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THE CASE AGAINST BULLET, APPROVAL
AND PLURALITY VOTING

Donald G. Saari
Jill Van Newenhizen

It is well known that plurality voting need not reflect the true sentiments of
the voters., When there are more than two candidates running for the same office, it
is probable that the candidate approved by most of the voters won’t win. Examples
abound; perhaps the best known one is the Senatorial election in the state of New
YorK during 1970. Conservative James Buckley benefited from a split vote for his two
liberal opponents; he was elected with 394 of the vote even though 414 of the
electorate preferred a liberal. In the 1983 Democratic Party primary campaign for
the mayor of Chicago, the black candidate, Harold Washington, was elected because of
a split vote for his two white opponents, Jane Bryne and Richard Daley. Indeed,
examples can be found in many closely contested elections among three or more
candidates.

To illustrate the problem, consider the following example of fifteen voters and
three candidatest, B, and C. Suppose the voters’ preferences are split in the
following way: Six of the voters have the ranking AX>C>B; five have the ranking
B>C>A, and four have the ranking C)B)A.‘ The result of a plurality election is AXB)C
with a tally 4t5:4. But, although A is elected, a majority (40%) of these voters
prefer B to A. More seriously, a majority (4074) of these voters prefer C, the last
place candidate, to A, and 2/3 of them prefer C to B! So, C is the preferred
candidate, but this fact isn‘t reflected in the election results. This is because
with a plurality vote the voters can vote for only their top ranked candidate.

Voters are aware of this phenomena ahd react by using sfrategic voting
behavior., This is manifested by the common refrain near election time of "Don’t
waste your vote, mark your ballot for ---." To remain viable, candidates must
devote valuable campaign time to counter this effect. For instance, during the 1984
presidential primaries, Jesse Jackson urged his followers to vote for him rather
than strategically voting for Walter Mondale.

There is little question that this instrument of democracy is in need of



reform. But, what should be its replacement? One reform measure, which is intended

to capture how strongly a voter prefers his favorite candidate, is bullet voting.

Here a voter has two votes; he can vote for his top ranked candidate, his top two
candidates, or he can cast both votes for his top ranked candidate. For instance,
in the above example, if all of the voters had sufficient regard for candidate C,
then she would be elected. Bullet voting was used in I1linois for certain
legislative offices.

A second proposed reform method is approval voting. This is where a voter
votes for all of the candidates he approves of. As such, when there are N
candidates, the voter has N choices; he can vote approval for his top i candidates,
i=1,..,N. Again for the above example, depending upon the degree which the voters
favor candidate C, she may, or may not, emerge victorious.

Approval voting enjoys the support of several experts in this field., It was
employed for a straw ballot during the Pennsylvania Democratic party conference in
December, 1983, [1], and it was used to select faculty members to the Northwestern
University Presidential search committee in November, 1983. In addition, it "..is
now used in academic societies such as the Econometric Society, in the selection of
members of the National Academy of Science during final balloting, and by the United
Nations Security Council in the election of a Secretary General. Bills to enact
this reform are now before the state legislatures of New York and Vermont." [2].

Much of this support is a consequence of the analysis of its properties by two
of its foremost advocates, Steven Brams and Peter Fishburn. Most of their
conclusions, which highlight several of the desirable properties of this system, are
summar ized in their book "Approval Voting®"{3]. To demonstrate the strength of
approval voting, often they compared it with those commonly used systems which
distinguish between two sets of candidates - the top k and the rest. Plurality
voting is the special case where k=1; it distinguishes between the top ranked

candidate and all others. Because of the technical difficulties involved, not all



of the properties of "approval voting" were found, and in [3] it wasn’t compared
with all other voting systems.

At a conference in July, 1984, one of us (DGS) presented several negative
results concerning the behavior of approval voting (see [4,5]) as part of a lecture
discribing what can occur with voting methods. Later, 5. Brams privately asked
whether the techniques developed to obtain these results could expose other
properties of approval voting. We started this project with the expectation that
approval voting is, in some sense, better than most systems. But, we found that it
has several disturbing features which makes it worse than even the plurality voting
system. Indeed, these properties appear to be sufficiently bad to disqualify

approval voting as a viable reform alternative.

