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PREFACE 

In this paper the author returns to the differential game 
i = Cz - u. + v which he examined in earlier papers. Here e is the phase 
vector of the game in n-dimensional vector space R, C is a linear map- 
ping of the space R into itself. and u and v are controls, i.e., vector func- 
tions of time t which are not known in advance. Vectors u (pursuer con- 
trol) and v (evader control) satisfy the inclusions u EP, v € Q. where P 
and Q are convex compact subsets of the space R and have arbitrary 
dimension. The game is considered finished when the point s enters a 
given closed convex set M from R. 

In pursuit problems the control v is a function of time t and is not 
known in advance; the problem is to choose the control u in such a way 
as to  finish the game as quickly as possible. 

In previous work it was necessary to use knowledge of the function 
v (s) for t ss G t + E ,  where E > 0 is any given arbitrary small value. to find 
control u (dkcrirnimtion of the evader control). This deficiency was 
overcome in the past by some natural assumptions on the smoothness of 
certain sets. 

In this paper the author makes stronger assumptions which elim- 
inate the discrimination of the control v ( t )  and make it possible to 
define the optimal control u more constructively. 

This paper was presented by the author a t  the Workshop on the 
Dynamics of Macrosystems held at IIASA in September 1984. 

Alexander Kurzhanski 
Qrdmm 
System and Decision Sciences 
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The differential game described by the equation 

was studied in [2], where complete proofs of the results given in [I] may be 

found. Here z is the phase vector of the game in n-dimensional vector space R, 

C is a linear mapping of the space R into itself, and u and v are controls, i.e., 

vector functions of time t which are not known in advance. Vectors u and v 

satisfy the inclusions 

U E P  . V E Q  , ( 2 )  

where P and Q are convex compact subsets of the space R and have arbitrary 

dimension. The game is considered finished when the point z enters a given 

closed convex set  Y from R. Control u is called the pursuer control  and v the 

evader c o n h o l .  

In pursuit problems the control v is a function of time t ,  v = v ( t ) ,  and is 

not known in advance; the problem is to  choose the control u as a function of t 

in such a way as to finish the game as quickly as possible. This is done a t  time t 

using information on z ( s )  and v ( s )  for s c t . 
The most natural way to solve this problem is to  try to choose the control 

u ( t )  a t  any time t in such a way that  the distance from the point z ( t )  to the 

set  M decreases as rapidly as possible. However, this turns out to be impossi- 

ble. We have t o  use another method to estimate the rate of approach of the 

point z ( t )  to the  set M. We shall construct a convex set W ( r ) ,  r r  0, W(0) = Y, 
and define the minimal value r = T(z ) for which a point erCz belongs to the set  

W(r).  It is evident that the point w = erCz lies on the boundary of the set ~ ( r )  

and depends on z .  Let $(w) be a unit exterior normal to the surface aW(r) a t  

the point w .  The resulting function T ( z )  is an estimation function for the time 

of approach of the point z to the set  M. 



If the value of T(z )  decreases during the game and finally becomes equal 

to zero then the game comes to an end. I t  can be proved that the rate of 

decrease of the function T(z)  during the game is not less than the rate of 

increase of the time t .  Thus a game beginning a t  the point z 0  will finish at a 

time not greater  than the value T(zo). It is important that an incorrect choice 

of evader control u ( t )  gives an advantage to the pursuer, i.e., will accelerate 

the end of the game. 

An important deficiency of [2] is that we use knowledge of the function 

u ( s )  for t < s  s t  + E.  where E > 0 is any given arbitrary small value, to find con- 

trol u ( t ) .  This is called discrimination of the evader control. 

This deficiency is overcome in [2] under some natural assumptions on the 

smoothness of certain sets. 

Since we use stronger assumptions here, the present paper is not simply a 

generalization of [2] but eliminates the discrimination of the control u ( t )  and 

allows us to define optimal control u ( t )  more constructively. 

Let us recall the construction of convex set W ( T )  given in [2]. First of all 

we introduce some natural operations over convex sets from the space R. 

