View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by International Institute for Applied Systems Analysis (IIASA)

’ g International Institute for
- Applied Systems Analysis

[1AS A www.iiasa.ac.at

Population Models Analysis
Program (POPMAN)

Lewandowska, A.

IIASA Working Paper

WP-86-053

October 1986

https://core.ac.uk/display/33894277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Lewandowska, A. (1986) Population Models Analysis Program (POPMAN). IIASA Working Paper. WP-86-053 Copyright ©
1986 by the author(s). http://pure.iiasa.ac.at/2806/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other
organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on
servers or to redistribute to lists, permission must be sought by contacting repository @iiasa.ac.at

mailto:repository@iiasa.ac.at

WORKING PAPER

POPULATION MODELS ANALYSTS PROGRAM
(POPMAN)

Anna ILewandowska

October 1986
WP-86-053

TEIASA

International Institute
for Applied Systems Analysis

NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

POPULATION MODELS ANALYSIS PROGRAM
(POPMAN)

Anna Lewandowska

October 1986
WP-86-53

Working Papers are interim reports on work of the
International Institute for Applied Systems Analysis
and have received only limited review. Views or
opinions expressed herein do not necessarily repre-
sent those of the Institute or of its National Member

Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

FOREWORD

The Population Program at IIASA deals with various aspects of popula-
tion aging phenomena in developed countries. The demographic future of
populations can be estimated using equations for population dynamics.

The variety of assumptions about the demographic characteristics which are
appropriate for any particular population can be realized in various forms
of boundary conditions for partial differential equations. This paper by
Anna Lewandowska describes a convenient interactive procedure which can

be used on an IBM PC (or compatible) for calculating such demographic
equations. The procedure 1s combined with a Lexis program developed in
IIASA's Population Program that allows to see the results of calculations
in the form of shaded contour maps on the color monitor of a PC. This
tool is useful for analyzing the dynamic properties of the age-specific
population structure.

Anatoli Yashin
Deputy Leader
Population Program

- iii -

POPULATION MODELS ANALYSIS PROGRAM (POPMAN)

Anna Lewandowska

1. Introduction.

The POPMAN (acronym for POPulation Model ANalysis Program) was
developed especially for fast analysis of the mathematical models of popu-
lation dynamics, formulated in terms of partial differential eguations of
hyperbolic type. This program makes possible:

- analysis of the models formulated in terms of function of 2 vari-
ables with given structure and parameters,

Y=f(x't'a1, e e n,ap)

- analysis of the model formulated as a hyperbolic partial differen-
tial equation

@ll/@t = =- @u/@x - f(x't'allonl'ap)u(x’t)
with given initial and boundary conditions.

The program produces the output file which can be used by LEXIS program
(Gambill and Vaupel, 1985) as the input one; this makes possible easy
visualization of output data generated by POPMAN in terms of color contour

maps.

The following assumptions were taken into account when designing the
program structure:

1. The program should be very highly interactive, user-friendly and
should be simple enough to be operated by a user not being a com—
puter specialist.

2. All the formulas and data constituting the problem definition
should be entered in a very simple form, using standard mathematical
notation.

3. Results should be presented in graphical form.

4. The program should not require to return to the operating system
for any purpose during its utilization.

The software presented in this paper is the result of cooperation
with SDS program at IIASA. Some rather essential parts of it, like EDITOR,
WINDOW LIBRARY, PL0 COMPILER are modified versions of the software deve-
loped within the MDA project for DIDAS system (Lewandowski, 1986). Without
availability of these tools, development of the POPMAN program would requi-
re much more time and resources.

2. General structure of the POPMAN program.

All the assumptions specified above have led to the following struc-
ture of the program:

1. All formulas describing the problem are defined using a very
small subset of Pascal language. This subset is small enough to be effi-
ciently managed by non experienced user and broad enough to make defining
of complicated problem possible. Therefore the COMPILER and the INTERPRE-
TER of this subset constitute the most important parts of the system.

