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WLICIT FLTNCTION THEOREXS FOR 
MULTI-VALUED MAPPINGS 

B.N. Pshenichn y 

V. Glushkov Institute of Cybernetics 
Kiev, USSR 

Let us consider t h r e e  Banach spaces X, Y, Z and operator  F : X  x Y -+ Z. We 

are interested in the solution of the  following equation: 

Suppose that  the points (zo, yo) satisfy this equation. Then implicit function 

theorems yield certain sufficient conditions fo r  solvability of the  equation (1) with 

respect  to  y f o r  all z f r o m  the  certain neighborhood of zo. 

Let us somewhat reformulate the  problem now. Define 

Then implicit function theorems give conditions f o r  a (z) # 4 in the  neighborhood 

of zo. W e  shall be concerned mostly with th is reformulation. 

Let us introduce some notations. Take Z = X  x Y. Dual spaces of continuous 

l inear functionals will be denoted by X* , Y* , Z* . Pa i r  of points from X and Y will 

be defined (z, y )  while Cc, z* > is reserved fo r  the value of the functional z* at 
* * * 

the  point z . Taking z = (z , y ), z = (z , y ) w e  obtain 

Multivalued mapping transforms each point z E X  into set a(z) G Y. The se t  a(z) 

may be empty. 

Some more notations: 

aom a = [z :a(z) # @ {  

Mapping a is called convex i f  gf a is a convex set and closed if gf a is closed. Some 

more notations will be introduced in due course. Terminology is close t o  [I]. 



I. mPLIcrr F'JNCTION THEOREMS FOR CONVEX MAPPINGS 

Let us s t a r t  with some definitions. For any convex set M exist 

which is convex cone associated with the set M .  For convex mapping a  let  us de- 

fine 

Suppose that  z  E gf a .  Then 

a,(Z) = I G : ( Z ,  G )  Ma(z) j  

* * * 
a, (v ) = ) I  : ( - z * ,  v * )  E K ; ( Z ) {  , 

* 
where Ka (z ) is cone dual t o  Ka (z ). Thus, 

* 
z  E a:(Y *) if and only if 

Let us prove two auxil iary lemmas: 

* * 
LEMMA 1 a, (0 )  = - (dom a, ) . 
PROOF The mapping a, is  a positively homogenious convex mapping and there- 

fo re  dom a, is convex cone and dual cone t o  this cone exists. According t o  defini- 

* * 
tion of a, ( 0 )  i t  contains those and only those elements z  which satisfy the  follow- 

ing condition: 

which is equivalent t o  

* 
ti, - z  >2O,Z  E d o m a ,  

The last inequality means that 

* * 
- z  E (dom a, ) 

The proof is completed. 



LEMMA 2 Suppose  t h a t  K i s  cone in X ,  int K # 0 a n d  K* = to{. Then K = X .  

I f X  = Rn t h e n  requ i rement  int  k # d c a n  be dropped. 

PROOF It  follows from the  well-known theorems of convex analysis t ha t  

K** = c lK ,  where symbol c l  defines c losure of t he  set .  The fac t  t ha t  K* = 101 im- 
* * 

pl ies c lK = K = X. Therefore  cone X i s  dense everywhere in X and i t  is  lef t  t o  

prove t ha t  i t  coincides with X. Let us assume the  opposite, namely suppose t ha t  ex- 

is ts zo  such t ha t  z o  K. Take z l  E in tK and se lec t  2 = 2 z 0  - zl .  The cone K i s  

dense everywhere in X, thus exist  sequence zk E K such t ha t  zk 4 2. Let us  take  - 
zlk = 2 z 0  - zk.  I t  is  c l e a r  tha t  zlk 4 X and f o r  l a rge  k w e  have zlk E K. Ac-  

1 1 - 
cording t o  definition z0 = zzk + 2 z k ,  and due t o  convexity of K w e  obtain zo E K. 

The proof is  completed because in t h e  finite-dimensional case assumption intK # q5 

is  fulfilled automatically, which can  be  veri f ied in t he  s tandard way. These two 

lemmas lead t o  t h e  following resul t :  

THEOREM 1 Suppose  t h a t  a i s  a convez mapp ing ,  z = (zO,  yo )  E gf a a n d  t he  

fol lowing cond i t i ons  a r e  sat is f ied :  

1 int dom a # I0 

Then  for  a n y  element z ez i s t  s u c h  numbe r  S > 0, t h a t  a ( zo  + h z )  # q5 for  

all h E [O, dl. X i s  of f i n i t e  d imens ion  t h e n  t h e  f i r s t  requ i rement  c a n  be 

dropped a n d  in add i t i on ,  ez i s t  s u c h  a member S > 0 t h a t  a (zo + z) # q5 for all 

Z,  11; 11 r S. 

