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FOREWORD

The study of dynamic stochastic optimization problems is often hampered by a
number of technical complexities due to the "classical” mathematical framework
for Stochastic Processes. Conceptually, as well as technically, the classical set-up
is inappropriate for studying infima, allowing for approximations, etc. Here the
authors introduce an alternative approach which smooths out most of these diffi-
culties and gives the study of stochastic processes, in particular the study of func-
tions of stochastic processes, another perspective. This work serves as back-
ground Lo ITASA’'s efforts in developing algorithmic procedures for stochastic pro-
gramming and stochastic conirol problems.

Alexander B. Kurzhanski

Chairman
System and Decision Sciences Program
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RANDOM SEMICONTINUOUS FUNCTIONS

Gabriella Salinetti’ and Roger J-B. Wets'"

These notes introduce a new approach for the description, and the analysis-of
stochastic phenomena. It parts company with the classical approach when the real-
izations are infinite dimensional in nature. We shall be mostly concerned with ques-
tions of convergence and the description of the probability distributions associat-
ed to such phenomena.

We begin with a brief review of the classical theory for stochastic processes,
bringing to the fore some of the shortcomings of such an approach. In the second
part of the paper we deal with the epigraphical approach that relies on the model-
ing of the "paths" of the stochastic phenomena by semicontinuous functions. We
conclude with a discussion and a comparison of the two theories, and the applica-

tion to the convergence of stochastic processes.

1. STOCHASTIC PROCESSES: THE CLASSICAL VIEW

A stochastic process, with values in the extended reals, is a collection
{X, t € T{, of extended real-valued random variables indexed by T and defined on a
probability space (2, 4, u). Here, and in the next few sections, we take T to be a
subset of R. It is a discrete process, if T is a discrete subset of R, in which case,
without loss of generality we can always identify T with Z (the integers) or N (the
natural numbers).

The probability measure associated to {X,, t € T{ is usually defined in terms of
its finite dimensional distributions. For any finite subset ft.1, RN t.ql CT, the g-

dimensional random vector
(th, th, oy X'_q)

defined on (Q, 4, ) with values in Ri= [~ e, ]9 has the probability measure de-
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fined by the correspondence
Py ... (B = plo € QI X (@) - . ., Xy (@) € B
where B € B9 is a Borel subset of R3. The family of probability measures

(P, 1 € I(T)}

where I(T) is the collection of all finite subsets of T, is the family of finife dimen-

sional distributions of the stochastic process th, t €Ty

This approach is attractive for a number of reasons, in particular because of
its immediate simplicity, at least as far as the definition is concerned. But in many
cases, the price must be paid at a later stage, and sometimes there are technical,
and even conceptual, difficulties that can be directly traced back to this "finite di-

mensional” approach to stochastic processes.

In a functional setting, the classical approach leads to the following frame-

work. To every w € {1, there corresponds a function (sample path, realization):
th X (0):T—R .

The stochastic process [X,, t € T{ can be viewed as map from Q into RT; we now
identify RT with the space of all extended real-valued functions defined on T. The

family of finite dimensional distributions assigns a probability to all subsets of the

type
B;:={x € B |(x(ty), . . .. x(ty)) €BJ

where B€ B9 1= ftg, ..., t.qf € I(T). The sets B; are cylinders (with finite dimen-
sional base) and they form a field on R'. The finite dimensional distributions assign

a measure to each set of this field through the identity.
P(B;) = P{(B) .

It can be shown, as done by Daniell and Kolmogorov, that this measure P can be

uniquely extended to the o-field, denoted by fr. generated on B! by the family of

cylinders. We can thus pin down a unique probability measure associated to the sto-

chastic process }Xt, t € T{. From this viewpoint, two stochastic processes are then

equivalent if they have the same finite dimensional distributions, they identify the

same probability measure on R
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2. SOME QUESTIONS, SOME EXAMPLES

One of the shortcomings of this approach is that no attention is paid to (possi-
ble) topological properties of the realizations of the process. In many applica-
tions, we may be interested in developing a calculus for processes that have very
wHT
R

specific properties, whose paths may very well belong to a subset of of measurea

zero. The two following examples illustrate many of the difficulties.

EXAMPLE 2.1 Suppose V:Q —(0, ) is a random variable with continuous distribu-
tion function. Forallt € R, prob [V =t] =0. Let T = R, and {Y,, te T{, [Y;,t € T}

be two stochastic processes such that
forallwe Q: Y, (w)=Y{(w)=0
except that: Y (w)==-1 Iif V(o) =t

These two processes are equivalent, although the realizations of !Y{‘ | are continu-

ous with probability 1, and those of {Y,} are continuous with probability 0.

One may be templed to view the phenomena illustrated by Example 2.1 as just
another example of the fact that random variables that have the same distribution
are not necessarily almost surely equal. But in this case there is something more
that enters into play. Let C(T) denote the set of continuous functions defined on T
and values in R. Thus, we could reformulate our earlier observation, in the follow-

ing terms:

plY €C(M] =1, and w[Y €CMI=0,

but, as we shall now see, neither C(T) nor its complement — the space of functions
with discontinuities — belong to RT. The preceding expressions make sense only be-

cause

fwe|Y'(w)eCT{=0€d and [wel]Y(w)E C(T){=0€4

But in terms of the probability distributions P and P’ on RT induced by {Y,} and
{Y{ | respectively, the expressions P’(C(T)) =1, and P(C(T)) =0 do not make
sense because neither P’ nor P are defined for the set C(T). To see this, simply ob-

serve that since P = P’, the above would imply

1 =PRT) = P(C(T) U (RT\ C(T))
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=P(C(T) +P(RINC(T)) =1 +1 =2 !

