An Accelerated Method for Minimizing a Convex Function of Two Variables

Paizerova, F.A.

IIASA Collaborative Paper April 1985

Paizerova, F.A. (1985) An Accelerated Method for Minimizing a Convex Function of Two Variables. IIASA Collaborative Paper. Copyright © April 1985 by the author(s). http://pure.iiasa.ac.at/2731/ All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

AN ACCELERATED METHOD FOR MINIMIZING A CONVEX FUNCTION OF TWO VARIABLES

F.A. PAIZEROVA

April 1985
CP-85-17

Collaborative Papers report work which has not been performed solely at the International Institute for Applied Systems Analysis and which has received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria

PREFACE

In this paper the author considers the problem of minimizing a convex function of two variables without computing the derivatives or (in the nondifferentiable case) the subgradients of the function, and suggests two algorithms for doing this. Such algorithms could form an integral part of new methods for minimizing a convex function of many variables based on the solution of a two-dimensional minimization problem at each step (rather than on line-searches, as in most existing algorithms.)

This is a contribution to research on nonsmooth optimization currently underway in System and Decision Sciences Program Core.

A.B. KURZHANSKI Chairman System and Decision Sciences Program


```
AN ACCELERATED METHOD FOR MINIMIZING
A CONVEX FUNCTION OF TWO VARIABLES
F.A. Paizerova
```

A method for minimizing a convex continuously differentiable function of two variables was proposed in [1], where it was shown that its rate of convergence is geometric with coefficient 0.9543. We shall describe two modifications of this method with improved convergence rates.

Let $Z \in E_{2}$, a function f be convex and continuously differentiable on E_{2}. Assume that we know that a minimum point of f is contained in a convex quadrilateral $A B C D$. The area of this quadrilateral is called the uncertainty area. Let R be the point of intersection of the diagonals of the quadrilateral. Let us choose four points M, N, Q, P on intervals $A C$ and $B D$ which are all at the same distance ε from R (where $\varepsilon>0$ is fixedd.

Now let us compute the function f at these points and at the point R (see Figure 1).

Case 1

$$
\begin{array}{ll}
f(Q)>f(R), & f(P)>f(R) \\
f(M)>f(R), & f(N)>f(R) \tag{2}
\end{array}
$$

In this case R is (within ε-accuracy) a minimum point of f on $A C$ and $B D$, and then by the properties of continuously differentiable functions the point R is a minimum point of f on $A B C D$ (to within the given accuracy ε) and the process terminates. Case 2.. If inequality (1) is satisfied but inequality (2) is not, then R is a minimum point of f on $B D$. If $f(M)<f(R)$ then

Fig. 1

Fig. 2

$$
f(Z)>f(R) \quad \forall Z \in B D C
$$

and therefore a minimum point of f lies within the triangle ABD. If $f(N)<f(R)$ then

$$
f(z)>f(R) \quad \forall z \in A B D
$$

and a minimum point of f lies within the triangle BDC.
Case 3. If inequality (2) is satisfied but (1) is not then we argue analogously.

These three cases were discussed in [1] and are treated in the same way here. The difference between our method and that of [1] is demonstrated in the following case 4. Case 4. Suppose that both inequalities (1) and (2) are satisfied. Then there exist two points (say, M and Q) such that

$$
f(M)<f(R), f(Q)<f(R)
$$

It follows from the convexity of f that

$$
f(Z)>f(R) \quad \forall Z \in D R C
$$

Let us draw the line VW which passes through the point R and is parallel to the line $D C$. On the interval $V W$ let us choose two points G and H at a distance ε from R. If $f(H) \geq f(R)$ and
$f(G) \geq f(R)$ then R is (within ε-accuracy) a minimum point of the function $f(Z)$ on the line VW (see [2]) and since $f(M)<f(R)$ then

$$
f(Z)>f(R) \quad \forall Z \in V W C D
$$

This case was also discussed in [1]. The case left to be discussed is the one where either $f(H)<f(R)$ or $f(G)<f(R)$. At this point our method diverges from the method described in [1]. We will suggest two modifications of this method. For the sake of argument assume that $f(H)<f(R)$.

