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Foreword 

Population heterogeneity dynamics is one of the research directions in 
IIASA's Population Program. One typical and practical problem related t o  hidden 
heterogeneity is the  estimation of the heterogeneity distribution. 

This paper  describes the  approach to  such an estimation which is based on the  
method of s t ructura l  minimization of mean risk. I t  is shown how this method can be  
implemented to  some real data. The main ideas of the method are also described. 
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Structural Minimization of Risk in 
Estimation of Heterogeneity Distributions 

AnatoLi MichaLski*, AnatoLi Yashin**  

1. Introduction 

Assume t h a t  t h e r e  a r e  two random va r i ab les  z and T a n d  both marginal  d is t r i -  

but ion of T and condit ional d is t r ibut ion of T given z are known. What can  one s a y  

about  t h e  d is t r ibut ion density of z ?  

The vers ion of t h i s  problem i s  known in econometr ics and demography: T i s  in- 

t e r p r e t e d  as a random dura t ion  o r  d e a t h  time, z i s  t h e  la ten t  (heierogenei ty)  var i -  

ab le  which c h a r a c t e r i z e s  t h e  individual's d i f fe rences  in suscept ib i l i ty  t o  t rans i -  

t ions o r  dea th  [1,2,3]. 

Denotc by f ( z ) ,  U ( t )  t h e  probabi l i ty  density funct ions of random va r i ab les  z 

and T respec t ive ly  a n d  by k ( t  ] z )  t he  condit ional d is t r ibut ion densi ty  funct ion of T 

given z . W e  assume t h a t  a l l  t hese  densi t ies ex is t .  

I t  i s  e a s y  t o  see t h a t  funct ions U ( t ) ,  k ( t  ( z )  and f ( 2 )  are re la ted  as follows 

Formula (1) i s  t h e  f i r s t  kind i n teg ra l  Fredholm equat ion with r e s p e c t  t o  funct ion 

f ( z )  with k e r n e l  funct ion k ( t  ( z ) .  To f ind f ( z )  when U ( t )  a n d  k (t 1 z )  are given 

means t o  so lve t h e  in tegra l  equat ion (1) with r e s p e c t  t o  f (2) .  I t  t u r n s  out  t h a t  t he  

solut ion of t h i s  equat ion i s  unstable. I t  means t h a t  small d is tu rbances  in ke rne l  

funct ion can  p roduce  big changes in f (2).  Moreover ,  if in addit ion t h e  ke rne l  

funct ion is  a l so  unknown then equat ion (1) can  have a non-unique solut ion. 

The las t  p r o p e r t y  h a s  t h e  important  consequences f o r  appl icat ions.  I t  means, 

f o r  instance,  t h a t  one should use maximum anci l l iary  information t o  spec i fy  t h e  

ke rne l  funct ion k ( t  1 z )  as p r e c i s e  as possible be fo re  t h e  d a t a  p rocess ing .  

sP.nfltoli Mlchalskf, I n s t i t u t e  of Control S c i e n c e s ,  ProfsojusnaJa 65, Moscow, USSR 
**Anatoll Yashln, Population Program, IIASA, A-2361 Laxenburg, Austrla 



Another  important  r e m a r k  i s  t h a t  in appl icat ions one usually does  not have 

t h e  p r e c i s e  knowledge of t h e  d is t r ibut ion densit.y U ( t  ). The typ ica l  information 

which come o u t  o f ,  say ,  c l in ica l  s tud ies  are t h e  obse rved  dea th  t imes f o r  a sample 

of n individuals. I t  i s  c l e a r  t h a t  such  c i rcumstances c a n  only compl icate t h e  est i -  

mation problem of f (2). 

Recent ly  many publ icat ions were devoted to t he  problems of modeling and es- 

timation of he terogene i ty  in populat ion analysis using o t h e r  app roaches .  S h e p a r d  

and Zeckhause r  [4] showed t h a t  he terogene i ty  could be  respons ib le  f o r  overes t i -  

mates of t he  resu l t s  of medical improvements. Keyfitz and Littman [5] demonstrat -  

e d  t h a t  ignoring he terogene i ty  leads  to i n c o r r e c t  ca lcu lat ions of l i fe expec tancy .  

