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FOREWORD 

This paper  is the survey of recent  developments in nonsmooth analysis and i ts 
applications to  optimization problems. A t  f i rs t  the motivations of nonsmooth 
analysis are discussed and concepts of derivative fo r  Lipschitzian and lower sem- 
icontinuous functions are presented. Then the concepts of nonsmooth analysis are 
used t o  get  sensitivity resul ts fo r  general nonlinear programming problems and to  
clari fy the interpretation of the Lagrange multipliers. Promising directions of 
fu r ther  research are indicated. 
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7HPSCEIEZIFL,Y S Y & L ? Z Y  LN OPTEIZATI3K:  TEE ROLE OF NONSKO3TH Ahr&YSiS 

R.T. Rockafellar' 

The motivations of nonsmooth znzlysis a r e  ciiscussed. Appiications a r e  given t o  

Line sensitivity of optimal vaiues, t he  interpretat ion of i ag range  multipliers, and the  

stabi i i ty of constra int  systems uncier perturbntion. 

it has  been recognized f o r  some time t ha t  t he  tools of ciassical anniysis a r e  not 

adequate f o r  a sat is factory t reatment of problems of optimization. Tnese toois work 

f o r  t h e  characterizat ior,  of locaily optimal solutions t o  problems where a smooth (i.e. 

continuously dif ferentiable) function is minimized o r  maximized. subject  t o  finiteiy mar,)' 

smooth equality constraints. They aiso se rve  in t he  study of per turbat ions of such con- 

s t ra in ts ,  namely through t h e  implicit function theorem and i ts  consequences. A s  soon 

as inequality constra ints a r e  encountered, however, they begin t o  fail. One-sided 

derivat ive conditions start t o  rep lace  two-sided conditions. Tangent cones rep iace  

tangent subspaces. Convexity and convexification emerge as more natura l  than l inear- 

ity and l inearization. 

in  problems where inequality constra ints actualiy predominate ove r  equations, as 

is  typical in most modern appl icat ions of optimization, a qualitative cnange occurs .  Ko 

longer is  t h e r e  any simple way of recognizing which constra ints a r e  ac t ive  in a neigh- 

borhood of a given point of tine feasible set, such as t h e r e  would be  if t h e  se t  were z 

cube o r  simplex, say. The boundary of t he  feasible set def ies easy descr ipt ion and may 

best  be  thought of as a nonsmooth hypersurface.  I t  does not t a ~ e  long t o  reai ize too  

t ha t  t he  graphs of many of t h e  object ive functions which natural ly a r i se  a r e  nonsmooth 

in a simirar way. Tnis is  t he  motivation f o r  much of t h e  e f for t  t ha t  nas  gone into 

* Research supported in port by a grant f rom the  Nationai Science Foundation a t  t he  Un ive rs i t y  oi 
Washington, Sea t t i e .  



introducing and deveioping var ious concepts of "tangent cone!', "normal cone", "direc- 

tional derivat ive" and "generaiized g r a d i e ~ t " .  Tnese concepts nave cnznged the  face 

of optimization theory  and given b i r th  t o  a new subject ,  nonsxro~th analysis, which is 

affecting o the r  areas of matnematics as weil. 

An important aim of nonsmooth analysis is  the formuiztion of generaiized neces- 

sa ry  o r  suff ic ient conditions f o r  optimality. This in tu rn  rece ives impetus frorr. 

r esea rch  in numerical methods of optimization thz t  invoive nonsinooth functions gen- 

e ra ted  by decomposition, exac t  penalty representat ions,  and t he  i ike. The idea essen- 

tiaily i s  t o  provide tests t ha t  e i t he r  establish (near)  optimaiity (perhaps stzt ionar i ty)  

of t he  point a l ready attained o r  generz te  a feasibie direct ion of improvement f o r  mov- 

ing to  a be t t e r  point. 

Sonsmooth anziysis ziso h a s  o ther  important aims, however, which shouid not be 

overlooked. Tnese include t he  study of sensitivity and stabi l i ty with r espec t  t o  pe r tu r -  

bations of object ive and constra ints.  In an optimization problem tha t  depenes on a 

parameter  vector  v ,  now t o  variat ions in ' ~ i  af fec t  t he  optimal value, t he  optimzl soln- 

tion set, and t h e  feasible solution set?  Can anything be  said about  rates of change? 

This is  where Lipschitzian proper t ies  take  on special significance. They a r e  

intermediate between continuity and dif ferentiabi l i ty and cor responz t o  bounds on 

possible r a t e s  of change, r a t n e r  than rates themselves, which may not exist ,  at least  in 

t he  classical sense. Like convexity proper t ies  they can be  passed along through vari-  

ous construct ions where t r u e  dif ferentiabi l i ty,  even if one-sided, would be iost.  Furth- 

ermore,  they can b e  formulated in geometric terms tha t  suit  t h e  study multifunctions 

(set-valued mappings), a sub jec t  of g rea t  importance in optimization tneory  but  f o r  

which classical notions a r e  aimost ent irely lacking. 

I t  i s  in th is  l ight tha t  the  direct ional der ivat ives and subgradients introduced by 

F.H. Clarke [I] [2] snould be  judged. Clarke's theory  empnasizes Lipscnitzian p roper -  

t ies and sturdi ly combines convex anaiysis and ciassical smooth anaiysis in a singie 

framework. A t  t he  p resen t  s tage  of development, thanits to  the  e f for ts  of many indivi- 

duals, i t  has a l ready had s t rong ef fects on almost every  area of optimization, from non- 

l inear programming t o  t he  caiculus of variat ions,  an^ also on mathematicai questions 

beyond t he  domain of optimization p e r  se .  

This is not t o  say,  nowever, thz t  C l a r ~ e ' s  derivat ives and subgradients are t he  

only ones tha t  hencefor th need to be  considerez. Special si tuat ions certa in ly do 

requ i re  specia i  insignts. in par t icu iar ,  t h e r e  a r e  cases where special one-sided f i r s t  

and second der ivat ives t ha t  are more finely tuned than Ciarke's are worth introducing. 

Significant and useful resu i ts  can be oblained. ir, such manner. But such resu l ts  a r e  

likely t o  be re lat ively limited in scope. 



