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One of the interesting directions of research in IIASA's Population Program 
deals with the  methodological aspects of population heterogeneity dynamics. The 
crucial notion in this analysis is the stochastic intensity which is widely used in the  
stochastic processes models of human morbidity and mortality o r  technical failure. 

This paper  provides the  probabilistic specification of this notion which gives 
an  opportunity to use the  resul ts of modern general theory of processes in analyz- 
ing factors that  influence demographic characterist ics. 
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A Note on Random Intensities and 
Conditional Survival bct ions 

A n a t o l i  Y a s h i n  and E v a  A r j a s  

1. Intmduction 

Let t = ( t t ) t a  be a random process and T a random time in some probability 

space. The intensity, o r  hazard ra te ,  re lated t o  the occurrence of T and given the 

observation of ti = It,, 0 5 s 5 t  1 ,  is  often identified a s  a limit of the form 

1 
X ( t , t ) = l i m - P ( t  < ~ ~ t + ~ l t k ;  T a t ]  . 

ArO A 
( 1  

Does such a definition mean that  the corresponding conditional survival func- 

tion, when t is  observed, can be obtained from the "exponential formulas" 

Equality ( 2 )  is  often tacitly assumed in medical and epidemiological studies when 

dealing with survival analysis in the presence of observable influencing random fac- 

tors. I t  turns out that  this formula does not always hold. 

The exponential formula can be viewed as the  solution satisfying P ( T  2 0 )  = 1 

of a corresponding differential equation. Thus, when there  is no conditioning, and 

assuming absolute continuity of the distribution function F ( t )  = P ( T  5 t ) ,  t  2 0 ,  the 

formulas 

and 

express a one-to-one correspondence between the hazard rate X and the distribu- 



tion function F. This has a n  obvious extension t o  the  case where conditioning is  on a 

fixed u-algebra, say,  Go involving the  conditional distr ibut ion function 

pGO(t)  = P ( T  d t (Go) and the corresponding hazard rate [1,2,3]. Why, then, is  i t  

tha t  formulas such as (3a) and (3b) do  not  necessari ly hold f o r  meaningful hazard 

rates when the conditioning is  "dynamically" on time dependent random factors? 

A f i r s t  observation i s  tha t  knowledge of <; may direct ly  te l l  whether f T  S t  { 

holds o r  not. In o the r  words, P(T s t 1 [@ may be e i t he r  0 or 1 ,  whereas typical 

t 
values of the  function 1 - exp(- f h(s  ,<)cis) would be  s t r ic t ly  between 0 and 1. A s  a 

0 

concrete  example, one could think the  survival of an  individual, assuming that  [ 

monitors the  blood pressure.  A second and more formal problem with (2) is  tha t  t he  

left-hand side should be defined f o r  a l l  sample points of the  probabil ist ic space 

while A(t ,<) in (1) is only part ial ly defined (on f T  2 t 1). 

In o r d e r  t o  se t t l e  these questions in t he  most convenient way w e  switch ove r  to 

the cur rent ly  well-known and extremely flexible formalism involving counting 

processes and the i r  associated compensators [see e.g. Jacod [2] or Liptcer and 

Shiryayev [3]. 

2. The Reaulta 

Let N = (Nt ) t M  with Nt = 1 1 be the  process which counts "one" at T. Let 

G = (Gt)tzo be t he  observed history on which the assessment of the T-related ha- 

za rd  is  based, and define H = (Ht ) t by Ht = Gt V ufN,, s s t {. Clearly, if T i s  a 

G-stopping time, w e  have H = G.  Both G and H are assumed to satisfy "the usual 

conditions" regarding right-continuity and completeness [4]. 

I t  i s  well known that ,  under regular i ty  conditions, if G i s  t he  <-generated histo- 

ry ,  h(t ,<) of (1) sat isf ies t he  requirement 

The process (h(t , t ) l l ~ * ~  j ) t M  is called the stochastic H-intensity corresponding to 

T. In fact ,  (4) i s  then used direct ly  as t he  definition of such a n  intensity, instead of 

star t ing from a limit such as (1). 



