Lipschitzian Stability in Optimization: The Role of Nonsmooth Analysis

Rockafellar, R.T.

IIASA Working Paper
WP-86-046

September 1986

Rockafellar, R.T. (1986) Lipschitzian Stability in Optimization: The Role of Nonsmooth Analysis. IIASA Working Paper. WP-86-046 Copyright © 1986 by the author(s). http://pure.iiasa.ac.at/2813/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

Working Paper

LIPSCHITZIAN STABLITTY IN OPTIMIZATION: THE ROLE OF NONSMOOTH ANALYSIS
R.T. Rockafellar

September 1986
WP-86-46

International Institute for Applied Systems Analysis A-2361 Laxenburg, Austria

LIPSCHITZIAN STABHITY IN OPTIMIZATION: THE ROLE OF NONSMOOTH ANALYSIS

R.T. Rockafellar

September 1986
WP-86-46

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

FOREWORD

This paper is the survey of recent developments in nonsmooth analysis and its applications to optimization problems. At first the motivations of nonsmooth analysis are discussed and concepts of derivative for Lipschitzian and lower semicontinuous functions are presented. Then the concepts of nonsmooth analysis are used to get sensitivity results for general nonlinear programming problems and to clarify the interpretation of the Lagrange multipliers. Promising directions of further research are indicated.
A. Kurzhanski

Chairman
System and Decision Sciences Program

CONTENTS

Abstract 1
Introduction 1
1 Origins of Subgradient Ideas 3
2 Lagrange Multipliers and Sensitivity 10
3 Stability of Constraint Systems 15
References 18

R.T. Rockafellar*

Abstract

asstract The motivations of nonsmooth analysis are discussea. Appiications are given to the sensitivity of optimal values, the interpretation of Lagrange multipiiers, and the stabiiity of constraint systems under perturbation.

INTRODUCTION

it has been recognized for some time that the tools of classical anaiysis are not adequate for a satisfactory treatment of problems of optimization. These toois work for the characterization of locaily optimal soiutions to problems where a smooth (i.e. continuously differentiable) function is minimized or maximized subject to finiteiy mary smooth equality constraints. They aiso serve in the stuay of perturbations of such constraints, namely through the implicit function theorem and its consequences. As soon as inequality constraints are encountered, however, they begin to fail. One-sided derivative conditions start to replace two-sided conditions. Tangent cones repiace tangent subspaces. Convexity and convexification emerge as more natural than linearity and linearization.

In problems where inequality constraints actualiy preadominate over equations, as is typical in most modern applications of optimization, a qualitative cnange occurs. No longer is there any simple way of recognizing which constraints are active in a neighborhood of a given point of the feasible set, such as there would be if the set were a cube or simplex, say. The boundary of the feasible set defies easy description and may best be thought of as a nonsmooth hypersurface. It does not take long to reaiize too that the graphs of many of the objective functions which naturally arise are nonsmooth in a similar way. This is the motivation for much of the effort that has gone into

[^0]introducing and deveioping various concepts of "tangent cone", "normai cone", "directional derivative" anc "generaiized gradient". These concepts nave changed the face of optimization theory and given birth to a new subject, nonsmocth analysis, winich is affecting other areas of mathematics as weil.

An important aim of nonsmooth analysis is the formuiation of generaiized necessary or sufficient conditions for optimality. This in turn receives impetus from. research in numerical methocis of optimization that invoive nonsmooth functions generated by decomposition, exact penalty representations, and the iike. The idea essentiaily is to provide tests that either establish (near) optimaiity (perinaps stationarity) of the point already attainec or generate a feasibie direction of improvement for moving to a better point.

Nonsmooth analysis aiso has other important aims, however, which snouid not be overlooiked. These include the study of sensitivity and stability with respect to periurbations of objective anã constraints. In an optimization probiem that depencis on a parameter vector v, how do variations in v affect the optimal value, the optimai soiution set, and the feasible solution set? Can anything be said about rates of change?

This is where Lipschitzian properties take on special significance. They are intermediate between continuity and differentiability and correspond to bounds on possible rates of change, rather than rates themselves, which may not exist, at least in the classical sense. Like convexity properties they can be passed along through various constructions where true differentiability, even if one-sided, would be lost. Furthermore, they can be formulated in geometric terms that suit the study multifunctions (set-valued mappings), a subject of great importance in optimization theory but for which classical notions are aimost entirely lacking.

It is in this light that the directional derivatives and suiggradients introduced by F.H. Clarke [1] [2] shouid be juãged. Clarke's theory emphasizes Lipschitzian properties and sturdily combines convex anaiysis and ciassical smooth anaiysis in a singie framework. At the present stage of development, thaniss to the efforts of many individuals, it has aiready had strong effects on almost every area of optimization, from nonlinear programming to the caiculus of variations, anc also on mathematical questions beyond the domain of optimization per se.

This is not to say, however, that Clarke's derivatives and suiggradients are the only ones that hencefortrin need to de considered. Special situations certainly do require speciai insights. in particuiar, there are cases where speciai one-sided first and second derivatives that are more finely tuned than Clarke's are worth introducing. Significant and useful resuits can be obiaineã in such manner. But such results are likely to be relatively limited in scope.

The power and generality of the kind of nonsmooth analysis that is basea on Ciarke's icieas can be creaited to the following features, in summary:
(a) Applicability to a nuge class of functions and other objects, such as sets anc muitifunctions.
(b) Emphasis on geometric constructions anci interpretations.
(c) Reduction to classical analysis in the presence of smoothness and to convex analysis in the presence of convexity.
(d) Unified formulation of optimality conditions for a wide variety of probiems.
(e) Comprehensive calculus of subgradients and normal vectors which makes possible an effective specialization to particuiar cases.
(f) Coverage of sensitivity and stability questions and their relationship to Lagrange multipliers.
(g) Focus on iocal properties of a "uniform" character, which are less likely to be upset by slight perturbations, for instance in the study of directions of descent.
(h) Versatility in infinite as well as finite-dimensional spaces and in treating the integral functionals and differentiai inciusions that arise in optimal coniroi, stochastic programming, and eisewhere.

