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RANDOM SEXICONTINUOUS RJNCI'IONS 

GabrieLLa ~a l i ne t t i '  and Roger J-B. wets" 

These notes introduce a new approach fo r  the description, and the analysis.of 

stochastic phenomena. I t  par ts  company with the classical approach when the real- 

izations a r e  infinite dimensional in nature. We shall be mostly concerned with ques- 

tions of convergence and the description of the probability distributions associat- 

ed to such phenomena. 

W e  begin with a brief review of the classical theory fo r  stochastic processes, 

bringing to  the fore some of the shortcomings of such an  approach. In the second 

pa r t  of the paper  w e  deal with the epigraphical approach that  rel ies on the model- 

ing of the "paths" of the stochastic phenomena by semicontInuous functions. W e  

conclude with a discussion and a comparison of the two theories, and the applica- 

tion to  the convergence of stochastic processes. 

1. STOCHASTIC PROCESSES: THE CLASSICAL VIEW 

A stochcrstic process, with values in the extended reals,  Is a collection 

[Xt, t E Tj, of extended real-valued random variables indexed by T and defined on a 

probability space (Q, A, p). Here, and in the next f e w  sections, w e  take T to be a 

subset of R. I t  is a discrete process, if T is a discrete subset of R, in which case, 

without loss of generality w e  can always identify T with Z (the integers) or N (the 

natural numbers). 

The probability measure associated to  [Xt,  t E Tj i s  usually defined in terms of 

i ts  finite dimensional distributions. For any finite subset Itl, . . . , tqj C T, the q- 

dimensional random vector 

defined on (n, A, p )  with values in @ = [- w, -1s has the probability measure de- 
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f ined by t h e  correspondence 

where B E gq is a Bore1 subse t  of @. The family of probabi l i ty  measures 

where I(T) i s  t h e  collection of all f ini te subse ts  of T, i s  t h e  family of f in i te dimen- 

sional distr ibut ions of t h e  s tochast ic  p rocess  [X ,, t E T j. 

This approach  i s  a t t rac t i ve  for a number of reasons,  in p a r t i c u l a r  because of 

its immediate simplicity, at l eas t  as f a r  as t h e  definit ion i s  concerned.  But in many 

cases, t h e  p r i c e  must b e  paid a t  a later stage, and sometimes t h e r e  are technical ,  

and even conceptual,  diff icult ies t h a t  can  b e  d i rec t ly  t raced  back to th is  "finite di- 

mensional" approach to stochast ic  processes.  

In a functional set t ing,  t h e  classical approach  leads to t h e  following frame- 

work. To e v e r y  o E O, t h e r e  co r responds  a funct ion (sample path, real izat ion):  

The s tochast ic  process IX,, t E Tj can b e  viewed as map from R in to El'; we now 

identify ET with t h e  space of all extended real-valued functions def ined on T. The 

family of f ini te dimensional d is t r ibut ions assigns a probabi l i ty to all subse ts  of t h e  

t ype  

where B E gq. I = Itl, . . . , tqj E I ( T )  The sets B1 a r e  cylinders (with f in i te dimen- 

sional base)  and they form a field on 3. The f ini te dimensional d is t r ibut ions assign 

a measure to each  set of th is  f ield through t h e  identi ty.  

I t  c a n  b e  shown, as done by Daniel] and Kolmogorov, t h a t  th is  measure P c a n  b e  

uniquely extended to t he  o-field, denoted by F, generated on El' by t h e  family of 

cy l inders.  W e  can thus pin down a unique probabi l i ty  measure associated to t h e  s b  

chast ic  p rocess  {X,, t E Tj. From th is viewpoint, t w o  stochast ic  processes are then 

equivalent if they  have t h e  same f ini te dimensional distr ibut ions, they  identi fy t h e  

same probabi l i ty  measure on 3. 



2. SOME QUESTIONS. SOME EXAMPLES 

One of the shortcomings of this approach is  that  no attention is  paid to (possi- 

ble) topological propert ies of the realizations of the process. In many applica- 

tions, w e  may be  interested in developing a calculus f o r  processes that have very 

specific propert ies, whose paths may very we l l  belong to a subset of of measure 

zero. The two following examples il lustrate many of the difficulties. 

EXAMPLE 2.1 Suppose V : fl --.(0, -) is a random variable with continuous distribu- 

tion function. F o r a l l t  E I& prob CV =t ]  = O .  Let T = R + a n d  lYt, t ~ T j ,  fY i ,  t E T ~  

be two stochastic processes such that  

except tha t :  Yt(o) =- 1 if V(o) = t 

These two processes are equivalent, although the realizations of {Y; a r e  continu- 

ous with probability 1, and those of f Y t j  are continuous with probability 0. 

One may be templed to view the phenomena il lustrated by Example 2.1 as just 

another example of the fact  that  random variables that  have the same distribution 

are not necessarily almost surely equal. But in this case t he re  is  something more 

that  en te rs  into play. Let C(T) denote the set of continuous frcnctions defined on T, 

and values in E. Thus, w e  could reformulate our  earlier observation, in the follow- 

ing terms: 

pry: EC(T)I = 1  , and pry. EC(T)l = 0  , 

but, as we shall now see, nei ther C(T) nor i ts  complement - the space of functions 

with discontinuities - belong to RT. The preceding expressions make sense only be- 

cause 

lo E n ( y r  (0 )  E c(T)j = fl E A and lo E fllY.(o) E c (T )~  = fl € A  . 

But in terms of the probability distributions P and P' on RT induced by f Y t j  and 

[ Y i  j respectively, the expressions Pr(C(T)) =1, and P(C(T)) = 0 do not make 

sense because nei ther P' nor  P are defined f o r  the set C(T). To see this, simply ob- 

serve  that  since P = P', the above would imply 

1 = P (ET) = P(C(T) u (3 \ C (T)) 



Observe also that  the paths of both processes are bounded. But again in terms 

of P, o r  equivalently I", w e  cannot characterize boundedness since 

[x E IZTIO s x(t) s 1 , f o r  al l  t E TI g R~ . 

EXAMPLE 2.2 m e  Poisson Process. Let [X,. n = 1 ,  ... ] be a stochastic process 

(T = N) where 

Xl  i s  the waiting time f o r  the f i rs t  event, 

and f o r  n = 2, ... 
X n  i s  the waiting time between (n - 1)-th and n-th event. 