1. If X and Y are convex sets from the space R, and a and B are real numbers, 

then we define the convex set 

of all vectors z = az + By, where z EX, y E Y. Hence we can define the 

Riemann integral 

Here it is assumed that the convex set-valued mapping ~ ( s )  is continuous 

in real parameter s ,  so<s <sl. In ( 3 )  we consider only non-negative a,@. 

2. Define the geometrical difference 



of two convex sets X and Y from the space R. The set  Z* consists of all 

vectors z * E R  such that  Y + z C X. Note that the sets (3-5) are convex 

and are also compact if X and Y are compact. 

3. Define the  set W(T) in the  form of an alternating integral 

where P ( r )  = eTCp, Q(T) = e T C ~ .  To evaluate this we define an alternating 

sum of convex sets (A ,x~  ,..., q, Y, ...., Y,). We set 

Let (rO,r  l.....~n) be a partition of the  interval 

We set (see (4)) 

We consider the alternating sum A, (see (7)) for set  A = M, w i t h  4, 5 
given by formula (9), as  an  approximate value of alternating integral (6). 

I t  can be proved that  alternating sum (9) has a limit if the  maximal length 

of intervals from partition (8) tends to zero. This limit is the value of the 

alternating integral (6). 

In [2] i t  is proved tha t  if a function v ( s )  is known on the interval 

t s s  S t  + E  then we can choose the control u ( t )  on the same interval in such a 

way that  the inequality 

holds. For this we choose t h e  control u ( t  ) in such a way that the  difference 

has  its largest absolute value. Hence we solve some nontrivial variational prob- 

lem with discrimination of evader control on every time interval of length E. 



In the simple case considered in [ Z ]  (see 56, p.325), the set M is a linear 

vector subspace. Consider an orthogonal complement L of dimension v to the 

subspace M in the- space R. Let tr be the orthogonal projection of the space R 

onto the subspace L, and consider the sets 

Suppose that  the set 

has dimension v for 0 < < T. We distinguish between two separate cases: 

1. P(T) = Q(T) + S(r)  (the exhaustive case) 

2. ~ ( r )  z Q(T) + S(T). 

Consider the convex set 

We define the estimating function T(z) as the minimal value of r for which the 

inclusion 

holds. 

In the present paper we give a way of constructing the pursuit control u ( t )  

without discrimination of the evader control v ( t )  under certain differentiability 

conditions. In particular, we suppose that the w(r) are convex sets with 

smooth boundaries and that the boundaries of the sets P(r)  and Q(r) do not 

contain linear segments. 

Consider the support function e ( ( ~ ) - e ~ z , )  of convex set - 
W(T) - neTCz. where @ is a unit vector. This support function is greater than or 

equal to  zero for any 9 if 

and has negative values for some 9 if inclusion (14) does not hold. We denote 

the minimum of this function by 

-F(z , r )  = rnin c (R(r) - neTCz ,9) . * (15) 



When point lrerCz reaches the set e(r) the function F ( z , r )  changes sign from 

positive to negative. The value of T ( z )  is the smallest positive root of the equa- 

tion 

The derivative 

is nonpositive when the point lrerCz reaches the se t  H(r). If the inequality 

C ( z  , r )  # 0 holds a t  this time then T ( z )  is a smooth function of z in a neighbor- 

hood of this point. If c ( z  , r )  = 0 then function T ( z )  may be discontinuous. 

If u and v are known functions then z is a function of parameter t and 

r = ? ( z )  i s  also a function of t .  This means that  relation (16) is an identity with 

respect to t .  Differentiating the identity (16)  in t we get the relation 

Hence for C # 0 we have 

Let g ( t )  be the unit vector which minimizes the support function (15) and 

s(9.r) be the  point on the boundary of the convex set S ( r )  which maximizes the 

scalar product 

Then function has the form 

G ( z , r )  = ( r r e f C ~ z  -s(*,r),*) . 
and formula (18) becomes 



I t  is clear from formula (20) that we can choose the control u in such a way 

that 7 s  - 1 .  Take the value of u which minimizes 7. The corresponding value 

of 7 is less than or equal to -1 .  I t  is evident that u ( t )  maximizes the scalar 

product (nerCu.$) .  This value of u = uOpt is said to be optimal and is the value 

of the control chosen during the pursuit process if C # 0. 