Let F = (Ft )t;rO be the process Ft = P(T  5 t I Gt ). Clearly, F is the ordinary 

distribution function of T if G is trivial, while F = N if T is a G-stopping time. In 

general F need not be monotone. I t  is easily verified, however, that  F is a G- 

submartingale. We denote the G-compensator of F by A, i.e., A = (At)tM is the 

unique increasing G-predictable process, with A(0) = 0, such that  the difference 

F - A  is a G-martingale (see, e.g. Jacod [Z] o r  Liptcer and Shiryayev [3]). Let N 

and H be as above, and denote by A = (%)td the H-compensator of N .  Here is the 

main result of this paper: 

Theorem A h a s  the representation 

Proof. First observe that this claim is trivial if T is a G-stopping time. In the 

general case where Gt c Ht , t r 0, i t  is enough to  prove that (i) A is H-predictable, 

and (ii) N-A is an  A-martingale. 

t 

W e  start with (i). The integrand of At ' ds is left-continuous and = J 0 1 -Fs- 

H-adapted, therefore A-predictable, while A is G-predictable (by definition) and 

therefore also A-predictable. The R-predictability of A follows. 

In o rder  t o  prove (ii), denote f i r s t  m = N - A .  I t  is clear that E 1 mt 1 < m f o r  all 

t 2 0. Therefore i t  remains to  show that 

holds f o r  s < t . We have 

The f i rs t  t e r m  on the right-hand side can be written as 

while the second term becomes 



Therefore, (6) i s  equal t o  

However, he re  t h e  second t e r m  vanishes, because, by the well-known proper t ies  of 

the  compensator, 

W e  now show how this theorem can be used in o u r  problem concerning t he  ex- 

ponential formula. For th is  w e  need t he  following two conditions: 

(C1): F = (Ft )tH, i s  absolutely continuous ; 

(C2): F i s  of f inite variat ion . 

Under these conditions we have A = F ,  the theorem implies in an obvious way 

the solution t o  ou r  problem. W e  have, when denoting d 4  = h t d t ,  the following 

result .  

Corollary. Suppose (a) and  (C2). Then, denoting 

the stochastic H-intensi ty  corresponding to T is  given  b y  A t  = Yt llTat 1 ,  2 2 0. 

Although the proof i s  obvious from the  Theorem, some comments on this resul t  

should be  helpful. First ly, (7) i s  c lear ly equivalent t o  

(assuming that  P ( T  > 0 1 Go) = 1). The cruc ia l  point h e r e  i s  not t h e  equivalence of 

(7) and (8). but the  fact t ha t  Y = (Yt)tM, being multiplied by l l ~ , ~ ) ,  i s  t h e  H- 

intensity f o r  T. 



Secondly, (Cl)  is clearly necessary fo r  (7) t o  be a meaningful definition, and 

for  (8) to hold. However, (C2) may need a comment. Here is a simple sufficient con- 

dition f o r  (C2): 

(C2'): For all t r 0 , P ( T  5 t I Gt)  = P ( T  St 1 G,) as .  

The reason is tha t  under (C2') F becomes monotone. (C2') postulates the conditional 

independence between [ T  St I and G,, given by Gt. Using the terminology of Pitman 

and Speed (1973). one can say that  T satisfying (C2') is  a randomized G-stopping 

time. 

Notice tha t  our  conditions fo r  (8) are actually quite subtle: If T i s  a G-stopping 

time, (C2') i s  clearly met; however, (Cl)  cannot then hold. In a sense, therefore,  w e  

must think of G,  or of t ,  as information exogenous to the actual counting process N. 

3. Conclusion 

Mathematical models based on counting processes and martingales have proved 

extremely useful in many applied fields, such as biostatistics, reliabil ity theory,  and 

risk analysis. The m o s t  important asset of this approach is i ts  flexibility combined 

with the  powerful methods of the  stochastic calculus. A s  this study shows, however, 

one should be very cautious when assuming that  well-known formulas, such as the ex- 

ponential formula here,  automatically have formally similar extensions. 

Lastly, a word about extending our  resul ts to m o r e  general  point processes. 

Above, w e  only considered "the single point process" Nt = lITSt t 2 0. If there 

are m o r e  points, say at (O<)T1 < T2 < - , w e  could easily switch into the counting 

process $ = j, t 2 0. Therefore N is the sum of "single point processes", 
i PI 

and the corresponding H-compensator is automatically a sum of processes like (5). 

each corresponding to s o m e  part icular point Ti. A similar extension of the Theorem 

holds fo r  marked point processes. 

On the o ther  hand, the  Corollary does not s e e m  to generalize in a useful 

manner. The formal generalization of the exponential formula would be 

however, the left-hand side does not appear  t o  have interesting interpretations. 
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