The problem description written in the subset of Pascal is trans-
lated to same internal form (known as P-code) which is similar to the
sequence of commands of simple calculator, utilizing the reverse Polish
notation (like, for example, the Hewlett-Packard calculator). This sequen—
ce of commands is interpreted by the INTERPRETER routine every time, when
it is necessary to calculate the values of right hand side of the equa-
tion, boundary conditions, or initial conditions. The INTERPRETER is in-
voked by the differential ecuation solver routine, which transfers to the
INTERPRETER the current values of state variables x and time t and expects
from the INTERPRETER the information about right hand sides of the equa-
tion being solved.

2. The INTERACTIVE EDITOR makes possible easy defining the problem,
i.e. entering the problem description formulated in the mentioned above
subset of Pascal. Utilization of this EDITOR is rather simple - all the
actions are menu—driven and are self explanatory.

3. The numerical solution of hyperbolic partial differential equa-
tion is performed by the SOLVER MODULE. This module utilizes the fourth-
order Runge—Kutta integration method with automatic step—-size adjustment,
for solving the set of ordinary partial differential equations. This set
of ordinary differential equations is the result of applying the method of
lines for discretization the hyperbolic partial differential equation.

Sometimes it is enough to analyze simpler model formulated in terms
of algebraic eguations. In this case it is not necessary to invoke the
SOLVER; simple tabulation of the function maist be performed. The CALCULATE
FUNCTION TABLE module tabulates the function (1) for given values of inde-
pendent variables x and t. Similarly to previous case, this module util-
izes compiled form of the function and directly invokes the INTERPRETER.

4. The LEXIS interface transfers all necessary data from POPMAN
program to LEXIS program. The user should consult the LEXIS manual for
details of operation. The POPMAN program generates standard LEXIS input
file, which can be analyzed by LEXIS to produce a contour map. See Appen—
dix for details related to organization of this file.

5. All parts of the POPMAN program are supervised by the USER INTER-
FACE MODULE, which invokes all parts of the system on user request, per-
forms all necessary coordination of system components, ensures proper data
transfer and supervises correctness of the operation. Similarly to the
EDITOR, this part of the system is also menu-driven and all the actions
are self explanatory. Especially, particular attention was oriented to en-
sure high level of error detection - for example it is not possible to in-
voke the compiler without a problem description having previously entered.

The overall structure of the system and the information flow between
its components is presented on Fig.l.
2

Fig. 1 General structure of POPMAN program.

3. Implementation of the POPMAN program

3.1. Numerical method of lines for solving hyperbolic partial differential
equations.

There exist several methods for numerical solution of partial diffe-
rential equations; rather detail and extensive discussion of these pro-
blems can be found, for example, in the book by Vemuri and Karplus (1981).
From the practical experience follows, that the method which can be recom—
mended for numerical simulation of systems described by partial differen-
tial equations, is the method known as method of lines.

The principle idea of this method is to replace the spatial deriva-
tives @u/@x (and possibly derivatives of higher order) with finite dif-
ference approximations. This procedure leads to a system of ordinary dif-
ferential equations which can be solved with respect to unknown function
u(t) for given set of discretization points. The derivative @u/@x is ap-
proximated at a series of grid points X1rXpreee, Xy 1 With

where h is prescribed discretization step of the space interval [0,L]. The
resulting equations must be integrated simultaneously since they are in-
terconnected through the algebraic approximation for spatial derivatives.
Thus the dependent variable vector uy (B) ,un(t), ... ,ug(t) can be computed
by integration the derivative vector du,/dt, du,/dt, ..., /dt. These N
functions can be considered to move along lines parallel to line x=0;

this is the reason, why this method is generally termed as the mmerical
method of lines.

Using standard grid methods for solving partial differential equa-
tions it is usually necessary to develop new software and new approach for
any particular problem. It is rather difficult to apply these methods
directly for development general and universal software packages, which
could be used for highly automatic solution of any partial differential

equation.

The method of lines is a remarkably flexible and comprehensive algo-
rithm for partial differential equations, which is currently more popular
and more broadly used than the classical grid methods. The number of very
efficient software packages and simulation languages which utilize method
of lines are currently available (for detail discussion see Vemuri and
Karplus, 1981). The advantages of this method can be especially observed,
when system under study is described by a set of complicated, usually non-
linear partial differential equations, frequently with parts described by
ordinary differential equation.

