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FOREWORD

This paper is the survey of recent developments in nonsmooth analysis and its
applications to optimization problems. At first the motivations of nonsmooth
analysis are discussed and concepts of derivative for Lipschitzian and lower sem-
icontinuous functions are presented. Then the concepts of nonsmooth analysis are
used to get sensitivity results for general nonlinear programming problems and to
clarify the interpretation of the Lagrange multipliers. Promising directions of
further research are indicated.
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IIPSCHITZIAN STASBILITY IN CPTIMIZATION: THE ROLE OF NONSKMOOTH ANALYSIS

R.T. Rockafellar*

AESTRACT

The motivations of nonsmooth anzalysis are discussed. Appiications are given to
the sensitivity of optimal vaiues, the interprelation of Lagrange multipiiers, and the

stabiiity of constraint systems under perturbation.

INTRODUCTION

it has been recognized for some time that the tools of ciassical anaiysis are not
adequate for a satisfactory treatment of problems of optimization. These toois work
for the characterization of locaily optimal soiutions to problems where a smooth (i.e.
continuously differentiable) function is minimized or maximized sutject to finiteiy many
smooth equality constraints. They also serve in the study of perturbations of such con-
straints, namely through the implicit function theorem and its consequences. As soon
as inequality constraints are encountered, however, they begin to fail. One-sided
derivative conditions start to replace two-sided conditions. Tangent cones repliace
tangent subspaces. Convexity and convexification emerge as more natural than linear-

ity and linearization.

In problems where inequality constraints actualiy predominate over equations, as
is typical in most modern applications of optimization, a qualitative change occurs. No
longer is there any simple way of recognizing which constraints are active in a neigh-
borhood of a given point of the feasible set, such as there would be if the sel were a
cube or simplex, say. The boundary of the feasible set defies easy description and may
best be thought of as a nonsmooth hypersurface. It does not take long to reaiize too
that the graphs of many of the objective functions which naturally arise are nonsmooth

in a similar way. This is the motivation for much of the effort that has gone into

* Research supported in part by a grant from the National Science Foundation at the University of
Washington, Seattie.
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introducing and deveioping various concepts of "tangent cone”, 'normai cone”, “direc-
tional derivative” and “generalized gradient’”. These concepts nhave changed the face
of optimization theory and given birth to a new subjeci, nonsmocth analysis, which is

affecting other areas of mathematics as weil.

An important aim of nonsmooth analysis is the formuiation of generalized neces-
sary or sufficient conditions for optimality. This in turn receives impetus from
research in numerical methods of optimization that invoive nonsmooth functions gen-
erated by decomposition, exact penalty representations, and the iike. The idea essen-
tially is to provide tests that either esteblish (near) optimality (perhaps stationarity)
of the point already attained or generate a feasibie direction of improvement for mov-

ing to a better point.

Nonsmooth analysis aiso has other important aims, however, which should not be
overlooked. These include the study of sensitivity and stability with respect to pertur-
bations of objective and constraints. In an optimization problem that depencs on a
parameter vector v, how co variations in v affect the optimal value, the optimal sciu-

tion set, and the feasible solution set? Can anything be said about rates of change?

This is where Lipschitzian properties take on special significance. They are
intermediate between continuity and differentiability and correspond to bounds on
possible rates of change, rather than rates themselves, which may not exist, at least in
the classical sense. Like convexity properties they can be passed along through vari-
ous constructions where true differentiability, even if one-sided, would be iost. Furth-
ermore, they can be formulated in geometric terms that suit the study multifunctions
(set-valued mappings), a subject of great importance in optimization theory but for

which classical notions are almost entirely lacking.

It is in this light that the direclional derivatives and subgradients introduced by
T.H. Clarke [1] [2] should be judged. Clarke's theory emphasizes Lipschitzian proper-
ties and sturdily combines convex analysis and classical smooth analysis in a singie
iramework. At the present stage of developmeni, thanks to the efforts of many indivi-
duals, it has already had strong effects on almost every area of optimization, from non-
linear programming to the calculus of variations, an¢ also on mathematical questions

beyond the domain of optimization per se.

This is not to say, however, thal Clarke’s derivatives and subgradients are the
only ones that henceforth need to be considered. Special situations certainly do
require special insights. In particular, there are cases where special one-sided first
and second derivatives that are more finely tuned than Ciarke’s are worth introducing.
Significant and useful resuits can be obtained in such manner. But such results are

likely to be relatively limited in scope.
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The power and generality of the kind of nonsmoolh analysis that is based on
Clarke's ideas can be credited to the foliowing features, in summary:
(a) Applicability to a huge class of functions and other objects, such as setls anc
muitifunctions.
(b) Emphasis on geometric constructions and interpretations.