I ;he  power anC generai i ty of the  kind of nonsmooth anaiysis tha t  is  based or, 

Ciarke's i i e a s  can be  credi ted t o  the  foliowing fea tu res ,  in summary: 

(a)  Applicability to  a huge c lass of functions and o the r  objects,  such as sets acd. 

mxitifunctions. 

(b) Emphasis on geometric construct ions and. interpretat ions.  

(c)  Reduction to  classical analysis in t he  presence of smoot'nness and t o  convex 

analysis in t he  presence of convexity. 

(d) Unified formulation of optimality conditions f o r  a wide var iety of probiems. 

(e)  Comprehensive calculus of subgradients and normal vectors  which makes pos- 

sible a n  effect ive specialization t o  par t icu iar  cases.  

(f) Coverage of sensitivity and stabi l i ty questions and t he i r  relat ionship t o  

Lagrange multipliers. 

(g) Focus on iocal p roper t ies  of a "uniform" charac te r ,  which are less likely t o  

be  upset  o y  slight perturbat ions,  f o r  instance in the  study of direct ions of 

descent. 

(h) Versati l i ty in infinite as well as finite-dimensional spaces and in t reat ing t h e  
. . in tegral  functionals and dif ferentiai  inciusions tha t  a r i se  in optima: c o n r o i ,  

s tochast ic  programming, and eisewnere. 

In th is paper  we ai r ,  at putting th is t'neory in a natura l  perspect ive,  f i r s t  by dis- 

cussing i t s  foundations in analysis and geometry and the  way tha t  Lipschitzian proper-  

t ies  come t o  occupy t he  stage.  Tnen we survey t h e  resu l ts  tha t  have been obtained 

recent ly  on sensitivity and stabil i ty. Such resu i ts  a r e  not ye t  famiiiar t o  many 

resea rcne rs  who concentrate on optimality conl i t ions and. the i r  use in aigorithms. 

Nevertheless they say much t ha t  bea rs  on numerical matters,  and they demonstrate 

well t he  s o r t  of challenge t ha t  nonsmooth anaiysis i s  now ab le  t o  meet. 

1. CXIGZ<S OF SUBGRADIEhT DEBS 

in  o r d e r  t o  gain a foothold on th is new t e r r i t o r y ,  i t  i s  best  t o  begin by thinking 

about functions f :  Rn +R t ha t  are not necessar i ly  smooth Sxt have s t rong one-sided. 

direct ional der ivat ives in t he  sense of 

Examples a r e  ( f i ~ i i e )  convex functions [ 3 ]  an6 subsmoctiz functions, t h e  ia t te r  being 

by definition re;reser;table ioca:iy es  



wnere S is a compact space (e.g., a f ini te, d iscre te  index se t )  and ff, 1 s ES 1 is  a family 

of smooth functions whose vaiues and der ivat ives depend continuously on s znd z 

jointly. Subsmooth functions were introduced in [4]; al l  smooth functions and al l  f inite 

convex functions on R~ a r e  in par t icu lar  subsmooth. 

The formula given h e r e  f o r  f ' (z ;A) d i f fers from the  more common one in t he  

l i t e ra tu re ,  where t h e  iimit A'-A is  omitted (weak one-sided di rect ional  derivat ive). 

I t  corresponcis in sp i r i t  t o  t r u e  (strong) differentiabil i ty r a t h e r  than weak dif ferentia- 

bility. Indeed, uncier t he  assumption t ha t  f ' ( z , h )  exists f o r  a l l  h (as  in (1.1)), one has 

f dif ferentiable at z if and only if f ' ( z ; h )  is  l inear in A. Then t h e  one-sided limit t &O 

i s  actual ly real izable as a two-sided Limit t -9. 

The classical concept  of g r a d i e n t  a r i ses  from the  duality between l inear functions 

on Rn anc  vectors  in Rn. To say t ha t  f ' ( z ; h )  i s  l inear in A is  t o  say t ha t  t he re  i s  a 

vector  y E Rn with 

f ' ( z ; h )  = y .A f o r  al l  A. (1.3) 

Tnis y i s  cal led t he  gradient  of f at z and i s  denoted by Of (2) .  

In a similar way t he  modern concept of s u b g r a d i e n t  a r i ses  from the  duality 

between subl inear functions on Rn and convex subsets in Rn . A function L is  said t o  be  

s u b l i n e a r  if i t  sat isf ies 

when Al 2 0, . . ,A, 2 0. 

I t  i s  known from convex anaiysis [3, $131 tha t  t he  finite subl inear functions L on R~ are 

precisely t h e  support  functions of t h e  nonernpty compact subsets Y of Rn:  each L 

corresponds t o  a unique I' by t h e  formuia 

L(h) =max y . h  f o r a l l  A. 
Y EY 

(1.5) 

Linearity can be  identified with t h e  case where 1' consists of just a single vec to r  y .  

I t  t u rns  out t ha t  when f is c o w e x ,  and more general ly when f is subsmooth [4], 

t he  derivat ive f ' ( z  ,A)  is  always subl inear in A. Eence t h e r e  is a nonenpty compact 

subset  Y of R" : uniqueiy determinee, such t ha t  

f f ( z ; h )  =max p . h  f o r  a l l  h. ( I .  6) 
y EY 



This se t  i' is  denoted by af ( z ) ,  and i ts  elements y a r e  called subgradients of f a t  z .  

With respec t  t o  any locai representa t ion (1.4), one has  

Y = c o t V f s ( z ) : s - { ,  wnereS, =argmax  f , ( z )  ( I .  7) 
s € s  

(co = convex hull), but t he  set Y = Zf ( z )  i s  of course by i t s  definition independent of 

the  representat ion used. 