Before s tar t ing  the  proof l e t  us  make one comment. W e  have in t h e  statement 

of t he  theorem cer ta in  point y o  E a ( z O )  and i t  is not defined how t o  se lec t  it. I t  

might seem t he re fo re  t ha t  t h e  resu l t  of t h e  theorem depends on appropr ia te  selec- 

t ion of th is point. Let us  show tha t  th is is not t h e  case. First ly w e  shal l  in t roduce 

t h e  following notations [I]: 

Notice t ha t  Wa (z  , y * ) = + - if a ( z )  = 6 and t h e  function Wa (z  , y *)  i s  convex with 

respec t  t o  z . Let us t ake  

* 
a ( z , y ) ( ~ * )  = 1 if y F a ( z ,  y * )  

a, W a ( z ,  Y * )  if Y E a ( z ,  Y * )  



* 
If y  = 0 then 

I 

* 
Therefore  ZZ Wa ( x  , 0 )  = a 6 ( x  (dom a )  = - [con(dom a  - z ) ]  . Comparison of 

these statements leads t o  t h e  conclusion tha t  

f o r  any point y  E a ( z ) .  Therefore  w e  can t ake  an  a rb i t r a r y  point in t h e  statement 

of t h e  theorem 1. Let us  start t h e  proof now. If assumption 1  i s  sat isf ied then i t  i s  

easy t o  get  t ha t  doma, = X. Let us select  a r b i t r a r y  5 .  We have z E doma, and 

the re fo re  ex is t  vec to r  
- 
y  = 7 ( y  - y o ) ,  7  > 0 ,  ( z ,  y )  E gf a Taking now 6  = 7 - 1  w e  obtain 

(zo  + X Z ,  y o  + A ; )  = ( ( 1  - X 7 ) z o  + X 7 z ,  (1  - X7)yo + X 7 y )  E g f a  

f o r  X E [0, dl i.e. a  (zo  + Xz) # 0 .  In t h e  case  of a f ini te dimension t h e  f i r s t  as- 

sumption i s  not  necessary.  Furthermore,  if X = Rn then i t  i s  possible t o  find such 
- - 

vectors  zi,  i = 1 , .  . . , n + 1 t ha t  simplex S = I X l z l  + . + An Z ,  +I:  X i  2 0, 

z r 2  X i  = lj contains 0 as inner point. If w e  reduce  t he  length of t h e  vectors  Zi 

appropr iate ly w e  can obtain t ha t  all sets a ( z o  + zi)  are not empty. Therefore any 

point from t h e  cer ta in  neighborhood of ze ro  can be  represented as follows: 

This together  with p roper t ies  of t h e  convex maps implies 

The proof i s  completed. 

This proof i s  fa i r ly  simple, but  t h e  resu l t  is  quite interest ing. Let us  i l lustrate 

th is with some examples: 

EXAMPLE 1  Take X = R ~ ,  Y = R ~ ,  A and B are matrices r x n and r x m .  

- 0. Then Ka (0) = Define g f a  = ) ( z ,  y ) : A z  - B y  = 0 ]  and select  zo =O, y o -  

I(Z, y) : f i  -B;  = 01, 



* * 
Therefore a. ( y  ) = )A* u = B* u , u E Rr j .  Condition a: (0) = )O j  means now 

that  B*U = 0  which implies A * u  = 0. Thus, f o r  solvability of the system of equa- 

tion Ax -By = 0  with respec t  t o  y  fo r  al l  x ,  i t  is sufficient that  Kern B* c 
* 

Kern A . Here, a s  usual, Kern C = !v :Cv = O j  

EXAMPLE 2 Take the  same assumption as in the previous example and consid- 

e r g f a  = ) ( x ,  y ) : h  - B y  SO, y  201. Nowwe have 

where Rf, and R y  a r e  positive orthants. This gives 

Hence condition a: (y  * )  = 101 implies in this case that  from inequalities B * u  5 0, 

u 2 0  the  equality A * u  = 0  follows. Therefore f o r  solvability of the  system 

Ax - B y  5 0, y  r u f o r  all z  i t  is  sufficient that  the following inclusion is satis- 

fied:   ern A* >= Iu 2 0 : B * u  s 01. 

