
Combining Generalized 
Programming and Sampling 
Techniques for Stochastic Programs 
with Recourse

Gaivoronski, A.A. and Nazareth, J.L.

IIASA Working Paper

WP-86-044

September 1986 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33894286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Gaivoronski, A.A. and Nazareth, J.L. (1986) Combining Generalized Programming and Sampling Techniques for Stochastic 

Programs with Recourse. IIASA Working Paper. WP-86-044 Copyright © 1986 by the author(s). http://pure.iiasa.ac.at/2815/ 

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


Working Paper 
COUBINING GENERALIZED PROGRAMMING 
AND SAMPLING TECHNIQUES FOR 
ETOCWHITC PROGRAMS WITH RECOURSE 

A. Gaivoronski 
J.L. Nazareth 

September 1986 
WP-06-44 

International Institute for Applied Systems Analysis 
A-2361 Laxenburg, Austria 



NOT FOR QUOTATION 
WITHOUT THE PERMISSION 
OF THE AUTHORS 

COMBINING GENERALIZED PROGRAMMING 
AND SAHPLING TECHNIQUES FDR 
SToCHASlXC PROGRAMS WITH RECOURSE 

A. Gaivoronski 
J.L. Nazareth 

September 1986 
WP-86-44 

Working Papers a r e  interim reports on work of the International 
Institute fo r  Applied Systems Analysis and have received only limited 
review. Views o r  opinions expressed herein do not necessarily 
represent those of the Institute o r  of its National Member 
Organizations. 

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 
A-2361 Laxenburg, Austria 



FOREWORD 

This paper  deals with an  application of generalized l inear programming tech- 
niques fo r  stochastic programming problems, part icularly t o  stochastic program- 
ming problems with recourse. The major points which needed a clarification here  
were the possibility t o  use the estimates of the objective function instead of the 
exact values and to  use the approximate solutions of the dual subproblem instead 
of the exact ones. 

In this paper  conditions are presented which allow to use estimates and ap- 
proximate solutions and sti l l  maintain convergence. The paper  is a p a r t  of the ef- 
f o r t  on the development of stochastic optimization techniques at the Adaptation 
and Optimization Project  of the System and Decision Sciences Program. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 
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COMBINING G- PROGRAMMING 
AND SAMPLING TECHNIQUES FOR 

STOCHASTIC PROGRAMS WITH RECOURSE 

A. Gaivoronski  and J.L. Nazareth 

Generalized Programming Techniques of Wolfe (see Dantzig [I]) enjoyed ear ly 

use fo r  solving stochastic programs with simple recourse (Williams [14], Par ikh 

[8]) and the re  has recently been renewed interest  in the i r  relevance fo r  solving 

more general  classes of stochastic programs (see Nazareth & W e t s  [7] - stochastic 

programs with recourse and nonstochastic tenders,  Ermoliev, Gaivoronski & Nede- 

va [4] - stochastic programs with incomplete information). Our interest  he re  is in 

stochastic programs with recourse of the form: 

minimize Ew[< c(w) ,  z > + Q(z,w)]  

s.t. 

Ax = b  

L S z S u  

where 

where w is an element of some probability space (W. B. P), A (ml X n l )  is  a fixed 

matrix, T(*) (m2 X n 2 )  are random matrices, c(*) (nl),  q( * )  (n2) and A(*) (m2) are 

random vectors and b (ml) a fixed vector. W e  assume complete recourse i.e. ( l . l b )  

always has a solution. E, denotes expectation. Define c = E, [c (w )I. Then w e  can 

express ( l . l a ,  b) as 

minimize < c , z  > + Q(z)  = F ( z )  



where 

The set of constra ints in (1.Za) w e  shal l  denote by X. Proper t ies  of (l.Za, b)  

have been extensively studied (see Wets [13]) and, in par t icu lar ,  Q ( z )  can  b e  

shown to be  convex but  is ,  in general ,  nonsmooth. 

