u s  o n  E , 

a n d  for a l l  # E E 

a n d  Locally Lower L i psch i t z  o n  S ,  in t h e  fol lowing sense: to a n y  x in S,  t he re  

cor responds a neighborhood V of x a n d  a bounded c o n t i n u o u s  f i n c t i o n  

8 :  E -+ R s u c h  t h a t f o r  a l l x '  E V n S a n d  # E Z, 

ASSUMPTION 3.5 Convergence in distribution. G i ven  t h e  sample space 

(Z,  F ,  p) a n d  an i n c reas ing  sequence of s igma-f ie lds (Fv),"=l conta ined in F, Let 

P V : A  x Z -+ [0, I], v = 1, ... 

be s u c h  t h a t  for a l l  ( E Z 

Pv( .  , () i s  a probabi l i ty  measure  o n  ( E ,  A )  , 

a n d  for a l l  A E A 

(t-b Pv(A, () i s  Fv-measurable . 

For p-almost a l l  ( in Z, t h e  sequence 

P V  , ) v = 1 . .  converges in d i s t r i bu t i on  to P , 

a n d  w i t h  P = : P O ( -  , (), for a l l  x E S,  t h e  sequence lPv(. , (){ r=O i s  f ( x ,  - ) - t ight  

(asymptot ic  negl ig ib i l i ty) ,  i.e. to  eve ry  x E S a n d  E > 0 the re  cor responds a com- 

pact set K, c s u c h  t h a t f o r  v = 0 ,  1, ... 

jE\Kelf(x, #) lPV(d#.  <) < E . 
a n d  



The assumption tha t  

<I+ dorn f ( . ,  <): = lxI f(x. <) < -f = S 

i s  constant ,  which i s  sat isf ied by al l  t he  examples in Sect ion 2, may a p p e a r  more 

res t r i c t i ve  than i t  actual ly is.  Indeed, i t  is  easy to see t ha t  

dorn Ef = n dorn f (. , <) , 
( E L  

if Z is  t h e  suppor t  of t h e  measure P and f o r  al l  x € n C , ~  dorn f ( . ,  <), t he  function 

f (x ,  .) i s  bounded above by a summable function. Then, with S = nC, 2 dorn f( . ,  <) 

and 

f (x,  [) if x E S 

+ - otherwise , 

we may as well work with f +  instead of f ,  s ince 

and now [ k dorn f+( . ,  [) = S i s  constant.  

Assumption 3.4 implies tha t  f is a random lower semicontinuous function (nor- 

mal integrand). Indeed, f o r  a l l  [ € =, f ( . ,  [) is  p r o p e r  and lower semicontinuous 

(3.3.i) and (x, [) k f (x ,  [) is  B" 60 A-measurable (3.3.ii) s ince f o r  a l l  a E R ,  

lev,f := {(x, [) lf(x, [ ) S a f  isc losed . 

To s e e  this, suppose {(xk, [ k ) f r = l  C lev,f i s  a sequence converging to (x, [); then 

from Assumption 3.4 we have t h a t  f o r  k sufficiently l a rge ,  and a l l  # 

in par t icu lar  

where B = max(, @([) i s  f in i te,  s ince B(.) is  bounded. Now # k f (x,  #) is  continu- 

ous on Z, thus taking limits as k goes to a, w e  obtain 

f (x ,  [) 6 a + B lim Ilx - xkll = a , 
k-*- 



i.e. (x, C) E lev,f. Since f is a random l.sc. function if follows from Proposit ion 3.2 

t ha t  

is  measurable. Thus condition (3.12) does not sneak in another  measurabil ity condi- 

t ion, i t  requ i res  simply t ha t  t he  measurable function 7 be quasi-integrable. 

Huber (1967), as well as o the rs  see e.g. Ibragimov and Has'minski (1981), as- 

sumes t ha t  S is open. Since constra ints usually do  not  involve s t r i c t  inequalit ies, 

th is is  a n  unnatural res t r ic t ion ,  except  when t he re  are no constra ints,  i.e. S = Rn 

in which case S is  a lso closed. In any case,  whatever be t he  optimality resu l ts  one 

may be  ab le  t o  p rove  with S open, they remain valid when S is  replaced by i ts  clo- 

su re ,  assuming minimal continuity proper t ies  f o r  t he  expectat ion functionals, but 

the  converse does not hold. 