One of the most essential problems arising when method of lines is
applied, relates to the form of finite difference operator approximating
the spatial derivatives. It was discovered, that it is especially impor-
tant in the case of hyperbolic equations. Improper selection of this
approximation can lead to serious distortion of the numerical solution,
especially when the initial or boundary conditions contain sharp peaks or
jurps. This problem was discussed in details, among others, by Chen (1980)
and Carver (1980).

The most widely known methods used for approximation the spatial
derivative are the following:

first-order backward difference,
central difference,

- upwind difference,

- biased upwind difference.

It was shown (Sincovec, 1975, Carver, 1980, Vemuri, 1981) that
using the central differences approximation or upwind differences ap-
proximation for hyperbolic partial differential equations is not very
effective. Better results were obtained by using combination of central
and total upwind approximations, which is named biased upwind approxima-
tion. Numerical experiments have shown, that in most cases the best
results can be obtained with four-points biased upwind approximation, in
which the derivative @u/@x was replaced with the following finite dif-
ference formalas:

@u;/@x = (- 11 u; + 18 uy - 9 uy + 2 uy)/(6h)
@112/@x = (-2 u - 3 u + 6 uy - u4)/(6h)
@u;/@x = (U5 -~ 6uj_y +3uy + 2uy,;)/(6h)

Quy/@x = (-2 ug 3 + 9 Uy o ~ 18 uy ; + 11 uyg)/(6h)

The above numerical scheme was used in the POPMAN program. This sche-
me is implemented by the separate procedure (named DSS), which converts
the state vector {yy } into the vector of derivatives |{ /8x}. This proce-
dure can be easily replaced by other one, implementing different dis-
cretization scheme.

3.2. The SOLVER module for integration the ordinary differential eguations.

The existing experience with solving ordinary differential equations
indicates, that fourth-order Runge—Kutta method with automatic control of
integration step is the most effective procedure. Therefore, this method
was applied in the POPMAN program.

The control mechanism responsible for selection the integration step
applied in the implemented routine is one of the simplest known. Starting
with given integration step, integration over the interval [t ,t;] is per-
formed twice - with step h and step h/2. Results of these calculations are
compared. If the difference between obtained solutions at the end of in-
tegration interval is less than the specified tolerance (this tolerance is
denoted in the program as eps), this process is interrupted and the ob-
tained solution is considered as satisfactory. If this difference is grea-
ter than eps, integration step is divided by 2 and the whole process is
repeated. This process is more time consuming than other methods for adap-
ting integration step, based on the estimation of truncation error, but is
rmach more robust. This property is rather important and decided about ap-
plying the mentioned above method in POPMAN.

5

However, due to the properties of method applied for adjustment the
integration step, the following should be observed by the user:

1. Computation time can be different for various problems. In speci-
fic cases, computation time can exceed few times the average one.

2. Too large integration step or too high accuracy required (para-
meter eps) can result in rather egsential increasing of computing
time.

3. Too low value of eps8 can result in serious problems during in-
tegration equations - in such cases the program will be interrupted
and the error message displayed to the user.

It follows from above, that it is reasonable to experiment with the
program to find the best integration step for a given particular problem.
This can result in rather essential saving of computing time during ex-
perimenting with the model.

The particular implementation of Runge-Kutta method used in POPMAN
program is direct translation to Pascal the RKGS procedure from FORTRAN
library SSP. More detailed information about this procedure can be found
in SSP manual. The procedure communicates with the rest of the program
through FUNCT procedure, which defines the right-hand side of equation
being solved and OUTP procedure, which provides some control over the in-
tegration process.

4. Using the POPMAN program
4.1 Defining the model.

The model and all necessary information can be defined by the user
using the Micro—-Pascal, a very small subset of Pascal language. The Micro-
Pascal is simple enough to be efficiently used by non specialist, but
simultanecusly powerful encugh to define quite camplex models.

The Micro Pascal contains the following keywords:

begin

end

if ... then
while ... do
var

const

procedure
call

Some variables are predefined as standard ones:

~ the parameters defining the model under study:

t current value of variable t ("time")

x current value of variable x ("space variable™)

fct current value of the function f(x,t,...) defining the
model

bcn current value of boundary condition for given t

6

icn

current value of initial condition for given x

- the parameters defining the integration process:

tinit
tmax

step
xlow

Xupp
dim
xlow]

starting value of variable t

end value of variable t

integration step

starting value of variable x

end value of variable x

number of discretization points of the interval [xupp,

The above variables cannot be defined by the user using the VAR
declaration. Their values are predefined and can be changed by the user.
The default values are following:

o
-

0o,
05,

oo =
-
oo

100,
10.