The general ized programming approach appl ied to (1.2a) involves i n n e r  or 

g r i d  l i n e a r i z a t i o n  of th is  convex program and requ i res  coordinated solution of a 

master  p r o g r a m  and a (Lagrangian) subproblem defined as follows: 

Master: 

k k 
minimize x <c ,  zj> A j  + x ~ ( z j )  A j  

j = 1  j =l 

where d ,vk are t he  dual multipliers associated with the  optimal solution of (1.3a) 

Sllbproblem: Find zk E R ~ '  such t ha t  L S zk s u and 

by part ia l ly  optimizing t h e  problem 

minimize <dC , z > + Q(z ) 
l r z r u  

where d and vk denote t h e  dual multipliers associated with t he  optimal solution of 

t he  master program (1.3a) and 



We temporarily ignore al l  considerations related to initialization of (1.3a), un- 

boundedness of t he  solution in (1.3b), recognition of optimality and so on. (1.3a-c) 

show only the  essential features of the method, namely, tha t  the master sends 

(prices) nk to the  subproblem which, in turn, uses these quantities to identify an  

improving (grid) point zk + l. 

In many pract ical  applications, the probability distribution of the  random 

events i s  discrete with relatively few points in the  distribution and randomness is 

often rest r ic ted to cer ta in  components of (l. la-b), f o r  example, to h( . ) .  In such 

cases j u d i c i o u s  computation enables ~ ( z j )  and i ts subgradients to be found ex- 

actly, see Nazareth [6]. These quantities are required both to define the  objective 

function of the master (1.3a) and during the solution of ( 1 . 3 ~ )  to give an  improving 

point satisfying (1.3b). More generally however, ~ ( z j )  can only be  approximated in 

(l.Zb), f o r  example, by a sampling procedure, and exact computation of i ts value 

or of i ts subgradients is out of the question because, i t  would be too expensive. We 

then seek to replace ~ ( z j )  in (1.3a) by a n  estimate, say Ql. The generalized pro- 

gramming approach, extended in this manner, st i l l  continues to appear  viable and 

deserves fu r ther  investigation, f o r  the following reasons: 

a )  I t  is we l l  known (and in the nature of a "folk theorem") tha t  fair ly crude ap- 

proximations of the underlying distribution in ( l . la-b) (which then permit exact 

solution of the resulting approximated recourse program) often produce quite rea- 

sonable estimates of the "optimal" f i rs t  stage decision. This can be interpreted to 

mean that  fair ly crude estimates Q l  in the master program will often be adequate 

to guide the algorithm to a "reasonable" neighborhood of the desired solution of 

the original recourse problem (1.la-b). 

The (Lagrangian) subproblem ( 1 . 3 ~ )  does not have  to be optimized at each cy- 

cle. For example, a l l  that  is  needed in the case of exact  estimates Q(zk +I) ,  to pro- 

duce an improving point is that  the condition (1.3b) be satisfied. This suggests 

therefore that  one seek to reexpress this condition in the t e r m s  of estimates 9: ft 
and combine i t  with utilizing stochastic estimates of subgradients, stochastic quasi- 

gradient procedures (see Ermoliev and Gaivoronski [5]) which are generally effec- 

tive, when they are applied to a problem that does not have to be pushed all the 

way to optimality. 



Our pape r  can be  viewed as a study of general ized programming in t he  pres-  

ence of noise (whose magnitude dec reases  as t he  number of i terat ions increases) 

and with t he  specia l  charac te r i s t i cs  of recourse  problems taken into considera- 

tion. In sect ion 2 w e  state a conceptual algorithm and establ ish convergence under 

appropr ia te  assumptions the reby  extending t he  s tandard proofs (see, f o r  example, 

Shapi ro  [lo], f o r  t h e  case when Q ( z )  i s  known exactly).  Some considerat ions con- 

cerning implementation are br ief ly  discussed. Finally extension to o the r  stochast ic  

programming problems i s  considered in sect ion 3. 