EXAMPLE 3 Suppose now that  X, Y, W a r e  Banach spaces, Z = X x Y ,  F- 

convex multivalued map from Z into W ,  i.e. F ( x ,  y )  C W ,  M-convex subset of W. 

Define a ( x )  = )y  : F ( x ,  y )  n M + $1. I t  is c lear  that  points ( x ,  y )  E g f a  if and 

only if exist such point w tha t  ( x ,  y  , w )  E gf F ,  w  E M.  Let us select  the point s o  

such that  a  ( xo )  + 4, y o  E a  ( x O )  i.e. ( so ,  y o )  E gf a .  Suppose tha t  w o  is  such a 

point from M that  ( xo ,  y o ,  wo )  E gfF.  Let us denote zo = (so ,  y o )  and define 

~ : ~ ( y * )  a s  follows. According to  definition x*  E az* ( y  * )  if and only if - <z - xO.  
0 

z*  > + <y - y o ,  y  * > 2 0, ( x ,  y )  E gf a .  Taking into account the  description of 

gf a  given above, w e  ar r i ve  a t  the conclusion that  the last  inequality is equivalent 

t o  the following: 

f o r  al l  ( x ,  y  , w )  E g f F ,  w E M ,  where 0: is  zero of the space w * .  But the last 

inequality is equivalent t o  the following: 



Suppose now that  exist the point (x ,  y , y ) E gf F such that (2) u E int M .  This im- 

plies g f F  5 int (X X Y X M) + 0. I t  is consequence of the well-known resul ts of 

convex analysis that  under this assumption the cone in the r ight  hand side of (2) is 

equal t o  the sum of convex cones dual to  the intersected ones. Taking into account 

easily established relat ions 

* * * * 
(con (X x Y x M - (zO,  Y 0, ~ 0 ) ) )  = (Ox I O y ,  (con (M -wo))  ) 

w e  obtain tha t  (2) is equivalent t o  the following statement: 

* * 
o r ,  in o ther  words, exist functional w E (con (M - wo)) such that the following 

inclusion holds: 

And, finally using a definition of the conjugate mapping introduced before w e  ob- 

* * * 
tain that  x E G* (y  * ) only if fo r  some w E (con (M - w 0)) the following inclu- 

2 0 

sion holds: 

* 
Hence a, ,(O) = 10{ only if the following inclusion 

* * 
implies equality x = 0, , i.e. 

THEOREM 2 Suppose that  X, Y, W are Banach spaces, M i s  a convex set 

which belongs to W ,  F i s  convez mult ivalued mapping from X X Y to W and 



suppose t ha t  y o  E a ( x  O )  a n d  w E M are  po in ts  s u c h  t ha t  ( x o ,  y w o )  E gf F .  

Then the  following cond i t i ons  a re  s u m c i e n t  for existence of number  d > 0 for 

a n y  s u c h  t ha t  a ( x o  + h z )  + 4 ,  h E [O, 63: 

1 int dom a + @; 

2 g f F  9 ( X  XY XintM) + @; 

* * * * 
F ( z ~ w ~ )  (- (con (M -wo>>  > = lo,, 0, I .  

I f X  i s  o f f i n i t e  d imens ion  t h e n  i t  i s  not  necessary  to check the  f i rs t  condi t ion.  

The proof follows d i rec t l y  f rom theorem 1 a n d  the  above a rgument .  

EXAMPLE 4 Suppose that  b and c a r e  convex multivalued mappings from X t o  

Y and a ( x )  = b ( x )  r.~ c ( x ) .  

THEOREM 3 Suppose t ha t  y E a ( x  o )  a n d  the  fol lowing cond i t i ons  a re  sa- 

t is f ied:  

1 int doma + 4; 

2 gf b n int gf c + 4; 

* 
3 for a n y  y e i the r  one of the sets  b:o(y *), cze0(- * )  i s  empty ,  o r  ex i s t s  

* * * s u c h  func t iona l  x * t ha t  bz*o(y * ) = Ix 1, c ( -  y ) = ) - x * 1. Then for  

a n y  Z E X  ex is t  b > 0 s u c h  t ha t  a ( x o  + h z )  + 4 f o r  h E [O, 61. I fX  i s  o f f i n -  

i t e  d imens ion  t h e n  i t  i s  not  necessary  to check cond i t i on  1. 