In this paper, we report on some of these negative features which are shared by
voting systems, such as approval voting, bullet voting, cardinal voting, etc., where
there is more than one way to tally each voter’s ranking of the candidates. The
feature emphasized here is that the election outcome can be "random® in nature
rather than being decisive. More precisely, if there are N candidates, then there
are N! possible ways to rank them without ties. The purpose of an election is to
determine which one of them is the group’s choice. 1f a voting system is decisive,
a given set of voters’ profiles uniquely determines one of these rankings. However,
for approval and bullet voting, there are a large number of examples where all N!
outcomes occur for the same profile! That is, each voter votes honestly according to
his fixed ranking of the candidates, But, as the voters vary their choice of how
their ballots will be tallied, each of the possible N! rankings emerge!

This phenomenon can be illustrated with the above example. Let w,y,z denote,
respectively, the number of voters from the three types of voters who vote approval
for their top two candidates rather than just their top ranked candidate. Then,
0<w<é, 0{r<S, 0£2<4, and the tally for A:B:C is 6:5+z:4+wty. It follows immediately

that any election outcome is attainable from these voters. For instance the result



BYA)>C occurs when 222 (at least two from the last set of voters vote for their top
two ranked candidates) and wty{l. Even ties are possible. A deadlocked election of
A=B=C results from z=1 and wty=2, while the result B=C)A results from w+y-1=232.

This example and the general result indicates that systems such as approval and
bullet voting possess features which are more undesirable than even those of the
plurality voting system! Just this stochastic, random nature of the election
outcome raises serious questions whether approval voting, and related methods, truly
offer any reform. The proposed cure seems to be much worse than the disease.

This result doesn’t mean we are doomed to accept and to live with the failings
of the plurality voting. There are other ways to tally a ballot which would reflect
a voter’s first, second, .., last ranked candidates. For instance, a borda Count is
where when there are N candidates, N points are tallied for a voter’s top ranked
candidate, (N-1) for his second ranked candidate, ..., (N-K) for his KTH ranked
candidate, .., and 1 point for his last ranked candidate. (The Borda ranking for
the above example is the desired one of C)B)A with a tally of 34:29:27.) So, out of
all possible ways there are to tally ballots, the problem is to isolate those ways
which best capture the wishes of the electorate. It turns out that the unique

solution for this problem is the Borda Count.[él

2. The main results.

Assume there are N2>3 candidates denoted by {aj,..,an). Let W =

(Wiy...,wn) be a voting vector where its components satisfy the inequalities

wydwg if and only if j<k, and widwn. Furthermore, we require all of the
weights to be rational numbers. (The only purpose of the last requirement is to
simplify the proofs. Clearly it doesn’t impose any practical limitations because

for all commonly used methods the weights are fractions and/or integers.) Such a



vector defines the tallying process for an election -- ws points are tallied for a
voter‘s jTH ranked candidate, Then, the sum of the points tallied for a candidate
determines her final ranking. For example, the vector (1,0,..,0) corresponds to the
plurality vote. BN=(N,N-1,...,1) defines the usual Borda Count procedure. <(More
generally, a Borda Vector is whenever the differences wy-ws+1 are the same

nonzero constant for j=1,..,N-1., An election using such a voting vector is a Borda
Count.) Let En be the vector N-1¢(1,1,..,1). This isn‘t a voting vector because

all of the components are equal, so it can’t distinguish how candidates are ranked.

A simple voting system is where a specified voting vector is used to tally the
voters’ rankings of the candidates. A general voting system is where there is a
specified set of at least two voting vectors, {UWs}, where the difference between
any two of these vectors isn’t a scalar multiple of En. (Hence, no two are the
same.) Then, each voter selects a voting vector to tally his ballot.

Examples. For the bullet method, the set of three voting vectors are
«1,0,..,00, (1,1,0,..,d), (2,0,..,0)). For approval voting, the set of N vectors
is ¢¢(1,0,..,0>, ¢1,1,0,..,0),..., €1,1,..,1,00, C1,1,...,1)). For cardinal voting,
the voter is free to select the values of the weights w;y subject to certain
constraints. For instance, to standarize the choices, the weights might be required
to sum to unity, or to be bounded above and below by specified constants.