To simplify notations w e  shal l ,  whenever i t  is  convenient, d rop  the  expl ici t  

re fe rence  of the  dependence on < of the  probabi l i ty measures P v  and t he  result ing 

expectat ion functionals Evf, nonetheless the  r eade r  should always be  aware t ha t  

a l l  p-as. statements r e f e r  t o  the  underlying probabi l i ty space  (Z, F, p). W e  begin 

by showing tha t  Ef, as well as t he  Evf, are well-defined functions. 

LEMMA 3.6 Under Assumpt ions 3.4 and  3.5, there ex is ts  Zo E F. p(Zo) = 1 

s u c h  that  for a l l  < E ZO, Ef and  lEvf, v = I , . .  . j a r e  proper lower semicont inuous 

a n c t i o n s  such  that  

S = dom Ef = dom Evf(., <) 

on wh i ch  the expectat ion a n c t i o n a l s  a re  f in i te .  

PROOF Let us f i r s t  f ix <, and assume tha t  f o r  th is < al l  t he  conditions of As- 

sumption 3.5 are satisfied. If x C S,  then f(x, [) = = f o r  a l l  C in = and hence 

Ef = EVf = =, i.e., 

S 3 dom Ef, S 3 dom EVf . 

With PO = P,  f o r  x E S and any E > 0, t he re  i s  a compact set Kc (Assumption 3.5) 

such t ha t  



as follows from (3.11) and t h e  fac t  tha t  f(x, .) is  continuous and f ini te on Kc c E .  

Thus Evf (x) < w. 

The fac t  t h a t  Ef > - w, and Evf > - 00 follows d i rec t ly  from condition (3.12). I t  

is  also th is  condition tha t  we use to show tha t  the  expectat ion funct ionals are lower 

semicontinuous s ince i t  allows us to appeal  to Fatou's Lemma to obtain: given 

)x 1 := a sequence converging to x;  

l iminfEf(xV) 2 f lim f (xv,  #)P(dt) 
v+= '  v + -  

where t h e  las t  inequality follows from t h e  lower semicontinuity of f(., t )  at x. Of 

course,  the  same s t r ing  of inequalit ies holds f o r  all )PV,  v = 1 ,  ... 1. 

Since t h e  above holds f o r  eve ry  v p-almost su re ly  on Z, t h e  set 

Z, = ) {  E ZJEVf( . ,  {) i s  f ini te, 1-sc. on S, f o r  v = 0, 1 ,... 1 

i s  of measure 1.0 

THEOREM 3.7 Suppose )E 'f, v = 1 ,... 1 is  a sequence of ezpec ta t i on  func-  

t i o n a l ~  de f ined by  

a n d  Ef(x) = E)f (x ,  #){ s u c h  t h a t  f a n d  the  col lect ion )P;  PV,  v = 1, ... 1 sat is& As- 

s u m p t i o n s  3.4 a n d  3.5. Then, p-almost s u r e l y  

Ef = epi  -1im EVf = ptwse -1im EVf 
v+='  V + = '  

where  ptwse-lim,, ,Evf denotes  the  po in tw ise  l im i t .  

PROOF The argument essential ly follows t h a t  of Theorem 2.8 Birge and W e t s  

(1986), with minor modifications to t ake  care of the  slightly weaker assumptions 

and t h e  f a c t  tha t  t h e  expectat ion functionals depend on <. W e  begin by showing t h a t  

p-almost sure ly  Ef i s  t h e  pointwise limit of the  EVf. W e  f ix { E Z, and assume t h a t  

t h e  conditions of Assumption 3.5 are satisf ied f o r  th is  pa r t i cu la r  <. Suppose x E S ,  

and set 

From condition (3.11), i t  follows tha t  f o r  a l l  E > 0, t h e r e  i s  a compact set Kc such 

tha t  f o r  a l l  v 



Let  7,: = maxtEKt lh(#)) .  W e  know t h a t  7, i s  f in i te  s ince  K t  i s  compact  and h i s  con- 

t inuous on  Z (Assumption 3.4).  Le t  hC  b e  a t runcat ion  of h ,  def ined by 