The proof of the theorem follows from theorem 1, the fact  that  

* 
gf a = gf b n gf c and d i rect  calculation of azO(O) by using convex analysis tech- 

niques. 

Let us show how t o  use this theorem by the  following example. Take 

b ( x )  = Ix : A x  - B y  5 01, c ( x )  = M  where M is a fixed convex se t  in R m ,  A and B 

a r e  matrices of dimension r xn and r X m , X = Rn , Y = R m .  Suppose that  0 E M 

and exist points x l ,  y such that  Axl - B y  5 0 ,  y E int M .  A straightforward a r -  

gument shows that  



Kc (0) = X x con M 

W e  can obtain more from the  following resul t  by applying theorem 3. In o rde r  that  

the system of inequalities Ax - B y  4 0, y E M has a solution with respect  t o  y f o r  

al l  z from some neighborhood of zero i t  is  sufficient tha t  conditions 

* * 
imply equality A* u = 0. In fact  b o  (y  ) = @ if y * can not be represented in the  

* * 
form y = B * u ,  u 2 0 .  In case if y = B * u , u  2 0 ,  and - B * U  Z ( c o n ~ ) * .  If, 

however, 

* * * 
then fo r  f *  = B  u w e  have c o  (- y ) = 101. Therefore according t o  the theorem 

* * 
3 the  set b o  (y  ) also should contain only one point i.e. zero. I t  follows from 

* * * 
representation of the  set b o  ( y  ) tha t  A u = 0. 

If M = Ry i.e. M consists of nonnegative vectors then this resul t  coincides 

with one obtained from example 2. 

2. LOCALLY SMOOTH MAF'S 

Let K be a convex cone in a Banach space X. I t  is obvious tha t  

LinK = K  - K  

is the minimal l inear manifold containing K. If M is  a convex set, then 

LinM =con(M - 2 )  -con(M - 2 )  , 

where z is  a n  arb i t ra ry  point of M .  I t  is not difficult t o  show tha t  LinM does not 

depend upon z E M . 



W e  shal l  say  t ha t  t h e  point x belongs t o  t h e  re la t ive  in ter io r  of M (denote i t  

r iM) ,  if f o r  some E > 0 

x + (EB) n Lin M c M , 

wnere B is  t he  unit ball of t h e  space X with t he  cen te r  in t h e  origin. 

If X = R", then i t  is  well known [Z], [3], t ha t  r iM + 4. In genera l  th is  resu l t  i s  

not t rue .  

Let M be  an a r b i t r a r y  set of X. 

DEFINITION Call t he  set K marquee for M at t he  po in t  x € M, if 'K is  the  con- 

vex  cone a n d  for each € K ex is t  va l ues  E > 0, d > 0 a n d  con t i nuous l y  di f -  

ferentiable in t he  neighborhood of t he  o r i g i n  f unc t i on  +: X -4 X ex is t  s u c h  t ha t  

1 +(O) = 0, +'(O) = I  ( u n i t  operator); 

2 z + +(y) E M for a l l  

This definition i s  based on ideas of V.G. Boltyanski, h e  developed them f o r  n- 

dimensional space.  But these  ideas can not be  generalized on infinite dimensional 

space without changes. For  th is  reason t h e  introduced definition di f fers from V.G. 

Boltyanski's definit ion [3]. 

Fur the r  i t  i s  convenient t o  suppose without reducing general i ty t ha t  point z 

coincide with t h e  origin. 

THEOREM 4 Let M o  i s  a set ,  0 € M o .  KO the  marquee for M o  at poin t  x = 0 

a n d  f unc t i ons  f i  ( z ) ,  i = 1, . . . , K satisf'g t he  condi t ions:  

1 f i (0 )  = 0 ,  i = ,  . . . . K; 

2 yi a re  con t i nuous l y  Freshet-dinerentiable in t he  neighborhood of zero 

a n d  der i va t i ves  f i (0 )  a r e  l i nea r l y  independent  o n  Lo  = Lin KO. 

Then 

i s  t he  Local marquee a t  t he  po in t  x = 0 for t he  set 



PROOF Since f i ( 0 )  are l inearly independent on l inear manifold Lo ,  then vec- 

to rs  ej E Lo exist  [ I ] ,  such that  

Let E K. Then 

and smooth in the  neighborhood of zero. Therefore exists function q0 such that  

qO(o )  = 0 ,  q&o) = I ,  

fo r  al l  

i7 E [con(z  + ( E B )  n L O ) ]  n ( 6 B )  , 

fo r  E > 0 ,  6 > 0 .  