The extreme indecisiveness for elections which was described above is

characterized in the following definition.

Definition 1. A general voting system for N candidates is said to be stochastic if
there exist profiles of voters where all possible rankings of the candidates
(without ties) can result from the same profile as the voters vary their choice how
their ballots are to be tallied.

In other words, for these examples of voters’ profiles, the outcome is random

and reflects the voters’ fluctuations in their choice of tallying procedure rather

than their rankings of the candidates. Thus, the election outcome could be



a1daz)d...>an, OF anNdan-1>..%a1, OF a;dand..., etc. where the

determining factor is the voters’ choice of how their ballots are to be tallied, not
their rankings of the candidates. As in the introductory example, all rankings,
even those with ties can occur. This random feature is a property we want to avoid,

so it is important to characterize those general voting systems which have it.

Theorem 1. Assume there are N)3 candidates. All general voting systems are
stochastic.

As illustrated by the introductory example, a major criticism of the plurality

vote is that it need not reflect the voters’ true wishes. To quantify this, we need

a measure of the true sentiment of the voters. The one most commonly used is the

Condorcet winner.,

Definition 2. Assume that the N)3 candidates are (ai,az,..,an). Candidate

ag is called a Condorcet winner if, in all possible pairwise comparisions, ax
always wins by a majority vote, A Condorcet loser is an candidate which always
loses by a majority vote in all possible pairwise comparisions with the other
candidates.

A Condorcet winner appears to capture the true choice of the voters; after all,
she was the choice of a majority of the electorate when she was compared with any
other candidate. But, the introductory example shows that the plurality vote can
rank a Condorcet winner in last place and a Condorcet loser in first place!
Actually, as it is shown in [4], this type of behauior is characteristic of all

simple voting systems with the sole exception of the Borda Count.

Theorem 2.[4]1. Suppose there are N)3 candidates. Then, for any simple voting
system other than a Borda Count, there exist examples of voters’ prefences where the
Condorcet winner is ranked in last place and the Condorcet loser is ranked in first
place. The Borda Count is the unique method which never ranks a Condorcet winner in
last place, and never ranks a Condorcet loser in first place.

How does a general voting system fare? It turns out that it can be even worse.



Definition 3. A general voting system (Wy} is “"plurality like" if there are
non-negative scalars (bj} such that when the differences between successive
components of L bsW; are computed, all but one are zero.

The summation defines a voting vector, and the condition is that this vector
distinguishes between only two sets of candidates. This condition is satisfied
automatically when the general voting method includes a voting vector of this type,
e.9., a plurality voting vector. Thus, both approval and bullet voting are
plurality like. Also, the condition is trivially satisfied should the general
method include N-1 voting vectors which, along with Enx, form a linearly

independent set. This is because the vectors span RN.

Theorem 3. Suppose there are N)3 candidates. Choose a ranking for each of the
N(N-1)/2 pairs of candidates in any manner you wish. (This may be done in a random
fashion; the rankings need not be transitive.) Assume that all subsets of more than
two candidates are to be ranked with a plurality like, general voting method. Then,
there exist examples of voters’ profiles so that

1) for each of the pairs of candidates, a majority of the voters have the
indicated preference, and

2) for each subset of three or more candidates, the outcome is stochastic.
(As it will become clear in the proof, the constraint that the gereral voting

method is "plurality like" isn’t necessary; the conclusion holds for almost all

general voting systems. UWe impose this assumption because it significantly
simplifies the proof without incurring much of a sacrifice to generality -- the

general methods which have been seriously considered or used, such as approval or

bullet voting, satisfy this condition.)
This theorem means that there exist examples of voters’ profiles where for each

pair (ajy,ax), a majority of the voters prefer the candidate with the smaller

subscript. Thus, the rankings of the pairs are highly transitive anc imply 3 group
ranking of a;>az>..>an. In spite of this, for the same voters, the approval

voting rankings of all subsets of three or more candidates are stochastic. Thus the



approval voting outcome over a set of more than two candidates could depend more on