In t h e  case of f convex [3, $231 one can define subgradients at z equivalently as 

t he  vectors  y such t ha t  

f (2 ' )  2 f ( z )  + y . ( z f - z )  f o r  a l i  z'. (1.8) 

For f subsmooth th is general izes t o  

i 
f ( z f )  2 f (z)  + ~ . ( z ' z )  + o ( j 2'-z i ), ( I .  9) 

but caution must be  exerc ised h e r e  about f u r t he r  general izat ion t o  functions f t hz t  

are not subsmooth. Although t h e  vectors  y satisfying (1.9) do  always form a ciosed 

convex se t  I' at z ,  regard less  of t he  nature  of f , th is  set Y does not yieid an  extension 

of formula (1.5), nor  does i t  correspond in general  t o  a robust  concept  of direct ional 

derivat ive t ha t  can be used as a substi tute f o r  f ' ( z ; h )  in (1.6). For a number of years ,  

th is i s  wnere subgradient theory  came t o  a halt. 

A way around t h e  impasse w a s  discovered by Clarke in his thesis in 1973. Clarke 

took up t h e  study of functions f :  Rn + R tna t  a r e  local ly  L t psch i t z i an  :n t he  sense of 

t he  di f ference quotient 

being bounded on some neighborhood, of each point z .  This c lass of hnc t ions  is  of 

intr insic value f o r  severa l  reasons.  Fi rst ,  i t  includes al l  subsmooth functions and. co2- 

sequently a l l  smooth functions and a!! f inite convex functions; i t  a lso inciudes al l  f ini te 

concave functions and a l l  f ini te saddie functions (which are convex in one vec ior  argu- 

n e s t  and. concave in another ;  see [3, $351). Second, i t  is preserved under taking l inear 

combinations, pointwise maxima and minima of coliections of functions (with ce r tz in  

mild assumptions), integrat ion nnd o the r  operat ions of ob-.:ious importance in optimiza- 

tion. ThirC, i t  exhibits p roper t ies  that a r e  closely re la ted t o  differentiabiLity. The 

loczl bo; lnde~ness of t h e  di f ference quotient (1.12) is such z proper ty  i tself .  In fac t  

when f is  iocoi!:: Lipschitzinc, the gra2ier.t Cf ( z )  exists f o r  aii S c t  z negiigi'zie set of 

points z ir. Rn ( the ciassical theorern of Xzdemacher, see  51). 



Clarke discovered that  wnen f is ioczlly Lipscnitzian, t he  specia l  der ivat ive 

expressior. 

is  always a f ini te subi inear function of h .  Hence t h e r e  exists a unique nonempty com- 

pact  convex set Y such tha t  

f " ( ~ ; h )  =max y.h f o r  a l l  h. 
Y EY 

Moreover 

Q " ( x ; h )  = f ' ( z ; h )  f o r  a:i h  when f is  subsmooth. (1.13) 

Thus in denoting th is s e t  'I' by a f  ( x )  and cailing its elements subgradients, one a r r i v e s  

at c natura l  extension of nonsmooth analysis t o  t he  c iass of a l l  locally Lipschitzizn 

functions. Many powerful f o r m ~ l a s  zn6 ru ies  heve been establ ished f o r  caiculating or 

estimating L3f ( x )  in th is broad context,  but i t  is not ou r  aim to  go into them here ;  see 

[2] and [ S ] ,  f o r  instance. 

I t  should be  mentioned tha t  Clarke himself did not incorporate  t he  limit hf+n 

into t h e  definition of f " ( z ; h ) ,  but because of t he  Lipschitzian p roper ty  t he  value 

obtained f o r  f " ( z ; h  ) is  t h e  same e i the r  way. By writing the  formuia with h  '+n one is 

ab le  t o  see  more c lear ly  t he  relat ionship between f " (x  ;h  ) and Q ' ( x  ;h  ) and also t o  

p repa re  tne  ground f o r  f u r t he r  extensions t o  functions Q t ha t  a r e  mereiy lower sem- 

icontinuous r a t h e r  than Lipschitzian. (For such functions one writes x' -f z  in piace 

of x' - x  t o  indicate t ha t  x  is  t o  be approached by x' only in such a way t ha t  

f ( s f )  -+ Q(x).  More will be  said about  th is iater . )  

Some people, naving gone aiong with t he  developments up until th is  point, begin to  

balk a t  t he  "coarse" natxre  of t he  Clarke derivat ive f "(z; iL) in certair; cases where f 

is not subsmooth and nevertheless i s  being minimized. For exampie, if 
/ I  I f ( x )  = - z i 1 l2 one hzs  f O(S;h j = ! h I, whereas f ' (C;h) exists too but  

I I 

f '(9;i;) = - h  . Thzs f '  revea is  t ha t  every  h  +O gives a direct ion of descent  f r o x  0, 

in the  sense of yie!tin,n f '(C;n)<O, but f "  revez is  no such thing, inasmuch as 

f " ( 3 ; h )  > 3. Becznse of th is i t  is fea red  tha t  f O  does not embody zs muck info~mat ior :  

as f '  anci t he re fo re  may not be eaiire' ly suitable f o r  the  statement of necessary condi- 

t ions f o r  a minimur,, ie t  alone for em~inyment  ir; aigoritnms of descsnt .  



Clearly f "  cannot repLace f '  in every situation where the two may di f fer ,  nor kas 

th is ever  been suggested. Eut  even in face of this caveat t he re  a r e  zrguments t o  be 

made in fzvor of f O  that  may heip to  iliumilnate its nature ane the sxpporting motiva- 

tion. The Ciarke derivative f O  is  oriented towards minimizztion probiems, in contrnst 

to  f ', which is neutrai  between minimization and mzxinizztior,. 1;: n?ditior,, it. 

emphasizes a cer ta in  uniformity. A vector  n witk f " ( x  ;h ) < C provides a descent 

direction in a strong stable sense: there  is an E > 0 such that fo r  all z' near  z ,  h' 

near  h , and positive t near  0, one has 

f ( z ' f  t h ' )  < f (z ' )  - t ~ .  

A vector h with f '(z;h) < 0 ,  or, the other  hand, provides descent oniy from x ;  at 

points x '  arb i t rar i ly  near  t o  z i t  may give a direction of ascent instead. This instabil- 

ity is not without numericai consequences, since z might be repiaced by z' b e  to  

round-of f . 

