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FOREWORD 

The issue of aggregation in economics in general and in the 
case of the widely used input-output models is an important problem 
not yet satisfactory solved. This paper addresses precisely this 
question and constitutes a contribution to existing literature. 

The classical economic problem which is connected with the 
results discussed in the paper relates to the aggregation of the 
data of an input-output table into a single sector to determine 
the rate of profit. This can be done under certain conditions, 
which are discussed in the paper. 

The publication was prepared during the author's participa- 
tion in the Young Scientists' Summer Program at IIASA. 

Alexander B. Kurzhanski 
Chairman 
System and Decision Sciences 
Program 



The Effects of Aggregation on the Perron Root and its 
Corresponding Eigenvector 

Erik Dietzenbacher 

Econometrics Institute, University of Groningen, P.0 Box 800, 
9700 AV Groningen, The Netherlands. 

In this paper  the behaviour of the Per ron  root and i ts 
corresponding eigenvector is examined, when the underlying matrix 
is being aggregated. Bounds are presented fo r  the Per ron  root and 
the elements of the Per ron  vector of the resultant matrix. The 
bounds are mainly expressed in t e r m s  of the  Per ron  root and vector 
of the original matrix. A s  an application aggregation in input-output 
analysis is considered. 

1- Introduction. 

Eigenvalues and eigenvectors have become useful tools in economic analysis. 
Especially the Per ron  root and i ts corresponding eigenvector play an essential 
role. In empirical work however are the underlying matrices often exposed to 
errors or obtained a f t e r  aggregation. I t  therefore seems important to investigate 
how this af fects the Per ron  root and i ts  vector. The impacts of small changes in 
matrixelements are thoroughly discussed in Varga [I9621 and Wilkinson [1965]. 
When the matrix is changed substantially or i s  aggregated, relatively less is known 
although, of course, bounds can be given fo r  the Perron root and i ts vector (see 
e.g. Berman and Plemmons [I9791 and Seneta [1981], a lso f o r  bibliographies). 
Unfortunately, these bounds are in general expressed in t e r m s  of matrixelements, 
so that  nothing can be concluded about the actual change of the  Per ron  vector. 
Our primary in terest  goes t o  obtaining bounds, f o r  the new Per ron  vector,  that  are 
given in t e r m s  of the old one. Recently Elsner, Johnson and Neumann [I9821 exam- 
ined the case where the ith r o w  of a nonnegative, irreducible matrix is increased 
while i ts jth r o w  is  decreased. In the present paper  w e  shall consider changes in 
the Per ron  root and vector when the matrix is being aggregated. 

Aggregation has been a topic in economics f o r  long. For instance any study 
based on input-output tables, uses data that  are somehow aggregated over  pro- 
ducts and industries o r  over  regions. Our resul ts may therefore be applied 
directly to some of the dynamic Leontief-type models (see e.g. Takayama [1985]). 
For fu r ther  applications w e  may think of Seton's eigenprices (see e.g. Seton 
[1985]) and Saaty's pr ior i ty concept (see e.g. Saaty [1980], see Steenge [I9861 fo r  
links with the  Leontief framework). 

In the next section w e  shall discuss non-weighted aggregation, also re fe r red  
t o  as consolidation, where r o w s  and columns are simply added. In section 3 w e  
shall consider the  consolidation of a n  input-output table which leads to a weighted 
aggregation of the matrix of input-output coefficients. The summary and conclu- 
sions shall be presented in section 4. 



2. Non-weighted aggregation. 

In this section w e  consider an nxn nonnegative, irreducible matrix A .  With 
p,  y and p w e  denote i ts  Per ron  roo t  and the r ight- and left-hand eigenvector 
corresponding t o  p. To avoid unnecessary notational inconveniences w e  present 
and proof our  resul ts f o r  the simplest case where only the f i rs t  and second sec to r  
are taken Loge ther .  The aggregated (n-l)x (n-1) nonnegative, irreducible matrix is 
denoted by A ,  i ts  Per ron  root and vectors by jj, z and q .  Generalizations of the 
theorems are obtained straightforwardly and are presented without proofs in the 
appendix. 

Definitions. 