Then, the time of occurrence of the n-th event is  

Under the assumption that the event 

O= :S ,<S1<  .-• < S n <  . . .  , Sup Sn = - 
n 

(2.1) 

has probability 1, on this subset of Q, w e  define the random variables 

that  records the (random) number of events that  occur in the interval 10, t]; if o is  

not in the set specified by (2.1), we set Nt(o) : = 0. It  is w e l l  known, see [3] f o r  ex- 

ample, that  if the IX,, n = 1,. .. ] are independent with the same exponential distri- 

bution, then [Nt, t r 0 ]  is  the Poisson stochastic process. 

For every o ,  the realization 

is  a nondecreasing, integer-valued function. 

Let Q C R be the rationals, and le t  q: [0, w) 4 Q be such that  q(t) : = t if 

t E Q, and q(t) :  =O otherwise. Now, define 

For al l  t E[O, -) 



since Q - t i s  a countable subset of R+ and XI  i s  absolutely continuous (with 

respect  to the Lebesgue measure). Thus 

and the  stochastic process IMt, t E R+j has the s a m e  family of finite dimensional 

distributions as INt, t E R+j. However, fo r  all o, the  realizations t k &(o) are 

everywhere discontinuous, neither monotone nor integer-valued! 

W e  are basically in the  same situation as in Example 2.1. The realizations of 

IN j all lie in 

Ix E RCO")lx : [0, -) -4 N , x(s) 4 x(t) whenever s 4 t ]  

which does not belong to RT. 

All of this comes from the  faat that  a subset B of RT cannot L i e  in RT un less  

there ex is ts  a countabLe subset S fl T w i t h  the property:  fJ x E B a n d  x(t) = y(t) 

for aLL t in S then  y E B 13, Theorem 36.3 1. 

This means that  any set of the type 

Ix E XZT(x(t) E F fo r  all t E T' c TI 

where F c R is closed, are not necessarily in RT, since they usually cannot be ob- 

tained as countubLe intersections of se ts  in RT. This i s  especially important when i t  

comes to the study of functionals of stochastic processes. For a stochastic process 

IXt, t E TI, let 

then fo r  al l  a E 8, 

where 

S, = Ix E r( f o r a l l  t ET, x(t) r a] , 

but S, g 9, and thus J is  not even measurably related to the  stochastic process 

IX t j .  This point i s  brought home by considering the  two equivalent processes of Ex- 

ample 2.1. Here, both 



J1 : = inft ,TYt, and J; : inft, TY; 

t u rn  out  to be measurable functions from n in to [0, 11 but in no way "equivalent", 

s ince 

These are some of t h e  simplest examples w e  know tha t  c lea r l y  suggest  tha t  t h e  

class RT is often too small to obtain an appropr ia te  probabi l is t ic  descr ipt ion of 

stochast ic  processes.  The appl icat ions should, of course ,  d jc ta te  t he  framework t o  

use in any par t icu lar  si tuat ion. In the  next  sect ions,  w e  show tha t  there is a ra th -  

er genera l  approach t ha t  allows us to avoid some of the  object ions t ha t  one may 

have to th is  "simple" definition of stochast ic  processes.  

3. SOME TOPOLOGICAL CONSIDERATIONS 

From a topological viewpoint, the shortcomings of t he  "finite dimensional dis- 

tr ibut ions" descript ion of stochast ic  processes come from the  f a c t  t ha t  lZT does not 

take  into account the  underlying topology of T. The o-field RT is not in genera l  a 

Borel f ield, although t h e  f i r s t  s t e p  in t he  construct ion of RT i s  topological in na- 

t u re .  W e  can  think of RT as generated by the  c lass of measurable rec tang les  

as (ti, . . . , t k )  ranges o v e r  1 0 )  and the G i  ranges ove r  G(R),  t h e  open subsets  of 

R .  

This c lass  of measurable rec tang les  is the base f o r  t he  product  topology on 

lZT but in genera l  RT i s  not t he  Borel field with r espec t  to t he  product  topology. 

Unless T is a countable space ,  t h e  product  topology has  never  a countable base 16, 

Theorem 63. If B, denotes t he  Borel field generated by t he  open sets of t he  product  

topology, we have that  

with equality i f  T i s  countable. For example, if T c R is  an open in terva l ,  l e t  A be 

t h e  subset  of lZT t ha t  consists of the constant functions with values in [0.1]. Then A 

belongs to B, but not to RT. 



The "classical" approach essentially ignores the topology with which T is en- 

dowed, in favor of the  d iscrete topology. And since, with respec t  to the discrete 

topology, all functions in R~ are aontinuous, there  i s  no way to distinguish between 

those realizations that  w e  identify as continuous (with respect  to the usual topolo- 

gy on R)  and any o ther  realizations, tha t  are also "continuous" but now with 

respect  to the d iscrete topology. 

One general  approach, that  allows us to include (at  least to our  knowledge) all 

interesting stochastic processes, and which sk i r ts  around all of the  inherent diffi- 

culties of the  "classical" approach, i s  to think of stochastic processes as random 

lower (o r  upper) semicontinuous functions. The realizations of such processes are 

then lower (or upper)  semiaontinuous functions, a r a t h e r  large class of functions 

that  should include nearly all possible applications. And fo r  th is class, there  is a 

natural choice of topology, and an  approach that  avoids most of the  pitfalls of the  

"finite dimensional distributions" approach. 

For any function x : T --. a, the epigraph of x is the subset of the product 

space T X Rdefined by 

To any stochastic process fXt, t E Tj w e  can associate i ts  epigraphical represen- 

tation, i.e., the set-valued map defined as follows: 

o h  epi X (o)  = [( t ,  a ) l a  a Xt(o)j . 

For any finite set I = [(ti, a,), . . . , (tq, aq) l  in T X Re we have 

Since RT is the minimal u-filed generated by sets of the  type 

with I(T X R) the  finite subsets of T X R. From (3.1) i t  also follows that  

The sets of I (T  X R) form a base fo r  the discrete topology of T X R, and they are 

also compact with respect  to th is topology. 