2. A CONCEPTURAL ALGOEUTEW 

W e  use t h e  t e r m  "conceptual" h e r e  in t he  sense of Polak [9], and study t he  fol- 

lowing algorithm f o r  solving (1.la-b). I t  will be  convenient t o  assume that  all 

bounds L and u are f inite so t h e  L 5 z 5 u i s  a compact set. 

The algorithm genera tes  sequence of points z0 - . zk - - . which depend on 

element w of some probabi l i ty space  (W. B. P) where w E W C RP, B - a - field, P 

- probabi l i ty measure. The sequence zk converges to t he  solution of the  problem 

(1.1) in a cer ta in  probabi l ist ic sense. 

Step 1: (Initialize): Choose a set of ml gr id  points z l ,  .... zml so t ha t  t h e  con- 

s t ra in ts  

have a feasible solution. Set k --r m l. 

Step 2. (Form estimates) 

Define a subset  Nk of integers,  Nk c 11,. . . . , k j, th is  being t he  set of gr id  points in- 

d ices f o r  which est imates will be  made. Define a n  in teger  s ( k ) ,  which contro ls t he  

precision of est imates. General ly speaking s ( k )  i s  t h e  number of observations of 

the  function Q ( z ,  o) used to form t he  estimate. Obtain t he  new est imates QJ of 

~ ( z j ) ,  j E Nk and f o r  j C Nk take  QJ = QJ I t  will be  assumed t ha t  f o r  j E Nk 



in some suitable probabilistic sense. Initially f o r  k = mi ,  let  Nk = 11, . . . , m 

For subsequent k ,  the s e t  Nk , integer s (k)  and estimates QI can be  selected in a 

number of di f ferent ways, some of which will be specified later. 

Step 3: (Solve Master): 

k 
minimize C (<c,  zj  7 + Qi) A j  

j = I  

Let # and vk be the associated optimal dual multipliers and Xf - optimal pri- 

mal variables. Define f lk  = f j :  A f  > O j .  In some versions of ou r  method i t  is  neces- 

sa ry  at this point t o  redefine the set Nk and go t o  s tep 2 (examples will be given 

later). Otherwise, go  to  s tep 4. 

Step 4: (Define new grid point zk 'I). 

Define 

and consider the (Lagrangian) subproblem 

minimize <uk , z > + Q ( z  ) 
1 r t r u  

The new point zk is taken t o  be an "approximate" solution t o  this problem, more 

precisely, i t  i s  necessary that  f o r  almost all w E W there  exists a subsequence 

k,(,) such that 

<ukr,zkr+l>+ Q(z "+I) - min [<akr, z >+ Q(z)]  -+ 0 
1 s t s u  

Note, that i t  is not necessary that  



<ok, zk 'I >+ Q(zk 'I) - min [<&, z >+ Q(z)] --, 0 
l % z % u  

fo r  the whole sequence zk.  This makes i t  possible, f o r  instance, to  use random 

search techniques fo r  getting zk 'I. Some part icular methods of choosing the point 

zk 'l with this proper ty  will be specified at the end of this section. 

Step 5: (I terate): k --, k + 1. Go to step 2. 

This algorithm has t w o  important dif ferences from the  usual generalized 

l inear programming algorithm. Firstly, i t  does not requi re  exact  values of the ob- 

jective function (step 2). I t  is  only necessary t o  have estimates of the objective 

values at the grid points whose precision gradually increases. Secondly is is not 

necessary t o  minimize the  Lagrangian subproblem a t  s tep  4, precisely; i t  i s  only 

necessary that  the  cur ren t  point zk 'l regularly comes to the  vicinity of such a 

solution. 

Both modifications are necessary in o rde r  t o  make use of generalized l inear 

programming in a stochastic setting. 