In this paper we aim at putting this theory in a natural perspective, first by discussing its foundations in analysis and geometry and the way that Lipschitzian properties come to occupy the stage. Then we survey tine results that have been obtained recently on sensitivity and stability. Such resuits are not yet famiiiar to many researchers who concentrate on optimality conditions and their use in algorithms. Nevertheless they say much that bears on numerical matters, and they demonstrate well the sort of challenge that nonsmooth analysis is now able to meet.

1. CRIGRNS OF SUBGRADIENT DEAS

In order to gain a foothold on this new territory, it is best to begin by thinking about functions $f: R^{n} \rightarrow R$ that are not necessarily smooth but have strong one-sided directional derivatives in the sense of

$$
\begin{equation*}
f^{\prime}(x ; \hbar)=\lim _{\substack{t=0 \\ h^{\prime} \rightarrow \hbar}} \frac{f\left(x+t \bar{h}^{\prime}\right)-f(\boldsymbol{x})}{t} \tag{1.1}
\end{equation*}
$$

Examples are (finite) convex functions [3] anc subsmoctin functions, the latter being by definition representable iocaliy as

$$
\begin{equation*}
f(x)=\max _{s \equiv S} f_{s}(x), \tag{1.2}
\end{equation*}
$$

where S is a compact space (e.g., a finite, discrete index set) and $\left\{f_{s} \mid s \in S\right\}$ is a family of smooth functions whose vaiues and derivatives depend continuousiy on s and \boldsymbol{z} jointly. Subsmooth functions were introduced in [4]; all smooth functions and all finite convex functions on R^{n} are in particular subsmooth.

The formula given here for $f^{\prime}(x ; h)$ differs from the more common one in the literature, where the iimit $h^{\prime} \rightarrow h$ is omitted (weak one-sided directional derivative). It corresponds in spirit to true (strong) differentiability rather than weak differentiability. Indeed, under the assumption that $f^{\prime}(x, h)$ exists for all h (as in (1.1)), one has f differentiable at z if and only if $f^{\prime}(x ; h)$ is linear in h. Then the one-sicied limit $t \downarrow 0$ is actually realizable as a two-sided limit $t \rightarrow 0$.

The classical concept of gradient arises from the cuality between linear functions on R^{n} anc vectors in R^{n}. To say that $f^{\prime}(x ; h)$ is linear in h is to say that there is a vector $y \in R^{n}$ with

$$
\begin{equation*}
f^{\prime}(x ; h)=y \cdot h \quad \text { for all } h \tag{1.3}
\end{equation*}
$$

This y is called the gradient of f at x and is denoted by $\nabla f(x)$.
In a similar way the modern concept of subgradient arises from the duality between sublinear functions on R^{n} and convex subsets in R^{n}. A function l is said to be sublinear if it satisfies

$$
\begin{align*}
& l\left(\lambda_{1} h_{1}+\ldots+\lambda_{m} h_{m}\right) \leq \lambda_{1} l\left(h_{1}\right)+\ldots+\lambda_{m} l\left(h_{m}\right) \tag{1.4}\\
& \text { when } \lambda_{1} \geq 0, \cdots, \lambda_{m} \geq 0 .
\end{align*}
$$

It is known from convex analysis [3, §13] that the finite sublinear functions l on R^{n} are precisely the support functions of the nonempty compact subsets Y of R^{n} : each l corresponds to a unique Y by the formuia

$$
\begin{equation*}
l(h)=\max _{y \in Y} y \cdot h \text { for all } h \tag{1.5}
\end{equation*}
$$

Linearity can be identified with the case where Y consists of just a single vector y.
It turns out that when f is convex, and more generally when f is subsmooth [4], the derivative $f^{\prime}(\bar{x}, \dot{n})$ is always sublinear in h. Hence there is a nonempty compact subset Y of R^{π}, uniqueìy determine \bar{G}, such that

$$
\begin{equation*}
f^{\prime}(x ; h)=\max _{y \in Y} y \cdot h \text { for all } h \tag{1.6}
\end{equation*}
$$

This set Y is denoted by $\partial f(x)$, and its elements y are called subgradients of f at x. With respect to any locai representation (1.4), one has

$$
\begin{equation*}
Y=\operatorname{co}\left\{\nabla f_{S}(x): s \in S_{I}\right\}, \text { where } S_{I}=\underset{S \in S}{\operatorname{argmax}} f_{S}(x) \tag{1.7}
\end{equation*}
$$

(co $=$ convex hull), but the set $Y=\hat{c} f(x)$ is of course by its definition independent of the representation used.

In the case of f convex $[3, \S 23]$ one can define subgradients at x equivalently as the vectors y such that

$$
\begin{equation*}
f\left(x^{\prime}\right) \geq f(x)+y \cdot\left(x^{\prime}-x\right) \text { for ali } x^{\prime} \tag{1.8}
\end{equation*}
$$

For f subsmooth this generalizes to

$$
\begin{equation*}
f\left(x^{\prime}\right) \geq f(x)+y \cdot\left(x^{\prime}-x\right)+o\left(x^{\prime}-x\right) \tag{1.9}
\end{equation*}
$$

but caution must be exercised here about further generalization to functions f that are not subsmooth. Although the vectors y satisfying (1.9) do always form a closed convex set Y at x, regardless of the nature of f, this set Y does not yield an extension of formula (1.6), nor does it correspond in general to a robust concept of directional derivative that can be used as a substitute for $f^{\prime}(x ; h)$ in (1.6). For a number of years, this is where subgradient theory came to a halt.

A way around the impasse was discovered by Clarke in his thesis in 1973. Clarke took up the study of functions $f: R^{n} \rightarrow R$ that are locally Lipschitzian in the sense of the difference quotient

$$
\begin{equation*}
f\left(x^{\prime \prime}\right)-f\left(x^{\prime}\right) \quad / x^{\prime \prime}-x^{\prime} \tag{i.10}
\end{equation*}
$$

being bounded on some neighborhooc of each point \boldsymbol{z}. This class of functions is of intrinsic value for several reasons. First, it includes all subsmooth functions and consequently all smooth functions and all finite convex functions; it also inciudes all finite concave functions and all finite saddie functions (which are convex in one vector argument and concave in another; see [$3, \S 35]$). Seconcu, it is preserved under taking linear combinations, pointwise maxima and minima of coliections of functions (with certain mild assumptions), integration and other operations of obvious importance in optimization. Thirc, it exhibits properties that are closely related to differentiability. The locai bounceaness of the difference quotient (1.10) is such a property itself. In fact when f is iocally Lipschitzian, the gracient $\nabla f(z)$ exists for ail but a negigible sef. of points \approx in R^{n} (the ciassicai theorem of Rademacher, see [$[5]$).