The variable status has a special meaning. Its value informs the
program about the current status of computing process. The value of this
variable cain be equal to one of the 4 predefined constants:

parameter
boundary

program is in parameter definition phase
program computes the value of icn — initial conhtmn

program camputes the value of ben - boundary condition
program computes the value of function.

This variable can be used to avoid unnecessary computation, what
results in shorter execution time. To illustrate its usage, let us con-
sider the following example:

Siﬁple and not efficient program:

begin

fct:=t*exp(x);
icn:=sin(x);
bcn:=cos(x);

end.

The same program in more efficient form:

begin

if status=function then fct:=t*exp(x);
if status=initial then icn:=sin(x);
if status=boundary then bcn:=cos(x);

end.

The user can define his own variables using var declaration as in
the following example:

var a,b,c;

There is no need to declare the type of defined variables; all variables
are considered as real. '

The user can define also real constants, for example:
const z=15;

The Micro Pascal program can contained procedures without parameters
and call them using the call instruction. The procedures can be nested,
and may contain local variables.

The same standard functions as in Pascal are available for the
programner :

sin(x)
cos(x)
exp(x)
1In(x)
log(x)
sgrt(x)
abs(x).

4.2. Starting the POPMAN program

To start the program it is necessary to enter diskette to one of the
drives and enter the comand pop (from the DOS level). As the result of
this action, the title of the program is displayed on the screen (Fig.2).
After pressing any key the user will see the Main Menu displayed on the
screen (Fig.3).

International Institute for Applied Systems
Analysis ([[ASA)
Laxenburg., Austria

Population Model Analysis Program

--> POPMAN ¢—-

Fopulation Project

implementation: Anna Lewandowska
Cocperation: Svstem & Decision Sciences Program

Fig. 2 The title screen of the POPMAN program

L MENY 1
enter EDITOR
run SIMULATE
run TABULATE
run LEXIS
terminate program

Fig. 3 The Main Menu of the POPMAN program

In the Main Mena the following options can be selected by the user
in order to perform certain action

- entering EDITOR to define the problem,

- running SIMULATE, to solve the differential equation,

- running TABULATE, to calculate function values,

- running LEXIS program to display results in the form of map,
- termination the program and return to DOS.

An attempt to run SIMULATE or TABULATE without previously defined
program causes display of warning and entering EDIT.

4.3. Bditing the program

The interactive editor EDIT being one of the modules of POPMAN
program makes possible interactive entering and updating the model defini-
tion. The EDIT module can be in one of the following states:

- Program Entering (Editing) when new program can be entered or ex-
isting one edited,

- Line Entering State, when single lines can be inserted in program
text,

- Line Appending State, when new lines can be appended to the
program,

- Line Editing State, when single line can be modified.

Pressing the F1 Function Key from Main Menu level the program enters
the Editor Menu (Fig.4). Pressing the F2 Function Key program text can be
loaded from disk. The user should respond with file name (Fig.5). If the
file specified by the user does not exist, the editor switches autcmati-
cally to the Program Entering State. When loading process is completed,

9

the editor enters the Program Editing Mode and the program text is dis-
played on the screen (Fig.6).

load program from disk
save program on disk
enter new proaram
edit program

exit from editor

Fig. 4 The Editor Menu

Enter name of your program file
Press return to edit new program

load program from disk
save program on disk
enter new program

edit program

exit from editor

Fig. 5 Loading the program file

The user can select the active line by moving the line cursor. This can be
achieved with the help of cursor keys (arrow-up, arrow—down). The active
line can be edited or deleted. The Line Editing mode can be entered by
pressing the F7 Function Key. As the response to this action, the line

10

editing window appears on the screen (Fig. 7). This window contains the
line which should be edited. The small cursor can be moved with the help
of cursor keys (arrow-right, arrow-left). Pressing other alphanumeric key
will cause insertion of the corresponding character under cursor; after-
wards the cursor moves one position to the right. If the cursor is located
on the last character of the edited line, new characters will be appended
to the line. Single characters can be deleted using the Del key. When
editing is completed, it is possible to exit this mode by pressing the F10
Function Key.

av=0_,01;

al=0.005;

aad=0Q.0005;

b1=0.05;

b2=0.05;
begin
tmax 12303 xupp:=100%
dim:=10:s5tep:=0.5;
fcti=al+al#*exp (—bl%*x)+adxexp (ba%*x)
end.