In o rde r  t o  prove convergence of this algorithm let  us consider i t 's  dual re- 

formulation. Take 

Nrr) = min q(z , rr) 
l % r % u  

@(n) = min qk( j ,  rr) 
l % j % k  

(2.7) 

Then algorithm (2.1)-(2.3) can be considered as a maximization method fo r  the 

concave function Jl(rr) by successive polyhedral approximation of q(rr) by @(m). 

A t  s tep  1 the initial polyhedral approximation is constructed, in s tep  3 the  cur ren t  

polyhedral approximation @ (rr) is  maximized, optimal dual multipliers d being 

the solution of the problem 

In s teps 2 and 4 the  polyhedral approximation is updated. 

Theorem 1. Make the following assumptions: 



1. Initial points xl ,  . . . , xml are such that 

b  E int c o f ~ x j ,  j = 1: m l ]  

where int means inter ior and co  convex hull. 

I Q ~  - Q ( x k ) l ,  rnax (QJ - Q ( x ~ ) I  = ~k -+ 0 
j Ehk I 

lim inf < U ~ , X ~ + ~ > + Q ( X ~ + ~ )  
T --.= f L T  I 
- rnin [ < u i , x > + Q ( x ) ]  

L S x S u  

Then F ( r k )  4 min F ( x )  a s .  where ik = A! xi and al l  accumulation points of 
z E X  j E hk 

the sequence zk are solutions of (1.2) a s .  

Roof. Due t o  the assumption 2  w e  have 

sup J Q ~  - Q ( x ~ ) ( <  c < = a.s. 
k,j Ehk 

This together with boundedness of x k  gives: 

This together with assumption 1 implies the boundedness of the sequence #, which 

can be seen as follows: Indeed, @ (d ) = rnax @ (n) and therefore 
n 

which follows from (2.5). On the other  hand 

) rnin [<c ,  x j > + ~ i  - < + , h j  - b > ]  
l r j r m l  

r rnax [ C c ,  x j >  + @ ( k ) ]  + min [- <#,  AX^ - b> ]  
l r j r m l  l r j  r m l  

C -  rnax < + , h j - b >  
l r j r m l  

= C ,  - I I + ) )  max ,  AX^ - b  



- n k  in max < e , ~ z j - b > s C ~ - I l d ( l b  
13.1 i r j rn l  

f o r  some b > 0 due to  assumption 1. 

Thus. 

which gives 

Therefore the sequence 2 i s  bounded. According t o  the assumption 3 of the 

theorem fo r  almost al l  w E W exist subsequence k, ( w )  such that  

<u&, 21; + I >  + Q(Z li + I )  - min [<crli, z > + Q ( Z ) ]  --r o 
l r r r u  

T 4  Using equality u4 = c - A n w e  obtain 

k ,  +1 k ,  +1 < c , z  > + Q ( z  ) - < n k r , ~ z  k,+1 - b > - ,b(nk') --r 0 (2.8) 

Due to  the boundedness of the sequence d we may now assume without loss of 
* 

generality that n4 -, n and therefore (1nli - n4+11) -, 0. Further more from the 

definitions (2.4), (2.6) of the function ,b(n) and boundedness of the admissible se t  X 

follows that  the function ,b(n) satisfies Lipshitz condition uniformly on n and there- 

fore 

as r -, 0 where C2 < 0 . 

Thus (2.8) implies 

k ,  +1 k ,  +1 
<c , z > + Q(2 ) - <nkr+', AZ 

k ,  +1 - b > - ,b(nkr+l) s T ,  

where max 10, 7,  -, 0 as r 4 0. 

Consequently 

k ,  +1 k ,  +1 
<c, z > + Q4+, - <nkr+l, kr + 1 - b > - ,b(nk'*l) 



But 

4 + I  k ,  + I  <c. Z > + Qkrll - <TT4+l, AZ' - b  > 

L min [<c. z j  > + Q L + ~  - <dl+' , ~ z f  - b  >I = 9kr+l(,kr+l 
1 S j  S4+1 

1 

Inequalities (2.9) and (2.10) give 

k, + I  
( T T )  - ( T T )  S T + Q - Q ( z  4 + I )  

where together with assumption 2 mean 

,t+(TTk.) - +(a) s 7 :  

where max 10, ~ : j  -, 0 as r -, - a.s. 