Ciarke discovered that when f is locally Lipschitzian, the speciai cerivative expression

$$
\begin{equation*}
f^{\circ}(\approx ; h)=\lim _{\substack{t \leq 0 \\ h^{\prime} \rightarrow h_{2} \\ x^{\prime} \rightarrow x}} \frac{f\left(\pi^{\prime} \div t \hbar^{\prime}\right)-f\left(\pi^{\prime}\right)}{t} \tag{1.11}
\end{equation*}
$$

is always a finite subiinear function of h. Hence there exists a unicue nonempty compact convex set Y such that

$$
\begin{equation*}
f^{\circ}(x ; h)=\max _{y \in Y} y \cdot h \text { for all } h \tag{1.12}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
f^{\circ}(x ; h)=f^{\prime}(x ; h) \text { for all } h \text { when } f \text { is suinsmooth. } \tag{1.13}
\end{equation*}
$$

Thus in denoting this set Y by $\partial f(x)$ and cailing its elements subgradients, one arrives at a natural extension of nonsmooth analysis to the ciass of all locally Lipschitzian functions. Many powerful formuias anc ruies have been established for caiculating or estimating $\partial f(x)$ in this broad context, but it is not our aim to go into them here; see [2] and [5], for instance.

It should be mentioned that Clarke himself did not incorporate the limit $h^{\prime} \rightarrow \bar{n}$ into the definition of $f^{\circ}(\bar{x} ; \bar{n})$, but because of the Lipschitzian property the value obtained for $f^{\circ}(x ; i)$ is the same either way. By writing the formuia with $h^{\prime} \rightarrow \bar{h}$ one is able to see more clearly the relationship between $f^{\circ}(x ; h)$ and $f^{\prime}(x ; h)$ and also to prepare the ground for further extensions to functions f that are mereiy lower semicontinuous rather than Lipschitzian. (For such functions one writes $x^{\prime} \rightarrow_{f} \mathcal{z}$ in piace of $x^{\prime} \rightarrow x$ to indicate that x is to be approached by x^{\prime} only in such a way that $f\left(x^{\prime}\right) \rightarrow f(x)$. More will be said about this later.)

Some people, naving gone aiong with the developments up until this point, begin to balk at the "coarse" nature of the Clarke derivative $f^{\circ}(z ; i n)$ in certain cases where f is not subsmooth and nevertheless is being minimized. For exampie, if $f(x)=-\boldsymbol{x}!+\boldsymbol{x}{ }^{12}$ one has $f^{\circ}(0 ; h)=!$, whereas $f^{\prime}(0 ; h)$ exists too but $f^{\prime}(0 ; h)=-h^{\prime} . \quad$ Thus f^{\prime} reveais that every $h \neq 0$ gives a direction of descent from 0 , in the sense of yieleing $f^{\prime}(0 ; n)<0$, but f° reveais no such thing, inasmuch as $f^{\circ}(0 ; h)>0$. Because of this it is feared that f° does not embody as mucn information as f^{\prime} ance therefore may not be entirely suitable for the statement of necessary concitions for a minimum, let aione for employment in algoritinms or descent.

Clearly f° cannot replace f^{\prime} in every situation where the two may ciffer, nor has this ever been suggested. But even in face of this caveat there are arguments to be made in favor of f° that may heip to iliuminate its nature anc the supporting motivation. The Ciarke derivative f° is oriented towaras minimization probiems, in contrast to f^{\prime}, which is neutral between minimization and maximization. In addition, it emphasizes a certain uniformity. A vector \dot{n} with $f^{\circ}(x ; h)<0$ provides a descent direction in a strong stable sense: there is an $\varepsilon>0$ such that for all \tilde{z}^{\prime} near x, i^{\prime} near h, and positive t near 0 , one has

$$
f\left(x^{\prime}+t h^{\prime}\right)<f\left(x^{\prime}\right)-t \varepsilon
$$

A vector h with $f^{\prime}(x ; h)<0$, on the other hand, provides descent oniy from x; at points x^{\prime} arbitrarily near to x it may give a direction of ascent instead. This instability is not without numerical consequences, since x might be repiaced by x^{\prime} aue to round-off.

An algorithm that relied on finding an h with $f^{\prime}(x ; h)<0$ in cases where $f^{\circ}(x ; h) \geq 0$ for all h (such an x is said to be substationary point) seems unlikely to be very robust. Anyway, it must be realized that in executing a method of descent there is very little chance of actually arriving aiong the way at a point x that is substationary but not a local minimizer. One is easily convinced from examples that such a mishap can oniy be the consequence of an unfortunate cnoice of the starting point and disappears under the slightest perturbation. The situation resembles that of cycling in the simplex methoci.

Furthermore it must be understood that because of the orientation of the definition of f° towards minimization, there is no justice in holding the notion of substationarity up to any interpretation other than the following: a substationary point is either a point where a locai minimum is attained or one where progress towards a local minimum is "confused". Sometimes, for instance, one hears cited as a failing of f° that f^{\prime} is able to distinguish between a iocal minimum and a local maximum in having $f^{\prime}(x ; h) \geq 0$ for all h in the first case, but $f^{\prime}(x ; h) \leq 0$ for ail n in the second, whereas $f^{\circ}(x ; h) \geq 0$ for all h in both cases. But this is unfair. A one-sided orientation in nonsmooth analysis is merely a reflection of the fact that in virtually all applications of optimization, there is unambiguous interest in either maximization or minimization, but not both. For theoretical purposes it might as well be minimization.

Certainly the idea that a first-order concept of derivative, such as we are dealing with here, is obliged to provide conditions that distinguish effectively betweer a local minimum and a local maximum is out of line for other reasons. Classical anaiysis makes no attempt in that direction, without second derivatives. Presumabiy: second
derivative concepts in nonsmooth analysis will eventually furnish the appropriate distinctions, cf. Chaney [7].

A final note on the question of f° versus f^{\prime} is the reminder that $f^{\circ}(x ; h)$ is defined for any locally Lipschitzian function f and even more generally, whereas $f^{\prime}(x ; h)$ is only defined for functions f in a narrower class.