L MENU 1
F6 - append text F7 - edit line FB8 - delete line F9 - insert line
F10 - exit to main menu

Fig. 6 Entering and editing the program text

a0=0.013
al=0.005;
a2=0.0005;
b1=0.05;

[EDIT LINE]

B1=0.053

fcti=al+alxexp(~blex)+adsexrp (b2%x);
end.

Fig. 7 Editing the single program line

11

New line can be inserted by pressing the F9 Function key. New line
is inserted before the active line (marked by the line cursor). When the
line is completed, the RETURN key terminates this process. The line cursor
i1s located on the new line. Applying this procedure it is possible to en-
ter only one line. In order to enter the next one, this procedure must be
repeated.

New lines can be appended to the program text by pressing the F6
Function Key. The line cursor is located on the first line following the
last line of the program. Any number of lines can be entered in this mode.
Every line must be finished by pressing the RETURN key. In order to inter-
rupt this process, empty line must be entered.

Fraom the Editor Menu level the user can enter directly the Program
Entering State by pressing the F4 Function Key. The empty windows appears
on the screen. The user can enter the program text in the same way, like
in Appending Mode. Empty line terminates this process. It is necessary to
remember, that before leaving the POP program (either by returning to DOS
or by invoking LEXIS) it is necessary to save the program on disk. Other-
wise the program will be lost.

Utilization of the EDIT program is rather straightforward and does
not need more detail explanation. Short training is necessary to inves-
tigate all possible options.

4.4. Running the program.

The Micro Pascal program can be executed from the Main Menu level
(Fig. 3). This can be achieved by invoking the SIMULATE or TABULATE op-
tions. The first one initiates the simulation program {(solving the hyper-
bolic PDE), the second one - tabulation of the function. As the first ac-
tion, both options cause campilation of the previocusly loaded or entered
program. This program is translated into some internal form which is used
for further computations.

Frequently an error occurs in the source program. This situation is
detected and proper information displayed to the user (see Fig. 8). Error
message together with content of this line where error occurred is dis-
played in the Error Window. It is necessary to point out, that in several
situations error occurs before the line being displayed with error messa-
ge. Pressing any key it is possible to return to the editor. The line whe-
re error occurred (or sometimes next line) will be highlited.

If the Micro Pascal program is not complete (too less end or too
many begin) the POP program loops with information "Program Incomplete”.
It is necessary to use the Ctrl-C to interrupt. This problem occurs due to
limitations of Turbo-Pascal campiler. It is also necessary to point out
that the Micro Pascal program must be finished by end and period (end.).

During the run of SIMULATE, the plot of consecutive solutions (as
the function of variable x) is displayed, as well as all current parame-
ters of the problem (Fig.8). This gives a possibility to observe a prog-
ress of computations. In the case of bad behavior of this process (badly
selected integration step or parameter definition) it is possible to
interrupt, hitting any function key or Esc key. It should be noticed, that
the effect of this operation is not immediate -~ the program checks the
keyboard status every few seconds.

12

Expression begins with wrong symbol

= tmax:==30;upp:=100}

Fig. 8 Error message screen

The numerical calculations (execution of Micro Pascal program) is
supervised by Turbo Pascal run time system. Therefore any numerical error
(like logarithm or square root of negative value, too high or too low
value of function argument, dividing by zero etc.) causes termination of
the program and return to DOS with the information:

RUN-time error "number", PC="address"

(PC means Program Counter). In order to find the statement of the program
where the error occurred, the following actions must be undertaken:

~ the Turbo Pascal compiler must be invoked fram the DOS level,

- options should be invoked from Turbo Pascal menu level (by press-
ing the key "o"),

- the "f" suboption must be invoked; as the response Turbo Pascal
will ask about the file name. The user should respond with "pop”.
After that program will ask about PC address. The value displayed
together with error message should be entered.