the quirks and fortunes of how the voters select to have their ballots tallied than
on how they rank the candidates. The introductory example illustrates this for N=3.
Our goal was to compare approval voting with the Condorcet winner, This is a
corollary of the theorem when the rankings of the pairs define a Condorcet winner.
For instance, when N=4, there exist examples of voters so that whenever a; is
compared with any other candidate, she always wins with a majority vote. Yet, when
these same voters use approval voting to rank the candidates, the outcome is
stochastic whether the set of candidates is {aj,az,a3,a4}, {a),az2,a3l,
{ay,az,a4), {a;,a3,34), or {az,az,as). In other words, it is
probable that a Condorcet winner could win an approval election only by accident.
Moreover, the approval voting outcome over any of these subsets of candidates is
random, so it isn‘t clear who is the approval winner. This type of an example is
impor tant because it illustrates that a general voting method can be random even
when there is a Condorcet winner; a general voting method need not reflect the
voters’ true views. The generalization of the example is highlighted in the
following formal statement. Because we aren’t considering all possibie subsets of

candidates, the condition on the general voting system is relaxed.

Corollary 3.1. Assume there are N)3 candidates which are to be ranked with a
general voting method. Assume that the general voting system has at least one
vector which isn’t a Borda vector. There exist examples of voters’ profiles so that
even though there is a Condorcet winner, the ranking of the N candidates is
stochastic.

Again, the introductory example illustrates this result for N=3. Furthermore,
this result extends to all subsets of the N candidates. Thus, a general method,
such as approval or bullet voting, need not reflect the wishes of the voters over

any subset of the candidates.

These negative statements about approval voting can be reconciled with some of



the positive ones which appear in the literature. In particular, in certain
settings, it has been proved that approval voting can result in a Condorcet winner
being ranked in first place [3]. It follows from the above statements that such
favorable conclusions can occur, but, they are just one of the many possible
stochastic fluxuations of the election! The corollary and the theorem assert that
if the voters behave by choosing to tally their choices in certain, specified ways,
then these desirable outcomes will result. But if they don‘t, then anything can
occur, In other words, results as undesirable as one may fear are probable.

Another implication of Theorem 3 concerns those procedures used to consider
voters’ preferences not only over the total set of candidates, but also over
subsets. For example, the following is a standard approach: First rank the N
candidates, and then drop the candidate who is in last place. Rerank the remaining
set and continue this elimination procedure until only the required number of
candidates remain., Now, suppose we employ a general method, such as approval
voting, to rank the candidates at each step of this elimination procedure. Theorem
3 shows that the stochastic nature of the conclusion could force the final result to
have no relationship whatsoever with how the voters really rank the candidates.

Theorem 3 can be extended. For instance, consider a situation where there are
4 candidates, but the election is only closely contested among three of them. Then
we might expect that the stochastic effect affects only these three candidates, not
the last one. This does happen; results about "partial stochastic" effects can be
obtained.

So far we’ve compared general voting methods only with the rankings of pairs of
candidates. Another test is to compare it with plurality voting and other single
voting methods. After all, in the introductory example, the conclusions of
plurality voting aren’t indicative of the voters’ preferences as measured by a
Condorcet winner. The following statement compares the results of a general voting

method with any simple voting system.
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Theorem 4. Assume there are N)4 candidates. Let Wy be a voting vector defining
a simple voting method, and assume that a general voting method is given where at
least two of the vectors and Ew are linearly independent. Then there exist
examples of voters’ profiles so that

a. There is a Condorcet winner,

b. If Wn isn’t a Borda vector, then the simple voting method has any
previously selected ranking of the candidates.

c. The general method is stochastic.

If the general voting method is either approval or bullet voting, then the
conclusion holds for N}3. So, with the exception of the Borda Count, Theorem 4
illystrates that examples exist where anything can occur with the simple voting
scheme while the general method is stochastic. In particular, this implies the
existence of examples of voters’ profiles where the plurality outcome does rank the
Condorcet winner in first place while approval voting has a stochastic effect,
Consequently, it is probable that the plurality election results do reflect the
voters’ wishes while approval voting does not. Again, this is because the random
fluxuations of approval voting allow any type of election result to emerge. A
second consequence of this theorem, along with Theorem 2, is that among all single
voting systems, only the Borda Count reflects the voters’ intent.