1. First modification. It is assumed that

$$
f(H)<f(R)
$$

I'nen (see Figure 1)

$$
f(Z)>f(R) \quad \forall Z \in V R C D
$$

Moreover,

$$
f(Z)>f(R) \quad \forall Z \in V C D
$$

Let us draw the line FF_{1} which passes through the point R and is parallel to the line VC. On the interval FFq let us choose two points T and S at a distance ε from R. If

$$
f(T) \geq f(R) \text { and } f(S) \geq f(R)
$$

then R is (within ε-accuracy) a minimum point of f on $F F_{1}$ and

$$
f(Z)>f(R) \quad \forall Z \in F F_{1} C D
$$

If

$$
f(S)<f(R) \text { then }
$$

$$
f(Z)>f(R) \quad \forall Z \in F R C D
$$

and furthermore,

$$
f(Z)>f(R) \quad \forall Z \in F C D
$$

As a result we get the quadrilateral $A B C F$ which contains a minimum point of the function f. Let us compute the ratio of the areas of the quadrilaterals ABCF and ABCD.

Assume that

$$
\frac{R D}{B R}=\alpha, \frac{A R}{R C} \geq \alpha, \frac{R C}{A R}=\alpha_{1} \geq \alpha
$$

Let h be the height of the triangle $A B C$. Then

$$
\begin{aligned}
& S_{A B C D}=\frac{1}{2}(1+\alpha) A C \cdot h ; \quad S_{A C D}=\frac{1}{2} \alpha A C \cdot h, \\
& R C=\frac{\alpha_{1}}{\left(1+\alpha_{1}\right)} A C \quad .
\end{aligned}
$$

Here $S_{A B C}$ is the area of the triangle $A B C$. We have

$$
S_{V C D}=S_{D R C}=\frac{1}{2} \alpha \cdot h \cdot R C=\frac{\alpha}{2} \frac{\alpha_{1}}{\left(1+\alpha_{1}\right)} A C \cdot h
$$

Let us define h_{2}. Since

$$
\begin{aligned}
S_{A V C} & =\frac{1}{2} A C \cdot h_{2} \text { and } S_{A V C}=S_{A C D}-S_{V C D}= \\
& =\frac{1}{2} \alpha \cdot A C \cdot h-\frac{\alpha \cdot \alpha_{1}}{2\left(1+\alpha_{1}\right)} A C \cdot h=\frac{\alpha}{2\left(1+\alpha_{1}\right)} A C \cdot h
\end{aligned}
$$

we have

$$
h_{2}=\frac{S_{A V C}}{\frac{1}{2} A C}=\frac{\alpha}{1+\alpha_{1}} \quad h
$$

This leads to

$$
\begin{aligned}
S_{F V C} & =S_{V R C}=\frac{1}{2} R C \cdot h_{2}=\frac{\alpha \cdot \alpha_{1}}{2\left(1+\alpha_{1}\right)^{2}} A C \cdot h \\
S_{F C D} & =S_{V C D}+S_{F V C}=\frac{\alpha \cdot \alpha_{1}}{2\left(1+\alpha_{1}\right)} A C \cdot h+\frac{\alpha \cdot \alpha_{1}}{2\left(1+\alpha_{1}\right)^{2}} A C \cdot h= \\
& =\frac{\alpha \cdot \alpha_{1}\left(2+\alpha_{1}\right)}{2\left(1+\alpha_{1}\right)^{2}}=A C \cdot h
\end{aligned}
$$

Hence, the ratio of the area of the quadrilateral $A B C F$ to the area of the quadrilateral $A B C D$ is

$$
\begin{equation*}
1-\frac{\alpha \cdot \alpha_{1}\left(2+\alpha_{1}\right)}{(1+\alpha)\left(1+\alpha_{1}\right)^{2}} \tag{3}
\end{equation*}
$$

Since

$$
\begin{align*}
& \frac{\alpha_{1}\left(2+\alpha_{1}\right)}{\left(1+\alpha_{1}\right)^{2}} \geq \frac{\alpha(2+\alpha)}{(1+\alpha)^{2}} \text { if } \alpha_{1} \geq \alpha \text { this result implies } \\
& 1-\frac{\alpha \cdot \alpha_{1}\left(2+\alpha_{1}\right)}{(1+\alpha)\left(1+\alpha_{1}\right)^{2}} \leq 1-\frac{\alpha^{2}(2+\alpha)}{(1+\alpha)^{3}} \tag{4}
\end{align*}
$$

If we decrease the uncertainty area as shown in Figure 2, similar arguments lead us again to (4).