I h(#) if Ih(#) I s 7, 
he(#) = 7, if h ( t )  > 7 c  

- 7, if h ( t )  < 7, 

The funct ion h C  i s  bounded and cont inuous, and f o r  all # in Z 

IhC(#)I s lh(#)l 

Now, f rom t h e  conve rgence  in  d is t r ibut ion of t h e  PY, 

lim [a:: = / E h c ( # ) ~ u ( d # ) ]  = / E h c ( # ) ~ ( d # ) :  = at  . ,+- 

Moreover ,  f o r  all v 

Now, let 

W e  have  t h a t  f o r  all v 

la, - a,CI = ~ & , ~ ~ ( h ( # )  - h c ( 0 ) P V ( d # ) (  < 2  r  . 
and also 

(Ef (x)  - aCI < 2 r  

These t w o  last est imates,  when used in conjunct ion with (3.13) yield: f o r  all E > 0 

JEf(x)  - awl < 6 r  . 

Thus f o r  all x in  S 

Ef(x)  = lim EYf(x) = lim a, , 
u - + -  u - + -  

and s ince ,  by Lemma 3.6, 

S = dom Ef = dom EYf , 



i t  means tha t  Ef = ptwse -limv, ,Evf, and tha t  condition (3.8) of epi-convergence 

is  sat isf ied, s ince w e  can  choose Ixv = x f o r  t h e  sequence converging t o  x.  

There remains t o  veri fy condition (3.7) of epi-convergence. If x @ S, then f o r  

every  sequence lx '{ rZl converging t o  x ,  since S is  closed we have t ha t  x u  @ S f o r  

v sufficiently l a rge  and hence EVf(xY) = -, which implies t ha t  

lim inf EYf(x ") = - 2 Ef (x) = - . 
Y + Q  

If x E S, and l ~ ' { , " = ~  is  a sequence converging t o  x ,  unless x v  i s  in S infinitely 

often, lim inf,, , EYf(xY) = -, and then condition (3.7) i s  tr iv ial ly sat isf ied. So  le t  

us  assume t ha t  !X c S. For v sufficiently la rge,  from (3.10) i t  follows tha t  

t h e r e  is  a bounded continuous function B such tha t  

Integrat ing both s ides with respec t  t o  PV, and taking lim inf,, ,, w e  obtain 

lirn EYf(x) - lim B Y .  I ~ x  - x Y ( ( S  lirn infEVf(xv) 
LJ+m V + Q  Y - Q  

where BV = J @(.$I Pw(d.$) converge t o  a f inite limit s ince the  PV converge in distr i-  

bution t o  P ,  and by pointwise convergence of the  EYf th is yields 

Ef (x) zs lim inf EVf (xu) . O 
v + -  

To apply in th is context ,  Proposit ions 3.2 and 3.3, we must show tha t  the  ex- 

pectat ion functionals lEYf, v = I,.. . { are random l.sc. functions. 

THEOREM 3.8 Under Assumptions 3.4 and 3.5, t he  ezpectat ionf 'unct ionaLs 

E ~ ~ : R " X Z  -+E, f o r  v = I , .  . . , 

a r e  p-almost s u r e l y  r andom lower semicon t inuous  f 'unctions, s u c h  t he  < k  

epi Evf ( a ,  <) is F"measurab1e. 

PROOF Lemma 3.6 shows t ha t  t he re  exists a set ZO c Z of p-measure 1 such 

that  f o r  a l l  < E ZO, the  multifunction 

< k epi EYf(., <) : Z, 2 Rn is nonempty, closed-valued . 

This is  condition (3.4.i), thus t h e r e  remains only t o  establ ish (3.4.ii), i.e. 

< k epi EYf (., <) is  FY-measurable . 



f o r  v = 1,. . . . Theorem 3.7 proves tha t  with r e s p e c t  to t h e  topology of convergence 

in distr ibut ion, t h e  map 

P V  b epi Evf i s  continuous . 