An algorithm that  rel ied on finding an  h with f ' ( x ; h )  < 0 in cases where 

f " ( x ; h )  2 0 f o r  ail h (such an x is said to  be s u b s t a t i o n a r y  point) seems unlikely to  

be  very robust. Anyway, i t  must be realized. that  in executing a method of descent 

t he re  is very l itt le chance of actually arr iv ing aiong the way at a point x that  is subs- 

tationary but not a local minimizer. One is easily convinced from examples that  such 2 

mishap can oniy be the consequence of an unfortunate cnoice of the start ing point and 

disappears under the  slightest perturbation. The situation resembles tha t  of cycling in 

the simplex method. 

Furthermore i t  must be understood that  because of the  orientation of the defini- 

tion of f o  towards minimization, t he re  is no justice in holding the  notion of substa- 

tionarity up t o  any interpretation other  than the following: a substationary point is 

e i ther  a point where a locai min imum is attained o r  one where progress towards a 

local minimum is "confusedv. Sometimes, f o r  instance, one nears  cited a s  a failing of f o  

that  f '  is able t o  distinguish between a iocal minimum and a local maximum in having 

f ' ( x ; h )  2 0 f o r  all h in tine f i rs t  case, but f ' ( x ; h )  s 0 f o r  ail ir ir, the  second, whereas 

f " ( z ; h )  r 0 f o r  all h in both cases. But this is unfair. A one-sided orientation in 

nonsmooth anaiysis is merely a ref lect ion of the fact  that  in virtually all applications 

of optimization, t he re  is unambiguous interest  in e i ther  maximization o r  minimization, 

but not both. For theoretical purposes i t  might as well be minimization. 

Certainly the idea that  a f irst-order concept of derivative, such as we a r e  dealing 

with here ,  i s  obliged to  provide conditions that  distinguish effectively between 2 Local 

minimum and a local maximum is out of l ine f o r  o ther  reasons. Classical anaiysis maites 

no attempt in that  direction, without second derivatives. Presumably: second 



derivat ive concepts in nonsmooth analysis will eventually furnish t he  appropr ia te  ais- 

t inctions, cf .  Chaney [?I. 

A final note on t he  question of f a  versus f' is  t he  reminder tha t  f " ( x ; h )  is  

defined f o r  any locally Lipschitzian funciion f and even more general ly, whereas 

f ' ( x ; h )  is  only defined f o r  functions f in a narrower  class. 

An important goal of nonsmooth analysis i s  not only t o  make full use of Lipschitz 

continuity when i t  i s  present ,  but  a lso t o  provide c r i t e r i a  f o r  Lipschitz continuity in 

cases  where i t  cannot be  known a p r i o r i ,  along with corresponding est imates f o r  t h e  

local Lipschitz constant. For  th is purpose,  i t  is  necessary t o  extend subgradient 

theory t o  functions t ha t  might not b e  locally Lipschitzian o r  even continuous every-  

where, but  merely lower semicontinuous. Fundamental examples of such functions in 

optimization are t h e  so-called marg ina l  functions, which give t h e  minimum value in a 

parameterized problem as a function of tine parameters.  Such functions can even t ake  

on cm. 

Exper ience with convex analysis and i ts  appl icat ions shows f u r t he r  t he  desirabi l-  

i ty of being ab le  t o  treat t he  indicator functions of sets, which play an  essential  ro ie  iri 

t h e  passage between analysis and geometry. 

In fac t ,  t he  ideas tha t  have been descr ibed so f a r  can be  extended. in a powerful, 

consistent manner t o  t h e  c lass of a l l  lower semicontinuous functions f : Rn -, R, where - 
R = [-=,-I (extended rea l  number system). There are two compiementary ways of 

doing this, with t h e  same resu l t .  In t h e  continuation of t h e  analyt ic approach w e  have 

been following until now, a more subt le direct ionai der ivat ive formula 

i s  introduced and shown t o  a g r e e  with f " ( z ; h )  whenever f is  locally Lipschitzian and 

indeed whenever f " ( z ; h )  (in t h e  extended definition with x '  J ~ Z ,  as mentioned ear- 

l i e r )  i s  not +-. Moreover f ' ( z ; h )  is  proved always t o  be  a lower semicontinuous, sub- 

l inear function of h (extended-real-valued). From convex analysis, then,  i t  follows 

t ha t  e i the r  f '(z;O) = -- o r  t h e r e  is  a nonempty closed convex set Y CRn, uniquely 

determined, witin 

f ' ( z ; h )  = su y - h  f o r  a l l  h .  't Y E  

T l a i s  ' is  the  approach followed in Rockafel lar [8], [9]. One then a r r i ves  at t h e  

corresponding geometric concepts by taking f to  be the indicator 6C of a cioseG set C .  

For any z E C ,  the  functior, h 4 6 ; ( z  l k )  is :tself t'ne indicator of z cer ta in  ciosed se t  



TC(z) which happens aiways t o  be a convex cone; th is is t h e  Clarite t a n g e n t  cone t o  C 

at x .  The suhgraciient set 

on the  o the r  hand, is a ciosed convex s e t  too,  t he  Clarke n o r m a l  cone t o  C t o  x .  The 

two cones a r e  po la r  t o  each o ther :  

In a more geometric approach t o  t he  desired extension, t he  tangent cone TC(z) 

and normal cone NC(z) can f i r s t  be  defined in a d i rec t  manner tha t  accorcis with t he  

polari ty re iat ions (1.16). Then f o r  an  a r b i t r a r y  lower semicontinuous function - 
f : R" +R and point x at which f i s  ? k i t e ,  one can focus on TE(z, f ( z ) )  and 

NE(x ,f (x)) ,  where E is  t he  epigraph of f (a closed subset  of Rn +I). The cone 

TE ( z  , f (x ) )  i s  itself t h e  epigraph of a cer ta in  function, nameiy t he  subderivat ive h '4 

f '(x ;h), whereas t h e  cone NE ( x ,  f ( z ) )  provides t h e  subgradients: 

Tine polari ty between TE (x , f ( z  )) and NE (z  , f ( z  )) yieids t h e  subderivative-subgraciient 

re lat ion (1.14). (Clarke's original extension of i3f to  lower semicontinuous functions 

[I] followed th is  geometric approach in defining normal cones di rect ly  and then invok- 

ing (1.17) as a definition f o r  subgradients. He did not focus much on tangent cones, 

however, o r  pursue t he  idea t ha t  TE (x , f (x )) might correspond t o  2 re ia ted concept of 

direct ional derivat ive.) 