An important goal of nonsmooth analysis is not only to make full use of Lipschitz continuity when it is present, but also to provide criteria for Lipschitz continuity in cases where it cannot be known a priori, along with corresponding estimates for the local Lipschitz constant. For this purpose, it is necessary to extend subgradient theory to functions that might not be locally Lipschitzian or even continuous everywhere, but merely lower semicontinuous. Fundamental examples of such functions in optimization are the so-called marginal functions, which give the minimum value in a parameterized problem as a function of the parameters. Such functions can even take on $\pm \infty$.

Experience with convex analysis and its applications shows further the desirability of being able to treat the indicator functions of sets, which play an essential roie in the passage between analysis and geometry.

In fact, the ideas that have been described so far can be extended in a powerful, consistent manner to the class of all lower semicontinuous functions $f: R^{n} \rightarrow \bar{R}$, where $\bar{R}=[-\infty, \infty]$ (extended real number system). There are two compiementary ways of doing this, with the same result. In the continuation of the analytic approach we have been following until now, a more subtle directionai derivative formula

$$
\begin{equation*}
f^{\dagger}(\boldsymbol{x} ; h)=\lim _{\varepsilon+0}\left[\lim _{\substack{t \rightarrow 0 \\ x^{\prime} \rightarrow f^{x} x}}\left[\inf _{\mid h^{\prime}-h!\leq \varepsilon} \frac{f\left(x^{\prime}+t h^{\prime}\right)-f\left(x^{\prime}\right)}{t}\right]\right] \tag{1.14}
\end{equation*}
$$

is introduced and shown to agree with $f^{\circ}(x ; h)$ whenever f is locally Lipschitzian and indeed whenever $f^{\circ}(x ; h)$ (in the extended definition with $x^{\prime} \rightarrow_{f} x$, as mentioned earlier) is not $+\infty$. Moreover $f^{\dagger}(x ; h)$ is proved always to be a lower semicontinuous, sublinear function of h (extended-real-valued). From convex analysis, then, it follows that either $f^{f}(x ; 0)=-\infty$ or there is a nonempty closed convex set $Y \subset R^{n}$, uniquely determined, with

$$
\begin{equation*}
f^{\dagger}(z ; h)=\sup _{y \in Y} y \cdot h \text { for all } h \tag{1.15}
\end{equation*}
$$

This is the approach followed in Rockafeliar [8], [9]. One then arrives at the corresponding geometric concepts by taking f to be the indicator \dot{d}_{C} of a ciosed set C. For any $\tilde{\tilde{x}} \in C$, the function $\dot{n} \rightarrow \hat{\dot{c}} \hat{\dot{c}}(\boldsymbol{\sim}: \dot{h})$ is itself the indicator of a certain closed set
$T_{C}(x)$ which happens always to be a convex cone; this is the Clarke tangent cone to C at x. The subgracient set

$$
\begin{equation*}
N_{C}(x)=\partial \delta_{C}(x) \tag{1.16}
\end{equation*}
$$

on the other hand, is a ciosed convex set too, the Clarke normal cone to C to x. The two cones are polar to each other:

$$
\begin{equation*}
N_{C}(x)=T_{C}(x)^{\circ}, \quad T_{C}(x)=N_{C}(x)^{\circ} \tag{1.17}
\end{equation*}
$$

In a more geometric approach to the desired extension, the tangent cone $T_{C}(x)$ and normal cone $N_{C}(\pi)$ can first be defined in a direct manner that accords with the polarity reiations (1.16). Then for an arbitrary lower semicontinuous function $f: R^{n} \rightarrow \bar{R}$ and point x at which f is finite, one can focus on $T_{\bar{E}}(x, f(\bar{m})$) and $N_{E}\left(x, f(x)\right.$), where E is the epigraph of f (a closed subset of R^{n+1}). The cone $T_{E}(x, f(x))$ is itself the epigraph of a certain function, nameiy the subderivative $h \rightarrow$ $f^{\prime}(x ; i)$, whereas the cone $N_{E}(x, f(x))$ provides the subgradients:

$$
\begin{equation*}
\partial f(\tilde{x})=\left\{y \in R^{n} \quad(y,-1) \in N_{E}(x, f(x))\right\} \tag{1.18}
\end{equation*}
$$

The polarity between $T_{E}(x, f(x))$ and $N_{E}(x, f(x))$ yieids the subderivative-subgradient relation (1.14). (Clarke's original extension of ∂f to lower semicontinuous functions [1] followed this geometric approach in defining normal cones directly and then invoking (1.17) as a definition for subgradients. He did not focus much on tangent cones, however, or pursue the idea that $T_{E}(x, f(x))$ might correspond to a reiated concept of directional derivative.)

The details of these equivaient forms of extension need not occupy us here. The main thing to understand is that they yield a basic criterion for Lipschitzian continuity, as follows.

THEOREN 1 (Rockafellar [10]). For a lower semicontinuous function $f: R^{n} \rightarrow \bar{R}$ actually to be Lipscinitzian on some neighborhood of the point x, it is sufficient (as well as necessary) tinat tine suogradient set $\partial f(x)$ be ronempty and bounded. Then one ras

$$
\begin{equation*}
\lim _{\substack{x, \rightarrow x \\ x \rightarrow x}} \frac{f\left(x^{\prime \prime}\right)-f\left(x^{\prime}\right)!}{x^{\prime \prime}-\tilde{x}^{\prime}}=\max _{y \bar{E} \dot{\partial} f(x)} y \tag{1.16}
\end{equation*}
$$

This criterion can be applied without exact knowiedge of $\hat{c} f(x)$ but oniy an estimate that $\phi \neq \hat{\partial} f(x) \subset Y$ for some set Y. If Y is boundec, one may conciude that f is locally Lipschitzian around x. if it is known that $|y|<\lambda$ for ail $y \in Y$, one has from (1.19)

$$
f\left(x^{\prime \prime}\right)-f\left(\varkappa^{\prime}\right) \leq \lambda: x^{\prime \prime}-x^{\prime} \text { for } z^{\prime} \text { anc } x^{\prime \prime} \text { near } x
$$

2. LAGRANGE MULTPLIERS AND SENSITIVITY

Many ways have been founc for deriving optimality conditions for probiems with constraints, but not all of them provide full information about the Lagrange muitipliers that are obtained. The test of a good method is that it should lead to some sort of interpretation of the multiplier vectors in terms of sensitivity or generalized rates of change of the optimal value in the problem with respect to perturbations. Until quite recently, a satisfactory interpretation along such lines was available only for convex programming and special cases of smooth nonlinear programming. Now, however, there are general results that apply to all kinds of probiems, at least in R^{n}. These results demonstrate well the power of the new nonsmooth analysis and are not matched by anything achieved by other techniques.