Observe also that the paths of both processes are bounded. But again in terms

of P, or equivalently P’, we cannot characterize boundedness since

fx c RTJ0 s x(t) <1 ,forall teT}g RT .

EXAMPLE 2.2 The Poisson Process. Let {X, n =1,...] be a stochastic process
(T = N) where

X, is the waiting time for the first event,
and for n =2,...

X, is the waiting time between (n — 1)-th and n-th event.

Then, the time of occurrence of the n-th event is

Under the assumption that the event

0=:S0<S;< -* <Sp,< -+, SupS,=w (2.1)
n

has probability 1, on this subset of 2, we define the random variables
Niy:=max[n:S, s t] (2.2)

that records the (random) number of events that occur in the interval [0, t]; if wis
not in the set specified by (2.1), we set Ny(w): = 0. It is well known, see [3] for ex-
ample, that if the {X,, n =1,...] are independent with the same exponential distri-

bution, then {N¢, t 2 0} is the Poisson stochastic process.

For every w, the realization
th Ny(w):Q2 =R,

is a nondecreasing, integer-valued function.

Let Q C R be the rationals, and let ¢:[0, @) — Q be such that ¢(t): =t if
t € Q, and ¢(t): =0 otherwise. Now, define

My (@): = Ny (@) + @t + Xq(@)) .

Forall t €[0, =)
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ulolet + X (w)) #0) =ulX, € Q-t]1=0,

since Q —t is a countable subset of R, and X, is absolutely continuous (with

respect to the Lebesgue measure). Thus
klo|My(w) =Ny(o)} =1

and the stochastic process M, t € R, { has the same family of finite dimensional
distributions as {N;, t € R,]. However, for all w, the realizations t» M,(w) are

everywhere discontinuous, neither monotone nor integer-valued!
We are basically in the same situation as in Example 2.1. The realizations of
{N} all lie in

Ix € Rlo. =} x:[0, ) — N, x(s) s x(t) whenever s=tj

which does not belong to RT.

All of this comes from the fact that a subset B of RT cannot lie in RT unless
there exists a countable subset S of T with the property: if x € B and x(t) =y(t)
Sforallt in S theny € B [3, Theorem 36.3].

This means that any set of the type
fx e RT|x(t) € F forall t €T’ C T}

where F C R is closed, are not necessarily in RT, since they usually cannot be ob-
tained as countable intersections of sets in ®T. This is especially important when it
comes to the study of functionals of stochastic processes. For a stochastic process

fX¢, t € T}, let
J(Q) = inft ETXt(w) ’
then for all a € R,

fo]li(w) 2 a) = fo|X (©) €5,

where

Se={x €Rf| forall teT, xt)2al,

but S, # ET, and thus J is not even measurably related to the stochastic process
{X{. This point is brought home by considering the two equivalent processes of Ex-
ample 2.1. Here, both
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Jy:=inf 7Yy, @and Jg :inf, oY/

turn out to be measurable functions from 0 into [0, 1] but in no way "equivalent”,

since

Jy=~1, and J; =0 .

These are some of the simplest examples we know that clearly suggest that the
class BT is often too small to obtain an appropriate probabilistic description of
stochastic processes. The applications should, of course, dictate the framework to
use in any particular situation. In the next sections, we show that there is a rath-
er general approach that allows us to avoid some of the objections that one may

have to this "simple” definition of stochastic processes.

3. SOME TOPOLOGICAL CONSIDERATIONS

From a topological viewpoint, the shortcomings of the 'finite dimensional dis-
tributions” description of stochastic processes come from the fact that ET does not
take into account the underlying topology of T. The o-field RT is not in general a
Borel field, although the first step in the construction of RT s topological in na-

ture. We can think of RT as generated by the class of measurable rectangles
fx € RT|(x(ty), .. .. x(t,)) €Gy X - - - X G

as (ty, . . ., ty) ranges over /(T) and the G; ranges over G(R), the open subsets of
R.

This class of measurable rectangles is the base for the product topology on
ET but in general k7T is not the Borel field with respect to the product topology.

Unless T is a countable space, the product topology has never a countable base [6,

Theorem 6]. If B, denotes the Borel field generated by the open sets of the product
topology, we have that
kT cB,

with equality if T is countable. For example, if T C R is an open interval, let 4 be
the subset of RT that consists of the constant functions with values in [0.1]. Then 4

belongs to B,, but not to &7.
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The "classical" approach essentially ignores the topology with which T is en-
dowed, in favor of the discrete topology. And since, with respect to the discrete
topology, all functions in RT are continuous, there is no way to distinguish between
those realizations that we identify as continuous (with respect to the usual topolo-
gy on R) and any other realizations, that are also ’continuous” but now with

respect to the discrete topology.

One general approach, that allows us to include (at least to our knowledge) all
interesting stochastic processes, and which skirts around all of the inherent diffi-
culties of the ''classical’” approach, is to think of stochastic processes as random
lower (or upper) semicontinuous functions. The realizations of such processes are
then lower (or upper) semicontinuous functions, a rather large class of functions
that should include nearly all possible applications. And for this class, there is a
natural choice of topology, and an approach that avoids most of the pitfalls of the

"finite dimensional distributions’ approach.

For any function x:T — l_l, the epigraph of x is the subset of the product
space T X Rdefined by

epi x = {(t, a)|a = x(t)] .

To any stochastic process {X;, t € T} we can associate its epigraphical represen-

tation, i.e., the set-valued map defined as follows:

wb epi X (@) = {(t, a)|a = X (w)] .

For any finite set I = {(ty, @;), . . ., (tq @)} in T x R, we have
fx €RT|(x(ty) > @y, ..., xA)) > =fx € Rflepix NI =¢] . (3.1)
Since RT is the minimal o-filed generated by sets of the type
RT =0 - {{x € RT|x(ty) < &;,... X(ty) S ag), [(ty, &y)--s (bq @)] €I(T x R)}
with (T X R) the finite subsets of T X R. From (3.1) it also follows that
RT=z=o-fixec Rl epix MI# ¢}, 1cI(TxR)| .