Vaupel a n d  Yashin [2,3] desc r i bed  many pa radoxes  and  puzzles which can  be  ex-  

plained using t h e  he terogene i ty  concept .  Heckman and S inge r  [I] cons idered  t h e  

ident i f icat ion problem in econometr ic  models f o r  du ra t i on  d a t a  bo th  f o r  

p a r a m e t r i c  and nonparamet r ic  cases .  They have found in p a r t i c u l a r  t h a t  t h e  est i -  

mates of t h e  model f o r  dura t ion  d a t a  are sensi t ive to t h e  assumptions abou t  he te ro -  

genei ty  models. Manton et al .  [6] came to t h e  s imi lar  conclusion. 

One idea which i s  d iscussed in  o u r  p a p e r  dea ls  with t he  n a t u r e  of such  sensi -  

t iv i ty.  I t  t u r n s  o u t  t h a t  v e r y  o f t en  t h e  ident i f icat ion in t h e  p r e s e n c e  of hidden 

he terogene i ty  is a n  ill-posed problem, r e l a t e d  to t h e  solut ion of equat ion (1). 

Some p r o p e r t i e s  of t h i s  equat ion which are re levan t  to o u r  s tudy  are dis- 

cussed in  c h a p t e r  2. In c h a p t e r s  3 and 4 we desc r i be  t h e  a p p r o a c h  to t h e  solut ion 

of equaf ion (1) given t h e  information abou t  n death  t imes. Chap te r  3 focuses  on 

t h e  analys is  of a r t i f i c ia l  d a t a  which were  gene ra ted  by t h e  models of heterogene-  

ous  mortal i ty.  Chap te r  4 demonst ra tes  t h e  resu l t s  of t he  appl icat ion of t h e  

developed a p p r o a c h  to t h e  real da ta .  In both c h a p t e r s  t h e  d a t a  p rocess ing  algo- 

r i thms were  based on  so-called s t r u c t u r a l  minimization of mean r i sk  app roach .  The 

main ideas  and  r e s u l t s  of th is  a p p r o a c h  are given in t h e  Appendix. 

2. Estimation of Hidden Heterogeneity as an Ill-Posed Problem 

The t h r e e  major  mathematical  problems are r e l a t e d  to equat ion (1). The f i r s t  

i s  abou t  when t h e  solution of t h i s  equat ion ex is ts .  The second i s  about  whether  t h e  

solut ion i s  unique. The th i rd  i s  abou t  how sensi t ive i s  t h e  solut ion to t h e  d is tur-  

bances  of t he  funct ion U ( t  ). 



In th is  p a p e r  w e  will not analyze t h e  f i r s t  problem, re fe renc ing  publ icat ion [7] 

f o r  those who are i n te res ted  in a d e e p e r  understanding of t h e  ex is tence condi- 

t ions. The nonunicity problem will be  demonstrated in a p a r t i c u l a r  case.  Since t h e  

sensi t iv i ty  problem is  v e r y  important f o r  t h e  d a t a  analys is  we will focus o u r  main 

a t ten t ion  in th is  p a p e r  on th is  problem. 

Let us cons ider  a n  example of a n  ill-posed problem which can  a r i s e  in demo- 

g raph ic  appl icat ions. Assume t h a t  the  condit ional densi ty  (kerne l  funct ion) c a n  b e  

r e p r e s e n t e d  in t h e  form 

t 

k ( t  1 z )  = z X ( t )  ezp (-2 f X ( s ) d s )  , 

0 

I t  i s  well known t h a t  if t h e  ke rne l  funct ion i s  smooth, t hen  s l ight  var ia t ions of U ( t )  

c a n  produce the  big changes in f (2) [R]. One can see t h a t  if X( t )  i n  (2) i s  smooth, 

then one c a n  e x p e c t  instabi l i ty in t he  solut ion of equat ion (1) .  

The condit ional densi ty  funct ion k (l 1 z )  given by ( 2 )  co r responds  t o  t h e  well- 

known propor t iona l  haza rd  model of mortal i ty,  where z  is  a heterogene i ty  var iab le  

and X( t )  is  t h e  underl ined hazard .  Assume t h a t  X( t )  = a X o ( t )  where a  is  some 

sca le  pa ramete r .  Let us show t h a t  f o r  d i f fe ren t  va lues of a  one c a n  find t h e  dif- 

f e r e n t  solut ions of t h e  i n teg ra l  equat ion (1).  

The equation (1 )  now will b e  

where  U ( . )  i s  a densi ty  funct ion f o r  observed surv iva l  t imes. 