AY = PY P > 0, Y >> 0, Y' = (Y 2 1 - - * ~ n )  

p P A  = pp' P >> 0 ,  P' = b l l ~ z , . . , ~ n >  

 GAG' with G = In -, I 1  O' I 
where In denotes the nxn identity matrix. Throughout this section w e  assume 
Y 1 5  Yz. 

Theorem 2.1. 

Proof. According t o  the well known Subinvariance Theorem, the left-hand side i s  
proved when w e  find a vector z > 0 fo r  which Zz > p z .  Let (A"Z)~ denote the ith 

element of the vector iz, note that  in our  notation i =2,. . ,n.  Take 
z' = ( Y ~ + Y Z , Y ~ ~ . . , Y , )  then 

For vec tors  and matr ices we adopt the following notation in order t o  describe their 
nonnegatlvlty. Let Z be a n-element vector ,  then Z 2 0 means z, 5 0 for each i, Z > 0 
means Z 2 0 and Z # 0, 2 >> 0 means Zi > 0 for each i. With 0 we denote the n- 
element null vector .  



n  
t a i l y l  + a i 2 y 2  + C at, y j  = py i  = pxi f o r  i = 3,..,n. 

j =3 - 
Thus Az t p x ,  but equality can only occur  when ail = at2 = 0 f o r  i = l , . . , n  which 
would contradict  the irreducibil ity of A .  Therefore z x  > px . 

To prove the right-hand side we take x' = ( y 2 , y 3 , .  ., y n ) .  

5 PYi = PX, < Y l  + Y 2  
pxi f o r  i = 3,.. ,n. 

Y  2 

From Zz < Y 1 +  Y2 
px i t  follows that  E < p  

Y 1 +  Y2  

Y2  Y2  

W e  now present our  basic theorem which states that  the relat ive increase in 
the elements of the Per ron  vector is the  largest f o r  the sector which is aggre- 
gated. The proof essentially is  a refinement of the one used in Elsner, Johnson and 
Neumann [I9821 f o r  perturbations of a single row2). 

Theorem 2.2. 

Z i  P Z 2  - 5 -- f o r  i = 3,..,n. 
Y i  E Y 2  

Proof. Suppose to the cont rary  that  t he re  exists an  index m > 2 fo r  which 

2, Using our ref inement ,  t h e  bounds i n  t h e i r  Theorem 2.1 can a l s o  be sharpened according 
t o  (3). 



which is not possible. Note that  equality would imply ami = 0 f o r  i = l,..,n which 
would contradict irreducibil ity. 

The inequality in (3) is  s t r i c t  when additionally the irreducibil ity is assumed of the 
submatrix defined by aij f o r  i , j = 3,..,n. Alternative proofs of (3) can be 
obtained by using Fiedler and Ptdk [1962; Th. 4.21 o r  by applying the framework of 
Courtois and Semal [1984]. Both approaches yield zi/% S z2/y2 f o r  i = 3,..,n 
from which pzi/yi S pz2/y2 easily follows. Because the non-weighted aggregation 
in this section simply means that  the f i rs t  two r o w s  and columns are added, both 
theorems also hold f o r  the left-hand Per ron  vectors. Thus in (2) and (3) w e  may 
replace y i  and zi by pi and q i  respectively (for i = l,..,n). 

9. Weighted aggregation. 

In this section w e  f i r s t  consider aggregation in an  input-output framework and 
present resul ts comparable with theorems 2.1 and 2.2. Secondly, w e  show that 
aggregation of a homogeneous Markov Chain simply implies aggregation of the sta- 
t ionary distribution. 

The problems which may ar ise  when in an  input-output model sectors  are 
aggregated, were f i r s t  recognized by Leontief [1951]. Hatanaka [I9521 and 
McManus [I9561 focus on necessary and sufficient conditions f o r  the aggregation 
scheme to be acceptable. Start ing point is an  input-output table X, with i ts  typical 
element zij denoting the deliveries from sector i to sector j. If, f o r  the sake of 
simplicity again, we aggregate sectors 1 and 2, the new table 2 is  obtained as GXG', 
with G as defined in (1). The matrix of input-output coefficients is defined as 
A = where 2 denotes the diagonal matrix with the output vector z on i ts main 
diagonal. Hence = GXG1(G2G')-I = GAR with H' = 2G'(G2G')-1, or equivalently 