The sets of I(T X R) form a base for the discrete topology of T X R, and they are
also compact with respect to this topology.
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In the epigraphical view, the "classical” approach defines a stochastic pro-
cess (X, t € T] with domain (Q, A, u) as a measurable map from (Q, 4) into

(RT, ®T), where measurability means that

fwelepiX (W) NK#¢)€4 3.2

for all subsets K of T X R, that are compact with respect to the discrete topology.
This highlights the source of the limitations of the classical approach, it is not
able to identify the topological properties of the realizations beyond those that
can be identified by the discrete topology. The preceding relation also suggest the
remedy to use, in order to bring the topology of T into the probabilistic descrip-
tion of the process. Instead of working with the discrete topology on T x R, we
could equip T X R with a topology that would be more appropriate for the applica-
tion at hand.

Let us return to Example 2.1 with T = R,. If P and P’ denote the probability

measures induced by Y and Y’ respectively, then
ulolepi Y () NK =¢)=Plx €RTlepi x N K = ¢}
=Pfx € Rflepix N K = ¢
= plwlepi Y’ (0) NK = ¢}

for all subsets K of T x R that are compact for the discrete topology. The situation
is completely different if compact refers to the "natural” topology, i.e. the usual
topology on R? relative to T X R. It is easy to verify that for any g € (=1, 0) and

[a;, a;] € T, we have that
piwlepi Y/(0) M ([ay, @] X[—1, D) = ¢{ =1
and
ulolepi Y (@) N ([ag, @l X [—1, B]) = ¢ = ulw|V(w) € [ay, a5]] .

This time, the "induced” probability measures will be different but of course they
cannot be defined on RT, that in the classical approach is the "universal’ function-

al space for dealing with stochastic processes.
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4. SEPARABILITY, MEASURABILITY AND STOCHASTIC EQUIVALENCE

The epigraphical approach focuses its attention on the sets of the type:

fw € Qlepi X (@) VK # ¢} .

to define measurability, as well as to serve as building block in the definition of
the probability measure associated with the process {X,, t € T{. Let X, denote the
class of compact subsets of T X R where 7 is the product topology generated by T4
on T and the usual topology on R. Measurability of the process !Xt, t € T} will

now mean: for all K in K.,

fw € Nlepi X (0) VK #0) €4 . (4.1)

This condition is closely related to the classical notion that the process is measur-

able, which means that
(o, t)b X,(w) is 4 ® B(T) ~ measurable (4.2)

where B(T) is the Borel field on T generated by the 74- open sets. In Section 6, we
shall show that for stochastic processes with lower semicontinuous realizations,
these two conditions are equivalent. We bring this fact to the fore at this time, be-
cause to require that a process be measurable is a standard condition used to
overcome some of difficulties created by the classical definition. By definition any
stochastic process is RT-measurable, but not necessarily in terms of (4.2) or (4.1).
This follows from the fact all sets that are compact with respect to the discrete to-
pology are also T- compact.

Closely related to the notion of measurability of a stochastic process is that

of the separability of a stochastic process, as introduced by Doob. Among the ma-
jor shortcomings of the class RT is the fact that subsets of the type

fx e RT|x(t) € F, Lt € T’ c T} (4.3)

ET . One circumvents

where F is a closed subset of R, do not necessarily belong to
the potential difficulties by requiring that the stochastic process {xt, t € T| be
separable, i.e. there exists an everywhere dense countable subset D of T and a u-

null set N C ) such that for every open set G C T and closed subset F of R, the sets
fw € Q)X (w) €F forall t €G N D]

and
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fw € Q|X,(w) €F forall t €G}

differ from each other at most on a subset of N [5].

In terms of the realizations of the stochastic process {X,, t € T{, separability
means that for all @ € Q\ N, the function tb X,(w) is D-separable [3], i.e. for

every t in T there exists a sequence {t,, n =1,,... } such that

t, €D, t =limt,, and X (w) =1lim th(o) ,
n n

in other words, for every w € Q\ N, the realization is completely determined by
its values on D. A stochastic process separable with respect to D is RP- measur-
able, and one may reasonably assume that the fact that D is countable removes the
"discrepancies" connected with 'uncountabilities”. Of course not all stochastic
processes are separable. Process !Yt} of Example 2.1 is not separable, although
the equivalent stochastic process {Y{] is separable. In fact, given any finite-
valued process there always exists an equivalent process defined on the same pro-

bability space that is separable [3, Theorem 38.1].

At first, it may appear that it is possible to restrict the study of stochastic
processes to those that are separable, but there is some hidden difficulty. Separa-
bility is defined in term of a reference set D. For the convergence of stochastic
processes, it would be necessary to prove first that there exists a set D with
respect to which all elements of the sequence (or net), as well as the limit process,
are separable. Moreover, the existence of an equivalent separable process does
not mean that the functionals defined on these processes will in any way be com-
parable; think about the processes {Y,] and {Y{] of Example 2.1 and the sup func-
tional, see Section 2. Separability only guarantees that sets of the type (4.1) are
measurable and that their probability can be determined by the family of finite di-
mensional distributions. If {X,, t € T] is not separable, nothing can be said a priori
about sets of the type (4.1), and no additional information is gained from the fact
that there is an equivalent separable stochastic process. Thus a functional of the
stochastic process involving sets of type (4.1) cannot be analyzed in terms of the

same functional defined on an equivalent stochastic process.