Denote by f l ( z )  t h e  solut ion of (3) f o r  t h e  case a  = 1. F o r  any  o t h e r  value of 

a one c a n  wri te 

where u = a z .  Since f o r  any  f ixed a  equation (3 )  h a s  a unique solut ion one may 

wr j te  

The re la t ion  between solut ion of (3) and funct ion f l ( . )  fo l loas from t h e  nex t  ex-  

p ress ion  



The last s ta tement  shows, t h a t  using d i f fe ren t  va lues f o r  p a r a m e t e r  a w e  h a v e  dif- 

f e r e n t  shapes  f o r  densi ty  of hidden he terogene i ty  var iab le ,  i .e. ,  t h e  solut ion of ( 3 )  

i s  no t  unique when a i s  unknown. 

3. E s t i m a t i o n  o f  H i d d e n  H e t e r o g e n e i t y  

In th is  c h a p t e r  t h e  new a p p r o c h  t o  t h e  solut ion of equat ion (3) i s  cons idered .  

The a p p r o a c h  t a k e s  in to  account  t h e  instabi l i ty p r o p e r t y  of t h e  solution of equa- 

t ion ( 3 )  and t h e  lack of information abou t  t h e  d is t r ibut ion densi ty  U ( t ) .  The 

method i s  based on  t h e  s t r u c t u r a l  minimization of mean r i sk .  The ideas  of t h i s  ap-  

p roach  a r e  out l ined in t h e  Appendix. To implement t hese  i deas  cons ider  t h e  family 

of funct ions [ Q ( x ) ]  where  

and f (2 )  i s  some d is t r ibut ion densi ty  funct ion of z with X(t)  > 0. Let  us  t a k e  t h e  

mean r i s k  funct ional in t h e  fo rm 

Genera l  t h e o r y  of s t r u c t u r a l  minimization of mean r i sk  cons ide rs  mean r i s k  func- 

t ional with nonnegat ive loss funct ion Q ( x ) .  In o u r  case i t  i s  no t  so .  However,  as- 

suming t h a t  t h e  d is t r ibut ion of z i s  concen t ra ted  on a f in i te  i n te rva l  one  can al- 

ways add some posit ive cons tan t  t o  all funct ions f rom th is  family and  make them po- 

s i t i ve  without changing t h e  optimal point of t h e  funct ional.  

The funct ional G with such Q ( x )  i s  t he  p a r t i c u l a r  c a s e  of so-called mixed en- 

t r o p y  funct ional.  I t  t a k e s  i t s  minimal value on  t h e  solut ion of equat ion (1). The em- 

p i r i ca l  r i s k  funct ional will b e  as follows 

which co inc ides with t h e  minus l ikelihood funct ional.  



A s  a f i r s t  example let us cons ider  t h e  famil ies of funct ions [Qi j in t h e  fo rm of 

(4) where  the  funct ions f i  ( z )  are supposed t o  b e  a his togram 

i 
where  ak, i  t 0 ,  akn i  = 1, a n d  Hk, i  ( z )  are t h e  s t e p  funct ions equa l  t o  

k =1  

1  
when zkPi  S z < z k  +l , i  and equa l  t o  0 otherwise,  z ~ , ~ ,  k  = 1 , 2  ,..., i 

Zk + l , i  - Zk,t 

are f ixed points  z l i  = 0 ,  z i  + l , i  = 1 ,  a k , c  are t h e  p a r a m e t e r s  of the  h is togram, i i s  

t h e  number of t h e  pa ramete rs .  

VJe used t h e  values z k , i  = ( k  - 1 ) / i  f o r  c rea t i ng  the  histogram. One c a n  use  

a n y  o t h e r  set of z k S i  if t h e r e  i s  information on sub in te rna t iona l  inside [0,1] where  

densi ty  funct ion f  ( z )  changes  fas t .  If t h e r e  i s  n o  such pre l iminary information, 

then  one should use equid is tant  points  z k a f .  

The h is togram approx imat ion of densi t ies i s  widely used in s ta t i s t i ca l  p rac -  

t i ce .  I t  p resupposed t h e  f in i teness of t h e  possible va lues of z .  The number of in- 

t e r va l s  of t he  h is togram will b e  determined dur ing t h e  s t r u c t u r a l  minimization of 

r i s k  p rocedu re .  We assume t h a t  t h e  d is t r ibut ions f  ( z )  are all def ined on  t h e  in- 

t e r v a l  [0,1]. This i n te rva l  c a n  b e  changed if one h a s  pre l iminary information on  

where  t h e  d is t r ibut ion of z i s  concen t ra ted .  