Let us first consider a nonlinear programming probiem in its canonical parameterization:
$\left(P_{u}\right) \quad$ minimize $g(x)$ subject to $x \in K$ and

$$
\begin{aligned}
g_{i}(\tilde{\sim})+u_{i} & \leq 0 \text { for } i=i, \ldots, s, \\
& =0 \text { for } i=s+i, \ldots, m_{1}
\end{aligned}
$$

where $g_{1} g_{1}, \ldots, g_{m}$ are iocally Lipschitzian functions on R^{n} anc K is a closed subset of R^{n}; the u_{i} 's are parameters and form a vector $u \in R^{\pi}$. By anaiogy with what is known in particular cases of $\left(P_{u}\right)$, one can formulate the potential optimality condition on a feasible solution x, namely that

$$
\begin{align*}
& 0 \in \partial g(x)+\sum_{i=1}^{m} y_{i} \hat{c} g_{i}(x)+N_{K}(x) \text { with } \tag{2.i}\\
& y_{i} \geq 0 \text { and } y_{i}\left[g_{i}(\tilde{x}) \div u_{i}\right]=0 \text { for } i=1, \ldots, s
\end{align*}
$$

and a corresponding constraint qualification at x :
the only vector $y=\left(y_{1}, \ldots, y_{m}\right)$ satisfying the version
of (2.1) in which the term $\hat{c} g(x)$ is omitted is $\underline{v}=0$.

In smooth programming, where the functions g, g_{1}, \ldots, g_{m} are ail continuously differentiable and there is no abstract constraint $z \in K$, the first relation in (2.1) reduces to the gradient equation

$$
0=\nabla g(x)+\sum_{i=1}^{m_{l}} y_{i} \nabla g_{i}(x)
$$

and one gets the classical Kuhn-Tucker conditions. The constraint qualification is then equivalent (by duality) to the well known one of Mangasarian and Fromovitz.

In convex programming, where g, g_{1}, \ldots, g_{s} are (finite) convex functions, g_{s+1}, \ldots, g_{m} are affine, and K is a convex set, conaition (2.1) is always sufficient for optimality. Under the constraint qualification (2.2), which in the absence of equality constraints reduces to the Slater condition, it is also necessary for optimality.

For the general case of $\left(P_{u}\right)$ one has the following ruie about necessity.

THEOREN 2 (Clarke [11]). Suppose x is a locally optimal solution to (F_{u}) at which the constraint qualification (2.2) is satisfied. Then there is a multiplier vector y such that the optimaiity condition (2.1) is satisfied.

This is not the sharpest result that may be stated, although it is perhaps the simplest. Clarke's paper [11] puts a potentially smailer set in piace of $N_{K}(\boldsymbol{z})$ and provides along side of (2.2) a less stringent constraint qualification in terms of "caimness" of (P_{u}) with respect to perturbations of u. Hiriart-Urruty [i2] and Rockafellar [13] contribute some alternative ways of writing the subgradient reiations. For our purposes here, let it suffice to mention that Theorem 2 remains true when the optimality condition (2.1) is given in the slightly sharper and more eiegant form:

$$
\begin{equation*}
0 \in \partial g(x)+y \partial G(x)+N_{K}(x) \text { with } y \in N_{C}(G(x)+u) \tag{2.3}
\end{equation*}
$$

where $G(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$ anc̀

$$
\begin{equation*}
C=\left\{w \in R^{m} \mid w_{i} \leq 0 \text { for } i=\dot{i}, \ldots, s \text { anci } w_{i}=0 \text { for } \dot{i}=s+i, \ldots, m\right\} . \tag{2.4}
\end{equation*}
$$

The notation $\hat{\partial} G(x)$ refers to Clarke's generalized Jacobian [2] for the mapping G; one has

$$
\begin{equation*}
y \partial G(x)=\partial\left(\sum_{i=1}^{m} y_{i} g_{i}\right)(x) \tag{2.5}
\end{equation*}
$$

Theorem 2 has the shining virtue of combining the necessary conditions for smooth: programming and the ones for convex programming into a single statement. Moreover it covers subsmooth programming and much more, and it aliows for an abstract constraint in the form of $z \in K$ for an arbitrary ciosed set K. Formuias for caiculating the normal cone $N_{K}(x)$ in particular cases can then be used to achieve adiationai specializations.

What Theorem 2 does not do is provide any interpretation for the muitipliers y_{i}. In order to arrive at such an interpretation, it is necessary to look more ciosely at the properties of the marginai function

$$
\begin{equation*}
p(u)=\text { optimal value (infimum) in }\left(P_{u}\right) . \tag{2.6}
\end{equation*}
$$

This is an extended-real-valued function on R^{m} which is lower semicontinuous when the following mild inf-boundedness condition is fulfilled:

$$
\begin{equation*}
\text { For each } \bar{u} \in R^{m}, a \subset R \text { and } \varepsilon>0 \text {, the set of ali } x \in K \tag{2.7}
\end{equation*}
$$

satisfying $g(x) \leq a, g_{i}(x) \leq \bar{u}_{i}+\varepsilon$ for $i=1, \ldots, s$, and
$\bar{u}_{i}-\varepsilon \leq g_{i}(x) \leq \bar{u}_{i}+\varepsilon$ for $i=s+1, \ldots, m$, is bounded in R^{n}.

This condition also implies that for each u with $p(u)<\infty$ (i.e. with the constraints of (P_{u}) consistent), the set of all (globally) optimal solutions to (P_{u}) is nonempty and compact.

In order to state the main general result, we let
$Y^{\prime}(u)=$ set of ail multiplier vectors y that satisfy (2.1)
for some optimal soiution x to $\left(P_{u}\right)$.