(e¢) Reduction to classical analysis in the presence of smoothness and to convex

analysis in the presence of convexity.
(d) Unified formulation of optimality conditions for a wide variety of probiems.

(e) Comprehensive calculus of subgradients and normal vectors which makes pos-

sible an effective specialization to particular cases.

(f) Coverage of sensitivity and stability questions and their relationship to

Lagrange multipliers.

(g) Focus on local properties of a "uniform' character, which are less likely to
be upset by slight perturbations, for instance in the study of directions of

descent.

(h) Versatility in infinite as well as finite-dimensional spaces and in treating the
integral functionals and differential incliusions that arise in optimal corniroi,

stochastic programming, and elsewhere.

In this paper we aim at putting this theory in a natural perspective, fi\rst. by dis-
cussing its foundations in analysis and geometry and the way that Lipschitzian proper-
ties come to occupy the stage. Then we survey the results that have been obtained
recently on sensitivity and stability. Such resuits are not yet familiar to many
researchers who concentrate on optimality conditions ané their use in aigorithms.
Nevertheless they say much that bears on numerical matters, and they demonstrate

well the sort of challenge that nonsmooth analysis is now able to meet.

1. CRIGINS OF SUBGRADIENT IDEAS

In order to gain a foothold on this new territory, it is best to begin by thinking
about functions f: R™ —R tha! are not necessarily smooth but have strong one-sided

directional derivatives in the sense of

lim f(x+th') —f(z) G
te0 {
h’'-h

fi(zik) =

’. by
i.)
S

Examples are (finite) convex functicns [3] and subsmocth funciions, the latter being

by definition representable locealiy as



f(z) =max fg(z), (1.2)
A

3 . v o . ~ ! » I3
where S is a compact space (e.g., a finite, discrete index set) and Efs is €S| isa family
of smooth functions whose vaiues and derivatives depend continuousiy on s and z
jointly. Subsmooth functions were introduced in [4]; all smooth functions and all finite

convex functions on R™ are in particular subsmooth.

The formula given here for f'(z;h) differs from the more common one in the
literature, where the limit A"—A is omitted (weak one-éided directional derivative).
t corresponds in spirit to true (strong) differentiability rather than weak differentia-
bility. Indeed, under the assumption that f'(z,~) exists for all A (as in (1.1)), one has
S differentiable at z if and only if f'(z;~) is linear in A. Then the one-sided limit ¢40
is actually realizable as a two-sided limit £ —0.

The classical concept of gradient arises from the dualily between linear functions
on R™ and vectors in R™. To say that f’(z;k) is linear in h is to say that there is a

vector y € R™ with

f'(z:h)=y'h forall hA. (1.3)

This v is called the gradient of f at z and is denoted by Vf (z).

In a similar way the modern concept of subgradient arises from the duality
between sublinear functions on #™ and convex subsets in ™. A function [ is said to be

subdblinear if it satisfies
LAh Fo+ A hy) S MI(RY) +ooo+ Al (Ry) (1.4)

when A120, A =0,
t is known from convex analysis [3, §13] that the finite sublinear functions I on R™ are
precisely the support functions of the nonempty compact subsets ¥ of R™: each 1

corresponds to a unique Y by the formuia

l(h) =max y-h forall A. (1.5)
yeY
Linearity can be identilied with the case where Y consisis of just a single vector y.
It turns oul that when f is convex, and more generally when f is subsmooth [4],
the derivative f’(z,h) is always sublinear in A. Hence there is a nonempty compact

subset ¥ of R™, uniquely determined, such that

S (z:R) =ma>}<, w-h forall A. (1.8)
yE



This set ¥ is denoted by 8f (z), and its elements vy are called subgradients of f at =.

With respect to any local representation (1.4), one has

Y =co{Vf (z) ‘s €S, |, where S; = argmax f¢(z) 1.7)
seS

(co = convex hull), but the set Y = &f (z) is of course by its definition independent of

the representation used.