Roughly speaking, separability is an attempt at recovering the topological
structure of T, at posteriori. The approach developed in the next sections takes

the topological structure of T directly into account.
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S. THE EPIGRAPHICAL APPROACH

The earlier sections have pointed out the shortcomings of the "classical” ap-
proach by reformulating it in terms of the epigraphical representation of the pro-
cess. We have seen that the inherent weaknesses of this approach can be overcome
by requiring that the stochastic process satisfy the stronger measurability condi-

tion
fweQlepi X (W) NK# ¢ €4 forall K€k, 5.1)

which take into account the topological structure of T.

All that follows is devoted to the study of stochastic processes that satisfy

condition (56.1) and have lower semicontinuous (l.sc.) realizations, i.e.,
th Xy(w) islsc.onT, forall w €N . (5.2)

Such stochastic processes, with possibly the values + o and — o, are called ran-
dom l.sc. functions. In another setting, such functions are known as normal in-
tegrands, and much of the theory developed by Rockafellar [9, 10] for normal in-
tegrands can be transposed to the present context. Many of the questions raised in
the earlier sections seem to find their natural formalization in terms the proper-
ties of random l.sc functions and the associated epigraphical behavior. This leads

us also to consider the associated random closed set

wb epiX (w): Q3R . (5.3)

For each w, the set epi X_(m) is a closed subset of T X R since the functions

th Xt((b) are l.sc., and the measurability of this set-valued function follows from

condition (5.1).

All of this suggests defining a topology for the space of (extended real-
valued) l.sc. functions in terms of the epigraphs, the epi—topology. We shall see
that the corresponding Borel field provides us with the desired interplay between
topological properties and measurability. We follow the development that was ini-

tiated in [12] and review here some of the main features of that theory.

At first it may appear that the requirement that the process has l.sc. paths is
a rather serious limitation. At least if we use this framework for the study of gen-
eral stochastic processes. This is not the case. Of course, stochastic processes
with continuous realizations fit into this class, but also any cdd-lag process (con-

tinuous from the right, limits from the left) admits a trivial modification that makes
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it a stochastic process with l.sc. paths. Although, we restrict ourselves to the
l.sc. case, it is clear that all the results have their counterpart in the upper sem-

icontinuous (u.sc.) case, replacing everywhere epigraph by hAypograph.

Crucial to the ensuing development is the fact that for stochastic processes
that are l.sc. random functions, we can introduce a notion of convergence which is
not only the appropriate one if we are interested in the extremal properties of the
process, as well as for many related functionals, but also provides in many situa-
tions a more satisfactory approach to the convergence of stochastic processes as

the standard functional approach.

6. THE EPIGRAPHICAL RANDOM SET
Henceforth, we work in the following setting
- (Q, A, u) a complete probability space,
- (T, 7,) a locally compact separable metric space,

- (@, ) X ()0 XT — Ra random Lsc. Sunctior.

By this we mean that
(i) for every «, the realization t» X (w) is l.sc. with values in the exlen-
ded reals
(ii) the map (o, t)» X,(o) is 4 ® B,- measurable, where B, is the Borel field

onT.

The associated epigraphical random set, is the map

whk epi X_(w):Q::R

that takes values in the closed subsets of T x R, including the empty set.

The product space T X R is given the product topology of 74 with the natural
topology on R, we denote it by 7. Thus (T X R, 7) is a locally compact separable

metric space. Let
— F =F(T x R) denote the closed subsets of T X R,
- G = G(T x R) denote the open subsetsof T X R,

— K = K(T x R) denote the compact subsets of T X R,



-13 -

For any subset Cof T X R, let

FC:=FeF|FNC=¢], Fo:=FeF|FNC=¢] .

The topology T generated by the subbase of open sets
{FK,K € X}, and {Fg, G € G} (6.1)

makes the topological (hyper)space (F, T) regular and compact, see e.g. [4, Propo-
sition 3.2]. If T has a countable base, so does (F, T), see e.g. [7, Theorem 1-2-1]

and [4] in which case a base for T is given by the open sets of the type

1B R 1B
PV M Fp,, a finite (6.2)

where cl C denoted the closure of C, and the
fBl,i=1,.--.q‘

come from a countable base of open sets for T X R. The Borel field, generated by
the T-open subsets of F, will be denoted by B(F). It is easy to see that it can be
generated from the subbase of open sets (6.1), and in the countable-base case by
the restricted class (6.2), cf., [7, 11].

We can also view the epigraphical random set as a random variable defined on
N and values in E, the subset of F', consisting of the sets that are epigraphs. It
is easy to verify that £ is a closed subset of F', and thus with the T-relative topolo-
gy, it inherits all the properties of F. The map

whb epiX (0): 0 —E

is measurable (is a random set), if forall K € X,

(epiX) YK)=lwelept X (0) NK# ¢} €4 . 6.3)
This is equivalent [9, 11] to any one of the following conditions:

(epi X )"}(F) €4 forallF € F,

(epl X_)'i(B) € A for all closed balls Bof T X R,

w b epi X (o) admits a Castaing representation (see below),
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graph (epi X ) €4 ® B,,
wb epi X (0): 0 — F is B(F)-measurable.

Each one of these characterizations catches a special aspect of the measurability

of the epi X . To have measurable graph corresponds to having {X;, t €T| a

measurable stochastic process. The fact that the random (closed) sets admits a
Castaing representation generalizes the notion of separability of a stochastic pro-
cess. And the last one induces on (F, B(F)), more precisely on (£, B(E)), a distri-

bution. From the definitions, it is immediate to verify [10, Proposition 1] that

THEOREM 6.1 The stochastic process {Xt, t € T] with lsc. realizations is
measurable if and only if (v, t)b X (w) is a random lsc. function, or still, if

and only if o epi X (w) is a random closed sel.

A countable collection of measurable functions {x,, a,): 0 =T xR, k =1,...{

is a Castaing representation [9] of epi X €Aif
fwlepi X (w) # ¢):=domepi X €@ ,
and for all w € epi X,

el (Uk{xp (@), ay(w)]) = epi X(w) .