THEOREN 3 (Rockafellar [13]). Suppose the inf-boundedness condition (2.7) is satisfied. Let u òe such that the constraints of $\left(P_{u}\right)$ are consistent and every optimal solution x to $\left(P_{u}\right)$ satisfies the constraint qualification (2.2). Then $o p(u)$ is a nonempty compact set with

$$
\begin{equation*}
\partial p(u) \subset \operatorname{co} Y(u) \text { and ext } \partial p(u) \subset Y(u) . \tag{2.9}
\end{equation*}
$$

(where "ext" denotes eztreme points). In particular p is locally Lipschitzian around u with

$$
\begin{equation*}
p^{\circ}(u ; h) \leq \sup _{y \in Y(u)} y \cdot h \text { for } \alpha l l h . \tag{2.10}
\end{equation*}
$$

Indeed, any λ satisfying $y \mid<\lambda$ for all $y \in Y(u)$ serves as a local Lipschitz constant:

$$
\begin{equation*}
\left|p\left(u^{\prime \prime}\right)-p\left(u^{\prime}\right) \leq \lambda!u^{\prime \prime}-u^{\prime}\right| \text { when } u^{\prime} \text { and } u^{\prime \prime} \text { are near } u . \tag{2.11}
\end{equation*}
$$

For smooth programming, this result was first proved by Gauvin [14]. Lie demonstrated further that when $\left(P_{u}\right)$ has a unique optimal solution x, for which there is a unique multiplier vector y, so that $Y(u)=\{y\}$, then actualiy p is differentiable at u with $\nabla p(u)=y$. For convex programming one knows (see [3]) that $\partial p(u)=Y(u)$ always (under our inf-boundedness assumption) and consequently

$$
\begin{equation*}
p^{\prime}(u ; h)=\max _{y: Y(u)} y \cdot h \tag{2.12}
\end{equation*}
$$

Ninimax formulas that give $p^{\prime}(u ; \bar{h})$ in certain cases of smocth programming where $Y(u)$ is not just a singleton can be for exampie found in Demyanov and Valozemov [15] and Rockafeliar [15]. Aside from such special cases there are no formuias known for $p^{\prime}(u ; i)$. Nevertheless, Theorem 3 does provide an estimate, because $p^{\prime}(u ; h) \leq p^{\circ}(u ; i \hbar)$ whenever $p^{\prime}(u ; \hbar)$ exists. (It is interesting to note in this connection that because p is Lipschitzian around u by Theorem 3, it is actually differentiabie aimost everywhere around u by Rademacher's theorem.)

Theorem 3 has recently been broadened in [5] to include more general kince of perturbations. Consider the parameterized problem
$\left(Q_{v}\right) \quad$ minimize $f(v, x)$ over ali x satisfying

$$
F(v, x) \subset C \text { and }(v, \tilde{m}) \in D
$$

where v is a parameter vector in R^{d}, the functions $f: R^{d} \times R^{n} \rightarrow R$ and $F: R^{d} \times R^{n} \rightarrow R^{m}$ are locally Lipschitzian, and the sets $C \subset R^{m}$ and $D \subset R^{d} \times R^{n}$ are closed. Here C couid be the cone in (2.4), in which event the constraint $F(v, z) \in C$ would reduce to

$$
\begin{aligned}
f_{i}(v, z) & \leq 0 \text { for } i=1, \ldots, s, \\
& =0 \text { for } i=s+1, \ldots, m
\end{aligned}
$$

but this choice of C is not required. The condition (v, x) $\in D$ may equivaiently be written as $z \in \Gamma(v)$, where Γ is the ciosed multifunction whose grapin is D. It represents therefore an abstract constraint that can vary with v. A fixed abstract constraint
$x \in K$ corresponds to $\Gamma(v) \equiv K, D=R^{d} \times K$.
In this more general setting the appropriate optimality condition for a feasibie solution x to $\left(Q_{v}\right)$ is

$$
\begin{equation*}
(z, 0) \in \hat{\partial f}(v, x)+y \partial F(v, x)+N_{D}(v, x) \tag{2.亡3}
\end{equation*}
$$

for some y and z with $y \in N_{C}(F(v, x))$,
and the constraint qualification is
the oniy vector pair (y, z) satisfying the version of (2.13)
in which the term $\partial f(v, \pi)$ is omittea is $(y, z)=(0,0)$.

THEOREN. 4 (Rockafellar [6, §8]). Suppose that x is a locally optimal solution to $\left(Q_{v}\right)$ at whicn the constraint qualification (2.14) is satisfied. Then there is a multiplier pair (y, z) such that the optimality condition (2.13) is satisfied.

Theorem 4 reduces to the version of Theorem 2 having (2.3) in place of (2.1) when $\left(Q_{v}\right)$ is taken to be of the form $\left(P_{u}\right)$, namely when $f(v, x) \equiv g(x), F(v, x)=G(x)+v, D=R^{m} \times K\left(R^{m}=R^{d}\right)$, and C is the cone in (2.4).

For the corresponcing version of Theorem 3 in terms of the marginal function

$$
\begin{equation*}
q(v)=\text { optimal value in }\left(Q_{v}\right) \tag{2.15}
\end{equation*}
$$

we take inf-boundedness to mean:
For each $\bar{v} \in R^{d}: \alpha \in R$ anci $\varepsilon>0$, the set of ali \bar{x}
satisfying for some v witit $v-\overline{v^{\prime}} \leq \varepsilon$
the constraints $F(v, x) \in C,(v, x) \in D$, and
having $f(v, x) \leq \alpha$, is bounde $\dot{\alpha}$ in R^{n}.

Again, this property ensures that q is lower semicontinuous, and that for every q for which the constraints of $\left(Q_{v}\right)$ are consistent, the set of optimai soiutions to $\left(Q_{v}\right)$ is nonempty and compact. Let

$$
\begin{equation*}
Z(v)=\text { set of all vectors } z \text { that satisfy the multiplier } \tag{2.17}
\end{equation*}
$$

condition (2.13) for some optimal solution
x to $\left(Q_{v}\right)$ and vector y.