In the case of f convex [3, §23] one can define subgradients at z equivalently as

the vectors ¥y such that

fHhef)+y(zx'—z) forall =" (1.8)

For f subsmooth this generalizes to

fheflz)+y (' —z)+o(iz’~z ), (1.9)

but caution must be exercised here about further generalization to functions f that
are not subsmooth. Although the vectors ¥ satisfying (1.9) do always form a cliosed
convex set Y at z, regardless of the nature of f, this set Y does not vieid an extension
of formula (1.8), nor does it correspond in general to a robust concept of directional
derivative that can be used as a substitute for f’(z;A) in (1.6). For a number of years,

this is where subgradient theory came to a halt.

A way around the impasse was discovered by Clarke in his thesis in 1973. Clarke
took up the study of functions f: R™ - R that are locally Lipschitzian in the sense of

the difference quotient

TEy-f@&) s zr—z (1.40)

being bounded on some neighborhood of each point z. This class of functions is of
intrinsic value for several reasons. First, it includes all subsmooth functions and con-
sequently all smooth functions and all finite convex functions; it also inciudes all finite
concave functions and all finite saddie functions (which are convex in one vector argu-
ment and concave in another; see [3, §35]). Second, it is preserved under taking linear
combinations, pointwise maxima and minima of collections of functions (with certzain
milé assumptions), integration ané other operations of obvious importance in optimiza-
tion. Thirc, it exhibits properties that are closely related to differentiability. The
iocal boundecdness of the difference quotient (1.10) is such a property itseli. In fact

when f is loczlly Lipschitzian, the gradient Vf(z) exisis for ail but a negligitle set of

points = inn R™ (the classical theorem of Rademacher, see 733).



Clarke discovered tlhat when f is locally Lipschitzian, the special derivative

expression

Fo(zih) = lim sup LEZIRD) (@)

s p (1.11)

is always a finite subiinear function of A. Hence there exists a unigue nonempty com-

pact convex set Y such that

SJ(z;h) =max v h forall A. (1.12)
yEeYy
Moreover
S (x;h)=1"(z;h) forall A when f is subsmooth. (1.13)

Thus in denoting this set Y by 4f (z) and cailing its elements subgradients, one arrives
al a natural exlension of nonsmooth analysis to the class of all locally Lipschitzian
functions. Many powerful formuias and rules have been established for calculating or
estimating 8f (z) in this broad context, but it is not our aim to go into them here; see

[2] and [8], for instance.

It should be mentioned that Clarke himself did not incorporate the limit A'—h
into the definition of f°(z;h). but because of the Lipschitzian property the value
obtained for f°(x;h) is the same either way. By writing the formula with A’—h one is
able to see more clearly the relationship between f°(z;i) and f'(z;~) and also to
prepare the ground for further extensions to functions f that are merely lower sem-
icontinuous rather than Lipschitzian. (For such functions one writes =’ —f in place
of z’ — x to indicate that z is to be approached by z’ only in such a way that

S(&x’) — f(z). More will be said about this iater.)

Some people, having gone along with the developments up until this point, begin to
balk at the 'coarse’” nature of the Clarke derivative f°(z;k) in certain cases where f
is mnot subsmooth and nevertheless is being minimized. For exampie, Iif
SJ(z) = -'z!' +1'2 2% one has @GR =k | whereas S (C;R) exists too but
S CRrR)=— ‘h . Thus f’ reveals that every h #0 gives a direction of descent from O,
in the sense of wvielding f'(C;R)<0, bul f° reveals no such thing, inasmuch as
F°(O;R) > 0. Because of this il is feared that f° does not embody as much informaticn
as f’ andé therefore may nol be enlirely suitakie for the stalement of necessary condi-

tions for a minimum, lel alone for emplovment in algorilnms of descent.
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Clearly f° cannol replace f’ in every situation where the two may differ, nor has
this ever been suggested. Bui even in face of this caveatl there are arguments to be
made in favor of f° that may heip to iliuminate its nature ancd the supporiing motiva-
tion. The Clarke derivalive f° is oriented towards minimization problems, in contrast
to f’., which is neutral between minimization and maximizalicn. In addition, it
emphasizes a certain uniformity. A vector A with f°(x;h) < 0 provides a descent

’

direction in a strong stable sense: there is an & > 0 such that for all ' near z, A’

near h, and positive ¢t near 0, one has

Sfx'+th) <f(zx') —te.

A vector A with f'(z;R) <0, on the other hand, provides descent oniy from z; at
points z’ arbitrarily near to z it may give a direction of ascent instead. This instabil-
ity is not without numerical consequences, since x might be repiaced by z’ due to

round-off.