During the SIMULATE or TABULATE phases all the results are trans-
ferred to the output file named LEX, which structure is the same, like
standard LEXIS input file. The data label begins from 1001; all consecu-
tive labels are incremented with step 1. The number of X data is equal to

(tmax-tmin) /step.

Number of Y data entries is equal to dim and they are labeled starting
fram 1, with increment 1.

It should be noticed, that in a case of abnormal termination of the

execution of SIMULATE module, the LEX file has wrong structure and is not
camplete. Therefore the LEXIS program should be not invoked in such cases.

13

The LEXIS program can be invoked from the Main Menu level. The user
should consult the LEXIS manual for details relating to running this prog-
ram. After completion of LEXIS it is possible to retwrn to POP program,
according to the information displayed on the screen.

4.5. Examples.

In this section of the paper we will present some sample programs
which were used for testing the software. They are presented here in order
to demonstrate how to solve some particular problems, how to code the
problem in Micro Pascal and what solutions can be obtained. We will not
discuss here the detailed meaning of these examples since this paper is
oriented to description of the software, rather than to detailed analysis
of the particular population models.

Example I. There is given the 5 parameter mortality model
Ml0,x)=ag + a; exp(-byx) + a, exp(box),
as the function of one variable x (age).
The POPMAN program was used to tabulate the function _u(0,x), for x
from the interval (0, 100]. The text of Micro Pascal program is shown on

Fig.6. On Fig.9 there is presented the sample screen produced by inwvoking
the TABULATE module and containing the plot of this function.

Fig. 9 The sample output screen

Example II. The other version (time dependent) of the mortality model is
given

AL, x) = a0,x) £,(t,x),
where
14

£1=1- at /qf(x + 11,

for t from the interval [0, 100] and x from the interval [0, 100].The
function (0,x) is the same as in the Example I; x denotes here the age
and t - the time. The program in Micro Pascal calculating values of the
above function is as follows

const

var

begin

end.

alfa=0.01;

a0 =0.01;

al =0.005;

a2 =0.0005;

bl =0.05;

b2 =0.05;

mi0, f1;

step:=0.5; tmax:=30;

=l-alfa*t/sqrt(x+1);

mi0 :=al0+al*exp(-bl*x)+a2*exp(b2*x);
:=mi0*fl;

The values of the parameters dim and xupp are not explicitly defined in
the program, therefore default values are taken for calculations (10 and 0
respectively). The resulting contour plots obtained from LEXIS program is
presented on Fig.10.

:f’?z?"".'g"""“‘,‘”z‘mm:

' o
ety : -
iy il ol o
el oo)

Fig. 10 The contour map produced by LEXIS program for Example IIa

If the function f,(t,x) from the Example II is replaced by the fol-

lowing one

fz(t,x)=exp(—b2t) ’

15

then the resulting surface plot will be as that one presented on Fig.ll.

| - 1

AU A AN
O A A A A
AN AN A
PCACICAC A AL A A AT AT A
AATARAAEAIRANYR
A A A U N

-
o'
of o w4

fi
4

F)
i

| o

e
AN AN AT
A P A A A AT A e e)
.‘\\“\\‘\\\\\\
EOAR A AL AT AT A A A A

.\.\.\’\}\I\'\I\’\.‘\’\I\'\'\
AR AP AR

1 ' L 1 . .

Fig. 11 The contour map produced by LEXIS program for Example IIb

Example III. There is given the hyperbolic partial differential equation
describing the population density for given age x and time t:

@u/@t = - @u/@x - u(x,t) ulx,t)
with boundary condition
u(0,t) = exp(bzt)
and with initial condition

(i |
ulx,0) = expl—fu(o,zmz)
o

The above equation must be solved for two cases:
(a) /u(t,x)ju(o,x) £, (t,x)
(b))A(t,x)jn(ﬂ,x) £,5(t,x)

where the function u(0,x) is the same like in Example I, the functions
f,(t,x) and fz(t,x) are the same, like defined in Example II.