The detai ls of these equivaient forms of extensior, need not  occupy us here .  The 

main thing t o  understand i s  tha t  they yield a basic c r i te r ion f o r  Lipschitzian con- 

tinuity, as follows. 

- 
TEEOREM 1 (Rockafel iar [lo]). For a Lower s e m i c o n t i n u o u s  f u n c t i o n  f :  Rn ->h' 

actuaLLy to  be L i p s c n i t z i a n  o n  some neighborhood of t n e  p o i n t  z ,  i t  i s  suff ic ierct 

(as  weLL as n e c e s s a r y )  t n a t  t n e  s z b g r a d i e n t  se t  af (z) be rconempty a n d  bounded.  

Then  one has 

f (x">-f(,- '1 - I I iim say - - " _.. ' rriax y .. 
r -r * * Y E s f  ) 



Tnis c r i te r ion can be appl ie2 without exact  ~nowiedge  of Bf ( x )  but only ar, esti- 

mate that  4 f Gf ( z )  C I' f o r  some se t  Y. If Y is  boundec, one may conciude t ha t  f is 

locally i ipschi tz ian around. x .  if i t  is known t ha t  y < X f o r  a i l  y EY, one has from 

(1.19) 

j f (z") - f (2') ! S  X ~ X ' ~ - X ~ !  f o r  Z '  and x" nea r  z. 

2. LAGRANCE KULTPLIERS AND SENSITIVITY 

Many ways have been found f o r  cieriving optimzLity conciitions f o r  probiems with 

constra ints,  but not a l l  of them provide full information about t h e  Lagrange multipliers 

tha t  are obtained. The test of a good method is  tha t  i t  should lead t o  some s o r t  of 

in terpre ta t ion of t he  multiplier vectors  in terms of sensitivity o r  general ized rates of 

change of t he  optimal value in the  problem with r espec t  t o  perturbat ions.  Unti! quite 

recent ly ,  a sat is factory interpretat ion along such l ines w a s  avai lable only f o r  convex 

programming and special cases of smooth nonlinear programming. Now, however, t'nere 

a r e  general  resu l t s  that  apply t o  al l  kinds of probiems, a t  least  in R n .  These resu l ts  

demonstrate well t h e  power of t h e  new nonsmooth analysis and a r e  not matched by any- 

thing achieved by o the r  techniques. 

Let us  f i r s t  consider a nonlinear programming probiem in i t s  canonical parameter-  

izatior,: 

(p ,  > minimize g (z ) subject  t o  x E K and 

gi ( z ) + u i  5 0 f o r  -I =l, ..., r ,  

= !I f o r  i =s+l, ..., m ,  

where g ,gl,...,gm are iocally Lipscnitzinn f ~ n c t i o n s  on R n  znd K is  a closed subset  of 

R n  ; the  ui ' S  are parameters  and. form a vector  u ERm. Q y  anniogy with what is  known 

in par t icu lar  cases of (P,), one can formulate the  potential  optimality condition on a 

fezsible solution z ,  namely that  

m m  0 E a g  ( z )  + ti =iyi Bgi ( x )  + NK(x) with 

yi 2 0 and yiLgi (z)-ui l  = 0 f o r  i= i ,  ..., s ,  

and a corresponciing constraint qualification at x 

t he  only vector  y =(y  ;, . . . , y,) satisfying t he  version 

of (2.1) in which the  term 6g (z) is  omitted is p =C. 



. . In smooth  p r o g r a m m i n g ,  where  t h e  funct ions g , g l ,  . . . , g ,  are ail cont.~i~uo;;z!)r 

d i f fe ren t iab le  and t h e r e  i s  no a b s t r a c t  cons t ra in t  z E K,  t h e  f i r s t  re la t ion  in (2.1) 

reduces  t o  t n e  g rad ien t  equat ion 

0 = Vg ( z )  -+ CEly i  tgi ( z ) ,  

and  one g e t s  t h e  c lass ica l  Kuhn-Tucker condit ions. The cons t ra in t  qual i f icat ion i s  t hen  

equiva lent  (by dual i ty)  t o  t h e  well known o n e  of Mangasarian and Fromovitz. 

In convez  p r o g r a m m i n g ,  wnere  g , g l ,  ...,g, are ( f in i te) convex f a c t i o n s ,  

g, + l , . . . , g ,  are af f ine,  and K i s  a convex set, condit ion (2.1) i s  always suf f ic ient  f o r  

optimality. Under  t h e  cons t ra in t  qual i f icat ion (2.2), which in t h e  a b s e n c e  of equalr ty 

cons t ra in t s  r e d u c e s  t o  t h e  Slater condit ion, i t  i s  also necessa ry  f o r  opt imal i ty.  

F o r  t h e  gene ra l  case of (P,) one  h a s  t h e  following r u i e  abou t  necessi ty .  

THEOREM 2 (Clarke [ I l l ) .  S u p p o s e  z is a LocaLLy optimaL soLut ion  to (F,) a t  

w h i c h  t h e  c o n s t r a i n t  quaLi f icat ion (2.2) is sat is f ied.  Then t h e r e  is a muLtipLier 

vec tor  y s u c h  that t h e  op t imaL i ty  c o n d i t i o n  (2.1) is sa t is f ied .  