An algorithm that relied on finding an hA with f'(z;h) <0 in cases where
Fe(z;h) =0 for all » (such an z is said to be subsitationary poini) seems unlikely to
be very robust. Anyway, it must be realized that in executing a method of descent
there is very little chance of actually arriving aiong the way at a point z that is subs-
tationary but not a local minimizer. One is easily convinced from examples that such a
mishap can only be the consequence of an unfortunate choice of the starting point and
disappears under the slightest perturbation. The situation resembles that of ¢ycling in

the simplex method.

Furthermore it must be understood that because of the orientation of the defini-
tion of f° towards minimization, there is no justice in holding the notion of substa-
tionarity up to any interpretation other than the following: a substationary point is
either a point where a local minimum is attained or one where progress towards a
local minimum is "confused’. Sometimes, for instance, one hears cited as a failing of f°
that f' is able to distinguish between a local minimum and a local maximum in having
f'(z;h) =0 for all A in the first case, but f'(z;h) =0 for ail A in the second, whereas
F(z;R) =0 for all A~ in both cases. But this is unfair. A one-sided orientation in
nonsmooth analysis is merely a reflection of the fact that in virtually all applications
of optimization, there is unambiguous interest in either maximization or minimization,

but nol both. For theoretical purposes it might as well be minimization.

Certainly the idea that a first-order concept of derivative, such as we are dealing
with here, is obliged to provide conditions that distinguish effectively between a local
minimum and a local maximum is out of line for other reasons. Classical analysis makes

no attempt in that direction, without second derivatives. Presumably, second
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derivative concepts in nonsmooth analysis will eventually furnish the appropriate dis-
tinctions, ¢f. Chaney [7].

A final note on the question of f° versus f' is the reminder that f°(z:h) is
defined for any locally Lipschitzian function f and even more generally, whereas

J'(z;h) is only defined for functions f in a narrower class.

An important goal of nonsmooth analysis is not only to make full use of Lipschitz
continuity when it is present, but also to provide criteria for Lipschitz continuity in
cases where it cannot be known a priori, along with corresponding estimates for the
local Lipschitz constant. For this purpose, it is necessary to extend subgradient
theory to functions that might not be locally Lipschitzian or even continuous every-
where, but merely lower semicontinuous. Fundamental examples of such functions in
optimization are the so-called marginal functions, which give the minimum value in a
parameterized problem as a function of the parameters. Such functions can even take

on oo,

Experience with convex analysis and its applications shows further the desirabil-
ity of being able to treat the indicator functions of sets, which play an essential role in

the passage between analysis and geometry.

In fact, the ideas that have been described so far can be extended in a powerful,
consistent manner to the class of all lower semicontinuous functions f: #" — R , Wwhere
R= [—e,»] (extended real number system). There are two compiementary ways of
doing this, with the same result. In the continuation of the analytic approach we have

been following until now, a more subtle directionai derivative formula

R CHAE limo [lim sup [ inf S +th)=f &) ]] (1.14)
Ew

ti0 lh'—h e t
::’-_f.r

is introduced and shown to agree with f°(z;h) whenever f is locally Lipschitzian and
indeed whenever f°(z;R) (in the extended definition with z’ —yZ, as mentioned ear-
lier) is not +e. Moreover f'(z:h) is proved always to be a lower semicontinuous, sub-
linear function of A (extended-real-valued). From convex analysis, then, it follows
that either f'(z:0) = —» or there is a nonempty closed convex set Y cR™, uniquely

determined, with

fHUz:h) = iug'y-h for all hA. (1.125)

This is the approach followed in Rockafellar [8], [9]. One then arrives at the
corresponding geometric concepts by taking f to be the indicator &, of a closed set C.

For any & € C, the functiorn A = 55(: iR) is itself the indicator of a certain closed set
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Tr(z) which happens aiways to be a convex cone; this is the Clarke tangent cone to C

at . The subgradient set

Ne(z) = 86p(x), (1.16)

on the other hand, is a ciosed convex set too, the Clarke normal cone to C to z. The

two cones are polar to each other:

Np(z) =Tp(z)°, Te(x) = Np(z)°. (1.17)

In a more geometric approach to the desired extension, the tangent cone Tp(z)
and normal cone Np(z) can first be defined in a direct manner that accords with the
polarity relations (1.16). Then for an arbitrary lower semicontinuous function
f: R" —FR and point z al which f is finite, one can focus on Tp(z.f(x)) and
Np(z.f (z)), where E is the epigraph of f (a closed subset of R™ *1y. The cone
Tp(z.f (z)) is itself the epigraph of a certain function, namely the subderivative A =

f(z:;h), whereas the cone Np(z .f (z)) provides the subgradients:

87 (=) = {y €R™ | (y,—1) € Np(z.f (z))i. (1.18)

The polarity between Tp(z.f (z)) and Np(z.f (z)) yieids the subderivative-subgradient
relation (1.14). (Clarke’s original extension of 8f to lower semicontinuous functions
[1] followed this geometric approach in defining normal cones directly and then invok-
ing (1.17) as a definition for subgradients. He did not focus much on tangent cones,
however, or pursue the idea that Tp(z.f (z)) might correspond to a reiated concept of

directional derivative.)