We now show that the fact that the random closed set epi X admits a Castaing

representation is an extension of the notion of separability for the stochastic pro-

cess {X,, t € T{. The key facl is the following:

THEOREM 6.2 Any real-valued separable stochastic process [X,, T € T} with L.sc.

realizations is a measurable process.

PROOF In view of Theorem 6.1, and the equivalenl definitions of measurability (for

a random set), it suffices to exhibit a countable collection of measurable functions
e a): 0 —=TxR, k=1,...,
such that forall o € 02,

epi X (@) =cl (Uylxy(e), ap(@)]) .
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Suppose D = {d;, i €I} ¢ T is the countable set with respect to which {X;, t € T{ is
separable, and let A = !aj. j € J{ be a countable dense subset of R. Then D X A is a
countable dense subset of T x R. Let {(x,, aj): 0N —-TxR,i€l,jel|beacount-

able collection of random functions defined by

x(w):=4d,, aj(m) = a forall @€ .
Since {X;, t € T} is a stochastic process, for all (i, j)

fo](x(w), aj(m)) €epi X (w)} = !mlxd‘(w) < ajj €A
Let N be a u-null subset of Q such that every realization of X (@) is D-separable
for all @ € Q\N. We have that for all ® € Q\N,

epi X (@) =cl(epi X (@) N {(x(w), aj(w)). iel,jed} .
For all @ € O\N and all (x, a) € epi X (@), by D-separability of {X,,t €T}, there
exists {d, € D, n =1,... | such that

x =limpd,,  and a =X(w) = lmyXg (@) .

Since A is dense in Rand t » X;(w) is l.sc., we can always find a sequence fan € A,

n =1,... | such that a, = an(m) and a = lim,a,. This means that for all @ € Q\N
epi X (@) celfepi X (@) N {(x(0), ay(w)), i €L, j €T .

But this yields equality since the reverse direction is trivially satisfied.

The stochastic process {Xi .t € T} having epigraphical representation

epi X () if w € O\N

wb epi X' (0) = cl(epi X (@) N Ix,, (@), aj(m)). i€el,jel] if weN

is measurable, by Theorem 6.1, i.e., forall K € X
tweQlepi X' (@) NK# 0} €4

For the process {X;, t € T{, we have that

fw € Qjepi X (@) N K # ¢}

=fw € 0O\ Nlepi X' (@) VK # ¢{ U {w €N]epi X () NK # ¢}
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also belongs to 4. The latter set is of measure O and belongs to 4, since (Q, 4, u) is

complete by assumption.nd

The converse of this theorem does not hold. A counterexample would be the

process {Y,, t € T as defined in Example 2.1 with T = R,.

REMARK 6.3 In Section 4, we indicated that separability was introduced to recov-

er the measurability of the sets
fwe€Q|X,(w) €F, forall te€GcCT

where F C R is closed and G is T,-open, we should note that there are of course no
measurability problems if (w, t) X,(w) is a random l.sc. function. And thus in

that context, separability is mostly an irrelevant concept.

7. DISTRIBUTIONS AND DISTRIBUTION FUNCTIONS

In section 6, we have seen that to each random l.sc. function we can associate
an epigraphical random closed set. As we shall show now, to each random closed set
there corresponds a distribution function, which in turn will allow us to define the
"distribution function” of a random l.sc. function. Let us denote by TI' a random
closed set, defined on Q and with values in the closed subsets of T XR. Let P denote
the distribution of T, i.e., the probability measure induced on B (F) by the relation

P(B) = ulw|I'(w) € B} (7.1)

for all B € B(F).

Since the topologial space (F, B(F)) is metrizable, see Section 6, every proba-
bility measure defined on B(F) is regular [2, Theorem 1.1], and thus is completely
determined by its values on the open (or closed) subsets of F. If we assume that F
has a countable base — and for this it suffices that T has a countable base — every
open set in F' is the countable union of elements in the base, obtained by taking fin-
ite intersection of the elements in the subbase. Thus, it will certainly be sufficient
to know the values of P on the subbase (6.1) to completely determine P. This obser-
vation will bring us to the notion of a distribution function for the random closed
set I' [12].

First observe that the restriction of P to the class {Fg, K € X{ defines a func-

tion D on X through the relation:
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D) = P(Fyg) = nlw|T N K # ¢} (7.2)

for all K € K. This function has the following properties:

D(¢) =0 ; (7.3)
for any decreasing sequence [K pw V=1, | in X, the sequence .4
{D(K,), v=1,...] decreasesto D(limK,) ;
for any sequence of sets {Kl,. v =0,... |, the functions [An. n =0, 1,... | defined re-

cursively by
8p(Ko) =1 = D(Ky) ,
8,(Ko: Ky) = 8p(Kp) — 8o(Ky U Ky) (7.5)
and for n =2,...

A (Ko Ky, . .. K)) =48, 1K Ky, . .. . Ky_q) =4, 1Ko UK, Ky, ... . K, —q)

take on their values [0, 1].

The properties of D on X are essentially the same as those of the distribution
function of a 1- or n-dimensional random variable. Property (7.4) is the same as
right-continuity, whereas (7.3) corresponds to the continuity at — e for a distribu-
tion function on the real line. Property (7.5) can be viewed as an extension of the
notion of monotonicity. In view of this, and the fact [12, Choquet's Theorem 1.3]
that any function D:K — [0, 1] that satisfies the conditions (7.3), (7.4), (7.5)
uniquely determines a probability measure on B(F), we call D the distribution
Sunction of I.