I t  i s  impor tan t  t o  emphasize t h a t  we d o  no t  assume real dis t r ibut ion of he te ro -  

gene i ty  p a r a m e t e r  t o  b e  in fo rm (6). Express ion  ( 6 )  gives only a n  approx imat ion of 

real d is t r ibut ion and  t o  implement s t r u c t u r a l  r i sk  minimization method we don't  

need t o  know t h e  p r e c i s e  form of t h i s  d is t r ibut ion.  

Now i t  i s  e a s y  t o  cons t ruc t  funct ional  famil ies lQ,] b y  changing t h e  number of 

p a r a m e t e r s  i in ( 6 ) .  S o  family lQ1]  will b e  given by  funct ions 

family lQ2]  will b e  given by  exp ress ion  ( 8 )  

and  s o  on. W e  will use  t h e  uniform g r e e d  z l i  , z z f  ,..., z i i  f o r  which 

( z ~ + ~ , ~  - z ~ , ~ )  = I /  i. In t h e  c a s e  if one  has  more information on he terogene i ty  

d is t r ibut ion,  one can use o t h e r  spec ia l  g r e e d s  with d i f fe ren t  knots.  The only thing 

i s  impor tant  t ha t  t h e  g r i d  i s  t o  b e  f ixed be fo re  one starts t o  implement t h e  s t ruc -  



t u r a l  r i s k  minimization method, because t h e  inequal i ty (A5) in t h e  Appendix i s  valid 

only in th is  case. If one will t r y  to f i t  t h e  g r e e d  to t h e  exper imenta l  da ta ,  than  one 

can  have wrong resu l t .  

Subst i tut ing (6) i n to  (5), one can  see t h a t  in e v e r y  family Qt one  i s  t o  minimize 

t h e  funct ional 

I 

where  

where  z k B i  are t h e  knots  in t h e  g r e e d  f o r  (6) 

Following t h e  s t r u c t u r a l  minimization of mean r i sk  a p p r o a c h  one should minim- 

ize the  funct ional of empir ica l  r i s k  (5), t hen  compare  t h e  va lues of t he  funct ionals 

f o r  d i f f e ren t  i arid choose t h e  minimal value of Bi. H e r e  f ; (z) denotes  t h e  histo- 

gram cons t ruc ted  by  minimizing funct ional  (5) in t h e  family of h is tograms with i 

p a r a m e t e r r .  

A s  a second example l e t  u s  cons ider  t h e  si tuat ion when pre l iminary informa- 

t ion i s  avai lab le on  t h e  he terogene i ty  d is t r ibut ion.  Assume t h a t  he terogene i ty  

va r i ab le  z can t a k e  t h e  f in i te  number of known values. One needs  t o  est imate t h e  

respec t i ve  p robab i l i t i es  observ ing  a sample of surv iva l  t imes z l  .z2, .. .,zL. This ap-  

p roach  co r responds  to t h e  c a s e  when t h e  population unde r  invest igat ion consis ts  

of a f in i te  number of homogeneous subgroups  and  w e  know t h e  values of he tero-  

genei ty  var iab le f o r  each  of t h e s e  subgroups.  This s i tuat ion i s  s imp ler  than  above 

bu t  i t  i s  re levant  f o r  many p rac t i ca l  s i tuat ions. In r e a l  l i fe w e  c a n  have informa- 

t ion abou t  surviv ing in, s a y ,  genet ic  subgroups  and  we may b e  i n te res ted  in p ro-  



port ions of these subgroups in the  to ta l  population. 

To use o u r  method f o r  th is  case we rewr i te expression (4) in t h e  form 

where P, = P(z = z,). 

A s  a mat ter  of f a c t  now we est imate not function but  some numbers and instead 

of functional family 1Q 1, now one can use just i dimensional vec to r  space,  where i 

is number of f ixed groups minus 1 because the  sum of P, i s  t o  equal 1. 

Now one can check d i f ferent  hypotheses about  subgroups in tota l  population. 

When we consider d i f ferent  numbers of groups we have di f ferent  families and 

minimizing expression 

on proport ion P' and number of g roups i we will find t h e  best  sui table number of 

subgroups and propor t ions  f o r  them. 

To demonstrate t h e  power of the  method, we performed calculat ions with sam- 

ples, genera ted with known probabi l is t ic  distr ibut ions. We considered t h e  continu- 

ous distr ibut ion of heterogenei ty  var iable with density function 

where @ i s  some known parameter .  The density function cor responds to t h e  case  

when t h e  heterogenei ty  var iable can b e  expressed in the  form used in Cox's model 

r91 

z = e-PU 

and U i s  a random var iable with uniform distr ibut ion on the  interval  [0,1]. For 

both examples t h e  numerical calculat ions were provided. 