In the epigraphical view, the "classical" approach defines a stochastic pro- 

cess IXL, t E TI with domain (Q, A ,  p )  as a measurable map from (Q, A )  into 

(ItT, RT), where measurability means that 

fo r  all subsets K of T X R,  that are compact with respect to the discrete topology. 

This highlights the source of the limitations of the classical approach, i t  is not 

able to  identify the topological properties of the realizations beyond those that 

can be identified by the discrete topology. The preceding relation also suggest the 

remedy t o  use, in order  to bring the topology of T into the probabilistic descrip- 

tion of the process. Instead of working with the discrete topology on T X R, w e  

aould equip T X R with a topology that would be more appropriate fo r  the applica- 

tion at hand. 

Let us return to  Example 2.1 with T = R,. If P and P' denote the probability 

measures induced by Y and Y' respectively, then 

for  all subsets K of T X E that are compact fo r  the discrete topology. The situation 

is completely different if compact refers to the "natural" topology, i.e. the usual 

topology on relative to T X E. I t  is easy to  verify that fo r  any 8 E (- 1 ,  0) and 

[al, a2] c T, w e  have that 

and 

This time, the "induced" probability measures will be different but of course they 

aannot be defined on RT, that in the classical approach is the "universal" function- 

a l  space for  dealing with stochastic processes. 



4. SEPARABILITY. MEASURABILITY AND STOCHASTIC EQUIVALENCE 

The epigraphical approach focuses i ts attention on the sets of the type: 

to define measurability, as w e l l  as to serve as building block in the definition of 

the probability measure associated with the process [Xt, t E Tj. Let K, denote the 

class of compact subsets of T X R where T is the product topology generated by r1 

on T and the usual topology on R. Measurabil i ty of the process [Xt, t E Tj will 

now mean: for all K in K,, 

This condition is closely related to the  classical notion that the process is measur- 

able, which means that 

(o, t) k Xt(o) is A 8 B(T) - measurable (4.2) 

where B(T) is the Bore1 field on T generated by the rl- open sets. In Section 6, w e  

shall show that fo r  stochastic processes with lower semicontinuous realizations, 

these t w o  conditions are equivalent. W e  bring this fact to the fore at this time, be- 

cause to require that a process be measurable is a standard condition used to 

overcome some of difficulties created by the classical definition. By definition any 

stochastic process is R~-measurable, but not neaessarily in terms of (4.2) or (4.1). 

This follows from the fact al l  sets that are compact with respect to the discrete to- 

pology are also T- compact. 

Closely related to the notion of measurability of a stochastic process is that 

of the separabi l i ty  of a stochastic process, as introduced by Doob. Among the ma- 

jor shortcomings of the class R~ is the fact that subsets of the type 

where F is a closed subset of R, do not necessarily belong to z. One circumvents 

the potential difficulties by requiring that the stochastic process [Xt, t E Tj be 

separable, i.e. there  exists an everywhere dense countable subset D of T and a p- 

null set N c Q such that fo r  every open set G c T and closed subset F of R, the sets 

[o E QJXL(o) E F f o r  al l  t E G n Dl 

and 



[ o  E QIXt(o) E F fo r  all t E G ~  

differ from each o ther  at most on a subset of N [5 1. 

In terms of the realizations of the stochastic process IXt, t E Tj, separability 

means that  f o r  all o E Q \ N, the function t k Xt(o) is  D-separabLe [3 1, i.e. fo r  

every t in T there  exists a sequence It,, n = I,,.. . j such that  

tn E D, t = l im tn, and Xt(o) = lim Xtn(o) , 
n n 

in o ther  words, f o r  every o E Q \ N, the realization is  completely determined by 

i ts values on D. A stochastic process separable with respect  to D is R ~ -  measur- 

able, and one may reasonably assume that  the fact  that  D i s  countable removes the 

"discrepancies" connected with "uncountabilities". Of course not all stochastic 

processes are separable. Process [Yt] of Example 2.1 is not separable,  although 

the equivalent stochastic process IYC] is separable. In fact ,  given any finite- 

valued process the re  always exists an equivalent process defined on the  same pro- 

bability space that  is  separable [3, Theorem 38.1. ]. 
A t  f i rst ,  i t  may appear  that  i t  i s  possible to res t r i c t  the  study of stochastic 

processes to those that  are separable, but there is some hidden difficulty. Separa- 

bility is  defined in term of a reference set D. For the convergence of stochastic 

processes, i t  would be necessary to prove f i rs t  that  there  exists a set D with 

respect to which all elements of the sequence (or  net), as w e l l  as the limit process. 

are separable. Moreover, the  existence of an  equivalent separable process does 

not mean that  the functionals defined on these processes will in any way be com- 

parable; think about the processes IYtj and IYi] of Example 2.1 and the sup func- 

tional, see Section 2. Separability only guarantees that  sets of the type (4.1) are 

measurable and that  the i r  probability can be determined by the family of finite di- 

mensional distributions. If IXt, t E T] is  not separable, nothing can be  said a prior i  

about sets of the type (4.1), and no additional information is  gained from the fact  

that  there is  an equivalent separable stochastic process. Thus a functional of the 

stochastic process involving sets of type (4.1) cannot be  analyzed in terms of the 

same functional defined on a n  equivalent stochastic process. 

Roughly speaking, separabil i ty is  an attempt at recovering the topological 

s t ructure of T, at posteriori. The approach developed in the next sections takes 

the topological s t ruc tu re  of T directly into account. 



5. THE EPIGRAPHICAL APPROACH 

The ear l ie r  sections have pointed out the shortcomings of the "classical" ap- 

proach by reformulating i t  in terms of the epigraphical representation of the pro- 

aess. W e  have seen that  the inherent weaknesses of this approach can be overcome 

by requiring that the stochastic process satisfy the s t ronger  measurability condi- 

tion 

to€ fllepi X (o)  nK f 41 € A  f o r a l l  K EX, (5.1) 

which take into account the topological s t ructure of T. 

All that follows is devoted t o  the study of stochastic processes that  satisfy 

condition (5.1) and have lower semicontinuous (1.sc.) realizations, i.e., 

t k Xt(o) is 1-sc. on T, f o r  all o E fl . 