The details of these equivalent forms of extension need not occupy us here. The
main thing to understand is that they yield a basic criterion for Lipschitzian con-

tinuity, as follows.

THEOREV. 1 (Rockafellar [10]). For a lower semicontinuous function f: R" —R
actually to be Lipschilzian on some neighborhood of the point z, it is sufficient
(as well as necessary) that the subgradient set 0f () be nonempty and dbounded.
Then one has

.. z)=f(z) v P
lim sup f(.__,), {( ) = max Yy . 1.15)
T~z z = YyE8f(x)

.
I’ —+Z
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This criterion can be applied without exact knowiedge ol ¢f (z) but oniy an esti-
mate thal ¢ # 0f (x) C Y for some sel Y. If Y is boundec, one may conciude that f is

locally Lipschitzian around z. Iif it is known that fy i < A for all ¥ €Y, one has from
(1.19)

| ] i’ H
flEY—-f) =XNiz”"—z’i for z' anéd z" near z.

2. LAGRANGE MULTIPLIERS AND SENSITIVITY

Many ways have been founc for deriving optimality conditions for probiems with
constraints, but not all of them provide full information about the Lagrange multipliers
that are obtained. The test of a good method is that il should lead to some sort of
interpretation of the multiplier vectors in terms of sensitivity or generalized rates of
change of the optimal value in the problem with respect to perturbations. Until quite
recently, a satisfactory interpretation along such lines was available only for convex
programming and special cases of smooth nonlinear programming. Now, however, there
are general results that apply to all kinds of probiems, at least in ™. These results
demonsirate well the power of {the new nonsmooth analysis and are not matched by any-

thing achieved by other techniques.

Let us first consider a nonlinear programming probiem in its canonical parameter-

ization:

(Py) minimize g(z) subjectto z€ X and

g;(@)+u; =0 for i=i,..s,

=0 for i=s+1i,....m,

N . . T - . n - . -
where g.94,....0,, are iocally Lipschitzian functions on £ ané X is a closed subsei of

m

R"™; the u,;’'s are paramelers and form a vector u €R™. By analogy with what is known
in particular cases of (F,), one can formulate the potential optimality condition on a

feasible solution x, namely that
0 €8g(z) + 3,7-1v; 89;(z) + Np(z) with (2.2)

v; 20and y;ig; (z)+u;. =0 for i=1,...,s,

and a corresponding constraint gualification at z:
the only vector ¥ =(¥4, . . . , ¥ ) satisfying the version (2.2)

of (2.1) in which the term Gg (x) is omittec is ¥ =0.



-

In smooth programming, where the functions ¢.¢,, .. .,9, are ail continucusly
differentiable and there is no abstract constraint z € X, the first relation in (2.1)

reduces to the gradient equation

=Vg(z) + E-,{';lyiv"gi (z).

and one gets the classical Kuhn-Tucker conditions. The constraint qualification is then
equivalent (by duality) to the well known one of Mangasarian and Fromovitz.

In conver programming, where g.,g,,....g¢ are (finite) convex functions,
9g41:-:9y are affine, and X is a convex set, condition (2.1) is always sufficient for
optimality. Under the constiraint qualification (2.2), which in the absence of egualily

constraints reduces to the Slater condition, it is also necessary for optimality.

For the general case of (P, ) one has the following ruie about necessity.

THEOREM 2 (Clarke [11]). Suppose z is a locally optimal solution to (F,) at
which the constraint qualification (2.2) is satisfied. Then there is a muliiplier

vector v such that the optimality condition (2.1) is satisfied.