If at some step it turns out that $\frac{R D}{B R}=\alpha \leq \alpha_{0}$ (where α_{0} will be defined later) then we draw a line passing through D and parallel to $A C$, and then extend $A B$ and $B D$ until they intersect this line (see Figure 3). Instead of the quadrilateral $A B C D$ let us take the triangle $A_{1} B C_{1}$. In the case of a quadrilateral we had four lines passing through R. In the case of a triangle we take the point of intersection of its medians (the point R_{1}) instead of R.

Fig. 3

Fig. 4

If a minimum point of f is not contained in the quadrilateral KBFR_{1} (Fig. 3) then we draw the line VW passing through R_{1} and parallel to the line $A_{1} C_{1}$. On the interval VW let us choose two points G and H at a distance ε from R_{1}. If

$$
f(G) \geq f\left(R_{1}\right) \text { and } f(H) \geq f\left(R_{1}\right)
$$

then R_{1} is (within ε-accuracy) a minimum point of f on $V W$ and

$$
f(Z)>f\left(R_{1}\right) \quad \forall Z \in V B W
$$

Consider the case $f(H)<f\left(R_{1}\right)$. Then we conclude that

$$
f(Z)>f\left(R_{1}\right) \quad \forall Z \in V B F R_{1}
$$

and furthermore,

$$
f(Z)>f\left(R_{1}\right) \quad \forall Z \in V B F
$$

Thus, we have a new quadrilateral $A_{1} V F C_{1}$ which contains a minimum point.

Let us define the ratio of the area of the quadrilateral $A_{1} \mathrm{VFC}_{1}$ and the quadrilateral ABCD . Let h be the height of the triangle $A B C$. We have

$$
\begin{aligned}
& S_{\mathrm{ABCD}}=\frac{1}{2} \mathrm{~A}_{1} C_{1} \cdot h, \quad S_{A_{1} B C_{1}}=\frac{1}{2}(1+\alpha) \mathrm{A}_{1} C_{1} \cdot h \\
& S_{\mathrm{VBF}}=\frac{1}{6}(1+\alpha) \mathrm{A}_{1} C_{1} \cdot h
\end{aligned}
$$

Hence,

$$
S_{A_{1}} V F C_{1}=\frac{1}{3}(1+\alpha) \quad A_{1} C_{1} \cdot h
$$

and

$$
\begin{equation*}
\frac{S_{A_{1} V F C_{1}}}{S_{A B C D}}=\frac{2}{3}(1-\alpha) \tag{5}
\end{equation*}
$$

Let us consider the case where the triangle $A_{1} R_{1} C_{1}$ (see Fig. 4) does not contain a minimum point of f. Let us draw the line VW passing through the point R_{1} and parallel to the line $A_{1} C_{1}$, and argue as above. Let $V B C_{1}$ be a triangle which contains a minimum point of f. We get

$$
S_{A_{1}} V C_{1}=\frac{1}{6}(1+\alpha) \quad A_{1} C_{1} h
$$

and the ratio of the area of the new triangle $V B C_{1}$ and the quadrilateral $A B C D$ is $\frac{2}{3}(1+\alpha)$, i.e. (5) holds again.

If $\alpha \leq \alpha_{0} \sim 0.335$, then we must construct a triangle since it guarantees a greater decrease in the uncertainty area. The quantity α_{0} is then a solution of the equation

$$
1-\frac{\alpha^{2}(2+\alpha)}{(1+\alpha)^{3}}=\frac{2}{3}(1+\alpha)
$$

The convergence of this modification of the method from [1] is geometric with the rate

$$
q=\frac{2}{3}\left(1+\alpha_{0}\right) \sim 0.89
$$

Fig. 5

Fig. 6
2. Second modification. Let us again (see Fig. 5) assume that $f(M)<f(R)$

Then

$$
f(Z)>f(R) \quad \forall Z \in O R C D \quad
$$

Furthermore,

$$
f(Z)>f(R) \quad \forall Z \in V C D \quad .
$$

Let us draw the line FF_{1} passing through R and parallel to the line VC. On the interval FF_{f} let us choose two points T and S at a distance ε from R.

If

$$
f(T) \geq f(R) \text { and } f(S) \geq f(R)
$$

then R is (within ε-accuracy) a minimum point of f on F_{1} and

$$
f(Z)>f(R) \quad \forall Z \in F F_{1} C D \quad .
$$

Let

$$
f(S)<f(R) \text {. }
$$

Then

$$
f(Z)>f(R) \quad \forall Z \in F R C D
$$

and furthermore

$$
f(Z)>f(R) \quad \forall Z \in F C D \quad \text {. }
$$

Now let us again draw the line k passing through R and parallel to $F C$ and proceed as above.