Such stochastic proaesses, with possibly the values + - and - -, are called ran- 

dom L.sc. jbnctwns.  In another  setting, such functions are known as normal in-  

tegrands, and much of the theory developed by Rockafellar [9, 101 f o r  normal in- 

tegrands can be transposed to the present context. Many of the questions raised in 

the ear l ie r  sections seem t o  find the i r  natural formalization in terms the proper- 

ties of random l.sc functions and the associated epigraphical behavior. This leads 

us also to consider the associated random closed set 

o k  ep iX  ( o ) :  n 3 R  . (5.3) 

For each o ,  the set epi X ( a )  is a closed subset of T X B sinae the functions 

t k Xt(o) are l.sc., and the measurability of this set-valued function follows from 

condition (5.1). 

All of this suggests defining a topology f o r  the space of (extended real- 

valued) l.sc. functions in terms of the epigraphs, the mi-topology. W e  shall  see 

that  the corresponding Bore1 field provides us with the desired interplay between 

topological propert ies and measurability. W e  follow the development that w a s  ini- 

t iated in [I21 and review he re  s o m e  of the main features of that  theory. 

At f i rs t  i t  may appear  that  the requirement that the process has l.sc. paths is 

a ra the r  serious limitation. A t  least if we use this framework f o r  the study of gen- 

eral stochastic processes. This is not the case. Of course, stochastic processes 

with continuous realizations f i t  into this class, but also any cdd-l& process (con- 

tinuous from the r ight, limits from the left) admits a tr ivial modification that makes 



i t  a stochast ic  p rocess  with 1-sc. paths. Although, we r e s t r i c t  ourse lves  to t h e  

1.sc. case ,  i t  i s  c l e a r  t h a t  all t h e  resu l ts  have t h e i r  c o u n t e r p a r t  in t h e  upper  s e m -  

icontinuous (u.sc.) case ,  replacing everywhere ep igraph by h y p o g r a p h .  

Crucial to t h e  ensuing development i s  t h e  f a c t  t h a t  f o r  s tochast ic  processes 

t h a t  are l.sc. random funct ions, we can introduce a notion of convergence which i s  

not  only t h e  a p p r o p r i a t e  one  if w e  are in terested in t h e  ex t remal  p r o p e r t i e s  of the 

process,  as w e l l  as f o r  many re la ted  functionals, bu t  also prov ides in many si tua- 

t ions a m o r e  sat is fac tory  approach  to t h e  convergence of s tochast ic  processes as 

t h e  s tandard  functional approach .  

6. TFE EPIGRAPHICAL RANDOM SET 

Hencefor th,  w e  work in t h e  following sett ing 

- (fl, A ,  p) a complete probabi l i ty space,  

- (T, r l )  a locally compact  separab le  metr ic s p a c e ,  

- (w, t )  k Xt(w) : n x T --* k a random L.sc. m n c t i o n .  

By th is  we mean t h a t  

( i )  f o r  eve ry  o, t h e  real izat ion t H Xt(o) is  l.sc. with values in t h e  exten- 

ded reak 

(ii) t he  map (w, t )  i, Xt(w) is A @B1- measurable, where B1 is t h e  Bore1 field 

on T. 

The associated epigraphical  random se t ,  i s  t h e  map 

t h a t  takes  values in t h e  c losed subsets  of T x R ,  including t h e  empty set. 

The product  s p a c e  T X R is given the  product  topology of r1 with t h e  natural  

topology on R, we denote i t  by 7 .  Thus (T x R ,  7) i s  a locally compact separab le  

metr ic  space.  Let 

- F = F(T X R )  denote t h e  closed subsets of T X R, 

- G = G (T X R)  denote t h e  open subsets  of T X R, 

- K = K(T x E) denote t h e  compact subsets  of T X R ,  



For any subset C of T X B, let 

The topology T generated by the subbase of open sets 

jFK, K E K j  , and IFc, G E G j  

makes the topological (hyper)space (F, T) regular  and compact, see e.g. [4 ,  Propo- 

sition 3.21. If T has a countable base, so does (F,  T), see e.g. [7, Theorem 1-2-11 

and [4 ]  in which case a base f o r  T i s  given by the open sets of the  type 

where c l  C denoted the c losure of C, and the 

oome from a countable base of open sets f o r  T X R. The BoreLfieLd, generated by 

the T-open subsets of F ,  will be  denoted by B(F). I t  i s  easy to see that  i t  can be 

generated from the  subbase of open sets (6.1), and in the  countable-base case by 

the rest r ic ted class (6.2), cf., n, 111. 

W e  can also view the epigraphical random set as a random variable defined on 

fl and values in E ,  the subset of F ,  cons is t ing of the sets that are epigraphs. I t  

is  easy to verify t ha t  E  i s  a closed subset of F ,  and thus with the T-relative topolo- 

gy, i t  inherits al l  the proper t ies  of F. The map 

o h  epi X (o) : f l  + E  

i s  measurable (is a random set), if f o r  all K E K. 

(epi X )-'(K) = lo E CZ(epi X (o)  n K # # j  E A  . 

This i s  equlvalent [9, 111 to any one of the following conditions: 

(epi X )-'(F) E A  f o r  al l  F E F ,  

(epi X )-'(B) E  A f o r  all closed balls B of T x R, 

o k epi X. (o) admits a Castaing representation (see below), 



graph  (epi X ) E A 8B1, 

o k epi  X ( o )  : L? -, F i s  B(F)-measurable. 

Each one of t hese  character izat ions catches a spec ia l  aspec t  of t h e  measurabil ity 

of t h e  epi X . To have measurable g raph  cor responds to having [Xt ,  t E T j a 

measurable s tochast ic  process.  The fac t  t ha t  t h e  random (closed) sets admits a 

Castaing representa t ion general izes the  notion of separab i l i ty  of a stochast ic  pro- 

cess. And the  Last one induces on (F, B(F) ) ,  more prec ise ly  on (E,  B(E)) ,  a distr i-  

bution. From the  definit ions, i t  is  immediate t o  veri fy [lo, Proposit ion 11 t ha t  

THEOREM 6.1  The s tochast ic  process [Xt ,  t E TJ  w i t h  L.sc. rea l i za t ions  i s  

measurable i f  a n d  o n l y  i f  ( o ,  t )  k Xt(o) is  a r a n d o m  1.sc. m n c t i o n ,  o r  s t i l l ,  i f  

a n d  o n l y  i f  o k epi  X ( o )  is  a random closed set .  