On the o ther  hand 

k 
#r(TTkr) = max 9 ' ( r r )  

lr 

a m a x  min [<c,  d >  + Q ( z ~ )  - <n. A Z ~  - b > ]  -ck ,  
lr f E * %  

2 max ~ ( T T )  - cr; 
lr 

Inequality (2.11) now gives 

r; +(n ) + T: 2 max ~ ( T T )  - ck, 
lr 

which implies 

k 
~ ( T T  ') - max ~ ( T T )  -, 0 

lr 

and 

It; It; 9 (TT ) s rnax ~ ( T T )  + T: 
lr 

where max 10, T F ~  -, 0 as r -, = a .s . .  The last inequality together with (2.12) 

gives 

k k  9 ' ( T T  ') - max ~ ( T T )  -, 0 
lr 



Taking now a rb i t r a r y  k > k, w e  get: 

s m a x  min [<c ,  x j >  + Q ( x ~ )  - <r r ,   AX^ - b > ]  
" j ~ ~ k U ~ ' +  

-max min [ < c ,  x j >  + Q ( x ~ )  - < T T , A Z ~  - b>]  
jeA' 

+ 2  max E~ 5 2  max E~ 
k T S i  S k  k r S i  S k  

which together with (2.12) and (2.13) gives 

The problem of maximization of @ (rr) is dual to (2 .2)  and therefore 

C (<c ,  z j >  + Q t )  Af - min F ( x )  
j  E A ~  

2 EX 

Finally due to convexity of F ( x )  

which together with (2.14) gives 

F ( z ~ )  - min F ( x )  a.s. 
2 EX 

which completes t he  proof. 

W e  now study in tu rn  each of the  assumptions upon which the  preceding 

theorem depends. Assumption 1 of the theorem can always be satisfied if matrix A 

is  of rank m 

Let us consider in m o r e  detail assumption 2, which deals with precision of 

function values estimates at "essential" points. It's fulfillment depends on the ru le  

used a t  s tep 2 to determine the se t  Nk of cur ren t  new estimates, the integer s ( k )  

which controls accuracy and the  method of obtaining estimates. Consider t w o  such 

rules which guarantee that  condition 2 i s  satisfied. 



I. This is the simplest ad hoc rule. Before start ing the algorithm define a se- 

quence Ikp jF= l l  kp + 1 > kp and take  s ( m l )  = s o  

Nk = 11,. . . , k j ,  s ( k )  = s ( k  - 1 )  + I  

Nk = [ k  j ,  s (k  ) = s (k  - 1 )  otherwise 

in o ther  words f o r  k = kp estimates at all grid points are updated with increased 

accuracy while f o r  k # $ the estimate is made only at the latest  point zk to enter  

the set of gr id points. The estimates themselves should possess only the proper ty  

that  

An example of such estimate is 

z w k  f o r  j < k 

where w ' are independent observations of random parameters from (1.1) 

2. The previous ru le  does not discriminate between recent  points and old ones, 

which might become redundant. Furthermore i t  is  be t te r  to base decisions on 

whether to increase precision on information which becomes available during 

iterations. The following adapt ive precision ruLe takes account of these factors. 