As a result we get the new quadrilateral ABCK which contains a minimum point of f. Now let us compute the ratio of the areas of the new quadrilateral $A B C K$ and the quadrilateral ABCD.

Assume that

$$
\frac{R D}{B R}=\alpha, \frac{A R}{R C} \geq \alpha, \frac{R C}{A R}=\alpha_{1} \geq \alpha
$$

Let h be the height of the triangle $A B C$. It follows from the computations above that

$$
\begin{aligned}
& S_{A B C D}=\frac{1}{2}(1+\alpha) A C \cdot h, S_{A C D}=\frac{1}{2} \alpha \cdot A C \cdot h \\
& R C=\frac{\alpha_{1}}{1+\alpha_{1}} A C, \quad S_{F C D}=\frac{\alpha \cdot \alpha_{1}\left(2+\alpha_{1}\right)}{2\left(1+\alpha_{1}\right)^{2}} A C \cdot h
\end{aligned}
$$

Let us find h_{3}. Since $S_{A F C}=\frac{1}{2} A C \cdot h_{3}$ and

$$
\begin{aligned}
S_{A F C} & =S_{A C D}-S_{F C D}=\frac{1}{2} \alpha \cdot A C \cdot h-\frac{\alpha \cdot \alpha_{1}\left(2+\alpha_{1}\right)}{2\left(1+\alpha_{1}\right)^{2}} A C \cdot h= \\
& =\frac{1}{2} \alpha \cdot A C \cdot h\left(1-\frac{\alpha_{1}\left(2+\alpha_{1}\right)}{\left(1+\alpha_{1}\right)^{2}}\right)=\frac{\alpha}{2\left(1+\alpha_{1}\right)^{2}} A C \cdot h
\end{aligned}
$$

we have

$$
\mathrm{h}_{3}=\frac{\alpha}{\left(1+\alpha_{1}\right)^{2}} A C \cdot h, S_{F K C}=S_{F R C}=\frac{1}{2} R C \cdot h_{3}=\frac{\alpha \cdot \alpha_{1}}{2\left(1+\alpha_{1}\right)^{3}} A C \cdot h
$$

Therefore

$$
\begin{aligned}
S_{K C D} & =S_{F C D}+S_{F K C}=\frac{\alpha \cdot \alpha_{1}\left(1+\alpha_{1}\right)}{2\left(1+\alpha_{1}\right)^{2}} A C \cdot h+ \\
& +\frac{\alpha \cdot \alpha_{1}}{2\left(1+\alpha_{1}\right)^{3}} A C \cdot h=\frac{\alpha \cdot \alpha_{1}}{2\left(1+\alpha_{1}\right)^{2}} A C \cdot h\left(2+\alpha_{1}+\frac{1}{1+\alpha_{1}}\right)= \\
& =\frac{\alpha \cdot \alpha_{1}\left(\alpha_{1}^{2}+3 \alpha_{1}+3\right)}{2\left(1+\alpha_{1}\right)^{3}} A C \cdot h
\end{aligned}
$$

The ratio of the areas of the new quadrilateral $A B C R$ and the quadrilateral ABCD is

$$
\begin{equation*}
1-\frac{\alpha \alpha_{1}\left(\alpha_{1}^{2}+3 \alpha_{1}+3\right)}{(1+\alpha)\left(1+\alpha_{1}\right)^{3}} \tag{6}
\end{equation*}
$$

Since

$$
\frac{\alpha_{1}\left(\alpha_{1}^{2}+3 \alpha_{1}+3\right)}{\left(1+\alpha_{1}\right)^{3}} \geq \frac{\alpha\left(\alpha^{2}+3 \alpha+3\right)}{(1+\alpha)^{3}} \quad \forall \alpha_{1} \geq \alpha
$$

it follows from (6) that

$$
\begin{equation*}
1-\frac{\alpha \alpha_{1}\left(\alpha_{1}^{2}+3 \alpha_{1}+3\right)}{(1+\alpha)\left(1+\alpha_{1}\right)^{3}} \leq 1-\frac{\alpha^{2}\left(\alpha^{2}+3 \alpha+3\right)}{(1+\alpha)^{4}} \tag{7}
\end{equation*}
$$

If we decrease the uncertainty area as shown in Fig. 6, we again obtain the same relation (7).