Let 

k 

where z is  the  vector with components z j ,  j = 1, . . . , k .  

Let us consider the system of equations 

g i ( y ,  z )  = 0 ,  i = I , .  . . , k 

with respect  t o  z . I t  is  evident 

Since gi are compositions of smooth functions, then they a r e  smooth functions. Us- 

ing rules f o r  differentiation of the  complex function i t  i s  not difficult t o  get 

gi& ( 0 ,  0 )  = P i  ( O ) q i ,  ( 0 )  - P i  ( 0 )  = 0  , 

Because 4'6 ( 0 )  = I .  Fur ther  



Thus, t h e  matrix with elements gi , ,  (0, 0) is  non-degenerate and according t o  t h e  
1 

implicit funct ions theorem [4] t h e  solution z (y') of t h e  system (7) exists,  such t ha t  

z (0) = 0. Fur the r  according t o  t he  same theorem z (c) i s  continuously dif ferenti-  

ab le  in t h e  neighborhood of t h e  origin of coordinates and taking into account (8) 

Let now 

Then Q(0) = 0 ,  and 

according t o  (10). Denote 

Let us  choose el > 0, dl > 0 sufficiently small s o  t ha t  t h e  inclusion 

y' E [con (5 + (clB) fl LO)] n ( ~ I B )  (12) 

ensure t ha t  c sat is f ies t h e  inclusion (5). I t  is possible, because ( lo ) ,  but  i f  c sa- 

t isf ies (5) then 

Denote 

L1 = ) Z :  f i (0 )Z = O f  i = 1 , .  . . , K{  . 

I t  i s  easy t o  see t ha t  

LinK G Lo  r-?L1 . 

Let now 

y E [con (5 + (elB) r\ LinK)] n (dlB) . (13) 

The set from t h e  r igh t  p a r t  of (13) i s  the  subset  of set from t h e  r ight  p a r t  of (12). 

For th is reason (13) implies t h e  inclusion Q(G) E Mo. Fur ther ,  s ince E L1, then 



E L1. Therefore due to (7) and (6) 

Thus (13) assumes 'k(y) E M and consequently K is the local marquee fo r  M .  

Since the proofs of the  following theorems repeat  the similar pa r t s  of the 

theorem 4 proof the details will be omited. 

THEOREM 5 Let M 1  a n d  M 2  be two sets,  M = M 1  n M 2 ,  0 E M a n d  K1, K2 be 

respect ive ly  marquees fo r  M 1  a n d  M 2 .  V the Linear mani fo lds ex is t  s u c h  that :  

1 L 1 c L i n K 1 , L 2 ~ L i n K 2 ;  

2 L1 + L 2  = X  ; 

3 for a l l  x l  E L l ,  x2 E L2 

t h e n  K = K1 n K2 is  the  marquee for M a t  the po in t  0. 

PROOF In accordance t o  the  condition 2 arb i t ra ry  x E X  can be represented 

as follows 

That representation is unique, because if dif ferent representation exists 

then 

i.e. x l  = x i ,  x 2  = x i .  

Consequently operators  P 1  and P 2  are defined such that 

Due t o  the condition 3 



i t  i s  easy t o  see t ha t  ope ra to r s  Pi are l inear and consequently they are l inear and 

continuous opera to rs .  

Let now 5 EK1 n K 2  and E ,  di ,  \ki correspond t o  5 in t h e  marquee Ki. Consid- 

er t h e  equation 

with respec t  t o  z .  I t  i s  easy t o  see 

In accordance t o  t h e  implicit functions theorem t h e  smooth function z ( c )  i s  de- 

fined in t he  neighborhood of ze ro  and z  (0 )  = 0 ,  z  ' ( 0 )  = 0.  

Suppose 

Taking into account z  ' ( 0 )  = 0 ,  i.e. 

z  (-1 + 0 ,  f o r  I I ~ O  --,o 
I I  Y I1 

i t  i s  not diff icult t o  prove t ha t  \k is  t he  desired function f o r  E .  

This proof i s  based on t h e  f ac t  t ha t  f o r  c close t o  t h e  direct ion 

'kl(i i + p l z  (5))  E M 1  . 
\k2(Y + P ~ Z  (GI)  E M 2  I 

and consequently due t o  (15) \k(y) E M l  n M 2 .  In th is  connection if y E LinKi, 

i = 1 ,  2, then 5 + Plz  (c) E L l ,  - P2z (5 )  E L2  and taking into account t h e  

smallness of z  ( y )  all conditions re la ted with t h e  choice of E ,  6 can be satisfied. Be- 

s ides 

because \k; (3 )  = I ,  z ' (0 )  = 0.  The proof is  completed. 