Let us define f o r  each estimate Q l  of the function value ~ ( z f ) ,  the  number k j  

such tha t  

z j  E N4, z j  Ni f o r  kt < i L k 

i.e. k j  i s  s tep number when the estimate of Ql w a s  last updated. Then the precision 

of the  estimate character ized by number s ( k j ) :  



The steps 2 and 3 of the method with this adaptive precision rule are specified a s  

follows: 

Step 2 (Form estimates). There a r e  two possibilities 

(i) Preceding s tep w a s  step 3. Then 

N~ = [ j  : j  E 4, and s (k j )  < s ( k ) (  

s (k )  remains the same. For j  E @ get  estimates Ql such that  

go to s tep  3 

(ii) Preceding s tep w a s  step 5. Take s ( k )  = s ( k  - 1 )  and ge t  estimate Q: with the 

property (2.16). Put Q l  = Ql  - 1 ,  j  < k .  If 

then take s ( k )  = s ( k )  + 1 

and update estimates f o r  j  E Nk such that (2.16) is satisfied. If (2.17) is not satis- 

fied don't do any additional estimation and go t o  s tep 3. 

Step 3 (Solve Master). Solve (2.2) and take Ak = [ j  : hf > O (  where hf - solutions 

of (2.2). If s ( k j )  = ~ ( k )  f o r  al l  j  E 4 then take hk = 4 and go t o  s tep 4 other- 

wise go t o  s tep 2. 

Thus, in this modification i t  is  always assured that through repetition of s teps 

2 and 3 that w e  get such s e t  hk that f o r  al l  j  E hk precision of estimates Q l  

corresponds to  number s (k ) .  In this case besides property (2.16) some mild "in- 

dependence" conditions should be satisfied. Let us define by Bko-field generated 

1 by [ z l ,  . . . , z k ,  Q . . . Q:( a t  the moment when k j  = k f o r  al l  j  E hk.  I t  i s  

necessary that exists o > 0 and f o r  any s (k )  exists 8, (k) > 0 such that  



These conditions are satisfied, for instance for the estimates of the  type (2.15): 

This formula is also valid for the f i rs t  estimate at the point zk if w e  take in this 

case s ( k k )  = 0. I t  i s  assumed that values w i  of the random parameters are in- 

dependent. Estimates (2.19) satisfy property (2.18) except  in the trivial case 

~ ( z j )  E ~ ( z j ,  w  ), f o r  almost all w . 

Theorem 2. Suppose tha t  conditions 1 and 3 of theorem 1 are satisfied and, in 

addition, (2.16), (2.18) are fulfilled and rrk is  bounded as .  Then (2.17) i s  satisfied 

infinitely often with probability 1 and, consequently, f o r  precision control  ru le,  

based on (2.17) assumption 2 of the  theorem 1 i s  satisfied. 

Proof. Suppose that  exists set Wl c W such that  f o r  w  E Wl condition (2.17) is 

satisfied only on finite number of iterations. This means tha t  f o r  any o E Wl t he re  

exists k l ( o )  such that  f o r  k > k l ( o )  w e  have s ( k )  = s(o)  = const. Therefore any 

number L can en te r  the  set Nk only once fo r  k > k l ( o ) .  Therefore fo r  o E W1 t ran- 

sition from the  s tep  3 to s tep  2 can occur  only finite number of times. Thus, f o r  al- 

m o s t  all o E Wl exists k z ( o )  k l ( o )  such that  f o r  k > k z ( o )  t he re  are no transi- 

tions from step 3 to s tep  2 ,  i.e., only new estimates Q: will be made fo r  k > k z ( o ) .  

Therefore f o r  k > k z ( o )  w e  have 

where @ (.rr) is  defined in (2 .7)  and 

According to the  assumption 3 of the theorem fo r  almost al l  w  E W1 exists sequence 

k,  (w ) such that  

Due to  boundedness of the  sequence d w e  can assume without loss of general i ty 

that  d - r r S .  Taking into account the  fact  tha t  ,b(.rr) and @ ( r r )  satisfy the 