A countable col lect ion of measurable functions lxk. a k )  : n -, T X B, k = 1 ,... 1 
is  a Cas ta ing  rep resen ta t ion  [9] of epi X E A if 

and f o r  a l l  o E epi X , 

We now show tha t  t he  f ac t  that  the  random closed set epi  X admits a Castaing 

representa t ion is an  extension of the notion of separab i l i ty  f o r  t he  stochast ic  pro- 

cess l X t ,  t E TI. The key fac t  is t he  following: 

THEOREM 6.2 A n y  rea l -va lued separable s tochast ic  process IXt ,  T E Tj w i t h  1.sc. 

r e a l i z a t i o n s  is a measurab le  process. 

PROOF In view of Theorem 6.1, and t he  equivalent definit ions of measurabil ity ( for  

a random se t ) ,  i t  suf f ices to exhibit  a countable col lect ion of measurable functions 

such t ha t  f o r  a l l  o r n, 



Suppose D = Idi, i E I j c T is the countable se t  with respect t o  which iXt, t E TI is 

separable, and let A = la,, j E J j be a countable dense subset of R. Then D X A is  a 

countable dense subset of T X R. Let l(xl. a,): R -+ T X R, i E I, j E J ]  be a count- 

able collection of random functions defined by 

Since lXt, t E T j is  a stochastic process, fo r  all (i, j) 

Let N be a p-null subset of Q such that every realization of X (o) is D-separable 

fo r  al l  o E R \ N. W e  have that for  all o E R \ N, 

epi X.(o) =c l (epi  X.(o) n l(xi(o>, a,(o)), i €1, j E J j  . 

For all o E R \ N  and all  (x, a )  E epi X (a),  by D-separability of [Xt, t E Tj, there 

exists Id, E D, n = 1 ,  ... j such that 

x = limndn, and a r Xt(o) = limnXh(o) . 

Since A is  dense in Rand t k Xt(o) is l.sc., w e  can always find a sequence la, E A, 

n = 1 ,  ... j such that a, r Xh(o) and a = limn a,. This means that fo r  al l  o E C2 \ N 

But this yields equality since the reverse direction is trivially satisfied. 

The stochastic process lXi, t E Tj having epigraphical representation 

is measurable, by Theorem 6.1, i.e., fo r  all K E K 

lo E RlepiX1(o) n K  $01 E A  . 

For the process [Xt, t E T 1, we have that 



also belongs t o  A .  The latter set i s  of measure 0 and belongs to A, since (n,  A, p )  is 

complete by assumption.n 

The converse of this theorem does not hold. A counterexample would be the 

prooess IYt, t E T j as defined in Example 2.1 with T = R,. 

REMARK 6.3 In Section 4, w e  indicated that  separabil i ty w a s  introduced to recov- 

er the measurability of the sets 

Io E n(Xt(o) E F, f o r  all t E G c Tj 

where F c R i s  closed and G is s p p e n ,  w e  should note that  t he re  are of course no 

measurability problems if ( a ,  t )  b Xt(o) is  a random l.sc. function. And thus in 

that  context, separability is  mostly an  i r relevant concept. 

7. DISTRIBUTIONS AND DISTRLBUTION FUNCTIONS 

In section 6,  w e  have seen that  to each random l.sc. function w e  can associate 

an  epigraphical random closed set. A s  w e  shall show now, to each random closed set 

there corresponds a distribution function, which in turn will allow us to define the 

"distribution function" of a random l.sc. function. Let us denote by r a random 

closed set ,  defined on n and with values in the closed subsets of T XR.  Let P denote 

the distribution of r ,  i.e., the probability measure induced on B(F)  by the relation 

f o r  al l  B E B(F).  

Since the topologial space (F, B(F))  is metrizable, see Section 6,  every proba- 

bility measure defined on B(F)  is regular [2, Theorem 1.11, and thus is  completely 

determined by i t s  values on the  open (or closed) subsets of F. If w e  assume that  F 

has a countable base - and f o r  this i t  suffices that  T has a countable base - every 

open set in F i s  the countable union of elements in the base, obtained by taking fin- 

i te intersection of the elements in the subbase. Thus, i t  will certainly be sufficient 

to know the values of P on the subbase (6.1) t o  completely determine P. This obser- 

vation will bring us to the notion of a distribution function f o r  the random closed 

set r [12]. 

First  observe tha t  the restr ict ion of P to the class IFK, K E K j  defines a func- 

tion D on K through the relation: 



fo r  all K E K. This function has the following properties: 

for  any decreasing sequence tK ,, u = 1,. . . j in K ,  the sequence 
(7.4) 

( K  ) v = 1 . .  j decreases to  D(1im K ,) ; 

for  any sequence of sets [K, v = 0 ,... j ,  the functions [A,, n = 0, 1 ,... j defined re- 

cursively by 

and for  n = 2, ... 

take on their  values [0, 11. 

The properties of D on K are essentially the s a m e  as those of the distribution 

function of a 1- or n-dimensional random variable. Property (7.4) is the same as 

right-continuity, whereas (7.3) corresponds to the continuity at - 0 fo r  a distribu- 

tion function on the real line. Property (7.5) can be viewed as an extension of the 

notion of monotonicity. In view of this, and the fact 112, Choquet's Theorem 1.31 

that any function D:K --. [0, 11 that satisfies the conditions (7.3). (7.4). (7.5) 

uniquely determines a probability measure on B(F), we call D the distr ibut ion 

f ihct ion of l?. 

The fact that  w e  can restr ic t  the domain of definition of D to  the subclass Pb 
of K is very useful in a number of applications, where 

KUb = Ifinite union of closed balls with positive radii j; 

note that $ E as the union of an empty collection. This comes from the fact that 

the properties of (F, T) enables us t o  generate B(F) from the family 

in fact, for  all K E K ,  we have 



and 

and consequently 

D(K) = P(FK) = inf K, ,  P(FK,) = inf K, ,KD(K') . 
K C  A KClVub 

The (probability) d i s t r i bu t i on  fLLnction of a random lower semicontinuous 

function (0,  t )  k Xt(o) is  the distribution function of i ts  epigraphlcal random set. 