"1 "2  
with w ,  = " 1  and w 2  = 2 2  

0 0 I,, -2 2 1  + 2 2  Zl + 1 2  

The weights w l  and w 2  denote which fraction of total output of sectors 1 and 2 
Eomes from the sectors seperately3). Final demand vectors are denoted by f and 
f = Gf . The input-output equations are given by 

The aggregation is called acceptable if 2 = Gz fo r  each final demand vector f .  
From (5) and (6) i t  follows that under acceptabil ity 
2 = ( I - A ) - l~ f  = G ( I- A ) must hold fo r  al l  f , which implies ZG = GA . A r a  

') The theorems t o  be presented below a l s o  hold f o r  t h e  more general c a s e  in  which i t  is 
only assumed t h a t  0 < w l , W 2  < 1 and w l  + W 2  = 1. 



[I9591 f i rs t  took eigenvectors into consideration and showed that under accepta- 
bility the Per ron  vector of the aggregated matrix is the  aggregated Per ron  vector 
of the original matrix_. Moreover, the Per ron  root does not change: py = Ay 
implies pGy = GAy = AGy. The condition of acceptabil ity is  quite severe and i t  i s  
unlikely that  i t  will be fullfilled in practical work4). I t  also is  not necessary for Gy 
to be the Per ron  vector of A ,  with p the Perron root. 

Lemma 3.1. pGy = ZGy if there  exists a vector t >> 0 such tha t  y = SGft 

Proof. pGy = GAY = GAZGft = lic%cA~y = 

This l emma implies that  when w e  start f r o m  the  matrix A instead of f r o m  the input- 
output table X, w e  can always find weights w and w 2  that  provide an  aggregation 
which resul ts in Gy being the new Perron vector. The condition y = S G ' ~  states 
that  y l / x l  = y 2 / x 2 ,  and thus the weights become w 1  = y l / ( y l  + y 2 )  and 
w = y 2 / ( y  + y 2).  In pract ical  work, start ing f r o m  XI i t  is  unlikely tha t  this con- 
dition i s  m e t  although i t  is  weaker than acceptability. In general  the Per ron  root 
will change, bounds fo r  which are given by the  following theorem. 

Theorem 3.2. 

Proof. W e  only show the  left-hand side and again use the Subinvariance Theorem. 
W e  construct  a positive vector z' = ( Z ~ , Z ~ , . . , Z , )  fo r  which 

First take zi = y i  f o r  i = 3,..,n then 

Now taking z 2  = max 1:; - I - zz 1 gives 

" S e e  Theil 119571 and Ara 119591 for  conditions under which a matrix can acceptably be 
eggregated. 



which completes the proof. 

For an  input-output matrix the weights are defined as output f ract ions and (7) can 
be restated as 

N o t e  tha t  when zl/yl = z2/y2 w e  find F = p and z 2  = yl/wl = y2/w2 = y1 + y2 
which conforms with lemma 3.1. 

The non-weighted aggregation simply meant addition of the f i r s t  and second 
r o w  and then summing the f i r s t  t w o  columns. Therefore we could in our  theorems 
replace right- by left-hand Per ron  vectors. Weighted aggregation implies addition 
of the f i rs t  t w o  r o w s  and then taking the weighted sum of the f i r s t  and second 
column. W e  thus need different expressions fo r  the left-hand Per ron  vector. W e  
f i r s t  present the equivalent of (7), w e  assume throughout this section that  pl r p2. 

Theorem 3.3. 

Proof. To prove the left-hand side take q' = (p I,P 3,. ..P, then 

P 2  
Thus q'Z 2 p(w + -w 2)qr. For the right-hand side take q' = (p 2,p 3 , .  . ,pn ). 

Pl  

W e  now present the bounds fo r  the elements of the Per ron  vector,  theorem 3.4 
for the right-hand and 3.5 f o r  the left-hand vector. In both theorems w e  have to 
distinguish between an  increasing, decreasing or constant Per ron  root. 