REMARK Conditions 1-3 f o r  X = Rn can be replaced by t h e  condition 

In a general  case  t ha t  condition is not sufficient because condition 2 means t ha t  

the  se ts  M1 and M2 have sufficiently l a rge  dimensions. The condition 3 means t ha t  

l inear manifolds in tersect  at some angle. Indeed, if X is  a Hilbert space  with inner 

product  [ x ,  y ]  then condition 3 i s  equivalent t o  condition 

Let us consider now t h e  theorem about implicit functions f o r  nonconvex multivalued 

maps. 

THEOREM 6 Let a be a mu l t i va l ued  map, K be a marquee fo r  g~' a L X X Y at 

t h e  p o i n t  z = (xo ,  yo ) ,  

If t h e  following conditions are satisf ied 

1 int  dom a,, # @ ; 

2 exist  a l inear res t r i c ted  ope ra to r  P : X -+ Y such t ha t  ( z  , P z )  E Lin K ; 

* 
a,O (0) = I O j  , then f o r  any exists d > 0 such t ha t  

a ( x o  +Xz') # 4 f o r  X E [ O ,  dl . 

If X and I' have f ini te dimensions then t h e  f i r s t  two conditions are satisfied and be- 

sides value d > 0 exists such t ha t  a ( x o  + z )  # @ f o r  a l l  5 E (dB). 

PROOF Without loss of t h e  general i ty w e  consider x = 0, y o  = 0. 

Lemma 2 implies 

i.e. f o r  any ji EX t h e  vec to r  exists such t ha t  (z, c) E K. Consequently f o r  any 

z E X t he  vec to r  c EY ex is ts  such t ha t  ( z ,  c )  E Lin K. 



Thus, l e t  Zo b e  a vec to r  from X and z o  = (Zo,  g o )  E K.  Since K is  t h e  marquee 

then E > 0 ,  6 > 0  and ex is ts  smooth function 9(0 )  = 0 ,  9'(O) = I,, where I, i s  t h e  

unit o p e r a t o r  in Z and 9 ( z )  E gf a f o r  a l l  

where B, i s  t h e  unit ball in Z. Since Z = X x Y, then 

and condition 9 ' (0)  = I, can b e  rewr i t ten  as follows 

i.e. 91;-(0, 0 )  =I,, 9 '  (0,  0 )  = 0 ,  ' k k ( 0 ,  0 )  = 0 ,  'k&(O, 0 )  =Iy. 
lfi 

Consider t h e  system of equations 

where A E R', z E X. Taking in to  account  previous re la t ions  w e  ge t  

Thus due to t h e  theorem about  implicit funct ions t h e  system (17) h a s  t h e  solution 

r (A) and also 

Let us consider now t h e  point 

; (A) = (Ago + r (A),  Ago + Pr (A))  . 

Taking into account  r ' ( 0 )  = 0 ,  r (A) = o (A) f o r  sufficiently s m a l l  A > 0  inclusion 

(16) is  sat isf ied, because by definit ion of t h e  o p e r a t o r  P w e  have ;(A) E LinK. 

Consequently 

.k(z(A)) E gf a 

f o r  small A. But 



h e r e  t h e  condition (17) w a s  used. Thus 

i.e. a (Aso)  # t$ f o r  small A. Thus t he  f i r s t  p a r t  of t he  theorem is proved. Let us  

consider t h e  case with t he  f ini te dimension. Condition 1 can be  omitted in accor-  

dance t o  lemma 1 and 2. W e  will show tha t  condition 2 can be  omitted too. 

Indeed because LinK G R n  X R m  then exist  t h e  matr ices A and B with dimen- 

sions r x n and r X m respect ively such tha t  t h e  points (x  , y ) E LinK and only 

they sat isfy t h e  equations 

where rows of t h e  matrix (A, - B )  with t h e  dimension r x ( n  + m )  are l inearly in- 

dependent. This follows from t h e  f ac t  t ha t  in t h e  f ini te dimensional space l inear 

manifold can be  descr ibed as set of solution of some l inear  equations system. 