The fact that we can restrict the domain of definition of D to the subclass X“?

of X is very useful in a number of applications, where
K" = {finite union of closed balls with positive radii};

note that ¢ € K¥? as the union of an empty collection. This comes from the fact that

the properties of (F, T) enables us to generate B(F) from the family
(Fi. K € K" ;
in fact, for all K € KX, we have

K =N {K'|K’ DK, K’ € k")
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and

Fg= N Fg
K’ 5K
K

and consequently

D(K) = P(Fg) =infg. ;x P(Fg,) =infyg, 5 D(K') .
Ke K e

The (probability) distridbution function of a random lower semicontinuous
function (w, t) X, (w) is the distribution function of its epigraphical random set.

Since the random set takes its values in the (hyper)space of epigraphs we could
reformulate it in the following terms: let C be a Ti-compact subset of T, and a € R,

then
D(C, a): = plw|infy cc X (@) S af

defined on (the compact subsets of T) X R can be used instead of the usual defini-

tion of D on the compact subsets of T X R.

8. ... AND FINITE DIMENSIONAL DISTRIBUTIONS!

Let us consider [X,, t € T| a measurable stochastic process with l.sc. realiza-

tions, then epi X :Q 3T x R is a closed random set with distribution function

D:X — [0, 1]. Any finite set I = {(t4, @) ,. .., (tp, ap)} €T x Ris T-compact, and

thus we have
D(I) = plw € Qlepi X () # ¢} .
In particular, if we fix t, then for all a € R
D({(t, a))) = plw € QX () = a] =P ((— =, al)

where P, refers to the 1-dimensional probability measure of the random variable

X¢. Similarly, if we fix tq, . . ., t.q. then
Py, ... tql(— % @] X « - X(— oo, agl) = plo|X (@) S ay, . . ., Xiq(w) S ag)

=39, DIy, a)}) —E}J‘D(“‘l' ay), (t; a,)])

+ o+ (— 1)h+1D(t(t,1, ai)' « e ey (t'qn aq)’)
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It is now immediate that

THEOREM 8.1 [r !Xt, t € T} is a measurable stochastic process with l.sc. realiza-
tions, the finite dimensional distributions are completely determined by D, or

equivalently by the restriction of D to the finite subsets of T X R.

Of course, the converse of this theorem does not necessarily hold. Take for exam-

ple the process [Y,,t€T] of Example 2.1 with T=R, and let
K =[t;, t;] x [—%, —%], where 0 <t; <t,. Then D(K) = ufw|V(w) € [t,, t;]} >0,

but D(I) =0 for any finite subset I of K. The family of finite dimensional distribu-
tions, that assigns a value to D for every finite subset of K, does not allow us to

make any inference about the value to assign to D(K).

REMARK 8.2 Note that the standard consistency conditions for the family of finite
dimensional distribution could actually be derived from the "monotonicity"” proper-
ty (7.5) of the distribution function D. Thus, we can think of this family of finite di-
mensional distributions itself as a distribution function, but defined on the finite
subsets of T X R. This suggests another approach to Kolmogorov’s Consistency

Theorem via Choquet’s Theorem.

The fact that a compact set K ¢ T x R cannot be obtained as a countable union
of finite sets is a topological fact that leads to a probabilistic discrepancy in the

example involving the process {Y;, t € T}.

DEFINITION 8.3 The distribution function of a random L.sc. function is said to
be inner separable, if to any K € X and ¢ > 0, there corresponds a finile sel
I, € K such that D(K) <D(I,) + &.

The basic difference between separability of a stochastic process and the inner
separability of its distribution is that separability is aimed at the reconstruction
of sets through ’finite sets", whereas inner separability is aimed at the recon-
struction of the probabilistic content of the sets in terms of the probability associ-
ated to finite sets.

PROPOSITION 8.4 [12, Proposition 4.6]. Suppose {X;, t € T| is a measurable sto-
chastic process with lL.sc. realizations. [f it is separable, then its distribution
Sunction ts inner separable. Moreover, if ils distribuilion funciion is inner
separable, ils values on K are completely determined by ils values on the finite

subsets of T X R.
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This last assertion is an immediate consequence of the definition of inner separa-

bility.

9. WEAK CONVERGENCE AND CONVERGENCE IN DISTRIBUTION

We show that for random l.sc. functions, weak convergence of the probability
measures corresponds to the convergence of the distribution functions at the
"continuity" sets.

By v, we index the members of a sequence of stochastic processes, the in-
duced probability measures on B (E), or the corresponding distribution functions
on X = K(T x R); by B(F) we mean the Borel field B(F) restricted to E. With v = e,
or simply without index, we refer to the limilt element of the sequence. We have

seen that for every K € X:
DY(K) =PY(Ey) = ulw € Dlepi X*(w) N K # ¢} .

Since Eg is a closed subset of F--F is a closed subset of F--, we can easily

obtain from the Portemanteau Theorem [2] that

PROPOSITION 9.1 IfPY converges weakly to P, then for allK € X

lim supDY(K) < D(K) . 9.1)

"R X ]

Unless P(bdy Eg) =0, the probability measure attached to the boundary of

Ey, we cannot guarantee that

lim inf D¥(K) = D(K) , (8.2)

EsX 4

i.e. unless K is a "continuity’ point of D in a sense to be defined below. Note that
"continuity sets” of D must correspond to P-continuity sets and that the class of
sets for which this continuity is defined must at least be a convergence determin-

ing class [2].

DEFINITION 9.2 An increasing sequence (K" n =1,... | of compact sets is said to

regularly converge to K if
K=cl Ug=1K" and intK c Up=1K" ; (8.3)

where int S denotes the interior of the set S.
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DEFINITION 9.3 A distribution function D:K — [0,1] is distribution-continuous

at K, if for every regularly increasing sequence (K", n=1,... | to K,

D(K) = lim D(K™ (9.4)

n—veo

The distridution-continuity set Cp of D, is the subset of K on which D is

distribution-continuous

PROPOSITION 9.4 [12, Lemma 1.11]. For any K €K,
(1) if (P(bdy Eg) =0, then K € Cp;
(if) K € Cp and K = cl(int K), then P(bdy Ex) = 0.