Thearem3.4. For i = 3  ,.., n and j = 1,2 

Proof. W e  f i r s t  prove (9). Suppose to the cont rary  tha t  t he re  exists an  index 
m > 2 such that  

zm - = max- > max ,then 
Ym i Yi 



which i s  not possible. (10)  i s  proved analogously. Finally w e  prove only the right- 
hand side of (11) .  Suppose t o  the cont rary  that  there  exists an  index m  > 2  such 
that 

- = max- > max 
ym 

and suppose furthermore that  the sectors  3 , .  . ,n are re-ordered such that  

zi zn m = n , - = -  f o r  i = k , . . , n  , - Z j  <% f o r  j = 3  ,... k-1  with k  = 3  ,.., n. 
Yi Yn j Yn 

Then fo r  i = k , . . , n  

Str ic t  inequality must hold f o r  at least  one i because equality f o r  i = k , . . , n  would 
imply ail = ai = ai = 0 with j = 3 , .  . , k  -1, which contradicts with the irreducibil- 
ity of A .  

Note tha t  when w l / y l  = w 2 / y 2  the left- as well as the right-hand side of (11) equal 
z 2 / ( y 1  + y 2 ) .  From lemma 3.1 i t  follows that z 2  = y l  + y 2 a n d  z i  = y i .  

Theorem 3.5. For i = 3 , .  . ,n 

Proof. Analogous t o  the  proof of Theorem 3.4.  

In the Appendix theorems 3.2 - 3.5 are presented f o r  th ree  generalized types of 
aggregation. 

A s  a fu r ther  application w e  next consider the aggregation of a homogeneous 
Markov Chain (MC). W e  show tha t  this resul ts in a non-homogeneous MC and there- 
fo re  eigenvectors no longer play a role. The stat ionary distribution of the aggre- 
gated MC however equals the aggregated stat ionary distribution of the original MC. 



Let t he  f ini te homogeneous MC b e  descr ibed by rr(t)' = r r ( ~ ) ' ~ ~ ,  where rr(t ) 
denotes t he  probabi l i ty distr ibut ion at time t ,  ~ ( 0 )  t he  init ial distr ibut ion and P 
t he  transit ion matrix. Let the  stat ionary distr ibut ion be  denoted by v ,  with 
v '1  = 1 where 1' = (1 , . . ,1 ) .  When P is  primitive pt -, 1v' elementwise f o r  t -, -. 
Consequently rr(t)' -, rr(0)'1v1 = v' elementwise f o r  t -, w. By using conditional 
probabi l i t ies i t  i s  easi ly seen that ,  wken the  f i r s t  t w o  setes are aggregated,  t he  
n_ew MC becomes %( t+1 ) ' =  % ( t ) ' P ( t + l ) .  Here  P ( t + 1 )  is  defined as 
P ( t  + I )  = H(t)PG1 with G as defined in ( 1 )  and H ( t )  as defined in ( 4 )  with t he  fol- 
lowing weights. 

~ ( t  
w 1  = and w z  = 

+ I z  + l2  

where rr(t )* denotes the  ith element of t he  probabi l i ty vector  rr(t ). The weight w 
now is t h e  probabi l i ty to be-in state 1 at time t ,  given tha t  one is  in state 1 or 2.  
Thus, t h e  t ransi t ion matr ix P is  no longer independent from t. If %(t ) = Grr(t ) then 
%(t +I)' = n(t)'GIH(t)PG' = rr(t)'PG1 = rr(t + l ) 'G1.  Therefore ,  when t he  distribution 
of t he  aggregated MC equals t he  aggregated distr ibut ion of the original MC at time 
t ,  i t  also does at time t + l .  This obviously is  t he  case f o r  t h e  init ial probabi l i ty 
vector ,  %(O) = Grr(0). W e  then obtain f o r  t -, : %(t )' = rr(t)'G1 -, vlG' = c'. This 
a lso is the  s ta t ionary  distr ibut ion as follows from 5' = C'P, where is  t he  aggre- 
gation of P using weights w = v l / (v l  + vz)  and w z  = vz / (v l  + v 2 ) .  