Since t h e  rows of t he  matr ix (A, -B )  are l inearly independent then exist  

non-degenerate submatrix of th is  matrix with dimension r x r .  Consequently system 

(18) has solution y f o r  a r b i t r a r y  x . For  th is  reason (see example 1 5 1) 

KernB* c_ Kern A*  (19) 

* * 
However KernB*  = fO  1. Indeed l e t  y E R ~ ,  y # 0 and B* y * = 0, then due t o  

(19) A* y * = 0. This means t ha t  exist  t he  non-zero vec to r  y * orthogonal t o  a l l  

columns of t he  matrix (A, -B) .  The las t  statement contradicts t he  existence of 
* 

non-degenerated r X r submatrix of t h e  matr ix ( A ,  - B).  Thus Ke rnB  = fOj, i.e. 

columns of t he  matrix B* are l inearly independent. For  th is reason B* (and conse- 

quently B )  contains non-degenerated submatrix B1 with rank  r X r .  Let 

B = (B1, B2). Consider t h e  vec to rs  y 

where y E R~ and 0, -, i s  t h e  non-zero vec to r  with dimension m - r .  I t  i s  c l ea r  

t ha t  By = Bly l. If y = B1-lAx, then vec to r  

sat isf ies (18). I t  i s  obvious t ha t  t h e  l inear opera to r  



satisf ies condition 2 of t h e  theorem. Q.E.D. 

REMARK Let us consider t he  condition 2 in general.  Let L C X XY i s  a l inear 

manifold. Denote 

I t  i s  not diff icult t o  see t ha t  

1 1 (x ) i s  an  aff ine manifold; 

2 1 (x l  + xz )  = 1 (xl)  + 1 (xz); 

3 L ( X x ) = X l ( z ) f o r X + O .  

Let in accordance t o  t h e  theorem 6 dom 1 = X. Thus t h e  map 1 from t h e  space X t o  

t h e  set of aff ine manifolds of y is l inear. Condition 2 of theorem 6 implies t ha t  ex- 

is t  a l inear continuous map P such tha t  Pz € 1 (x) .  Since 1 is a l inear map then ex- 

is tence of P is  a natura l  condition. A s  was shown ea r l i e r  in a f ini te dimensional 

space,  th is ope ra to r  exists. I t  would be  interest ing in genera l  t o  formulate a n  addi- 

tional condition f o r  L guaranteeing existence of a continuous l inear  selector of P. 

Let us consider now t h e  questions connected with t he  construct ion of a mar- 

quee f o r  a convex set. 

THEOREM 7 Let M be a convex se t  in B a n a c h  space  X, 0  E M and r iM  + 4. 
Then the  cone 

K = con (r iM) 

is t he  marquee  fo r  se t  M a t  t he  p o i n t  z = 0. 

PROOF It  i s  evident t ha t  r iM c M ,  f o r  th is reason  Lin ( r i  M) c LinM and 

LinL L LinM. 

- 
Let 5 E K  i.e. z = y x ,  y >0,  z E r i M .  If x f O  then f o r  some E > O  

x + (EB) n LinM c M in accordance t o  t h e  definition of t he  re la t ive  in ter io r  of a 

set M. 

Let 

where y is  an a r b i t r a r y  point of Lin K ,  11 y 1) g 1. If 



then y' E M due t o  t h e  definition ri M .  Since 5 + 0 ,  then 

For th is  reason i f  < (Ig (1 then 

Thus i f  > 0 ,  6 > 0 are chosen s o  t ha t  

then f o r  y satisfying condition 

y E [con ( g  + ( c l B )  n LinK)] n (dB)  

the, following inciusion is t rue :  c E M .  Thus, in th is case  9(5) = c can be taken. 

If 5 = 0 then in accordance with t he  definition of t h e  re la t ive  in ter io r  exists 

such E > 0 t ha t  

( E B )  n Lin K L M 

i.e. any point of LinK L K with norm less than E belongs t o  M. lt is c lea r  t ha t  in 

th is  case 9(y)  = 5 too. Q.E.D. 

Let us  now consider some appl icat ions of these  resul ts .  In par t icu lar  it is in- 

terest ing f o r  us  t o  general ize t h e  implicit functions theorem in cases when solu- 

t ions belong t o  some set M. I t  is formulated below. 

THEOREM 8 Let t he  funct ions f c ( z ) ,  i = 1, . . . , K be def ined o n  the  space 

Z = X x Y, these m n c t i o n s  be smooth in t he  neighborhood of the  o r i g i n  of coor- 

d ina tes ,  M be a convex set  con ta i n i ng  0. Let in add i t i on :  

1 grad ien ts  f i ( z o )  a r e  L inear ly i ndependen t  o n  subspace LinM; 

2 ex is t  po in t  z s u c h  that 



3 for a n y  vector u E Rk the set 

* 
i s  empty or consists from the un ique  vector f ;  u . 