This i s  no t  t h e  s h a r p e s t  r e s u l t  t h a t  may b e  s ta ted ,  a l though i t  i s  p e r h a p s  t h e  sim- 

p lest .  Clarke 's  p a p e r  [ll] p u t s  a potent ial ly smai ler  set in p iace  of NK(z) and prov ides  

along s ide of (2.2) a less s t r i ngen t  cons t ra in t  qual i f icat ion in terns of "caimness" of 

(P,) with r e s p e c t  t o  pe r tu rba t i ons  of u .  Hir ia r t -Ur ru ty  [12] and Rockafe l la r  [13] 

con t r i bu te  some a l t e rna t i ve  ways of writ ing tine s u j g r a d i e n t  re la t ions .  F o r  o u r  Fur-  

poses  h e r e ,  let i t  suf f ice t o  mention t h a t  Theorem 2 remains t r u e  when t h e  optimality 

condit ion (2.1) i s  given in t h e  sl ight ly s h a r p e r  and  more e iegant  form: 

0 E a g ( z )  + y a G ( z )  + N K ( z )  with y € N C ( G ( z ) i u ) ,  

where  G ( z )  = ( g l ( z )  , . . . ,g ,  ( z ) )  and  

C = ~ W ~ ~ / W ~ S O  for i = L  ,..., s and wi=O f o r  - I = s + l ,  ..., m ] .  (2.4) 

The notat ion 5 G ( z )  r e f e r s  t o  C la rke 's  genera l ized Jacobian [2] f o r  t h e  mapping G;  one  

h a s  



Theorem 2 has the  shining v i r tue of combining the  necessary  conditions f o r  smooth 

programming and. t he  ones f o r  convex programming into a single statement. Moreover 

i t  covers  subsmooth programming and much more, and i t  aliows f o r  an  abs t r ac t  con- 

s t ra in t  in the  form of x € K f o r  an a rb i t r a r y  ciosed set K. Formuias f o r  caiculating 

t he  normal cone NK(x) in par t icu lar  cases can then be used to  achieve additional spe- 

c ializations. 

W'nat Theorem 2 does no t  do is  provide any interpretat ion f o r  t he  muitipliers y i .  

In o rde r  t o  a r r i v e  at such an  interpretat ion,  i t  is  necessary  t o  look more ciosely zi t h e  

proper t ies  of t h e  marginai function 

p ( u  ) = optimai value (infimum) in(P, ). (2.6) 

Tinis i s  a n  extended-real-valued function on R m  which i s  lower semicontinuous when t h e  

following mild inf -boundedness cond i t ion  is fulfilled: 

F o r e a c h  2L € R m ,  a c R  and E > 0 ,  t n e s e t o f  ali x € K (2.7) 

- 
satisfying g ( x )  s c, g i  ( x )  5 ui + E  f o r  i =I, .. . , s  , and 

- 
ui -E 5 gi ( 2 )  5 Gi +& f o r  i =S +I, ..., m ,  i s  bounded in R n .  

This condition also implies tha t  f o r  each u with p ( u )  < (i.e. with t he  constra ints of 

(P,) consistent),  the set of all (globally) optimal solutions t o  (P,) is  nonempty and com- 

pact .  

In o rde r  t o  state t h e  main general  resu l t ,  w e  let 

Y(u ) = set of aii multiplier vectors  y tha t  sat isfy (2.1) 

f o r  some optimal soiution x t o  (P, ). 

THEOREM 3 (Zockafel lar r13-j). Suppose  t he  inf-boundedness cond i t i on  (2.7) is 

satisf ied. Let u be s u c h  t h a t  the  c o n s t r a i n t s  of (P,) a r e  cons is ten t  and every  

opt imal  so l u t i on  x to (P,) sat is f ies the  c o n s t r a i n t  qua l i f i ca t ion (2.2). Then 8 p ( u )  

is a nonempty  compact set  w i t h  

8 p ( u )  ~ c o Y ( u )  and ex t  a p ( u )  c Y ( u ) .  (2.9) 

(where "ext" denotes eztreme points]. In p a r t i c u l a r  p is Locally L i psch i t z i an  

a r o u n d  u w i t h  



p 0 ( u ; h ) S  sup y . h  f o r a l l  h. 
Y EY(u ) 

I I 

Indeed, a n y  X sa t i s f y ing  ' y i < X f o r  a l l  y EY(u) serves as a local L ipsch i t z  ccn- 

s tunt :  

I 

i p ( u " ) p ( u ' )  is h !u"-ii'l when u '  a n d  u"  a r e  n e a r  u. (2.11) 

For smooth programming, th is resu l t  was f i r s t  proved. by Cauvin [14]. S e  demon- 

s t r a te2  f c r t h e r  t hz t  when (P,) has a unique optimal solution z ,  f o r  which t h e r e  is  a 

unique multiplier vec to r  y , so  tha t  Y(u ) = y j ,  then actually p is  di f ferentiable at u 

with V p  ( u  ) = y . For convex programming one knows (see [3]) t ha t  ap ( u  ) = '17(u ) 

always (under ou r  inf-boundedness assumption) and consequently 

Minimax formulas t ha t  give p f ( u ; k )  in certair .  cases  of smooth programming whe re  

'IP(u) is  not just a singleton car, be f o r  exampie found, in Demyanov znd Yaiozemov ;:5] 

and Rocirafeliar [IS]. Aside from sucn special csses t h e r e  a r e  no formxias iznowr, f o r  

p f ( u ; n ) .  Sever the less,  Theorem 3 does provide zn est imate, beczcse 

p ' ( u  ;h ) I p "(21 ;i; ) whenever p ' ( u  ;h ) exists. ( i t  is  interest ing t o  note in th is  cor,nec- 

tion t ha t  because p is  Lipscnitzian around u by Theorem 3, i t  is  actua!!y dif ferentiable 

aimost everywhere around u by Raaemacher's theorem.) 

Theorem 3 has  recent ly  been broadened in [6 j  t o  include more general  kines o i  

perturbzt ions.  Consider t he  parameterized problem 

(Qv > minimize f (v ,z ) ove r  a l i  z satisfying 

F ( v  , z )  c C an6 (v , z )  E D, 

where v is  a parameter  vec to r  in R d ,  t i e  functions f :  Rd x Rn -R and 

F: Rd x Rn -Rm a r e  locally Lipschitzian, and t h e  se t s  C cRm an6 D c Rd xRn a r e  

closed. Here C couid be  t he  cone in (2.4), in which event t he  constra int  F ( v  ,,-) E C 

would reduce t o  

f i  ( 2 , ~ )  I 0  f o r  i =l, ..., S ,  

= 0 f o r  i =s +I, ..., m ,  

but tn is choice of C is  not required.  The condition (v ,z j E D may equivaiezt !~ 5 e  writ- 

ten as z E I '(v), where F is tile ciosed multifunction whose graph is D. I t  rep resen ts  

the re fo re  an abs t r ac t  constra int  t ha t  can va ry  with v .  A fixed zcs t r ac t  constra int  



x  E K corresponds t o  r(v ) =K,  D =Rd X K .  