This is not the sharpest result that may be stated, although it is perhaps the sim-
plest. Clarke’s paper [11] puts a potentially smailer set in piace of Np(z) and provides

s N

along side of (2.2) a less stringen! constraint qualification in terms of "caimness” of

(P,) with respect to perturbations of w. Hiriart-Urruty [i2] and Rockafellar [13]
contribute some alternative ways of writing the subgradient reiations. For ocur pur-
poses here, let it suffice to mention that Theorem 2 remains true when the optimality

condition (2.1) is given in the slightly sharper and more eiegant form:

0 €dg(z) +y8G(z) + Ny(z) with y eN (G(z)+ u), (2.3)

where G(z) =(g(x),....g, (z)) and
C =fwer™ iwiSO for ¢=i,...,s and w;=0 for i=s+i,...m}l. (2.4)

The notation 8G (z) refers to Clarke’s generalized Jacobian [2] for the mapping &; one

has

Y9G (z) = 0( L =1v19:)(=). (2.5)
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Theorem 2 has the shining virtue of combining the necessary conditions for smooth
programming ané the ones for convex programming into a single statement. Moreover
it covers subsmooth programming and much more, and it aliows for an abstract con-
straint in the form of z € X for an arbitrary closed sel X. Formuilas for calculating
the normal cone Ng(z) in particular cases can then be used to achieve additionai spe-
cializations.

What Theorem 2 does nof do is provide any interpretation for the muitipliers y;.
In order to arrive at such an interpretation, it is necessary to look more closely at the

properties of the marginal function

p (v) = optimal value (infimum) in(P,, ). (2.6)
This is an extended-reai-valued function on ™ which is lower semicontinuous when the
following mild inf-boundedness condition is fulfiiled:

Foreach w € R™, c CR and ¢ >0, thesetofalli z € X (R.7)

satisfying g(z) < @, g;(z) = u;+e for ¢=1,...,s, and

u;—e<g,(z)su,;+¢ for i=s+1,..,m, is bounded in R™.
This condition also implies that for each u with p(u) < o (i.e. with the constraints of
(P, ) consistent), the set of all (globally) optimal solutions to (£, ) is nonempty and com-

pact.

In order to state the main general result, we let
Y(uw) = set of all multiplier vectors y that satisfy (2.1) (2.83

for some optimal solution z to (P,).

THEOREVM. 3 (Rockafellar [13]). Suppose the inf-boundedness condition (2.7) is
satisfied. Let u be such that the consiraints of (P, ) are consistent and every
optimal solution x to (P,) satisfies the consiraint qualification (2.2). Then 6p(u)

is a nonempty compact set with

Gp(u) Cco¥(u) and ext dp(u) CY(w). (2.9)

(where “ext”’ denotes exireme points). In pariicular v is locally Lipschitzian

around u with
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p°(uwh)< sup y'h forall h. (2.10)
yeY(u)

Indeed, any A satisfying !y <A Jor all y €Y(u) serves as a local Lipschitz con-

stant:

ip(u”)—p(u’)is AMu”—u’! when u’ and u’” are near w. (2.11)

For smooth programming, this result was first proved by Gauvin [14]. He demon-
strated further thal when (P, ) has a unique optimal solution z, for which there is a
unique multiplier vector ¥, so that Y(w) = {y{, then actually p is differentiable at u
with ¥p(u) = v. For convex programming one knows (see [3]) that 8p(u) = ¥Y(u)

always (under our inf-boundedness assumption) and conseguently

~N

p'(uikh) = max vy‘h . (
y¥(u)

Minimax formulas that give p’(u;h) in certain cases of smocth programming where
Y(w) is not just a singieton can be for exampie found in Demyanov and Malozemov (157
and Rockafeliar [15]. Aside from such special cases there are no formuias known for
p'(u;h). Nevertheless, Theorem 3 does provide an estimate, because
p'(u;h) < p°(u;h) whenever z’'(u ;i) exists. (Il is interesting to note in this connec-
tion that because p is Lipschitzian around « by Theorem 3, it is actually differentiabie

aimost everywhere around w by Rademacher’s theorem.)

Theorem 3 has recently been broadened in [6] to include more general kinds of

perturbations. Consider the parameterized problem

(@,) minimize f(v,x) over all z satisfying

Flv,z) cCand (v,x) € D,

where v 1is a parameter vector in Rd, the functions Jf: R® X R™ R and
F: R% x R™ —R™ are locally Lipschitzian, and the sets C cR™ and D ¢ REXR™ are
closed. Here C couid be the cone in (2.4), in which event the constraint F(v,z) € C

would reduce to

fi(w.z)=0 for i=i,..s,

=0 for i=s+i,....m,

but this choice of C is not required. The condition {(v,z) € D may equivaiently be writ-
m

ten as = € ['(v), where ' is the cilosed multifunction whose graph is D. It represents

therefore an abstract constraint thal can vary with v. A fixed absiract constrzint



o
KN
!

z € K corresponds to I'(v) =K, D=RY x K.
In this more general setling the appropriate optimality condition for a feasibie

solution z to (Qv) is
(z.0) e bf(v,xz) +ydF(v,z) + Np(v,z) (2.13)

for some y and z with ¥y &N (F(v,z)),

and the constraint qualification is
the oniy vector pair (¥.,z) satisfving the version of (2.13) (.24)

in which the term 4f (v,z) is omitted is (¥,z)=(0,0).