Moreover, s ince < b PV(A, <) is  Fv-measurable f o r  a l l  A E A ,  i t  means tha t  given 

any f ini te col lect ion of closed sets [F, c E J ~ , ~  and s c a l a r s  [ f i i j f = l  c 10, I], t h e  set 

which means tha t  the  function 

< b Pv(. ,  <) : Z - P : = tprobabi l i ty measures on (E, A )  j 

i s  Fv-measurable. To see th is ,  observe tha t  t h e  "convergence in distributionu- 

topology can  be obtained from t h e  base of open sets 

see Billingsley (1968), tha t  also genera te  t h e  Bore1 field on P. Thus 

< k epi  EVf(., <) 

i s  the  composition of a continuous function, and a Fv-measurable funct ion, and 

hence i s  F v - m e a s u r a b l e . ~  

In the  proof of Theorem 3.8, we have used t h e  continuity of the  map P V k  

epi  EVf, in fac t  Theorem 3.7 only proves epi-convergence, without introducing ex- 

plicitly the  epi-topology f o r  the  space  of lower semicontinuous functions. The f a c t  

tha t  epi-convergence induces a topology on the  space  of l.sc. functions i s  well- 

establ ished, see f o r  example Dolecki, Sal inett i  and Wets (1983) and Attouch (1984), 

and thus with th is  proviso, Theorem 3.7 proves t h e  epi-continuity of t h e  map P V  k 

epi EVf. 

THEOREM 3.9 Consistency. Under  Assumptions 3.4 a n d  3.5 w e  h a v e  t h a t  p- 

almost s u r e l y  

lim sup (inf EVf)  S inf Ef 
v + -  

Moreover, there  e z i s t s  Zo E F w i t h  p(Z \ ZO) = 0, s u c h  tha t  

(i) for a l l  < E ZO, a n y  c lus te r  po in t  9 of a n y  sequence tx ', v = 1, ... I w i t h  x E 

argmin EVfV(.,  <) belongs t o  argmin Ef ( i.e. is  an opt ima l  est imate),  



(ii) fo r  v = 1,. . 

< t, argmin EVf (. , <) : Zo 2 Rn , 

is a closed-valued FV-measurab le  mul t i fbnct ion.  

In p a r t i c u l a r ,  if t h e r e  is a compact se t  D c Rn s u c h  t h a t  fo r  v = I, ... 

(argmin ~ ~ f )  n D is nonempty  p-a.s. , 

and 

tx* j = argmin Ef n D , 

t h e n  t h e r e  ex is t  txu:Z, --+ Rnj,",l FV-measurab le  se lec t ions  of targmin Evf jF= l  

s u c h  t h a t  

* 
x = lim xV(<) for  p-almost all < , 

u + -  

and a lso  

inf Ef = lim (inf EVf) p-a.s. . 
v-w 

PROOF The inequality (3.14) immediately follows from (3.9) and the  epi- 

convergence p-almost su re ly  of the  expectat ion functionals EVf to Ef (Theorem 

3.7) as does the asser t ion  (i) about  c lus te r  points of optimal solutions (Proposition 

3.2). The fac t  t h a t  (argmin EVf) is  a closed-valued Fv-measurable multifunction fol- 

lows from Theorem 3.8 and Proposit ion 3.2. 

Now suppose Zo c Z be such tha t  p(ZO) =I ,  f o r  a l l  < EZo,  Ef = 

epi-lim, , ,Evf, and f o r  a l l  v = 1, ... , (argmin Evf) n D is  nonempty. For  a l l  v, t he  

multifunction 

< h (argmin Evf(. ,  <) n D) : Zo 2 Rn 

is nonernpty compact-valued, and Fv-measurable; i t  is  the  intersect ion of two 

closed-valued measurable multifunctions, see Rockafel lar  (1976). Now f o r  any 

< E ZO, l e t  tZv j r= l  be  any sequence in Rn such tha t  f o r  a l l  Y, 

Zv(<) E argmin ~ " f ( . , < )  n D . 

Then, any c lus te r  point of the  sequence is in D, since i t  is  compact, and in 
* 

argmin Ef as follows from Proposit ion 3.2. Actually, x = limv,,xv. To see th is  



note tha t ,  if x* i s  not t h e  limit point of t h e  sequence t h e r e  ex is ts  a subsequence 

Ivk{F= such tha t  f o r  some b > 0 ,  and al l  k = 1, . . . , 

s k ~ a r g m i n ~ ' L f  n D ,  and J J X * - Z ~ ) ( > ~  , 

but  th is  i s  contradicted by t h e  f a c t  tha t  th is  subsequence included in D contains a 

f u r t h e r  subsequence t h a t  is  convergent. 