In the  first. case w e  estimated the  continuous density (J'(z)) by histogram. The 

number of pa ramete rs  in the  histogram vias determined on a given sample by the  

method descr ibed above. Typical est imate of continuous distr ibut ion ( f ( z ) )  i s  

shown in Char t  1. In Table 1 we put t h e  value of parameter  @, sample s ize L ,  de te r -  

mined number of pa ramete rs  in histogram i ,  probabi l i ty of every  subinterval  in 



co r respondence  with f ( z ) ,  P, and est imated probabi l i ty  of e v e r y  sub in te rva l  in 
A 

co r respondence  with t h e  histogram P. 

Table 1. Table 2. 

I N  L P P I 

From Table 1 one  c a n  s e e  t h a t  t h e  l a r g e r  t h e  sample s ize ,  t h e  b e t t e r  t h e  est i -  

mation, bu t  even in t h e  c a s e  of smal l  sample one s t i l l  h a s  a good est imat ion. 



C h a r t  1. 

In t h e  c a s e  of mix d is t r ibut ion when he terogene i ty  va r i ab le  may have  only 

f ixed values we est imated probab i l i t i es  of t hese  values, or propo r t i ons  between 

d i f fe ren t  states of he terogene i ty  var iab le .  In Table 2 we pu t  number of subg roups  

in  populat ion N ,  sample s ize L ,  r e a l  p ropo r t i ons  P,  and est imates 2;. 

H e r e  again one c a n  see t h a t  t h e  l a r g e r  t h e  sample size, t h e  b e t t e r  t h e  estima- 

t ion, b u t  in small sample case t h e  est imate i s  good e i t he r .  

4. Experiments w i t h  Real  Data 

In t h i s  c h a p t e r  we p r e s e n t  t h e  resu l t s ,  obta ined by  t rea tmen t  of real da ta .  

The d a t a  f i le was e x t r a c t e d  f rom t h e  Umea Data Base with kind he lp  of Gun Sten f lo  

(Umea Univers i ty ,  Sweden). The f i le included r e c o r d s  of surv iva l  time f o r  ch i ld ren  

bo rn  in one pa r i sh  by  mothers  no t  o l d e r  t han  26  y e a r s  in 1818-1895. That  f i le was 

s e p a r a t e d  in two subf i lcs  in acco rdance  with pa ren t ' s  occupat ion. F i r s t  subf i le  in- 

c luded r e c o r d s  f o r  ch i l d ren  of f a r m e r s ,  workers ,  r u r a l  p ro le ta r i ans  and  cases 

with n o  occupat ional  r e f e r e n c e .  The second subf i le included t h e  rest and  in f a c t  i t  

was r e c o r d s  with unknown occupat ion.  W e  had 196 r e c o r d s  in t h e  f i r s t  subf i le  and 

579 in t h e  second one.  I t  w a s  found t h a t  surv iva lsh ip of ch i ld ren  in t h e s e  two f i les 

i s  d i f fe ren t .  Fo r  ch i ld ren  of f a rmers ,  workers ,  r u r a l  p ro le ta r i ans  and no occupa-  

t ional r e f e r e n c e  t h e  mean value of surv iva l  time was 1180 days.  80% of t h i s  g roup  

surv ived  more then 200 days,  50% surv ived  more than 540 days and 20% surv ived  



more then 2000 days. For  chi ldren of parents  with unknown occupation the  mean 

value of surv ival  time w a s  427 days. 80% of this g roup  surv ived more then 90 days, 

50% surv ived rnore then 200 days and 20% survived more then 500 days. Histograms 

of surv ival  time, based on these two f i les a r e  presented on Char ts  2 and 3. 

Char t  2. 

Survivalship Proport ions 

-for Children 0-f Phisical Workers 

(in percents)  

I t  i s  worth mentioning t h a t  the  pe rcen t  of dead chi ldren in the  f i r s t  subgroup 

is t h r e e  times less than in t h e  second one. In numbers p e r  cen ts  a r e  18.5% f o r  the  

f i r s t  subgroup and 53.0% f o r  the  second one. Such a si tuat ion could happen f o r  in- 

s tance,  if the  subgroup with unknown occupation has  had more cases  with bad feed- 

ing of the  chi ldren and only "strong chaps" survive. 