4. Summary and conclusions. 

In th is pape r  w e  have der ived bounds f o r  the  Pe r ron  root and f o r  the  ele- 
ments of i ts  corresponding eigenvector  when the underlying matrix is  being aggre- 
gated. W e  have distinguished two types of aggregation. F i rs t  t he  case where 
aggregation simply meant adding rows and columns and secondly t he  case where 
aggregation w a s  appl ied within a n  input-output framework which led to t he  use of 
weighted sums. The bounds are mainly expressed in terms of the  original Pe r ron  
root and vector .  A s  such these  bounds provide important information on t he  
behaviour of the  P e r r o n  root and vector  under aggregation. 
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6. Appendix. 

Throughout this paper  w e  have only examined the  simplest case of aggregation 
where the f i rs t  two sectors w e r e  taken together. Consequently m o s t  notational 
inconveniences could be avoided. Our resul ts however can be adapted to other  
f o r m s  of aggregation without undue efforts. Below w e  present the equivalences of 
theorems 3.2 - 3.5 for th ree  types of aggregation. The proofs are omitted as they 
are basically the s a m e  as the proofs presented for the original theorems. 

Type i :  aggregation of k sectors into a single new sector ,  n sectors remain 
unchanged. W e  shal l  use the following indexation of the sectors. 

old : 1,2  ,...., n ,n  +I,.., n +k 

new: 1 ,2  ,...., n ,  n+1 

Type ii : aggregation of k ,  sectors into s new sectors,  n sectors  remain the same.  



old : 1,2 ,...., n ,n +I,.., n +kl ,...., n +kT-l+l ,.., n +k ,,...., n +kSw1+1 ,.., n +k, 

-I- 
new:1,2 ,...., n ,  n+1 ,...., n +r ,...., n +s 

Type iii : al l  k ,  sctors are aggregated into s new sectors. 

new: 1 ,...., r ,...., s 

with j = n +1,..,n +k 

with r = 1 ,.., s and j = n +kT -1+1 ,.., n +kT,  where k o  = 0 

ii. pmin I 

iii. as ii with j = kT-l+l ,.., kT 

Theorem 3.3. 

FyjJrnp[$1 

with j = n +l,..,n +k 

+ B ' P ~ ~ x  I 

with r = 1 ,.., s and j = n +kT -l +l,.., n +kT , where k o  = 0 

ii. p min 
T 

iii. as ii with j = kT-l+l ,.., k,  

Theorem 3.4. W e  only p resen t  t he  expressions f o r  t he  case where > p. 

C W J P ~  - 
max(Pj l  

f 

5 E s p  max 
T 

C wjJ)j 
L 
min(Pj) 

f 



with i = 1 ,.., n and j = n+1,.., n +k 

P 
ii. - 

Y i  P 

with i = 1 ,.., n ,  r = 1 ,.., s and j = n +kr-l+l ,.., n +k,, where k o  = 0 

P P 
iii. : min [zi m p  [$]I s - s y max [zi m y  [$]I 

P f c v j  P i 
j 

with i = l , . . ,s and j = ki-l+l,..,ki 

Theorem 3.5. If > p then 

with i =l,.., n and j =n+l,.., n+k 

with i = 1 ,.., n', r = 1 ,.., s and j = n +k, -1+1 ,.., n +k,, where k o  = 0 

Q i  P 
ii. - s - max 

Pi ii r m;n@,) : + I 

with i = 1 ,.., s and j = ki -1+1 ,.., ki. 

P 
S max 

p i 

If in this last theorem w e  replace qi and pi by zi and yi respectively, further- 
more se t  w j  = 1 f o r  all j ,  then w e  obtain the generalizations of theorem 2.2 f o r  
non-weighted aggregation. 

Q i  

min @j )  
* j 

Note that  the bounds become weaker when aggregation results in more than 
one new sector,  Consider fo r  instance the generalization of theorem 3.5. For 
aggregation of type i. we may choose q, +l as the numdraire a f te r  which bounds 
f o r  all o ther  elements of the Perron vector are given. In case of type ii. aggrega- 
tion w e  may se t  q, +. at unity f o r  each r = l,.. ,s and thus obtain s sets  of bounds. 
When s is small this may stil l provide useful information, although the sets of 
bounds can not be compared with each other  as long as q,+, is unknown. The 
expressions fo r  aggregation of type iii. a r e  given fo r  the sake of completeness, 
their  practical use however is  little. 