N o w ,  f o r  v = 1, ... , l e t  x V  : Z -+ Rn be  a n  Fv-measurable select ion of t h e  Fv- 

measurable multifunction <b (argmin Evf(., <) n D), cf .  Proposit ion 3.1. By t h e  

preceding argument f o r  a l l  < E Zo, where p(Zo) = 1, 

* 
x = lim xu(<) 

v + -  

and from Proposit ion 3.3, i t  then also follows tha t  

lim (inf Evf (., <)) = inf Ef = ~f (x*) 
v --r 

f o r  a l l  < E ZO.n 

I t  should be  noted t h a t  c o n t r a r y  to e a r l i e r  work - see Wald (1940), Huber 

(1967) - w e  do not assume t h e  uniqueness of the  optimal solutions, at leas t  in t h e  

c a s e  of the  stochast ic  programming model, introduced in sect ion 2, th is  would not 

be  a natura l  assumption. Also, l e t  us observe tha t  w e  have not given h e r e  the  most 

genera l  possible vers ion of t h e  Consistency Theorem t h a t  could be  obtained by re- 

lying on the  tools int roduced h e r e .  There  are conditions tha t  are necessary  and 

suff ic ient f o r  t h e  convergence of infima - see Salinett i  and Wets (1986), Robinson 

(1985) - t ha t  could be  used h e r e  in conjunction with convergence resu l ts  f o r  

measurable select ions (Salinetti and Wets (1981)) t o  yield a slightly s h a r p e r  

theorem, but the  conditions would be  much h a r d e r  t o  ver i fy ,  and would be  of ve ry  

limited in te res t  in th is  context .  Also, s ince epi-convergence i s  of local c h a r a c t e r ,  

w e  could reward o u r  statements to obtain "local" consistency by res t r ic t ing  o u r  at- 

tent ion to a neighborhood of some x* in argmin Ef. 

W e  conclude by a n  ex is tence resul t .  A function h : R n  -+ R i s  inf-compact if f o r  

al l  a E R 

l e v a h :  = Ix E Rnlh(x)  5 a{ i s  compact . 

If h i s  p r o p e r  (h > - w,  dom h # 0)  and inf-compact, then (inf h)  is  f ini te and at- 

tained f o r  some x E R". For  example, if h = g + qs, where g i s  continuous and qs is  



t h e  ind ica tor  funct ion of t h e  nonempty compact  set S(.ks(x) = 0 if x E S, and  .o oth- 

erwise) ,  then  h i s  inf-compact. Another  suf f ic ient  condit ion i s  to have g coe rc i ve .  

Inf-compactness i s  t h e  most gene ra l  condit ion t h a t  i s  ver i f iab le  u n d e r  which ex-  

i s tence c a n  b e  es tab l i shed.  The nex t  proposi!.ion genera l i zes  r e s u l t s  of Wets (1973) 

and Hir iar t -Unruty  (1976). Essent ial ly,  we assume t h a t  f(., #) i s  inf-compact with 

posi t ive probabi l i ty .  

PROPOSITION 3.10 Under Assumptions 3.4 and 3.5, the condi t ion:  there ex- 

i s t s  A E A w i t h  P(A) > 0 ( resp.  Pv(A) > 0 )  s u c h  tha t  for aLL a ER, the set 

lev, f n (Rn x A) is  bounded . 

Then Ef is inJ-compact (resp. Evf is p-a.s.  inf-compact). 

PROOF I t  c l e a r l y  su f f i ces  to p r o v e  t h e  proposi t ion f o r  P, t h e  same argument  

app l ies  f o r  all Pv p-as.. Le t  

7(#)  : = inf to, inf f (x, #) j . 
x €Rn  

The funct ion i s  measurab le  (Proposi t ion 3.2) and P-summable, see (3.12). The func- 

t ion f', def ined by 

i s  t hen  nonnegat ive. Moreover  f '  2 f and  thus  

Set al : = a / P ( A )  and l e t  A1 b e  t h e  pro jec t ion  on Rn of lev,,fl n (Rn x A). Then if 

x g Al and # E A 

and s ince  f '  i s  nonnegat ive, with = E t7(#) 1, 

Hence lev -Ef C Al ,  a bounded s e t .  To complete t h e  proof  i t  suf f ices to o b s e r v e  
a +7 

t h a t  f rom Lemma 3.6 we know t h a t  lev,Ef i s  c losed s ince  Ef is lower semicontinu- 

ous,  and th is  with t h e  above  implies t h a t  lev, +7Ef i s  compact  f o r  a l l  a E R.U 
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