A remaining issue is the robustness of these conclusions. That is, can we
dismiss these statements because the conclusions occur only with some highly
pathological example which is highly unlikely to occur? We show this isn‘t so; with
any fairly general distribution of voters’ preferences, these results have a
positive probability of occurring. Moreover, as it will become apparent in the
proofs, these stochastic outcomes are more likely to occur in those types of
situations which have been used to discredit the plurality system. It turns out
that these random election outcomes tend to occur when there is a closely contested
election among three or more candidates.

To show that these examples are probable, we need to introduce a measure for

the distribution of the voters’ profiles., If there are N candidates, then there are
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N! possible rankings of them. For each possible ranking, A, let na be the

fraction of the voters with this ranking. The sum of these numbers equals unity, so
there are N'-1 degrees of freedom; these numbers define a unit cube, C(N), in the
positive orthant of a N'-1 dimensional space. Woters’ profiles can be identified
with the (rational) points in C(N). Because all of the usual continuous
distributions identify a positive probability of occurrance with an open set in
C(N), outcomes are probable if they are identified with open sets in C(N). The
following theorem asserts that this characterizes our assertions. Also, statements
asserting the asymptotic, positive likelihood of these examples, as the number of

voters grows, follow immediately. The limits are related to the measure of the open

sets in C(N). (See [4,5].)

Theorem 5, For each of the above theorems, the set of examples defining the
described behavior contains an open set in C(N),

Finally, we are left with the issue of reform, The above demonstrates that a

general method does not constitute a reform alternative for plurality voting. But,
this doesn’t mean we are forced to live in the imperfect world of plurality voting.
In Theorems 2 and 4 and in Corollary 3.1, we see that the Borda Count is the unique
simple voting scheme which avoids many of the pitfalls associated with plurality
voting. This in itself demonstrates that the Borda Count is best candidate, of the
voting methods, for reform. For 2 more detailed analysis of its properties along

with a comparison of it with other simple voting methods, see [4].

3. Proofs

Proof of Theorem 1. Assume there are N)>3 candidates {ai;,..,an} and that

the general voting system consists of the voting vectors {(Wy}, j=1,..,s, where
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s>2. Then, each Wy is a vector in the N dimensional space RN. Let A denote the
ranking a ;Yaz2>...>an, and let P(A) be a generic representation for the N!
permutations of A. For voting vector Ws, any such permutation P(A) determines how
the ballot will be tallied. In fact, this tally can be viewed as being a
permutation of the vector Wy, Denote this permuation by Wsrcar. For instance,

if W=(3,2,1), then the standard ranking a;>az>a3z defines the vector ¢3,2,1).

The ranking ag>ajYaz defines the permutation of W, (2,1,3), to reflect that

for this ranking, two points are tallied for a;, one for az, and three for aj.

Let np¢a) denote the fraction of the voters with the ranking of the
candidates P(A). The tally of a simple election using Wy is
4.1 Y necarUWircan
where the summation is over all N! permutations P(A). The outcome of the election
is determined by algebraically ranking the components in this vector sum.

There is a geometric representation for this algebraic ranking. Consider the
indifference hyperplane in RN given by xi;=xx. If the vector sum 4.1 is on the
xx>X1 side of this hyperplane, then ax ranks higher than a1, and vice versa.

In particular, the N(N-1)/2 possible "indifference hyperplanes” divides RN into
*ranking regions", and the final ranking of the candidates is determined by which
ranking region contains the vector sum.

For a general voting system, let msp(as denote the fraction of those voters
with a PCA) ranking that elect to have their ballots tallied with the jTH yoting
vector. Then, the fraction of the total number of voters with this tally is
Neca)Mypca). Consequently, the total tally is given by the double sum
4.2 TorcarlEmr carlercarl.

A < .
Again, the ranking of the candidates is determined by the rankKing region of RN
which contains this vector sum.

We represent £q. 4.2 as a mapping. Toward this end, let

SitM) = (x=C(x),..,x0)1  xx20, Txx=1}.
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Because each term defines a percentage, the set {np(a)) is a (rational) point in

the set Si(N!'), For each P(A), the set {msp(ar) is in Si(s), (This is because
the entries define non-negative fractions which sum to unity.) This means that a
domain point is in the (N'-1)(s-1)N! dimensional space

T = Si(NDx(Si(s)IN?,

Any rational point in T corresponds to an example of voters’ profiles along with
their individual selection of voting vectors to tally the ballots. Thus, Eq. 4.2
can be viewed as being a mapping from T to RN

4.3 FiT ——————- > RN,

where F is the summation.