Assuming that (T, 7,) has a countable base, let X 3” c K°? be such that X 8” is the

finite union of balls that determine a countable basis for (T X R, 7). We have
K" nCcp = K" N [K|P(bdy Eg) =0§ ,

and if T has a countable base
k8 N Cp=K§ NIK|P(bdy Ex) =0} .

This allows us to rephrase weak-convergence of probability measures in terms of

the pointwise convergence of the distribution functions.

THEOREM 9.5 [12, Theorem 1.15] For the family of random l.sc. funciions (X.,
X.". v = 1,... |, equivalently of measurable stochastic processes with l.sc. reali-
zations, we have that the PY converge weakly to P if and only if for all K € KV

M Cp, @nd if (T, 74) has a countable base, for allK € X ab M Cp):

D(K) = lim DY(K) .

V—rw
We refer to this type of convergence, as convergence in distribution of the sto-

chastic processes {X{, t € T{ to {X,, t € T}, and denote it by XV 1d X.
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10. CONVERGENCE IN DISTRIBUTION AND CONVERGENCE OF THE FINITE
DIMENSIONAL DISTRIBUTIONS

In the classical approach to the study of stochastic processes, convergence
of stochastic processes is defined in terms of the convergence of the finite dimen-

sional distributions, that we denote by

xv 24 x

In view of the comments in Section 8, we cannot expect that X_" L X implies that

X_" L X , but the converse could reasonably be conjectured, see Theorem 8.1.

However, in general also this implication fails. The reason is that for finite sets
K c X, the notions of distribution-continuity and continuity of the corresponding

finite dimensional distribution do not coincide.

REMARK 10.1 This can all be traced back to the relationship between the epi-
topology and the pointwise-topology. Equivalence is obtained in the presence of
equi-semicontinuity [12, Section 3], see also [4] for details.

The passage from convergence in distribution to convergence of the finite di-
mensional distributions and vice-versa, is based on the possibility of "approximat-
ing” the values of the distribution function for compact sets K by finite sets, in-

dependent of v, and conversely.

DEFINITION 10.2 The family of distridbution functions {D;DY=1,...] on X is
equi-outer regular at the finite set 1 C T X R, if to every £ > 0 there corresponds

a compact set K, € K" N Cp with K, O 1 such that for v =1,...

D¥(K,) <D¥(I) + &, and D(K,) <D(I) + ¢ .

Now, let C; 4 denote the finite subsets of T X R, i.e.
Cf.d C {I = {(t'i' ai). e v ey (t'Q' aq)‘, qfinlte] ,

such that the distribution function of the vector (Xt.l- c e qu) is continuous at

(&g, ..., aq).
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DEFINITION 10.3 The family of distribution functions {D; DY, v=1,...] on K is
equi-inner separable at K € X, if to every £ > 0, there corresponds a finite set I,

such that
D) < D(Ic) + & and DY(K) < D"(Ic) +

Jor v =1,...; see Definition 8.5.

THEOREM [12, Corollary 4.6] Suppose {X; XY, v =1,...] is a collection of random

Lsc. functions. Then X" 2% X implies X¥ ' X_4if and only 4 {D, D%, v =1,...}

is equi-outer regular on Cp 4. And X." Ld X implies X." 14 X 1if and only if

{D; DY, v =1,...] is equi-inner separable.

11. BOUNDED RANDOM L.SC. FUNCTIONS

Applications usually requires us to restrict our attention to a subclass of
processes that possess further properties beside lower (or upper) semicontinuity.
From the point of view of the eqigraphs, this means that, the realizations now be-
long to E’ a subset of E. Let T’ be the relative T-topology on E’. Then the topologi-
cal space (E’, T’) inherits a number of the properties of (#, T') [6]. In particular,
if (7, T) is metric with countable base, then (E’, T’) is metric with countable base.
Thus, in principle all the earlier results still apply to (£’, T’), and the theory of
weak-convergence on separable metric spaces can be used to obtain convergence

criteria. In particular, recall that:

THEOREM 11.1 Prohorov. The sequence {PY, v =1,...| of probability measures
on B(E’) is tight if and only if every subsegquence contains a further subse-

quence that weakly converges to a probability measure.

This means that the sequence {PY, v =1,... | is relatively compact. A subset S

of E’ is T'-compact if and only if it is a T-closed subset of £, see Section 6.

We now deal with bounded processes. We use this class to illustrate the poten-
tial application of the "epigraphical” approach to specific classes of stochastic

processes. To begin with, let us observe:
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LEMMA 11.2 For all a € R,
E, = lepi x|sup, ¢7|x(t)| s aj CE

is T-compact. And hence, any collection of probability measures P on B(E’)

such that for every &€ > 0, there exisis a & 0 such that for allP’' € P
PEH>1 -,
is tight.

PROQF. The first assertion follows from [4, Section 4] and the second one from the

definition of tightness [8].0

Let
Ef. = fepi xlsuph ETlx(t')I = a';

be the space of epigraphs associated to l.sc. functions that are bounded below and

above by af. From Lemma 11.2, and Theorem 11.1, it follows directly that

PROPOSITION 11.3 Any collection P of probability measures on B(E ') is tight,

and hence every subsequence has a convergent subsequence.