Since the random set takes i t s  values in the (hyper)space of epigraphs w e  could 

reformulate i t  in the following terms: let C be a ri-compact subset of T, and a E R, 

then 

D(C, a ) :  = p[o( in f tEcXt(o)  4 aj 

defined on (the compact subsets of T) X B can be used instead of the usual defini- 

tion of D on the compact subsets of T x B. 

8. . . . AND IWUTJZ DIBENSIONAL DISTRIBUTIONS! 

Let us consider [Xt, t E Tj a measurable s h h a s t i c  process with l.sc. realiza- 

tions, then epi X : fi 3 T X B is a closed random set with distribution function 

D : K --, LO, 11. Any finite set I = [(ti, a l )  , . . . , (th, a h )  j c T X B i s  r-compact, and 

thus w e  have 

In part icular, if w e  fix t ,  then fo r  all a E R 

where P t  re fe rs  to the l-dimensional probability measure of the random variable 

Xt. Similarly, if w e  fix tl, . . . , tq, then 



I t  is now immediate that 

THEOREM 8.1 U [Xt, t E T j i s  a measurable stochastic process w i t h  L.sc. realiza- 

t ions,  the  f i n i t e  dimensional  d is t r ibut ions  are  completely determined b y  D, or 

equivalent ly  b y  the  restr ict ion ofD to the f i n i t e  subsets  ofT X R. 

Of course, the converse of this theorem does not necessarily hold. Take fo r  exam- 

ple the  process [Yt, t E TI of Example 2.1 with T = R+ and let 

1 3  K = [t,, t,] x [- - - where 0 < tl < t2. Then D(K) = plulV(u) E [t,. t2]j > 0, 
2 ' 

but D(1) = 0 f o r  any finite subset I of K. The family of finite dimensional distribu- 

tions, that  assigns a value to D fo r  every finite subset of K, does not a l low us to 

make any inference about the  value to assign to DO(). 

REMARK 8.2 N o t e  that  the standard consistency conditions fo r  the family of finite 

dimensional distribution could actually be derived from the "monotonicity" proper- 

ty (7.5) of the distribution function D. Thus, we can think of this family of finite di- 

mensional distributions itself as a distribution function, but defined on the  finite 

subsets of T X R. This suggests another approach to Kolmogorov's Consistency 

Theorem via Choquet 's Theorem. 

The fact  tha t  a compact set K c T X R cannot be obtained as a countable union 

of finite sets is a topological fact  that  leads to a probabilistic discrepancy in the 

example involving the process [Yt, t E T j. 

DEFINITION 8.3 The d i s t r ibu t ion  jbnct ion  of a random Z.sc. j bnc t ion  is said to 

be inner separable, f f  to  a n y  K € K and E > 0, there corresponds a f i n i t e  set 

I, c K s u c h  tha t  D(K) < DO,) + E.  

The basic difference between separability of a stochastic p r m e s s  and the inner 

separabil i ty of i ts distribution is that separabil i ty is aimed at the reconstruction 

of sets through "finite sets", whereas inner separabil i ty is aimed at the recon- 

struction of the probabilistic content of the sets in terms of the probability associ- 

a ted to f inite sets. 

PROPOSITION 8.4 [12, Proposition 4.61. Shppose [Xt, t E Tj is a measurable sto- 

chast ic  process w i t h  Z.sc. realizations. U i t  is separable, then its distr3bution 

jbnct ion  i s  i n n e r  separable. Moreover, f f  its dis t r ibut ion  f i n c t i o n  is  i n n e r  

separable, its v d u e s  o n  K are completely d e t e r m i d  b y  its va lues  o n  the f i n i t e  

subsets  ofT x R. 



This last assert ion is  an immediate consequence of the definition of inner separa- 

bility. 

9. WEAK CONVERGENCE AND CONVERGENCE IN DISTRIBUTION 

W e  show that  f o r  random l.sc. functions, weak convergence of the probability 

measures corresponds to the convergence of the distribution functions at the 

"continuity" sets. 

By v, w e  index the members of a sequence of stochastic processes, the in- 

duced probability measures on B(E),  o r  the corresponding distribution functions 

on K = K(T X R); by B (E)  w e  mean the Bore1 f ie ldB(F) restr icted t o  E. With v = w, 

o r  simply without index, w e  r e f e r  to the limit element of the sequence. W e  have 

seen that  f o r  every K E K: 

Since EK i s  a closed subset of F--E is a closed subset of F- - ,  w e  can easily 

obtain from the Portemanteau Theorem [2] that  

PROPOSITION 9.1 U P v  converges weakLy to P, thenjor  aLL K E K 

lim supDV(K) s D(K) . 
v--+- 

Unless P(bdy EK) = 0, the  probability measure attached to the boundary of 

EKs w e  cannot guarantee that  

lim inf Dv(K) 2 D(K) . 
v--+- 

i.e. unless K is  a "continuity" point of D in a sense to be defined below. Note that  

"continuity sets" of D must correspond to P-continuity sets and that  the class of 

sets f o r  which this continuity is  defined must at least be a convergence determin- 

ing class [Z]. 

DEFINITION 9.2 An increasing sequence [K", n = I,.. . j o j  compact sets is said to 

repulardy converge to K ir 

K = cl U,"=~K" and int K C u L 1 K n  ; (9.3) 

where int S denotes the interior fl the set S .  



DEFINITION 9.3 A d i s t r ibu t ion  fiLnction D : K -+ [0,1] i s  distribution-continuous 

at K, U f o r  every  regular ly  increasing sequence [Kn, n = 1 ,  ... j to  Kt 

D(K) = lim D(Kn) 
n +- 

The dis tr ibut ion-cont inui ty  set CD of D, is t h e  subset  of K on which D is 

distribution-continuous 

PROPOSITION 9.4 112, Lemma 1.111. For any K E K,  

(1) V (P(bdy EK)  = 0 ,  then K E CD; 

(if) K E CD and  K = cl( int  K), then P(bdy EK) = 0. 