The Micro Pascal program solving the above defined eguation for the
case (a) is as follows

16

const
alfa=0.01;
a0=0.01;
al=0.005;
a2=0.0005;
bl1=0.05;
b2=0.05;

var mi0,f,el;

if status=parameter then
begin
step:=0.5; dim:=10;
tmax:=30; xupp:=100;
end;
if gtatus=boundary then
bcon: =exp(b2*t) ;
if gtatus=initial then
begin
el:=a0*x+al/bl*(1l-exp(-bl*x))+a2/b2* (exp(b2*x)-1);
icn:=exp(-el);
end;
if gtatus=function then
begin
mi0:=a0+al*exp(-bl*x)+a2*exp(b2*x);
f:=1-alfa*t/sqrt(x+1);
fct:=mi0*f;
end;
end.

Please note the program lines printed in boldface, responsible for assign-
ment the values to the predefined variables bcn, icn and fct responsible
for boundary values, initial values and function appearing in the right
hand side of the equation. The usage of the status variable is also presen-
ted in the above program.

The program solving the second variant of the problem differs from
the above only in one line (the 4.th from the end), defining the function
f(x,t). This line should be replaced by the following one

f:=exp(-b2*t);
The results of simulation obtained from LEXIS program as the contour

maps are presented for the case (a) on Fig.1l2 and for the case (b) on
Fig.13.

17

LN

EEAAR LGy
ot o QNI I I INT 3

. DR X) LR (RN (ucgianysy
3 R PP A
o oo T
o o o S ol L
: g T ¢ A R B B O
W e d‘d d.-‘ o o i.dld A A ikl ey Ry i
1

T
SO ettt

5
o ot ot et
o

FITIICICICICI DN oy
ot Kot AN
J""f""‘ o JJ""ﬂ '\’\"\"\’\'\' COL L

Ay L)

Fig. 13 The contour map produced by LEXIS program for Example IIIb

5. Possible extension

The program described in this paper should be treated as a very
first step in development software tools for simulation analysis of popula-
tion models. The following are the possible modifications and extensions
to the first version of the software:

18

- The POP program should be extended in such a way, that run time
errors could be monitored by its own error routines. In such cases
numerical errors will not cause return to DOS. The generation of LEX
file should be modified, as well as interface to other programs
(like STATGRAPHIC) should be build in. Definition of the problem in
the form of tables or information extracted from data bases should
be made possible. More advanced graphic presentation of the results
(3-D plots) could improve essentially analysis of the results.

- Class of the problems solved should be broadened. It is possible
to extend this approach for solving vector PDE, for solving mixed
problems described by interconnected partial and ordinary differen-
tial equations or differential equations of parabolic type.

- Sensitivity analysis module could be added to the program. This
would be possible due to the availability of Micro Pascal compiler
which can provide analytical differentiation of the mathematical
expressions. This would be a first step for implementing parameter
estimation and model identification procedures.

- Application of population modeling software for population policy
analysis, through integration the POP program with the DIDAS system
developed at SDS, could be possible.

6. References.

Arthur W.B. and Vaupel J.W. (1983). Some General Relationships in Popula-
tion Dynamics. WP-83-89, Working Paper, International Institute for Ap-
plied System Analysis, Laxenburg, Austria.

Carver M.B. and Schiesser W.E. (1980). Biased Upwind DIfference Approxi-
mations for first-order Hyperbolic Partial Differential BEquations. DSS/2
Manual. Lehigh University.

Chen K.L. and Schiesser W.E. (1980). Upwind Approximations in the Numeri-
cal Method of Lines Integration of Hyperbolic Partial Differential
Equations. DSS/2 Manual. Lehigh University.

Gambill B.A. and Vaupel J.W. (1985). The LEXIS Program for Creating Shaded
Contour Maps of Demographic Surfaces. WP-85-94, Working Paper, Interna-
tional Institute for Applied System Analysis, Laxenburg, Austria.

Lewandowski A. (1986). Problem Interface for Nonlinear DIDAS. Interna-
tional Institute for Applied System Analysis, Laxenburg, Austria, to

appear.

Sincovec R.F. and Madsen N.K. (1975). Software for Nonlinear Partial Dif-
ferential Equations. ACM Transactions on Mathematical Software. Vol.l.
m.3.

SSP Manual. System/360 Scientific Subroutine Package, Version III,
Programmers”s Manual.

Vemuri V. and Karplus W.J. (198l). Digital Computer Treatment of Partial
Differential Equations. Prentice-Hall.

Wirth N. (1976). Algorithms + Data Structures = Programs. Prentice-Hall.

19