12. AN APPLICATION TO GOODNESS-OF-FIT STATISTICS

Let us consider the basic case of independent observations (§,, £,,..., §,) from

the uniform distribution on [0, 1]. Let us define the empirical process

, F¥w, t) —t, if 0 <t <1,
Up'(w) = 0 otherwise .

where for every o, FY(w, ') is the empiral distribution (taken left-continuous)
determined by the sample ({4, . . ., ). The realizations U"‘(m) are l.sc. on [0, 1]

(with respect to the natural topology on R); this comes from the fact that FV is a
left-continuous piecewise constant distribution function on R. It is also easy to

verify that the function
(o, t)» U¥(w):[0,1]Y x[0, 1] = [-1, 1]

is measurable. Redefining the underlying sampie space to be [0,1]%, and making the

obvious identifications, we have that for all v =1,...
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(@, P U¥(w) =[0,1]° % [0, 1] — [-1,1]
is a random l.sc. function. We are here in the case when for all v =1,...

epi UY C lepi x|—-1=<x(t)<1,t €0, 1)} =:E’ .

Moreover, for all v, the corresponding distribution functions {DY% v =1,...{ are
inner separable at K, for all K in K'Y This follows from the inner-separability of
the distribution function associated to the stochastic process {FY(:, t), t € [0. 1]}.
Since, we may as well take for balls the products of intervals, we see that
epi F¥(w) N (I, tz) X [a4, az]) only if F¥(w, t;) s a4, since FY is monotone nonde-
creasing. Thus for any finite collection of balls, the value of the associated distri-

bution function is determined by its values on some finite set.

By Proposition B.4, and the fact that the values of DY on k" determine unique-
ly its values on X, we know that the finite dimensional distributions completely
determine D". Moreover from Proposition 11.3, since the {U}, t € T{ are (equi-)
bounded, the associated probability measures are tight. This means that there al-

ways exists a subsequence
{D'%, k =1,...] converging D ,

(e UY 25 U),

Observe that independence did not play any role up to now. If the
{éx. k =1,...{ are i.i.d, by the law of large numbers, for every I = (t, ..., t.q), the
finite dimensional distributions converge in distribution to the q-dimensional dis-
tribution of the random vector identically zero. And thus the limit process

, t € T{ must be a stochastic process whose realizations are suc a
fUtt. T tb tochasti h lizati h that
Ui(w) =0 forall t€([0,1],

and for all w € 1\ N where N is a set of measure 0.

Actually a somewhat stronger result does hold. From, the strong law of large

numbers, for everyt € T
UY=FYC,t) -t -0 as. ,
i.e. there exists a set N, of measure 0, such that

U¥w) =F%w, t) -t =0 forall w € O\N, . 12.1)
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We shall show that almost surely

epi U = lim epi UY

Ve

Let S = {t4, t,,... | be a countable dense subset of T = [0, 1]. Then by (12.1), we
have that

U (@) =FYw, ty) =ty — 0 forall @ €N\N
where N is the null set
N:= Uk=1 N, -
Now, it is an exercise in epi~convergence to show that for every @ € O\ N

lim supepi U (@) Cepi U C lim inf epi UY(w) ,

V= y—ew

where lim sup,, _, , and lim inf,, _, _ are the superior and inferior limits of sets [4,

12]. In fact it suffices to show that for all € Q\N, t €[0, 1]

-forall t, —t, (k) € (v):lim inf U¥(w) 20 , (12.2)

and
- there exists t, — t.:li:;njt:p U:y(o) <0 . (12.3)
Condition (12.3) is immediate. For, let t €T, £ >0 and take t, € S with
t, €[t, t +¢&). We have
F'(w, t) -t < F¥(w, t) —t, +¢
Hence
li:’nj\:p (U¥(w) =F¥(w, t) —t) < &,

and since ¢ > 0 is arbitrary, (12.3) follows.

Now let t, — t and (¥,) be a subsequence of (v). For any € >0, fix t, €D

such that t, € (t — ¢, t]. Since t,, — t, there is k, such that for all k & k,,
t, <t <t +¢

Thus for all v €(vy) with v 2 v, for all @ € Q\N, we have
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F¥w, t) —t, 2Fw, t,) —t, — ¢,

since FY is monotone increasing with respect to t. This implies that for all

@ € Q\N,
| 4
lim inf Uy X@) 2 - ¢
kK—w

Since £ > 0 is arbitrary, it yields (12.2).

Almost sure epi-convergence implies convergence in distribution [12, Section

3] and thus
vv=$u (12.4)

Glivenko-Cantelli's Theorem is a corollary of epi-convergence in distribution, as

we see next.

GLIVENKO—CANTELLI'S THEOREM 12.1  Supy ¢ o, 1]|U{(w)| — 0, a.s.

PROOF Suppose to the contrary that for some w € Q\N, and £ >0, there is a
subsequence (v,) of (v) such that supt_IU:“(w)l > &. This means that there exists
for each k, t, such that IUt::‘(o)l > &. Passing to a subsequence if necessary, let t

be the limit of {t,, k =1,..., then
1 4 | £
either Ut.kk("’) >&, or Ut_k“(w) <—ct .

If the second inequality occurred infinitely often, then for some subsequence we

would have that

K’ -
lll(!n_irg‘ Ut.k«(“) <-F .

which does contradict the epi-convergence of the U_" toU . If Ut"k(“’) > ¢ infinitely
k
often, then

& < lim sup Ut:“‘(o) .
K—e

Ift'=1thent <1 andt >1-—¢&/2 for k sufficiently large. The preceding ine-
quality then implies that
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Yy Vi L _f
““Tf’iput, (a)suln_ftipUl (m)-‘-2 =2

recall that Uy (w) =0, see the definition. If £’ € [0, 1], there exists ¢* >0, 2¢&' < ¢

such that for k& sufficiently large

'~ <t <t'+& .

Then, from the proof given for (12.3), it follows that

£ <lim sup Ut:* (o)
k—w

= lizn supl[U;. , (@) +2&] < ¢ .

This is again a contradiction, and the proof is complete.t
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