Assuming t ha t  (T, r l )  has a countable base,  l e t  ~ ; i ~  C Pb be  such t ha t  K$' is t h e  

f ini te union of balls tha t  determine a countable basis f o r  (T X B, r ) .  W e  have 

and if T has  a countable base 

This allows us to r eph rase  weak-convergence of probabi l i ty measures in terms of 

t h e  pointwise convergence of t h e  distr ibut ion functions. 

THEOREM 9.5 [12, Theorem 1.151 For the  jtcmily of random l.sc. funct ions  tX , 

X ', v = 1 ,  ... j, equivalent ly  of measurable stochastic processes w i t h  l.sc. reali- 

zations, we have  that t he  P' converge weakly to P V and o n l y  Ufbr all K E Pb 

n CDt (and U (T, r1) has a countable base, fbr all K E ~l~ n CD): 

D m )  = lim DY(K) . 
w-b- 

W e  r e f e r  to th is  t ype  of convergence, as convergence in dis tr ibut ion  of t h e  sto- 

chast ic  processes IX:, t t TI to [Xt, t E TI, and denote i t  by XeY Ad X.. 



10. CONVERGENCE IN DISTRIBUTION AND CONVERGENCE OF THE FINITE 

DIMENSIONAL DISTEUBUTIONS 

In the classical approach to the study of stochastic processes, convergence 

of stochastic processes is defined in terms of the convergence of the finite dimen- 

sional distributions, that  w e  denote by 

In view of the comments in Section 8 ,  w e  cannot expect that  X sd X implies that  

1 d X v  4 X , but the converse could reasonably be conjectured, see Theorem 8.1. 

However, in general also th is implication fails. The reason is  tha t  f o r  finite sets 

K c K, the notions of distribution-continuity and continuity of the corresponding 

finite dimensional distribution do  not coincide. 

REMARK 10.1 This can all be t raced back to the relationship between the epi- 

topology and the pointwise-topology. Equivalence is  obtained in the presence of 

equi-semicontinuity [12, Section 3 1, see also [4] f o r  details. 

The passage from convergence in distribution to convergence of the finite di- 

mensional distributions and vice-versa, is based on the possibility of "approximat- 

ing" the values of the distribution function f o r  compact sets K by finite sets ,  in- 

dependent of v, and conversely. 

DEFINITION 10.2 The fami ly  of d is t r ibu t ion  f i n c t i o n s  ID; Dv = 1 ,  ... 1 o n  K is 

equi-outer regular a t  t he f i n i t e  set I c T X R, to every  E > 0 there correspohds 

a compact set K, E K " ~  n C,, w i t h  Kc 3 I such  that  for v = 1 ,  ... 

Dv(K,) <Dv(I) + E ,  and DO(,) <DO) + E . 

Now, let Ciad. denote the finite subsets of T x F& i.e. 

Cl.d C 11 = l(t l l a l l ,  - . . , (tq. a q )  1. q finite 1 , 

such tha t  the distribution function of the vector (XL,, . . . , XQ i s  continuous at 

(al,  . . . , aq).  



DEFINITION 10.3 The fami ly  of d is t r ibut ion f inc t ions ID; D ", v = 1,. . . j o n  K is 

equi-inner separable at  K E K, i f  to every  o > 0, there corresponds a f in i te set I, 

such  that 

D(K) < D(1,) + o, and DV(K) < DV(I,) + o 

for v = 1,. . .; see &finit ion 8.3. 

THEOREM [12, Corollary 4.61 SLLppose [X ; x ", v = 1,. . . j is a collection of random 

1.d. r d  L.sc. jbnct ions.  Then X " -+ X impl ies x " 4 X and on ly  i f  [D, D ", v = 1,. . . 1 

I d  i.d. is equi-outer reguLar on  Cred.. And X "  4 X impLiSs X." --, X i f  and onLy i f  

ID; D ", v = 1 ,  ... j is  equi- inner separabte. 

11. BOUNDED RANDOM LSC. FUNCTIONS 

Applications usually requires us to rest r ic t  our attention to a subclass of 

processes that possess fur ther  properties beside lower (or upper) semicontinuity. 

From the point of view of the eqigraphs, this means that, the realizations now be- 

long to E' a subset of E. Let T' be the relative T-topology on E'. Then the topologi- 

cal space (E', T') inherits a number of the properties of (F, T) [6]. In particular, 

if (F, T) is metric with countable base, then (E', T') is metric with countable base. 

Thus, in principle all the earlier resul ts stil l apply to  (E', T'), and the theory of 

weak-convergence on separable metric spaces can be used to  obtain convergence 

cr i ter ia.  In particular, recall that: 

THEOREM 11.1 Prohorov. The sequence [P ", v = 1 ,  ... 1 of probabi l i ty  measures 

on B(E') is t ight i f  and onLy i f  every subsequence contains a further subse- 

quence that weakly  converges to a probabil i ty measure. 

This means that the sequence IP ", v = 1 ,  ... j is relatively compact. A subset S 

of E' is T'-compact if and only if i t  is a T-closed subset of E, see Section 6. 

W e  now deal with bounded processes. W e  use this class to i l lustrate the poten- 

tial application of the "epigraphical" approach to specific classes of stochastic 

processes. To begin with, let us observe: 



LEMMA 11.2 For a l l  a E R+ 

E, = [epi x (supLET(x( t ) (  5 a1 c E 

i s  T-compact. And hence, a n y  collection of probabil i ty measures P on  B(E') 

such  that for every  E > 0, there ez is ts  a 2 0 such  that for a l l  P' E P 

is t ight .  

PROOF. The f i rs t  assert ion follows from [4, Section 41 and the second one from the 

definition of tightness [8]n 

Let 

be the space of epigraphs associated t o  l.sc. functions that  are bounded below and 

above by a+. From Lemma 11.2, and Theorem 11.1, i t  follows directly that  

PROPOSITION 11.3 Any co l l ~c t i on  P of probabil i ty measures on  B(E+) i s  t ight ,  

and  hence every subsequence has a convergent subsequence. 