Define the "complete indifference” ranking in RN to be the line given by all
scalar multiples of Ex. The name comes from the fact that this line corresponds
to where there is a complete tie in the rankings of all of the candidates. Notice
that
a) the complete indifferencé ranking is the intersection of all of the indifference
hyperplanes, and
b) this line is on the boundary of all other ranking regions.

To prove this theorem, we must show the existence of a n* in Si(N!) (a choice
of voters’ profiles) so that as the variable m={(mjr(a1r) varies, the image of
F({n*,m)) meets all possible ranking regions.

Let n* correspond to where there is an equal number of voters with each
possible ranking of the candidates; i.e., n¥=(N!)-1(1,1,..,1). It follows
immediately that if myeca1=1 for all choices of P(A) (all voters choose the first
voting vector), then Eq. 4.2 reduces to Eq. 4.1, and the image of F is on the
complete indifference line. The same conclusion holds if all of the myp¢as are
equal, This is because the double summation can be interchanged to obtain separate
summations of the type given in Eq. 4.1, each of which yields a point on the

complete indifference line. Denote this domain point by (n¥,m%).
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The idea is the following. Assume that the Jacobian of F at (n¥,m%*) has rank
equal to N, where, in the computation of the Jacobian, the npia) variables are
held fixed. (We treat them as parameters.) This means that there is an open set
about the interior point m* which is mapped to an open set about the image
F¢C{nx,m®)). This open set yields outcomes which can be attained with the same
profile of voters (n#*), but where m, which indicates the choice of voting vectors to
tally the ballots, varies. Because an open set about any point on the line of
complete indifference meets all ranking regions, the conclusion follows. (It is
easy to show that there are rational choices of m with this property. For details,
see [4,5]1.)

Thus, the proof is completed if we can determine certain properties about the
Jacobian of F at (n®x,m#), There are two cases to consider, and they are based upon
the sum of the components of each voting vector. Either at least two of these sums
differ, or they are all the same.

Assume that at least two of the sums differ. For each P(A), eliminate the
dependency of the components (msp(a)} by setting ml'(a)=l‘giQJ'(A). Then, the
rank of the Jacobian of F is determined by the maximum num;er of independent vectors
in subsets from
4.4 WrrcarWircarl,
where P(A) ranges over all N! permutations of A and where j=2,..,5. There is a
choice of j where the sum of the components of W; doesn’t equal the sum of the
components of W;, say j=2. Moreover, without loss of generality, we can assume
that the sum of the compcnents of Wz is targer than the sum of the components of
Wi. What we show is that the set of vectors
4.5 {WarcarWircard

spans RN, This will complete the proof.

It follows immediately thatp&&g:p(ny is a nonzero scalar multiple of En
)

where the scalar is (N-1)! times the sum of the components of Ws. Thus,
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'Z(gum-g..m) is a positive scalar multiple of En, so this vector is in
;:; space spanned by the vectors in Eq. 4.5. The simplex Si(N) has En as a normal
vector, so the theorem is proved if the simplex is spanned by the vectors in Eq.
4.5,

Each vector in Eq. 4.5 can be viewed as being a permutation of the components
of WWa-UW;. Let vector Y be the permutation of W which has the largest value in
the first component, the second largest in the second component, etc. (For example,
if Ws=(5,4,2,1) and W,=(5,1,1,0>, then W=(0,3,1,1) and Y=(3,1,1,00.) The set of
all possible permutations of Y,

4.6 VU (ard,
agrees with the set in Eq. 4.5. Because '' = -~ z multiple of En, Y can be

viewed as being a voting vector and the vectors in Eq. 4.6 can be viewed as being
the various ways to tally ballots. That this set spans Si(N) follows immediately

from [(7,4].