THEOREV 5 (Rociafellar [6, ©̧8]). Suppose the inf-ȯoundedness condition (2.16) is satisfied. Let v be such that tne constraints of (Q_{v}) are consistent and every optimal solution x to $\left(Q_{v}\right)$ satisfies the constraint qualification (2.14). Then of (v) is a nonempty compact set with

$$
\begin{equation*}
\partial q(v) \subset \operatorname{co} Z(v) \alpha n d \operatorname{ext} \partial q(v) \subset Z(v) \tag{2.18}
\end{equation*}
$$

In particular q is locally Lipschitzian around v with

$$
\begin{equation*}
q^{\circ}(v ; h) \leq \sup _{z \in Z(v)} z \cdot h \text { for all } \dot{n} \tag{2.19}
\end{equation*}
$$

Any λ satisfying $z \mid<\lambda$ for all $z \in Z(v)$ serves αs a local Lipschitz constant:

$$
\begin{equation*}
q\left(v^{\prime \prime}\right)-q\left(v^{\prime}\right) \leq \lambda!v^{\prime \prime}-v^{\prime} \text { when } v^{\prime} \text { and } v^{\prime \prime} \text { are near } v . \tag{2.20}
\end{equation*}
$$

The generality of the constraint structure in Theorem 5 wili make possibie in the next section an application to the study of multifunctions.

3. STABMITY OF CONSTRAINT SYSTEMS

The sensitivity results that have just been presented are concerned with what happens to the optimal vaiue in a probiem when parameters vary. It turns out, though, that they can be appliec to the stucy of what happens to the feasible solution set and the optimal solution set. In order to explain this and inciicate the main results, we must consider the kind of Lipschitzian property that pertains to multifunctions (set-valued mappings) and the way that this can be characterized in terms of an associated distance function.

Let $\Gamma: R^{d} \rightarrow R^{n}$ be a closed-valued multifunction, i.e. $\Gamma(v)$ is for each $v \in R^{d}$ a closed subset of R^{n}, possibly empty. The motivating exampies are, first, $\Gamma(v)$ taiken to be the set of all feasible soiutions to the parameterized optimization problem (Q_{v}) ainove, and seconci, $\Gamma(v)$ taken to be the set of all optimal soiutions to $\left(Q_{v}\right)$.

One says that $\Gamma(v)$ is locally Lipscinitzian arounc v if for ail v^{\prime} and $v^{\prime \prime}$ in some neighborinood of v one has $\Gamma\left(v^{\prime}\right)$ anc $\Gamma\left(v^{\prime \prime}\right)$ nonempty and bounded with

$$
\begin{equation*}
\Gamma\left(v^{\prime \prime}\right) \subset \Gamma\left(v^{\prime}\right)+\lambda^{i} v^{\prime \prime}-v^{\prime} \cdot B . \tag{3.1}
\end{equation*}
$$

Here B denotes the ciosed unit ball in R^{n} and λ is a Lipschitz constant. This property can be expressed equivalently by means of the classical Hausdorff metric on the space of all nonempty compact subsets of R^{n} :

$$
\begin{equation*}
\text { haus }\left(\Gamma\left(v^{\prime \prime}\right), \Gamma\left(v^{\prime}\right)\right) \leq \lambda\left|v^{\prime \prime}-v^{\prime}\right| \text { when } v^{\prime} \text { and } v^{\prime \prime} \text { are near } v \tag{3.2}
\end{equation*}
$$

It is interesting to note that this is a "differential" property of sorts, inasmuch as it deals with rates of change, or at least bounds on such rates. Until recently, however, there has not been any viable proposal for "differentiation" of Γ that might be associated with it. A concept investigated by Aubin [17] now appears promising as a candidate; see the end of this section.

Two other definitions are needed. The multifunction Γ is locally bounded at v if there is a neighboriood V of v and a bounded set $S \subset R^{n}$ such that $\Gamma\left(v^{\prime}\right) \subseteq S$ for all $v^{\prime} \in V$. It is closed at v if the existence of sequences $\left\{v_{k}\right\}$ and $\left\{z_{k}\right\}$ with $v_{k} \rightarrow v, x_{k} \in \Gamma\left(v_{k}\right)$ anci $\tilde{x}_{k} \rightarrow \boldsymbol{x}$ impiies $\tilde{x} \in \Gamma(v)$. Finaily, we introduce for Γ the distance function

$$
\begin{equation*}
\alpha_{\Gamma}(v, w)=\operatorname{aist}(\Gamma(v), w)=\min _{x \in \Gamma(v)} x-w \tag{3.3}
\end{equation*}
$$

The following general criterion for Lipschitz continuity can then be stated.

THEOREN 6 (Rockafellar [18]). The multifunction Γ is locally Lipschitzian around v if and only if Γ is closed and locally bounded at v with $\Gamma(v) \neq \phi$, and its distance function d_{Γ} is locally Lipschitzian around (v,z) for each $x \in \Gamma(v)$.

The crucial feature of this criterion is that it reduces the Lipschitz continuity of Γ to the Lipschitz continuity of a function α_{Γ} which is actually the marginal function for a certain optimization problem (3.3) parameterized by vectors v and w. This problem fits the mold of $\left(Q_{v}\right)$, with v repiaced by (v, w), anci it therefore comes under the control of Theorem 5, in an adapted form. One is readily able by this route to derive the following.

THEOREN. 7 (Rockafeliar [18]). Let Γ be the multifunction that assigns to each $v \in R^{d}$ the set of all feasiole solutions to proolem $\left(Q_{v}\right)$:

$$
\begin{equation*}
\Gamma(v)=\{x(v, x) \in C \text { and }(v, x) \in D\} . \tag{3.4}
\end{equation*}
$$

Suppose for a given v that Γ is locally bounded at v, and that $\Gamma(v)$ is nonempty with the constraint qualification (2.14) satisfied by every $x \in \Gamma(v)$. Then Γ is locally Lipsciitzian around v.

COROLLARY. Let $\Gamma: R^{d} \rightarrow R^{n}$ be any multifunction wñose graph $D=\{(v, x) \mid x \in \Gamma(v)\}$ is closed. Suppose for a given v that Γ is locally bounded at v, and that $\Gamma(v)$ is nonempty with the following condition satisfied for every $x \in \Gamma(v)$:

$$
\begin{equation*}
\text { the only vector } z \text { with }(z, 0) \in N_{D}(\nu, x) \text { is } z=0 \tag{3.5}
\end{equation*}
$$

Then Γ is locally Lipscinitzian around v.
The corollary is just the case of the theorem where the constraint $F(v, x) \in C$ is trivialized. It corresponds closely to a result of Aubin [17j, according to which Γ is "pseudo-Lipschitzian" reiative to the particular pair (v, x) with $x \in \Gamma(v)$ if
the projection of the tangent cone $T_{D}(v, z) \subset R^{d} \times R^{n}$
on R^{d} is all of R^{d}.