In th is more genera l  sett ing t he  appropr ia te  optimality condition f o r  a feas i j le  

solution x  t o  (9, ) i s  

f o r  some y and z with y m c ( F ( v  , x ) ) ,  

and the  constra int  qualif ication i s  

t he  oniy vec to r  pa i r  ( y  , z  ) satisfying t h e  version of (2.13) 

in which t he  term af (v , z )  is  omittee is ( y  , z ) = ( 0 , 0 ) .  

TIYEOREI! 4 (Rockafel lar [6 ,  $81). Suppose tnat  x  is a local ly opt imal  s o l u t i ~ n  

to (9,) a t  wh i cn  the const ra in t  qua l i f i ca t ion (2.14) is sat is f ied .  Then there is a 

mul t ip l ie r  p a i r  ( y  ,z) such  that  the op t ima l i t y  cond i t ion  (2.13) is sa t i s f i ed .  

Theorem 4 reduces t o  t he  version of Theorem 2  having (2 .3 )  in place of (2 .1 )  when 

(Q , )  is  taken t o  be  of t h e  form ( P )  namely when 

f ( v , x ) = g ( x ) ,  F ( v , x ) = G ( x ) +  v ,  D=Rm Y. K ( R ~ = R ~ ) ,  anci C is t he  cone in (2 .4 ) .  

For tine corresponding version of Theorem 3 in terms of tine marginal function 

q (v ) = optimal value in (Q, ), (2.15) 

w e  t ake  inf-boundeaness t o  mean: 

For each -7 md : a ER and E >0, t he  set of a!; z 

satisfying f o r  some v wiik ! v  -C ! 5 E 

t h e  constrs ints F ( v  , x )  EC, (v ,z) ED,  and 

having f ( v  ,z) 5 a, is  bounded in R n  

Again: th is proper ty  ensures that  q i s  lower semicontinaous, and thnt  f o r  every  2; f o r  

which the  constra ints of ( Q , )  are consistent, t he  set of optimai soiutions t o  ( Q , )  i s  

nonempty and compact. Let 

Z ( v )  = set of a l l  vec tors  z  t ha t  szt isfy t h e  multiplier (2. :7)  
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condition (2.13) f o r  some optimal solution 

z t o  (Q,) and vector  y. 

THEOREX 5 (Rockafellar i6, $81). Suppose the inf-boundedness condit ion (2.16) 

i s  satisf ied. Let v  be such  tha t  tne constraints of (Q,) are consistent and every 

optimal solut ion z to (Q,) sat isf ies tne constraint  quaLifzcation (2.14). Ther, Bq ( v )  

i s  a nonempty compact set w i t h  

Bq(v) c c o Z ( v )  and ex t  6q(v )  c Z ( v ) .  (2.18) 

I n  par t icu lar  q i s  Locally L ipschi tz ian around v w i t h  

q0(2; ;h)  I sup z - h  for all n. 
z EZ(V) 

, 8 

Any A sat is fy ing i z i < h for aLL z E Z ( v )  serves a s  a Local Lipschi tz constant: 

: q ( v " ) - q ( v ' ) ~ ~  h l v " - - v r ;  when  v '  and v "  are near  v. (2.20) 

The general i ty of tne  constraint  s t ruc tu re  in Theorem 5 will make possibie in the  

next section an  application t o  the  study of multifunctions. 

3. STABILITY OF CONSTRkr'NT SYSTEKS 

The sensitivity resu l ts  that  have just been presented are concerned with wnat 

happens t o  the  optimal vaiue in a probiem when parameters  vary.  I t  tu rns  out, though, 

tha t  they car, be applied to  the study of what happens to  the  feasible solution se t  and 

the  optimal solution set .  In o r d e r  t o  explain this and indicate the main resu l ts ,  w e  must 

consider the  kind of Lipschitzian proper ty  that  perta ins t o  multifunctions (set-valued 

mappings) and the way that  th is car, be character ized in terms of a n  associated dis- 

tance function. 

Let Y: Rd 3" be a closed-valued multifunction, i.e. r ( v )  is f o r  each 2; E Rd a 

closed subset of R n ,  possibly empty. The motivating exampies a r e ,  f i r s t ,  r ( v )  tzken to  

be  the s e t  of al l  feasible soiutions to  the  pnrameterized optimization problem (9,) 

above, and secon i ,  ?(v) taken to  be  the se t  of al l  optimal s o i ~ t i o n s  t o  (Q,). 

One says that  r ( v )  is  Locally L ipschi tz ian arocr.6 2; if f o r  ai l  2;' arid v"  irl some 

neighborhood of v one has T(z; ') an2 T(v ") nonempty and bounded with 



f iere B denotes the  cioseci unit ball in Rn and X is  a Lipschitz constant. This p roper ty  

can be  expressed equivalently by means of the  classical Hausdorff metr ic  on t ne  space 

of al l  nonempty compact subsets of Rn : 

haus ( r ( v  "), r ( v  ')) 5 X ! v " -u ' i when v ' and v " a r e  n e a r  v. (3.2) 

I t  is interest ing t o  note t ha t  th is is  a "differential" p roper ty  of so r ts ,  inasmuch as it 

deals with rates of change, o r  at leas t  bounds on such rates. Until recent ly ,  however, 

t he re  has  not been any viable proposal  f o r  "differentiation" of r t ha t  might be  associ- 

ated with i t .  A concept  investigated by Aubin [I71 now appea rs  promising as a candi- 

date;  see t h e  end of th is sect ion. 

Two o the r  definit ions are needed. The multifunction r is  local ly  bounded at v if 

t he re  i s  a neighbornood V of v and a bounded set S cRn such t ha t  r (v  ') cS f o r  a l l  

V'EV.  I t  i s  closed at v if t he  existence of sequences ivk 1 and izk ! with 

vk 40, zk Er(vk) and zk  -+z impiies z ~ r ( v ) .  Finaily, w e  in t roduce f o r  7 t he  dis tance 

func t ion  

d r  ( v , w )  = dist ( r ( v ) . ~ . )  = min - z  -zu . 
I Er(v ) 

The following genera l  c r i te r ion f o r  Lipschitz c ~ n t i n u i t y  can then be  stated.  