Lipshitz condition uniformly ove r  .rr and k w e  obtain f o r  o E Wl and k,  > k 2 ( o ) :  



k +1 k, +1 
+ ~ W n * ) + y , + Q c + ~ - Q ( z  I + ? ,  

* 4 where?, = 2 C 2 ( J n  - 1)-Oasr --. 
Condition (2.18) gives f o r  k ,  > k 2 ( o )  

fo r  some o > 0 and b = @,(,) > 0. Therefore f o r  almost all o E Wl exist  k ,  > k 2 ( o )  

such that  

4 +l - Q(zk r  + l )  < - 8 
Qk, + 1 

and 7, + 7, < b / 2 .  This together with (2.20) gives fo r  sufficiently large r : 

q4(n*> s q ( n * )  - b / 2  

k k  k 
and therefore q ' ( n  ') 5 q(n ') f o r  sufficiently large r and w E W1. Hence 

k, +1 k, +l 
+ Qk, +1 -4(z4+')  + Y , = V ~ + Q ~ , + ~  - Q(z 4 t 1 )  + 7 ~  (2.21) 

The condition (2.18) implies 

with o > 0,  3 > 0,  k ,  > k 2(o). Therefore f o r  almost all o E W1 exist  k ,  > k 2 ( o )  and 

I 7,  I < p/  2. This gives together with (2.21): 

fo r  almost al l  o E W1 and some k ,  > k2(o ) .  W e  arr ived in contradiction with our  ini- 



t ial assumption. Therefore assumption 2 of the theorem 1 is satisfied. Proof is 

completed. 

Let us now consider in more detail Assumption 3 of the Theorem 1 and the 

specific procedures f o r  selection of the point z k  at s tep  4 of the algorithm. 

These procedures should satisfy assumption 3 of the theorem; namely with proba- 

bility 1 exists a subsequence k, such that  

~ ( z " ; + l . n " ; ) -  min ~ ( z ,  n " ; ) d .  
l r t r u  

The best choice is v(zk ' I ,  d )  = min ~ ( z ,  d )  but this is not feasible because 
l r t r u  

of inaccessibility of exact  function values ~ ( z ,  n). W e  shall consider two pro- 

cedures which do not requi re  objective function values. 

1 Random search. Take probability measure R with nonzero density in the set 

L 6 z 6 u and take successive points z1 . . zk  as independent observations of 

random variable z with distribution R .  Then (2.22) i s  fulfilled due to continuity of 

a(z ,  n). 

2 Stochastic quasi-gradient method. (Ermoliev [ 3 ] )  This method will produce se- 

quence of points z such tha t  

a (zk ,  #) - min ~ ( z ,  #) -0 . 
l r t r u  

On each i teration the  following calculation, are performed at the  s tep  4 of the  

algorithm: 

if zi < Li 

if ' "i 
zi  otherwise 

In part icular,  i t  i s  possible to take 

where d S  are optimal dual multipliers of the following problem: 



Q ( z [ ,  u s )  = min [ < q ( w S ) ,  y > )W(wS)y = h ( w S )  - T ( w S ) z [ ]  
l r y r u  

and wS are independent observations of random parameters. - OD 

If problem (2.25) has bounded solutions fo r  al l  w ,  2 ps = w, 2 p: < and 
s =o s = O  

mk -+ w as k -+ w then (2.23) is satisfied and, consequently, assumption 3 of the 

theorem 1  is satisfied too. 

3. EXTENSION 

Method, described in this section is  applicable not only t o  the stochastic pro- 

grams with recourse (1.1) but t o  more general problems of stochastic programming 

as well. Consider the following problem: 

mimimize E'j (z , w ) (2.26) 

subject t o  p ( z )  S 0 ,  z E X 

The method and results remain essentially the s a m e  if w e  denote E'j ( z ,  w )  = 

Q ( z )  and substitute everywhere in the above discussion Q ( z )  f o r  <c ,  z > + Q ( z )  

and p ( z )  for  Az - b .  The initial points should satisfy now 

Master problem (2.2) obtains the form 

k 
minimize C QJ hj 

j =I 



X j  2 0 

where 91 a r e  estimates of Ef ( z j ,  w ). Subproblem (2.3) becomes 

min E f ( z ,  w )  - <#, p ( z ) >  
t E X  

The theorem l a  i s  proved similarly t o  the theorem 1: 