To demonstrate the use of the  method we put  back r e c o r d s  from the two sub- 

groups together .  Information about  surviving in those two subgroups,  which we ob- 

tained on the  prel iminary investigation, was used as apr io ry  information. We s e t  a 

hypothesis tha t  the  genera l  sample consists of two homogeneous sets .  The value of 

hazard r a t e  f o r  the  f i rs t  s e t  we assumed t o  be  equal t o  the  est imate of hazard r a t e ,  

calculated on surviving times in r e c o r d s  f o r  chi ldren of physical workers. For the  



second set we p u t  haza rd  r a t e  equals  t o  t h e  est imate of i t ,  ca lcu lated on surv iv ing 

t imes in r e c o r d s  with unknown occupat ion of p a r e n t s .  The numbers were 0.000847 

and 0.00234 f o r  t h e  f i r s t  and  the  second se ts ,  respec t ive ly .  F o r  est imat ion of ha- 

z a r d  rates we used maximum likelihood es t imate  in t h e  form 

Then we app l ied  o u r  method t o  est imate t h e  p ropo r t i on  between two mentioned 

s e t s  in t h e  g e n e r a l  sample. By ca lcu lat ions on IBM P C  we est imated t h e  propor t ion  

between f i r s t  and  second sets as 5/13. In o u r  d a t a  f i le t h e  re la t ion  between 

r e c o r d s  with occupat ion more  than f o u r  t o  r e c o r d s  with occupat ion z e r o  was 5/14. 

S o  t h e  est imat ion i s  r a t h e r  c lose t o  t h e  or ig ina l  value. I t  means t h a t  t h e  method 

c a n  b e  successfu l ly  used f o r  estimation of hidden he terogene i ty .  

C h a r t  3. 

SuruiuaIs;hi~ Proport ions 
f o r  Children o f  P a r e n t s  

wi th  Unknown Occupation 
( in  percen ts )  



A p p e n d i x  

Structural Minimizat ion  of Mean R i s k  in Small  S a m p l e  C a s e s  

Equation (1) c a n  b e  solved using spec ia l  probabi l is t ic  techniques f o r  i t s  solu- 

t ion. The app roach  i s  based on t h e  methods of s t r u c t u r a l  minimization of mean 

r i sk .  Comprehensive analys is  of th is  problem was developed by Vapnik [ l o ] .  More 

deta i led considerat ion of i n teg ra l  equat ions '  solut ion problems r e l a t e d  to t h e  mean 

r i sk  minimization was done by Michalski [ I l l .  

The idea of mean r i sk  minimization method i s  as follows. Le t  X b e  a random 

va r i ab le  with d is t r ibut ion funct ion F ( z ) .  Let  IQ: Q ( z )  2 0  j denote  t h e  c lass  of a11 

nonnegat ive funct ions such  t h a t  f o r  e a c h  funct ion Q ( z )  t h e  funct ional 

ex is ts .  The funct ional G i s  ca l led t h e  mean r i sk  funct ional.  To minimize t h e  mean 

r i s k  means to find t h e  funct ion Q* f rom t h e  family of funct ions [ Q j  such  t h a t  mean 

r i s k  t a k e s  t h e  minimal value on Q*. Note t h a t  if t he  d is t r ibut ion funct ion F ( z )  i s  

known, t h e  a p p r o a c h  to minimization of a mean r i sk  i s  s t ra igh t fo rward .  

In many p rac t i ca l  problems,  however,  t h e  d is t r ibut ion funct ion of X i s  unk- 

nown, b u t  t h e  sample of independent  real izat ions of X i s  o f ten  avai lab le.  If t h e  

sample i s  l a r g e  enough t h e  problem i s  equiva lent  t o  t h e  mean r i sk  minimization with 

a known d is t r ibut ion funct ion. If t h e  sample i s  small t hen  one  should use a n o t h e r  

a p p r o a c h  to minimize t h e  mean r i sk .  Such app roach  i s  ca l led t h e  s t r u c t u r a l  minim- 

izat ion of mean r i s k  [ lo] .  
I t  t u r n s  out t h a t  t h e  p r o p e r t y  of sample to b e  "small" or " large" depends on 

i t s  s ize  I, and on t.he p r o p e r t i e s  of funct ional family IQ 1. This c ruc ia l  pr0pert .y of 

funct ional  family i s  ca l led t h e  "complexity" of th is  family. 



The main idea of s t r u c t u r a l  minimization of mean r isk  method is to subst i tute 

t h e  unknown mean r isk  functional (Al) by the  err~pirical r i sk  funct ional GL which is  

completely defined by t h e  sample of random var iable X: 

to st ruc tur ize  t h e  functional family Q  select ing s e v e r a l  c lasses of 

t Q l j ,  [Q2j ,  . . . , tQn j and making minimization within each c lass.  