Conditions (3.5) and (3.6) are equivalent to each other by the duality between $N_{D}(v, x)$ and $T_{D}(v, x)$. The "pseudo-Lipschitzian" property of Aubin, which will not be defined here, is a suitable localization of Lipschitz continuity which facilitates the treatment of multifunctions Γ with $\Gamma(v)$ unbounded, as is highly desirable for other purposes in optimization theory (for instance the treatment of epigraphs dependent on a parameter vector v). As a matter of fact, the results in Rockafellar [18] build on this concept of Aubin and are not limited to locally bounded multifunctions. Only a special case has been presented in the present paper.

This topic is also connected with interesting ideas that Aubin has pursueci towarcis a differential theory of multifunctions. Aubin defines the multifunction whose graph is the Clarke tangent cone $T_{D}(v, z)$, where D is the grapin of Γ, to be the derivative of Γ at v relative to the point $x \in \Gamma(v)$. In denoting this cierivative muitifunction by $\Gamma_{v, x}^{\prime}$, we have, because $T_{D}(v, \pi)$ is a ciosed convex cone, that $\Gamma_{v, 工}^{\prime}$ is a closed convex process from R^{d} to R^{n} in the sense of convex anaiysis [3, §39]. Convex processes are very much akin to linear transformations, and there is quite a convez algebra for them (see [3, §39], [19], and [20]). In particuiar, $\Gamma_{v, x}^{\prime}$ has an adjoint $\Gamma_{v, x}^{\prime}: R^{n} \rightarrow R^{d}$, which turns out in this case to be the closed convex process with

$$
\operatorname{gph} \Gamma_{v, x}^{\prime}=\left\{(w, z)!(z,-w) \in N_{D}(v, z)\right\} .
$$

In these terms Aubin's condition (3.6) can be written as aomi $\Gamma_{v, x}^{\prime}=R^{d}$, whereas the dual condition (3.5) is $\Gamma_{v, x}^{\prime \prime}(0)=\{0\}$. The latter is equivaient to $\Gamma_{v, x}^{\prime}$ being iocally bounded at the origin.

There is too much in this vein for us to bring forth here, but the few facts we have cited may serve to indicate some new directions in which nonsmooth anaiysis is now going. We may soon have a highly developed apparatus that can be applied to the study of all kinds of multifunctions and thereby to subdifferential multifunctions in particular.

For example, as an aid in the analysis of the stability of optimal solutions and multiplier vectors in problem $\left(Q_{v}\right)$, one can take up the study of the Lipschitzian properties of the multifunction
$\Gamma(v)=$ set of all (x, y, z) such that x is feasible in $\left(Q_{v}\right)$ and the optimality condition (2.13) is satisfied.

Some results on such lines are given in Aubin [17] and Rockafellar [21].

REFERENCES

[1] F.H. Clarke, "Generalized gradients and applications", Trans. Amer. Soc. 205 (1975), pp.247-262.
[2] F.H. Clarke, Optimization and Nonsmootn Analysis, Wiley-iriterscience, New York, 1983.
[3] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton NJ, 1970.
[4] R.T. Rockafellar, 'Favorable classes of Lipschitz continuous functions in suibgradient optimization", Processes in Nondifferentiable Optimization, E. Nurminski (ed.), IIASA Collaborative Proceeding Series, International Institute for Applied̀ Systems Analysis, Laxenburg, Austria, 1982, pp. 125-143.
[5] S. Saks, Theory of the Integral, Nonografie Natematyczne Ser., no. 7, 1937; 2nc rev.ed. Dover Press, New York, 1964.
[8] R.T. Rockafeliar, "Extensions of subgradient caiculus with applications to optimization", i. Nonlinear Anal., to appear in 1985.
[7] R.W. Chaney, Nath. Oper. Res. S (1954).
[8] R.T. Rockafeilar, "Generalized directional derivatives and subgradients of nonconvex functions": Canacian J. Math. 32 (1980), pp. 157-180.
[3] R.T. Rockafellar, The Theory of Subgradients and its Applications to Problems of Optimization: Convez and Nonconvez Functions, Heidermann Verlag, West Berlin, 1981.
[10] R.T. Rockafellar, 'Clarke's tangent cones and the boundaries of closed sets in $R^{\pi \prime \prime}$, J. Noniin. Anal. 3 (1973), pp.145-154.
[11] F.H. Ciarke, "A new approach to Lagrange muitipliers", Math. Oper. Res. 1 (1976), pp. 165-174.
[12] J-B Hiriart-Urruty, "Refinements of necessary optimaiity conditions in nondif-

[13] R.T. Rockafeliar, "iagrange multipiiers and sudderivatives of optimal value functions in nonlinear programming", Vath. Prog. Study 17 (1982), 28-65.
[14] J. Gauvin, "The generalized gradient of a marginai function in mathematicai programming problem", Math. Oper. Res. 4 (1979), pp.458-453.
[15] V.F. Demyanov and V.N Nalozemov, "On the theory of nonlinear minimax problems", Russ. Nath. Surv. 25 (1971), 57-115.
[16] R.T. Rockafellar,'Directional differentiability of the optimal value in a nonlinear programming problem", Math. Prog. Stucies 21 (1984), pp. 213-226.
[17] J.P. Aubin, "Lipscnitz behavior of solutions to convex minimization problems", Math. Oper. Res. 9 (1984), pp. 87-111.
[18] R.T. Rockafellar, "Lipschitzian properties of muitifunctions", J. Nonlin. Anal., to appear in 1985.
[19] R.T. Rockafellar, 'Convex algebra and duality in dynamic models of production", in Nathematical Nodels of Economic (J. Los', ed.), North-Holiand, 1973, pp.351378.
[20] R.T. Rockafeliar, Monotone Processes of Convex and Concave Type, Memoir no.77, Amer. Math. Soc., Providence RI, 1967.
[21] R.T. Rockafellar, "Maximal monotone relations and the second derivatives of nonsmooth functions", Ann. Inst. H. Poincare, Anaiyse Non Linéaire 2 (1985), pp.167-184.

[^0]: * Research supported in part by a grant from the Nationai Science Foundation at the University of Washington, Seattie.