THEOREV. 4 (Rockafellar [6, §8]). Suppose that z is a locally optimal soluticn
to (@,) at which the constraint gqualification (2.14) is salisfied. Then there is a

multiplier pair (v .,z) such that the optimality condition (2.13) is satisfied.

Theorem 4 reduces to the version of Theorem 2 having (2.3) in place of (2.1) when
(@) is taken to be of the form (Py), namely when

f(.z)=g(z), F(v.z)=G(z)+ v, D=R™ x K (R™=R%), and C is the cone in (2.4).

For the corresponding version of Theorem 3 in terms of the marginal function

g (v) = optimal value in (@,), (2.15)

we take inf-boundedness to mean:
led

For each ¥ €R%, a€R and &>0, theseliofall z (2.18)

: . a1 ! -
satisfying for some v with ‘v —v =¢
the constraints F(v,z)eC, (v,xz)eD, and
having f(v,z) = «, is bounded in R".
Again, this property ensures thal ¢ is lower semicontinuous, and that for every v for

which the constraints of (@,) are consistent, the set of optimal soiutions to (&,) is

nonempty and compacti. Let

Z(v) =set of all vectors z that salisfy the muliiplier (2.17)



condition (2.13) for some optimal solution

z to (&,) and vector y.

THEOREX 5 (Rockafellar {6, §8]). Suppose the inf-boundedness condition (2.16)
is satisfied. Let v be such that the constraints of (Qv) are consistent and every
optimal solution z to (@,,) satisfies the constraint qualification (2.14). Then dg(v)

15 a nonempty compact set with

8g(v) CcoZ(v) and ext 6g(v) c Z(v). (2.18)

In particular g is locally Lipschitzian around v with

g°(vih)=< sup =z'h Sforall h. (2.18)
zeZ(v)

Any A satisfying iz <A Jorall z € Z(v) serves as a local Lipschitz constant:

! i ! rr .t 3 . rr
igvN)—q@) sAv'—v’'l when v’ and v’ are near v. (2.20)

The generality of the constraint structure in Theorem 5 wili make possibie in the

next section an application to the study of multifunctions.

3. STABILITY OF CONSTRAINT SYSTEMS

The sensitivity results that have just been presented are concerneda with what
happens to the optimal value in a problem when parameters vary. It turns out, though,
that they can be applied tc the study of what happens to the feasible solution set and
the optimal solution set. In order to explain this and indicate the main results, we must
consider the kiné of Lipschitzian property that pertains to multifunctions (set-valued
mappings) and the way that this can be characterized in terms of an associated dis-

tance function.

Let I': RY 3R™ be a closed-valued multifunction, i.e. ['(v) is for each v er® a
closed subset of ™, possibly empty. The motivating examples are, first, I'(v) taken to
be the set of all feasible solutions to the parameterized optimization problem (@)

above, and second, . (v) taken to be the set of all optimal soiutions to (@,).

One says that I'(v) is locally Lipschitzian around v if for all v’ and v’ in some

neighborhood of v one has ['(v’) ané ['(v”’) nonempty and bounded with

Ty cl@) +x'v'—v' . B

N
W
i

B
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Here B denotes the ciosed unit ball in £™ and A is a Lipschitz constant. This property
can be expressed equivalently by means of the classical Hausdorff meiric on the space

of all nonempty compact subseis of R™:

haus (I'(v "), T(¥)) = A vy’ | when v" and v’ are near wv. (3.2)

It is interesting to note that this is a "differential” property of sorts, inasmuch as it
deals with rates of change, or at least bounds on such rates. Until recently, however,
there has not been any viable proposal for "differentiation” of I' that might be associ-
ated with it. A concept investigated by Aubin [17] now appears promising és a candi-
date; see the end of this section.