The . f i rs t  s t e p  in th is  p rocedure  seems t o  b e  natura l  s ince t h e  sample of X i s  

t h e  only information about  unknown distr ibut ion. The next  s t e p  deserves specia l  

explanation. 

Minimizing t h e  empir ical r i sk  within t h e  c lass tQj  one should b e  s u r e  t h a t  i t s  

minimizing function is  c lose enough to t h e  function t h a t  minimizes the  mean r isk .  

The guarantee of th is  c loseness is  t h e  uniform convergence of t h e  empir ical r i sk  

functional t o  the  mean r i sk  functional when the  size of t h e  sample L tends to infini- 

t y .  

The uniform convergence of empir ical r i sk  means t h a t  f o r  any fixed E t h e  pro-  

babil i ty Pd 

goes to z e r o  when the  size L of t h e  sample tends t o  infinity. I t  t u rns  ou t  t h a t  pro-  

babil i ty Pd depends on t h e  p r o p e r t y  of a functional c lass  I Q j .  This p r o p e r t y  is  

rep resen ted  by t h e  notion of "complexity" of a class [ Q ] .  The p r s c i r e  mathemati- 

cal  definition of t h e  measure of complexity K of a functional c lass  one can find in 

[lo]. La te r  we will give t h e  measure of complexity f o r  some par t i cu la r  functiorlal 

c lasses.  

If t h e  uniform convergence ex is ts  then probabi l i ty Pd can be est imated as 

follows 

where K is the  complexity index. One can s e e  from th is inequality t h a t  t h e  less K 

is, t he  b e t t e r  i s  approximation of mean r isk  by the  empir ical one.  i t  means that. in 

the  "simple" c lasses of funct ions one can  find more p rec ise  estimation of the  mean 

r i sk .  



To implement t h i s  r e s u l t  t o  t h e  problem of mean r i sk  minimization using t h e  

sample of va lues of random va r i ab le  X, l e t  us  cons ide r  t h e  system of funct ional 

c lasses  f Q l ]  c 1Q2{ C . . . lQnl with t h e  increasing indices of complexity. Lct us  

show how in t h i s  c a s e  t h e  inequal i ty (A3) can  b e  used. Taking in to  account  (A4)  we 

have 

where Kt i s  t h e  complexi ty index of lQt 1. 

Denoting by  q t h e  r ight-hand s ide of inequal i ty ( A 5 )  one can easi ly find t h e  

formula f o r  E when q ,  L ,  and Kf are given 

Using th i s  express ion  one c a n  est imate t h e  mean r i s k  va lue b y  t.he empir ica l  r i sk  

using formula 

This formula makes sense  f o r  a l l  funct ions from t h e  class f Q f  if t he  denominator in 

t h e  r ight-hand s ide  i s  posi t ive.  Note t h a t  t h e  r e a c h e d  value of mean r i s k  in t h e  

c lass  tQi 1 h a s  a n  u p p e r  bound Bf 

min GL 

B, = Q E I Q i j  

Thus f o r  each  funct ional  c l ass  tQi 1 and given L and q one  can ca lcu la te  t h r e e  

var iab les :  E * ,  G:, and Bt which co r respond  t o  t h e  va lue of re la t i ve  uniform ap-  



proximation e r r o r ,  minimum value of empir ical r i sk  in the  c lass  lQi 1 and t h e  upper  

bound of the  reached  value of the  mean r isk  at t he  minimum point of t h e  empir ical 

r i sk  in t h e  c lass  lQi 1. 

In t h e  c lasses with small Ki t h e  value of c i  i s  small and t h e  empir ical r i sk  

gives a good approximation f o r  the  mean r isk.  However the  minimum value of t h e  

empir ical r i sk  G; can be high and consequently t h e  reached value of the  mean r isk  

upper  bound Bi can a lso  b e  high. 

With the  increasing of the  complexity of the  c lass  lQ j  t h e  approximation of 

mean r i sk  by the  empir ical r i sk  became worse, the  value of ci +l became l a r g e r  but  

t h e  maximum value of the  empir ical r i sk  G: i s  decreasing s ince lQi 1 c lQi A s  

a resu l t  of t h a t  t h e  upper  bound Bi i s  a lso  decreasing.  Star t ing  from some level 

of complexity of t h e  c lass lQf j, say Kj. ,  t h e  growth of t h e  e r r o r  ci i s  not compen- 

sa ted by t h e  decreasing of t h e  value of the  empir ical r i sk  and the  upper  bound 

of t h e  reached  value of the  mean r isk  starts t o  grow. I t  means tha t  lQi, j can be 

chosen as a p r o p e r  c lass in which t h e  minimization of t h e  empir ical r i sk  will 

guarantee t h e  minimal value of t h e  upper  bound f o r  t h e  reached  mean r isk  with 

given probabi l i ty  1 -q . 