Theorem la. Take the following assumptions 

1 Function Ef ( z  , w ), p ( z )  are convex, the set X is  compact. 

2 Exists e" X such that  p (g) < 0 and initial points z l, . . . , zml a r e  such that  

ax  min <e , p ( z j ) >  < 0 
d = l ,  j 
q "0 

max I~Q; - 9 ( z k > I ,  max 191 - ~ f ( z j ,  w)lj = ck - 0  41.5. 
j E A ~  

lim inf ~ ~ f ( z '  +I, w )  - <xi ,  p ( z i  +')>I 
f +- i S f  

- min [Ef(z, w )  - <xi,  p ( z ) > ]  = 0 a.s. 
t E X  

Then E~(z ' ,  w )  --r min[Ef(z, w ) l p ( z ) s O , z ~ X I  where Zk = C X:xj and al l  
j E A ~  

accumulation points of the sequence zk a r e  solutions of the problem (2.26). 

Although ou r  primary concern here  is with a conceptual algorithm, let  us con- 

clude this section with a brief discussion of some considerations which apply in 

o rde r  t o  make the algorithm implementable. 

a) Purging Strategy f o r  Grid Points: The above algorithm assumes that  all grid 

points a r e  retained but, when storage is  limited, i t  will be necessary to  periodical- 

ly remove grid points. This subject has been extensively studied, see Eaves and 

Zangwill [2], Topkis [Ill in the context of cutting plane algorithms, and similar 

considerations apply here. 



b) Variance of Estimates: When developing estimates ~d using, f o r  example, (2.15) 

o r  (2.19), w e  can a lso maintain and update the  var iance of est imates f o r  each gr id  

point x i .  These can than be  usefully employed in refining t h e  decision ru les  at 

Steps 2 and 3. 

c )  Induced Constraints: When t h e  assumption of complete recourse  (i.e. t ha t  ( l . l b )  

always has a solution) cannot be veri f ied a priori, then i t  may happen that  f o r  

some combination of gr id  point xi and random parameters  w i  (in (2.15) and 

(2.19)). t he  problem ( l . l b )  is infeasible. Following Van-Slyke and Wets [12], an  in- 

duced constra int  o r  feasibi l i ty cu t  must then be  deduced and introduced into t he  

problem ( l . l a )  and correspondingly into t he  master program (2.2). This extension 

requ i res  f u r t he r  study. 

There are also a number of specia l  cases of t h e  genera l  problem ( l . l a ,  b)  

which permits refinements, with a view t o  enhancing efficiency, of t he  algorithm 

descr ibed above. One case of prac t ica l  in teres t  i s  stochast ic  programs with 

recourse  and non-stochastic tenders  (see Nazareth and Wets [7], where T(ml x n l )  

is  a m e d  matrix. The master/subproblem pa i r  corresponding t o  (2.2) and (2.3) can 

then be  reformulated as follows: 

Master: 

k 
minimize <c,  x  > + z ~1 Aj 

j =I 

where 

and 



Ql  is an  estimate of the value Q(xl) at the grid point XI, and cf , d and v k  are the 

dual multipliers associated with the  optimal solution of the  master (2.27). 

Subproblem: Consider the  (Lagrangian) subproblem, 

minimize < q k ,  X> + Q(x) 
L sxsu 

where L and U are any suitable bounds implied by x s Zk and 1 4 z 4 u .  is  

again taken to be an "approximate" solution to (2.29). in the sense discussed in 

Step 4, a f t e r  expression (2.3). 

I t  frequently happens tha t  m i  << nl  i.e. that  only a few elements of the prob- 

lem are stochastic. In th is case, the above reformulation can considerably enhance 

efficiency, because the optimization in the subproblem (2.29) and the l inear pro- 

gram in (2.28) which must be solved to obtain estimates Q! are both in a space of 
relatively low dimension. 
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