Suppose the sums of the components for each of the voting vectors are the same.
We show that the Jacobian of F has rank N-1 and its image spans a simplex Si(N).
This requires the following adjustment in the proof. First, an open set about m* is

mapped to an open set about F((n#,m#%)) in the simplex, However, such an open set

must meet all ranking regions., (The simplex has codimension one, and its normal

direction is given by the line of complete indifference.), Thus, all we need to
show is that the vectors in 4.6 span the subspace orthogonal to En. This is the

same argument given above. This completes the proof.

The proofs of Theorems 3 and 4 depend heavily upon the proofs and results in

[6]. Essentially, the idea of the proofs is to use special ways in which the voters

choose their voting vectors to obtain a simple voting systems. Then, modifications

of the type used in the proof of Theorem 1 and results from [4] lead to a condition

of the type where F((n¥,m#¥)) is on the line of complete indifference, The Jacobian
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condition follows from the analysis given in the proofs of [é].

Proof of Theorem 4. The following is a consequence of Theorems S and 7 in [é].

Lemma. Suppose there are two simple voting vectors, V, and Vz which,

a) form a linearly independent set along with Ex and

b) a Borda vector isn’t in the span of these three vectors.
Rank the pairs of candidates in any way and rank the N candidates in any two ways.
Then, there exist profiles of voters for which when the same voters consider each
pair of candidates, a majority prefer the designated one. UWhen these same voters
rank the N candidates by the simple voting system V;, the outcome is the jTV
ranking of the candidates, j=1,2.

According to the statement of the theorem, the range space containing the tally

of the various subsets of candidates is given by S=(RN)x(RNM)x(R2)? where
P=N(N-1)/2. The first component space is the tally of the simple voting system, the
second is the tally of the general voting system, and the last p components contain

the tally of the binary comparisons. The domain is T. Thus, the obvious summations

define the mapping

The proof follows much as in that of Theorem 1. We show the existence of a set
of profiles n" for which the rankings of the simple system and the rankings of the
pairs of candidates are as specified. Moreover, n" is such that there is an
interior point, m", in the product of the simplices which designate how the voters
select their tallying vectors so that F((n*,m")) is complete indifference for the
general system. Then, the above argument concerning the Jacobian of F#, is
repeated. The main difference is that it is evaluated at (n",m") rather than at
(n#*,m#),

First we find m". To do this, we choose the msp(a1’s to depend on j but not
on P(R). This defines a convex combination of the voting vectors which are

available to tally the rankings. In turn, this defines a new voting vector; indeed,
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it defines a continuum of them where the dimension of the continuum depends upon the
number of linearly independent vectors in the general voting srstem. Since we have
a continuum of them available, and since at least two vectors in this system define
a three dimensional space with En, we can choose the mj;’s to obtain a voting

vector Uy which, along with Wn, satisfies the condition of the lemma. To use

the lemma, choose the ranking corresponding to Un to be complete indifference, the
ranking corresponding to Wn to be as specified in the theorem, and the pairwise

rankings as specified in the theorem. The conclusion then follows from the above

and the lemma.

Proof of Theorem 3. 1In this setting, the domain and the image of F changes
drastically from that given above. Here we have 2N-(N+1) different subsets with
at least two candidates. Thus, the range space is the cartesian product over all of
these sets of Euclidean spaces of the same dimension as the number of candidates in
the subset. The domain also is increased significantly. For each subset, there is
a general voting method. Thus, for each ranking of the candidates in each subset,
the domain is increased by another product of a simplex reflecting the various
choices the voters have to tally their ballots, Let the new domain, which is a much
larger product space of simplices, be given by T’, and let the larger image space be
given by R’., The tally of the ballots still is given by summations of the type

found in Eq. 4.2, They define a mapping

As in the statement of the theorem, designate for each pair of candidates which
one is to be preferred by a majority of the voters. UWe now appeal to Theorem 6 in
[6]. A consequence of this result is that for "most* simple voting systems, there
exist profiles of voters so that for each of the pairs of the candidates, a majority
of them favor the designated candidate. Yet, their rankings of all subsets with

three or more candidates is complete indifference. "Most" replaces the linear
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independence condition in the lemma, and it means that the voting vectors for

various subsets don’t make a certain determinant vanish. For our purposes it
suffices to note that for this condition is satisfied for any voting vector which is
*plurality like". To use this theorem, we find a special case of the general voting
system which is a simple voting system satisfying the above.