Let (see Fig. 7)

$$
f(H)<f(R)
$$

Then

$$
f(Z)>f(R) \quad \forall Z \in V R C D
$$

and furthermore

$$
f(Z)>f(R) \quad \forall Z \in V C D
$$

Let us draw the line $F F_{1}$ passing through the point R and parallel to the line VC. On the interval FF_{1} let us choose two points T and S at a distance ε from R. If

$$
f(T) \geq f(R) \text { and } f(S) \geq f(R)
$$

then R is (within ε-accuracy) a minimum point of f on F_{1} and

$$
f(Z)>f(R) \quad \forall Z \in F F_{1} C D \quad .
$$

Let

$$
f(T)<f(R) .
$$

Fig. 7

Fig. 8

Then

$$
f(Z)>f(R) \quad \forall Z \in V R F_{1} C D
$$

and furthermore

$$
f(Z)>f(R)
$$

$\forall Z \in V F, C D \quad$.

Let us again draw the line $K L$ passing through R and parallel to the line VF_{1} and argue as above. As a result we get a new quadrilateral $A B F_{1} K$ which contains a ninimur point of f. Find the ratio of the areas of the quadrilaterals $A B F_{1} K$ and $A B C D$. Assume that

$$
\frac{R D}{B R}=\alpha, \frac{R D}{A R}=\alpha_{1}=\alpha, \frac{A R}{R C} \geq \alpha
$$

The triangles URC and $A B R$ are similar since

$$
\frac{R D}{B R}=\frac{R C}{A R}=\alpha, \angle D R C=\angle A R B \quad .
$$

We have $\frac{D C}{A B}=\alpha$ and $D C$ is parallel to $A B$. The line $V W$ is parallel to the line $D C$ by construction. Thus, VW॥AB. The triangles $A B D$ and VRD are also similar since the
corresponding angles are equal. Therefore

$$
\frac{B D}{R D}=\frac{A B}{V R}
$$

Analogously the fact that the triangles $B C D$ and $B W R$ are similar implies that

$$
\frac{B D}{R B}=\frac{D C}{W R}
$$

Therefore $V R=W R$ and $L A R V=L C R W$. We have $V V_{1}=W W_{1}$. The line FF_{1} is parallel to the line $V C$ by construction. Since the triangles VWC and RWF_{1} are similar, we have

$$
\frac{W W}{W R}=\frac{W C}{W F_{1}}=2
$$

Hence,

$$
W F_{1}=F_{1} C, F_{1} F_{2}=\frac{1}{2} W W_{1}=\frac{1}{2} V V_{1}
$$

We have

$$
\begin{aligned}
S_{K F_{1} \mathrm{CD}} & =s_{\mathrm{VCD}}+s_{V F_{1} \mathrm{C}}+s_{\mathrm{KF}_{1} \mathrm{~V}}=s_{\mathrm{VCD}}+s_{\mathrm{VF}_{1} \mathrm{C}}+s_{\mathrm{VRF}}^{1} \\
& = \\
& =s_{\mathrm{VCD}}+s_{\mathrm{VRC}}+s_{\mathrm{RF}_{1} \mathrm{C}}
\end{aligned}
$$

From the computations above it follows that

$$
\begin{aligned}
& \mathrm{RC}=\frac{\alpha_{1}}{1+\alpha_{1}} \mathrm{AC}, \mathrm{VV} \mathrm{~V}_{1} \equiv \mathrm{~h}_{2}=\frac{\alpha}{1+\alpha_{1}} h, S_{\mathrm{VCD}}=\frac{\alpha \alpha_{1}}{2\left(1+\alpha_{1}\right)} \mathrm{AC} \cdot \mathrm{~h}, \\
& S_{\mathrm{VRC}}=\frac{\alpha \alpha_{1}}{2\left(1+\alpha_{1}\right)^{2}} A C \cdot h, S_{\mathrm{ABCD}}=\frac{1}{2}(1+\alpha) \mathrm{AC} \cdot \mathrm{~h} .
\end{aligned}
$$

Thus,

$$
S_{R F_{1} C}=\frac{1}{2} \mathrm{RC} \cdot \mathrm{FF}_{1}=\frac{\alpha \alpha_{1}}{4\left(1+\alpha_{1}\right)^{2}} \mathrm{AC} \cdot \mathrm{~h}
$$

Then

$$
S_{K F_{1} C D}=\frac{\alpha \alpha_{1}\left(2 \alpha_{1}+5\right)}{4\left(1+\alpha_{1}\right)^{2}}=A C \cdot h
$$