One example f o r  the  system of c lasses lQi 1 can be given by the  a lgebra ic  poli- 

noms of d i f ferent  degrees:  

where aj a r e  the  a r b i t r a r y  parameters .  If t he  sample of the  couple (z, y ) i s  given 

then one car1 calculate t h e  value of t h e  empir ical r i sk  and t h e  value of Bi which we 

will identify with t h e  estimation of t h e  mean r isk  

By solution of t h e  mean r isk  minimization problem using t h e  f ini te sample of 

couple (z,y) we will understand the  function Q* which givees t h e  minimum of t h e  

empir ical r i sk  in t h e  c lass  lQi. ]. This value depends on sample s ize L ,  sample 

values, and t h e  validation value of t h e  uniform approximation of the  mean r i sk  by 

t h e  empir ical one 1-q.  In prac t ica l  calculat ions th is  value i s  often taken as .95. 

The typical si tuat ion i s  rep resen ted  in Figure 1. 

The important p roper ty  of the  s t ruc tu ra l  mean r i sk  minimization is  tha t  i t  

does not  requ i re  t h a t  the  minimizing function belongs t o  the  functional family lQ { .  

The method allows to make t h e  best  guaranteed approximation based on t h e  f ini te 

size of t h e  experimental sample and s e t  of c lasses { Q 1 j ,  lQ2{  ,... . Moreover, i t  
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Figure 1. 

- - - ct values 

GI values 
---------- Bi values 

t u r n s  o u t  t h a t  in t h e  c a s e  of f in i te  samples sometimes one should exc lude t h e  

minimum point f rom t h e  funct ional  c l a s s  [lo]. 

Let us  expla in t h e  notion o complexi ty index K f o r  funct ional family 191. As- 

sume t h a t  one h a s  a sample T = ! X I , .  . . ,YL ] of random va r i ab le  X .  F o r  any  given 

number C > 0 and funct ion Q ( x )  one c a n  divide t h e  sample T i n to  two subsamples T' 

and  T' using t h e  ru le :  number Xj  belongs t o  subsample T if Q ( X j )  > C and  t o  sub-  

sample T' if Q ( z j )  5 C. Changing t h e  number C and tak ing all poss ib le funct ions 

Q ( z )  f rom f Q ]  one  g e t s  d i f f e ren t  subsamples. The maximal number of d i f fe ren t  

divisions f o r  a l l  poss ib le samples having t h e  s ize L i s  ca l led t h e  complexi ty func- 

t ion of t h e  c lass  [ Q ]  on t h e  samples having t h e  s ize  L .  This funct ion depends on 

t h e  sample s ize  and t h e  funct ional  family. We will use t h e  notat ion m g ( L )  f o r  t h i s  

funct ion. I t  is c l e a r  t h a t  m g ( L )  S Z L .  I t  t u r n s  ou t  t h a t  t h e  complexi ty funct ion ei- 

t h e r  equals  Z L  o r  s ta r t i ng  f rom some number K sat is f ies  t h e  inequal i ty 



where  K i s  t h e  c r i t i c a l  sample s ize.  The var iab le  K depends only on t h e  p r o p e r t i e s  

of t h e  funct ional family [Qi and is cal led i t s  comp1exit.y index.  

The value of A' in some c a s e s  can  b e  easi ly ca lcu la ted .  I f ,  f o r  instance,  
A ' - 1  

Q ( x , y )  = ( y  - a j x j 1 2  t h e n  K = N. Another example c o r r e s p o n d s  t o  t h e  case 

when the  funct ion Q ( x )  h a s  no t  more than  N extremums and  x i s  s c a l a r .  In th is  

c a s e  K = N + 1 [lo]. 
Note t h a t  eve rywhere  in th is  c h a p t e r  t h e  explanat ion of mean r i s k  optimiza- 

t ion w a s  conducted in  t e rms  of funct ions of one or t w o  random va r i ab les  X and Y. 

One c a n  easi ly see t h a t  t h e  a p p r o a c h  i s  a p p r o p r i a t e  f o r  a n  a r b i t r a r y  number of 

random var iab les .  
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