For each subset of more than three candidates, choose myrca)=ms. This,
then, defines a convex combination of the voting vectors which are available to
tally the rankings. Now, choose the m;’s so that S:m:Q: defines a vector of
the type in Definition 3. Such a vector doesn’t make the determinant condition
vanish. If not all of the my’s are positive, then they can be perturbed so that
all are positive and the sum is still a vector which satisfies the non-vanishing of
the determinant. (This is because the determinant condition is an open condition.)

Thus, for each subset, a choice of the {m;} can be made so that the resulting

vectors over all subsets do not satisfy the vanishing determinant condition.

Let m” cérrespond to these choices of {mjpca)) over all subsets. Then we
have from Theorem é in [4]1 that there exist profiles of voters, n’, so that the
various components of F((n’ ,m’)) are on the line of complete indifference, vet the
ranking of the pairs is as designated. What remains to be shown is that the rank of
the Jacobian of F’, where n is held fixed, is of the rank of the the dimension of
the range. But, with the modifications of the type given in the proof of Theorem 3,
this follows from the proof of Theorem & in [é]. Indeed, the proof of Theorem é is

based upon this independence condition holding.

Proof of Corollary 3.1. Theorem 4 in [4] asserts that if the voting vector
isn‘t a Borda Vector, then for any rankings of the pairs of alternatives and for any
ranking of the N alternatives, there is a profile of voters which will realize all
of these outcomes simultaneously. In particular, the rankings of the pairs can be

chosen to define a Condorcet winner, and the ranking of the N candidates can be
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chosen to define the complete indifference ranking. The hypothesis of the corollary
asserts that there is at least one voting vector in the general methods which isn’t
a Borda Vector. Thus, m’ can be chosen in a manner similar to the above so that the

resulting voting vector isn’t Borda. Then, the same type of proof goes through.

Proof of Theorem 5 for hypothesis of Theorem 1, The basic ideas are
demonstrated for Theorem 1; since the ideas extend immediately for the other
theorems, we only prove this case.

To prove the theorem, all that is necessary is to show that there is an open
set U about n*¥ in Si(N) (the space of voters’ profiles) so that if n’ is in U, then
there is an interior point m” in (Si(s))N such that F((n’“,m’)») is on the line of
complete indifference. To do this, we give a geometric interpretation of Eq. 4.2.

For each ranking of the candidates, P(A), the bracketed term in the double
summation Eq. 4.2 defines the convex hull of the vectors (Wspcar). Thus, this
means that the double summation yields the convex hull of the N! convex hulls. The
fact that the image of F((n*,m)) contains an open set means that this particular
convex combination of the convex hulls contains a open set around the point
F((n*,m%)) on the line of complete indifference. It now follows from continuity

considerations that the conclusion holds.

We conclude with an observation which indicates that there is a large
likelihood of a stochastic effect for a general voting system. According to the
above proof, a measure of this is the abundance of the points (n’,m’) such that
F((n’,m’)) is on the line of complete indifference. But, according to the above
independence argument, it follows from the implicit function theorem that the
inverse image of the complete indifference line in T is an affine space of
codimension N-1., To obtain some feeling for the size of this space, consider the

setting where N=4 and where we are using an approval voting system (s=3). Then, the
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base points define a 58 dimensional linear subspace in a 41 dimensional space.

Incidently, these large dimensions already for only 4 candidates indicates 1) why
standard methods won’t suffice in the analysis of such voting schemes, 2) why we
used a convexity argument to prove Theorem S5 instead of an implicit function
argument (which would have involved a massive linear independence argument), 3) why
the stochastic effect occurs (F is trying to force the input from a 41 dimensional
space into a 3 dimensional space, so we must expect such results), 4) why simple
voting systems don‘t have as adverse effects (the subspace is 20 dimensional in a 23
dimensional space), and 5) that there are many examples other than those suggested
by the proof of the theorems. (Because the 58 dimensional space is affine, it must
intersect the boundaries of T. The boundaries correspond to examples of voters’

profiles where there are no voters which have certain rankings of the N candidates.)
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