The ratio of the areas of the new quadrilateral $A B F_{1} K$ and the quadrilateral $A B C D$ is

$$
\begin{equation*}
1-\frac{\alpha \alpha_{1}\left(2 \alpha_{1}+5\right)}{2\left(1+\alpha_{1}\right)^{2}(1+\alpha)}=1-\frac{\alpha^{2}(2 \alpha+5)}{2(1+\alpha)^{3}} \tag{8}
\end{equation*}
$$

(since $\alpha_{1}=\alpha$).
If we decrease the uncertainty area as shown in Fig. 8
then we again have (8). The estimate (8) is worse than (7).
In the case

$$
\frac{R D}{A R}=\alpha_{1}>\alpha
$$

we always have an estimate better than (8). If at some step

$$
\frac{R D}{B R}=\alpha \leq \alpha_{0}
$$

then we enlarge the quadrilateral to a triangle and instead of the quaarilateral $A B C D$ we take the triangle $A_{1} B C_{1}$ (Fig. 9).

Fig. 9

Fig. 10

Let R_{1} be the point of intersection of the medians of triangle $A_{1} B C_{1}$. Let there be no minimum point of f in the quadrilateral $K_{B F R}^{1}$. Then let us draw the line $V W$ passing through the point R_{1} and parallel to the line $A_{1} C_{1}$. On the interval VW choose two points G and H at a distance ε from R_{1}. If

$$
f(G) \geq f\left(R_{1}\right) \text { and } f(H) \geq f\left(R_{1}\right)
$$

then R_{1} is (within ε-accuracy) a minimum point of f on $V W$ and

$$
f(Z)>f\left(R_{1}\right) \quad \forall Z \in V B W
$$

In the case $f(H)<f\left(R_{1}\right)$ we have

$$
f(z)>f\left(R_{1}\right) \quad \forall z \in V B F R_{1}
$$

and moreover

$$
f(z)>f\left(R_{1}\right) \quad \forall z \in V B F
$$

Let us draw the line $V_{i} F_{1}$ passing through the point R_{1} and parallel to the line VF, and argue analogously. Let a quadrilateral $\mathrm{A}_{1} \mathrm{VF}_{1} \mathrm{C}_{1}$ be obtained which contains a minimum point of f . Let h be the height of the triangle $A B C$. We have

$$
\begin{aligned}
& S_{\mathrm{ABCD}}=\frac{1}{2} \mathrm{~A}_{1} C_{1} \cdot h, S_{\mathrm{A}_{1} B C_{1}}=\frac{1}{2}(1+\alpha) \mathrm{A}_{1} C_{1} \cdot h, \\
& S_{\mathrm{VBF}}=\frac{1}{6}(1+\alpha) A_{1} C_{1} \cdot h, S_{\mathrm{VFF}_{1}}=S_{\mathrm{VFR}_{1}}=\frac{1}{36}(1+\alpha) A_{1} C_{1} \cdot h, \\
& S_{\mathrm{VBF}_{1}}=\frac{1}{37}(1+\alpha) A_{1} C_{1} \cdot h \quad .
\end{aligned}
$$

The ratio of the new quadrilateral $\mathrm{A}_{1} \mathrm{VF}_{1} \mathrm{C}_{1}$ and the quadrilateral $A B C D$ is

$$
\begin{equation*}
\frac{11}{18}(1+\alpha) \tag{9}
\end{equation*}
$$

If we decrease the triangle as shown in Fig. 10 , then the ratio of the areas of the new triangle $F B C_{1}$ and the quadrila-
teral $A B C D$ is

$$
\begin{equation*}
\frac{5}{9}(1+\alpha) \tag{10}
\end{equation*}
$$

The estimate (9) is worse than the estimate (10).
If

$$
\alpha \leq \alpha_{0} \approx 0.3787
$$

then it is necessary to construct a triangle. The quantity α_{0} is a solution of the equation

$$
1-\frac{\alpha^{2}(2 \alpha+5)}{2(1+\alpha)^{3}}=\frac{11}{18}(1+\alpha)
$$

This modification of the method displays geometric convergence with a rate $q \approx 0.8425$.

REFERENCES

1. V.F. Demyanov. "On minimizing a convex function on a plane". Zh. Vychisl. Mat. Mat. Fiz. 16(1) (1976) 247-251.
2. D.J. Wilde. Optimum Seeking Methods. Prentice-Hall Intern. Series in the Physical and Chemical Engineering Sciences, Prentice-Hall, Englewood Cliffs, N.J., 1964.