THEOREM 6 (Rockafel lar [18]) .  The mu l t i f unc t i on  r i s  local ly L i psch i t z i an  

a round  v i f  and  on l y  i f  r i s  closed and  local ly bounded at v w i t h  r ( v )  + 6 ,  a n d  i ts 

distance f unc t i on  d i s  local ly  L i psch i t z i an  a r o u n d  ( v  ,z ) for  each x c F(v ). 

The cruc ia l  fea tu re  of th is c r i te r ion i s  tha t  i t  reduces t he  Lipschitz continuity of 

I? t o  t h e  Lipschitz continuity of a function d r  which is  actually the  marginal function 

f o r  a cer ta in  optimization problem (3.3) parameterized by vectors  v and w . This prob- 

lem f i ts  the  mold of (Q,), with v rep iaced by (v  ,w ) ,  and i t  t he re fo re  comes uncier t h e  

contro l  of Theorem 5: in an adapted. form. One is readi ly ab le  by th is  rou te  t o  cierive 

the  following. 

TKEOREK 7 (Rockafei lar [18]). Let I? be t he  mu l t i f unc t i on  t ha t  ass igns  to each 

v E Rd the  set of a l l  feasible so lu t ions  to problem (8,): 

r ( z i )  = { Z  ! ~ ( v , z )  E C and  ( v , z )  E D f .  (3.4) 



Suppose for a g i ven  v t h a t  r i s  Locally bounded a t  z:, a n d  t ha t  r ( v )  i s  nonemp ty  

w i t h  t he  cons t ra i n t  qua l i f i ca t ion  (2.14) sat is f ied  b y  every  x c r (z ; ) .  Then  r i s  

local ly  L i p s c n i t z i a n  a r o u n d  v . 

COROLLARY. Let r :Rd=Rn be a n y  mu l t i Junc t ion  wnose g r a p h  

D = I ( v  ,x ) ! z E ~ ( V  ) 1 i s  closed. Suppose  for a g i ven  v t h a t  r i s  local ly  bounded a t  v , 

a n d  t h a t  r ( v )  i s  nonempty  w i t h  t h e  fol lowing cond i t i on  sat isf iedj 'or eve ry  z €? (v ) :  

t h e  o n l y  vector z w i t h  ( z  ,0) E ND(v ,z) i s  z = 0. (3.5)  

Then r i s  local ly  L i psch i t z i an  a r o u n d  v .  

The corol lary i s  just t he  case  of t he  t'neorem where t he  const ra in t  F ( v  ,z) E C is  

triviaiized. I t  corresponds closely t o  a resu l t  of Aubin [ l i ' j ,  according t o  whicn r is  

"pseudo-Lipschitzian" re ia t ive  t o  t h e  par t icu lar  pa i r  ( v  , z )  with z E r ( v )  if 

t he  project ion of t he  tangent cone TD(v , z )  c Rd xRn 

on Rd i s  a l l  of Rd. 

Conditions (3.5) and (3.6) are equivalent t o  each o the r  by the  duality between ND(v , z )  

and TD(v , z ) .  The "pseudo-Lipschitzian" p roper ty  of Auhin, which will not  be  defined 

he re ,  is  a sui table localization of Lipschitz continuity which faci l i tates t h e  t reatment of 

multifunctions I' with r ( v )  unbounded, as is  highly desirable f o r  o t h e r  purposes in 

optimization theory  ( for  instance t he  t reatment of ep igraphs dependent on a parameter  

vec to r  v ) .  As a matter of fac t ,  the  resu l ts  in Rocisafellar :I83 build on t i i s  concept  of 

Aubin and are not limited t o  locally bounded multifunctions. Only z specia l  case  has 

been presented in t h e  p resen t  paper .  

This topic is a lso  connected with interest ing icieas t ha t  Aubin has  pursued towards 

a dif ferential  theory  of multifunctions. Aubin defines the multifunction whose graph is 

t he  Clarke tangent cone TD(v , z ) ,  where D is  t h e  graph of I', t o  be  t h e  der i va t i ve  of r 
at v re la t ive  t o  the  point x E r ( v ) .  In denoting th is derivat ive muitifunction by r;,, , 

we have, because TD(v , z )  i s  a ciosed convex cone, tha t  r;,, is  z closed convezprocess  

from Rd t o  Rn in t he  sense of convex annlysis :3, 5391. Convex processes are very  

much akin t o  i inear transformations, and t h e r e  is  quite z convez algebra f o r  them (see 

[3, $391, [iq, and 120:). In par t icu lar ,  ,, has  an  ad jo i n t  L"; ,: : Rn Z R d ,  which t u r ~ s  

out in th is case  to  be  t he  closed convex process with 



In these terms Aubin's condition (3.6) can be written as ciorr, r;,, = R": whereas the 

dual condition (3.5) is T;;(" = !!3 j .  The l c t t e r  is  equivaient t o  , being iocally 

bounded a t  t he  origin. 

There i s  too much in th is  vein f o r  us to  br ing fo r th  h e r e ,  but t he  f e w  f ac ts  we have 

c i ted may se r ve  t o  indicate some new direct ions in which nonsmooth anaiysis i s  now 

going. W e  may soon have a hignly deveioped apparatus  t ha t  can be appl ied t o  the  study 

of a l l  kinds of multifunctions and the reby  t o  subdif ferential  multifunctions in part icz-  

iar . 
For example, as an aid in t he  analysis of t he  stabi l i ty of optimal solutions and mul- 

t ip l ier  vectors  in problem (Q,), one can take  up t he  study of t he  Lipschitzian proper-  

t ies  of the  multifunction 

r ( v )  = s e t  of a l l  (x ,y  , z )  suck t ha t  x is  feasible in (Q,) 

and the  optimality condition (2.13) is  satisfied. 

Some resu l ts  on such l ines are given in Aubin [I71 and Rockafel lar [2;<. 
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