12. AN APPLICATION TO GOODNESS-OF-FIT STATISTICS 

Let us consider the basic case of independent observations (t i ,  C2,. . . , C,,) from 

the uniform distribution on [O, I]. Let us define the empirical process 

t )  - t ,  if 0 < t < 1 ,  
otherwise . 

where f o r  every o ,  ~ " ( o ,  -) i s  the empiral distribution (taken left-continuous) 

determined by the sample ( t i ,  . . . , 4,). The realizations ueV(o) are l.sc. on [0, 11 

(with respect to the natural topology on R); this comes from the fact  that  FY is a 

left-continuous piecewise constant distribution function on R. I t  is also easy t o  

verify that  the function 

( a ,  t)k UY(o):[O, I]" X [0, 11 -, [- 1 ,  11 

is measurable. Redefining the underlying sample space to  be [0,1Im, and making the 

obvious identifications, w e  have that f o r  al l  u = 1, .  . . 



( a ,  t )  k Uc(o) = [O, 11- X [0, 11 4 [- 1 ,  11 

i s  a random l.sc. function. W e  are here  in the case when f o r  all v = 1 ,  ... 

Moreover, f o r  all v, the corresponding distribution functions IDV, v = 1. ... j are 

inner separable at K, f o r  all K in KUb. This follows from the inner-separability of 

the distribution function associated to the stochastic process IFV(., t),  t E [O. 111. 
Since, w e  may as we l l  take fo r  balls the products of intervals, w e  see that  

epi Fv(o) n ([ti, tZ1 X [al, a2]) only if FV(o, t2) 6 al, since FV is monotone nonde- 

creasing. Thus fo r  any finite collection of balls, the value of the associated distri- 

bution function is determined by i ts values on some finite set. 

By Proposition 8.4, and the fact  that the values of DV on KUb determine unique- 

ly i ts  values on K ,  w e  know that  the finite dimensional distributions completely 

determine DV. Moreover from Proposition 11.3, since the [U;, t E Tj are (equi-) 

bounded, the associated probability measures  are tight. This means that  there al- 

ways exists a subsequence 

"k ID , k = l , . . . j  converging D , 

Observe that  independence did not play any role up to now. If the  

[tk, k = 1 ,... j are i.i.d, by the h w  of h r g e  numbers, f o r  every I = (ti, . . . , tq), the 

finite dimensional distributions converge in distribution t o  the q-dimensional dis- 

tribution of the random vector identically zero. And thus the limit process 

IUt, t E Tj must be a stochastic process whose realizations are such that  

Ut(o)=O f o r a l l  t E [ 0 , 1 ] ,  

and fo r  all o E Cl \N where N i s  a set of measure 0. 

Actually a somewhat s t ronger  result does hold. From, the strong l a w  of large 

numbers, f o r  every t E T 

i.e. there  exists a set N t  of measure 0, such that  



We shall show tha t  almost surely 

epi  U = lirn epi U." 
v * -  

Let S = Itl, t2,. . . j be a countable dense subset of T = [0, I]. Then by (12.1), w e  

have that  

UG(o) = FV(o, tk) - tk -, 0 fo r  all o E n \N 

where N is the null set 

Now, i t  i s  an  exerc ise in epi-convergence to show that  f o r  every  o f n \ N 

lirn supepi  U (o)  c epi U c lirn inf epi  U "(a) , 
v - -  y,, 

where lirn sup,,, and lim inf,,, are t he  super ior  and infer ior  limits of sets [4, 

123. In fact  i t  suffices to show that  f o r  all o E 0 \ N, t E[O, I] 

- f o r  all tk -, t ,  (k) c (v) : lim inf uLk(o) 2 0 , (12.2) 
k + -  

and 

- t he re  exists t, -, t : lirn sup U g o )  4 0 . 
v * -  

Condition (12.3) i s  immediate. For, le t  t f T, E > 0 and take t, f S with 

t, f [t, t +E).  W e  have 

Hence 

lirn sup (U{(o) = FV(o, t )  - t)  4 E , 
v * -  

and since E > 0 i s  a rb i t ra ry ,  (12.3) follows. 

Now let  tk -P t and (uk) be a subsequence of (v). For any E > 0, f ix t, f D 

such that  t, f (t  - E ,  t]. Since tk -, t ,  there  is kc such that  fo r  al l  k 2 kc, 

Thus fo r  al l  v f (vk) with u 2 v,,, fo r  al l  o f n \ N, w e  have 



FY(o, tk)  - tk 2 FY(o, t,) - t, - c , 

since Fv is monotone increasing with respect  to t. This implies tha t  for all 

o E R\N,  

v 
lim inf utk*(o) a - c 
k + -  

Since c > 0 is arb i t rary .  i t  yields (12.2). 

Almost su re  epi-convergence implies convergence in distribution [IZ, Section 

31 and thus 

Glivenko-CantelliBs Theorem is  a corol lary of epi-convergence in distribution, as 

we see next. 

GLIVENKO-CANTELLI'S THEOREM 12.1 Supt (U[(o) I -, 0, as.  

PROOF Suppose to the cont rary  that  f o r  some o E R \N, and c > 0, there  is a 

subsequence (vk) of (v) such that  sup t l uP (o )  1 > c. This means tha t  t he re  exists 

Yk f o r  each k t  tk such that  (Utk(o)l > c. Passing to a subsequence if necessary, let t 

be the limit of [tk, k = 1, ... 1, then 

e i ther  ulk?o) > c ,  or ulk?o) < - c  . 

If the second inequality occurred infinitely often, then fo r  some subsequence we 

would have that 

which does contradict the  epi-convergence of the  U to U . If U %(a) > c infinitely 
t k  

often, then 

r s l im sup ulk?o) . 
k + -  

If t' = 1 then tk S 1 and tk  > 1 - c / 2  f o r  k sufficiently large. The preceding ine- 

quality then implies that  



r c r r lim sup ut2 (w) L i lm  sup u;;L (01 + y = 5 , 
k 4- k 4- 

reca l l  t h a t  U r  (o) = 0 ,  see t h e  definit ion. If t ' E 10, 11, t h e r e  ex is ts  r' > 0 ,  2 c' < c 

such t h a t  f o r  k suff ic ient ly l a rge  

Then, f rom t h e  proof  given f o r  (12.3), i t  follows tha t  

r e n m  sup ut: (01 
k --.a 

4 lim s u p [ U t s  + C e ( ~ )  + 2ct] < c . 
k 4- 

This i s  again a contradict ion,  and the  proof i s  comp1ete.o 
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