Then for a n y  vector z, [I 2 1) < d exis ts  vector such  tha t  

PROOF Define 

a ( x )  = l y : f i ( x ,  y )  = O , i  =I. . . . ,  k ,  ( x ,  y )  E M J  . 

In accordance with the  theorems 4 and 7 the  cone 

is the  marquee f o r  gf a at the  point z o  = ( x o ,  yo ) .  Taking into account assumptions 

and well known theorems of convex analysis w e  get 

where f ; ( zO)  is t he  Freshet derivative of the  map f : R n  + m  -+ Rk , i.e. matrix with 

rows pi, ( z o )  E Rn + m. Condition 3 of the  theorem 6 means tha t  relat ions 

( X I * ,  y * )  E (con(M - zo))*  

* * 
Y + f $  ( z 0 b  = D  

assume the equality 

* * 
x +p3; ( z 0 ) u  = o  . 

The last condition is equivalent t o  condition 3 of the  theorem. 

THEOREM 9 Let Z = Rn X R m ,  Pi ( z ) ,  i = 1, . . . , k be a smooth funct ion and 

U be a convex set in Rn . Ip ( x  o ,  y O )  is  a point such  tha t  

then for the existence of the va lue d > 0 such  that  for a n y  E Rn exist  vector 

5 E Rm sat is j5ing 



i t  i s  su.tj%cient 

1 the vectors f f;  ( zo )  a re  LinearLy independent; 

2 exist  vector (z l ,  y l )  such  that  

3 The set 

contains onLy zero. 

The proof follows d i rec t ly  from t h e  previous theorem, taking into account  t h e  

equivalence of equal i t ies f g ( z o ) u  = 0 and u = 0 which, in t u r n  follows from l inear  

independence of vec to rs  f t; ( z O ) ,  i = 1, . . . , k 

Let us consider now t h e  solvabil i ty of t h e  system of inequal i t ies 

for any x from vicinity of some point xo .  Suppose t h a t  t h e  point ( x o ,  y o )  i s  one of 

t h e  solutions of th i s  system. 

This problem can  b e  reduced to t h e  previous one by introducing auxi l iary 

var iab les  w i ,  i = 1, . . . , k and considering t h e  following system: 

The theorem 8 can b e  appl ied now. To do th is  let us t a k e  X = Rn and t h e  s p a c e  Y 

from th is  theorem will b e  t h e  s p a c e  of p a i r s  ( y ,  w )  E Rm X R ~ .  The set M i s  now 

t h e  set ( R n ,  R m ,  R:) .  There fo re  LinM = (Rn .  R m ,  R k ) .  Let us note t h a t  in t h e  

conditions (21)  each  new var iab le  cor responds to s e p a r a t e  equality, t h e r e f o r e  

condition 1 of theorem 8 i s  t r u e .  Furthermore,  w e  can  assume without loss of gen- 

era l i ty  t h a t  



This assumption will considerably simplify the argument. What is needed now fo r  

fulfillment of the second condition of the theorem is existence of the vector 
- 
z l  = (5 l, GI) such that  

Due to  the fac t  that  M = (Rn,  R m ,  Rk+) w e  have 

* 
[con (M - Zo)l = (On, O m ,  Rk,) . 

The third condition of theorem 8 easily follows now from the assumption that  condi- 
* * 

tions u r 0, f$  (z0)u = 0 imply  f$  (zo)u = 0. O r  in o ther  words 

* 
Kern f; (zO) 2 (Kern f i* (20)) f7 R* 

Thus, we have obtained the following result:  

THEOREM 10 Suppose tha t  x E R n ,  y E k m ,  j 'unctions Pi (z) ,  i = 1, . . . , k 

a r e  smooth for  z = ( x ,  y )  a n d  the po in t  z o  = (xo, y o )  is s u c h  t h a t  

Let US take in add i t i on  the following assumptions: 

1 Ex is ts  vector zl = (z l ,  GI) s u c h  tha t  

* 
2 Kern I; (zO) 2 (Kern f$(zO)) n Rk+ 

Then ez is ts  d > 0 s u c h  t h a t  for a n y  z, llz' 11 < d ez is ts  s u c h  tha t  
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