Two other definitions are needed. The multifunction I is locally bounded at v if
there is a neighborhood V of v and a bounded set SCR™ such that ['(v’)CS for all
v'eV. It is closed at v if the existence of sequences f{v,| and {z,! with
v, —v, g, €['(v, ) and z, —»z implies z €['(v). Finaily, we introduce for I the distance
Sunction

dr(v,w) =dist (I'(v),w) = mi? )]Ix—w : (8.3)
rel(v

The following general criterion for Lipschitz continuity can then be stated.

THEOREM. 6 (Rockafellar [18]). The multifunction | is locally Lipschitzian
around v if and only if I is closed and locally bounded at v with I'(v) = ¢, and its

distance function drpis locally Lipschitzian around (v,z) for each x c ['(v).

The crucial feature of this criterion is that it reduces the Lipschitz continuity of
I" to the Lipschitz continuity of a function dr which is actually the marginal function
for a certain optimization problem (3.3) parameterized by vectors v and w. This prob-
lem fits the mold of (@,), with v repiaced by (v,w), and it therefore comes under the
control of Theorem 5, in an adapted form. One is readily able by this route to derive

the following.

THEOREN 7 (Rockafellar [18]). Let I be the multifunction that assigns to each

v € R? the set of all feasible solutlions to prodlem (Q,):

T(w)=!z F(v.z) €C and (v,z) € DJ. (3.4)
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Suppose for a given v that ' is locally bounded at v, and that ['(v) is nonempty
with the constraint qualification (2.14) satisfied by every z ¢ ['(v). Then [ is

locally Lipschitzian around v.

COROLLARY. ZLet I RY3IR™ e any multifunction whose graph
D= {(v,z) |z €l'(v)] is closed. Suppose for a given v that ' is locally bounded at v,

and that ['(v) is nonempty with the following condition satisfied for every x €I(v):

the only vector z with (z,0) € Np(v,xz) is z =0. (3.5)

Then I is locally Lipschitzian around v.

The corollary is just the case of the theorem where the constraint F(v,x) € C is
trivialized. It corresponds closely to a result of Aubin [17], according to which [ is

"pseudo-Lipschitzian"” reiative to the particular pair (v,z) with z € I'(v) if
the projection of the tangent cone Tp(v,z) C RAxR™ (3.6)

on RY isall of RY.

Conditions (3.5) and (3.6) are equivalent to each other by the duality between Np(v .z

and Tp(v,xr). The "pseudo-Lipschitzian” property of Aubin, which will not be defined
here, is a suitable localization of Lipschitz continuity which facililates the treatment of
multifunctions [' with I'(v) unbounded, as is highly desirable for other purposes in
optimization theory (for instance the treatment of epigraphs dependent on a parameter
vector v). As a matter of fact, the results in Rockafellar [18] build on this concepti of
Aubin and are not limited to locally bounded multifunctions. Only a special case has

been presented in the present paper.

This topic is also connected with interesting ideas that Aubin has pursued towards
a differential theory of multifunctions. Aubin defines the multifunction whose graph is

the Clarke tangent cone Tp(v,z), where D is the graph of I, to be the derivative of T

at v relative to the point £ € ['(v). In denoting this derivative muitifunction by F,_,’I,

we have, because Tp(v,z) is a closed convex cone, that r

vz 1S & closed convez process
T

from R to R™ in the sense of convex analysis [3, §39]. Convex processes are very
much akin to linear transformations, and there is quite a convex algebra for them (see
[3. §39], {181, and [20])). In particuiar, [, ; has an adjoint [, : R™ 3RY, which turns

out in this case to be the closed convex process with

goh T, % = {w,2) ' (z,—w) € Np(v.2)i.
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In these terms Aubin’'s condition (3.5) can be written as dom I, . = Y, whereas the
v,T

0) = {0]. The latter is equivalent to I
L v, T

ﬁr

dual condition (3.5) is lv,.r( being iocally

bounded at the origin.

There is too much in this vein for us to bring forth here, but the few facts we have
cited may serve to indicate some new directions in which nonsmooth anaiysis is now
going. We may soon have a highly developed apparatus that can be applied to the study
of all kinds of multifunctions and thereby to subdifferential mullifunctions in particu-
iar.

For example, as an aid in the analysis of the stability of optimal solutions and mul-
tiplier vectors in problem (@, ), one can take up the study of the Lipschitzian proper-

ties of the multifunction
['(v) =setof all (z,v.2) such that =z isfeasiblein (&@,)

and the optimality condition (2.13) is satisfied.

Some results on such lines are given in Aubin [17] and Rockafellar [21].
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