If we choose control u ( t )  according to this rule and function 5 tends to 

zero then the value of i is defined by the same relation (18) .  Here we have to 

consider two different cases. The control vopt is said to be optimal if it maxim- 

izes the scalar product ( r e  TCv ,$). Consider the exhaustive case. If the control 

v i s  optimal on some time interval and = 0 a t  the initial time to ,  then 7 = -1 

and C = 0 for all t  from this interval. If u # vopi and = 0  then the  point z ( t )  

leaves the  surface C ( z , r )  = 0 in a small neighborhood of t o .  Moreover. the 

function T displays the following behavior: 

where k is the multiplicity of the root so of equation (16).  Two cases can arise 

if the point e ( t )  arrives at the surface c ( z , r )  = 0: T changes continuously or 

displays a jump. In the f i s t  case the behavior of s has the following form: 

- -  In the non-exhaustive case the behavior of the trajectory may be considered in 

a similar way with some small differences. 

Hence for an optimal choice of u ( t )  the solution z ( t )  of the differential 

game always satisfies the following condition: 

In the case of the alternating integral we set P ( r )  = erCp.  Q ( r )  = e T C 4 .  Let 

L ( P ( r ) )  be the f i e  support of convex set P ( r ) .  If the vector q ( w )  is not 

orthogonal to the space L ( P ( r ) )  then we choose the control u ( t )  which maxim- 

izes the function 

This relation defines a unique control u which is the best pursuit strategy. If 

the vector q(w)  is orthogonal to the  space L ( P ( ~ ) )  at the time t o  then rule (23)  



does not give us the opportunity to choose control u ( t )  and it must be selected 

in some other way. 

In the general case consider the support function 

It is clear that this support function is greater than or equal to zero if 

eTCz  E W ( t )  and has a negative value if this inclusion does not hold. Define 

-F(Z ,r) = min c ( W(T) - e C~ ,$) * 
Hence the value ~ ( z )  is the smallest positive root of the equation 

with respect to r. Set G(z  .r) = aF/ az . 

We choose the optimal control u ( t )  in the following way. Since r is a root 

of equation (26 )  we differentiate i t  in t  and obtain the relation 

which is similar to (18) .  We choose the control u ( t )  in such a way that the 

value of T given by relation (27)  is minimal. This approach is similar to  the 

choice of optimal control u ( t )  = u o p t ( t )  given previously. 

I t  can be proved that T < 1 if we use this rule. Hence the estimating func- 

tion T ( z  ( t  )) decreases more quickly than t  increases. 

The control u ( t )  which maximizes i (see (27 ) )  for any given u ( t  ) is called 

the optimal evader control and is denoted by vop t ( t ) .  This optimal control 

vopt(t  ) does not depend on the choice of control u.  

Relation (27)  is meaningful only if G # 0. I t  can be proved that 

If G # 0 then formula (27)  has the form 



Hence 1 5 -1 and 1 = -1 if u = uopt. 

It can be proved that  1 = -1 if G = 0 and u = vopt.  This fact does not follow 

from (29) .  If u = uopt on some time interval and G = 0 a t  the initial time t o  

then G = 0, j = -1 and ?C, = const. all over this interval. 

If u # vopt and G = 0 then point z ( t )  leaves the surface G = 0 in a small 

neighborhood of to. Moreover, the behavior of function r is described by for- 

mula ( 2  1). 

When vector *(u) becomes orthogonal to  the subspace L ( P ( r ) )  the control 

u displays a jump. We would therefore have to  choose i t  in a different way were 

it not for the fact that it can be proved that  this orthogonality disappears and 

we can take the rule for choosing the optimal control u given earlier. 

The relation 

holds for all of the methods of choosing the pursuit control u( t )  mentioned 

here, i.e., the  rate of decrease of function T ( z ( t ) )  is not less than the rate of 

increase of t . 
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