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PREFACE

In this paper the author considers the problem of minimiz-
ing a convex function of two variables without computing the
derivatives or (in the nondifferentiable case) the subgradients
of the function, and suggests two algorithms for doing this.
Such algorithms could form an integral part of new methods for
minimizing a convex function of many variables based on the
solution of a two-dimensional minimization problem at each step

(rather than on line-searches, as in most existing algorithms.)

This is a contribution to research on nonsmooth optimization

currently underway in System and Decision Sciences Program Core.

A.B. KURZHANSKI
Chairman

System and Decision
Sciences Program
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AN ACCELERATED METHOD FOR MINIMIZING
A CONVEX FUNCTION OF TWO VARIABLES

F.A. Paizerova

A method for minimizing a convex continuously different-
iable function of_two variables was proposed in [1], where it
was shown that its rate of convergence is geometric with
coefficient 0.9543. We shall describe two modifications of
this method with improved convergence rates.

Let ZeEEz, a function f be convex and continuously differ-
entiable on EZ' Assume that we know that a minimum point of £
is contained in a convex quadrilateral ABCD. The area of this
quadrilateral is called the uncertainty area. Let R be the
point of intersection of the diagonals of the gquadrilateral.
Let us choose four points M,N,Q,P on intervals AC and BD which
are all at the same distance ¢ from R (where € > 0 is fixed).

Now let us compute the function £ at these points and at
the point R (see Figure 1).
Case 1

£(Q) > £(R), £(pP) > £(R) (1)

£(Ml > £(R), f(N) > £(R) (2)
In this case R is (within e-accuracy) a minimum point of £ on AC
and BD, and then by the properties of continuously different-
iable functions the point R is a minimum point of £ on ABCD (to

within the given accuracy ¢) and the process terminates.
Case 2.. If inequality (1) is satisfied but inequality (2) is

not, then R is a minimum point of £ on BD. If £(M) < £(R) then



Fig. 1

£(z) > £(R) ¥yZe€BDC

and therefore a minimum point of £ lies within the triangle ABD.
If £(N) < £(R) then

£(2) > £(R) ¥YZeE€ABD
and a minimum point of f lies within the triangle BDC.
Case 3. If inequality (2) is satisfied but (1) is not then we
argue analogously.

These three cases were discussed in [1] and are treated in
the same way here. The difference between our method and that
of [1] is demonstrated in the following case 4.

Case 4. Suppose that both inequalities (1) and (2) are satis-
fied. Then there exist two points (say, M and Q) such that

£(M) < £(R), £(Q) < £(R)

It follows from the convexity of f that
£(2) > f£(R) ¥Z€DRC
Let us draw the line VW which passes through the point R and is

parallel to the line DC. On the interval VW let us choose two
points G and H at a distance ¢ from R. If f£(H) > £(R) and




£(G) > £(R) then R is (within e-accuracy) a minimum point of
the function £(2) on the line VW (see [2]) and since £(M) < f(R)
then ‘

£(z2) > £(R) ¥ZeVWCD

This case was also discussed in [1]. The case left to be dis-
cussed is the one where either f£(H) < £(R) or £(G) < f(R)}

At this point our method diverges from the method described in
[1]. We will suggest two modifications of this method. For
the sake of argument assume that f£(H) < £ (R).

1. PFirst modificétion. It is assumed that

£f(H) < £(R)
Then (see Figure 1)

£(z) > £(R) ¥Z€EVRCD
Moreover,

£(2) > £(R) ¥Ze€VCD
Let us draw the line FF1 which passes through the point R and
is parallel to the line VC. On the interval FF, let us choose
two points T and S at a distance £ from R.
If

£(T) > £(R) and £(S) > £(R)

then R is (within €-accuracy) a minimum point of £ on FF1 and

£(z) > £(R) ¥Z€FF, CD

If
£(s) < £(R) then

£(z) > £(R) ¥ZEFRCD



and furthermore,
£(2) > £(R) ¥Z&€FCD .

As a result we get the guadrilateral ABCF which contains a mini-
mum point of the function £. Let us compute the ratio of the
areas of the guadrilaterals ABCF and ABCD.

Assume that

AR RC

> —
RE=-* AR "% 2% -

RD _
BR _ %’ 1 2

Let h be the height of the triangle ABC. Then

1

1 = .
%4
RC = (1+a1 AC .
Here SABC is the area of the triangle ABC. We have
S R .
Svep = Spre = 7 %°h°RC = 3 SEC AC-h
Let us define hz. Since
1 . - _ =
Savc = 7 AC*hy and S,u0 = Spep < Syep
1 a-a1 a
= 1 o *AC+*h - iTT:ETT AC-h = fTT;E?)AC.h
we have
SAVC
h. = = a h .
2 %Ac 1+ay
This leads to
s s 1 RCh, = —]
= = = RC*h, = AC*h ,
EVC VRC 2 2 2(1+G1)2
asa, asa,
Srep = Svep * Spve T T(ATaLy ACeh + ————3 AC-h =
1 2(1+a1)
a°a1(2+a1)




Hence, the ratio of the area of the quadrilateral ABCF to the
area of the quadrilateral ABCD is

a'a1(2+a1)
1 - 5 . (3)
(1+a)(1+a1)

Since
a, (2+a,)
_1____17 > Eigig% if a, > a this result implies
(1+a1) (1+a)
ara, (2+a.) 2
1 - 1 1 s < 1- a”(2+a) (4)
(1+a)(1+a1) (1+a)

If we decrease the uncertainty area as shown in Figure 2,

similar arguments lead us again to (4).
58
will be defined later) then we draw a line passing through D
and parallel to AC, and then extend AB and BD until they inter-
sect this line (see Figure 3). Instead of the gquadrilateral
ABCD let us take the triangle A1BC

lateral we had four lines passing through R. In the case of a

If at some step it turns out that =a < ag (where %
1° In the case of a quadri-

triangle we take the point of intersection of its medians
(the point R1) instead of R.

Fig. 4



If a minimum point of f is not contained in the quadri-

lateral KBFR, (Fig. 3) then we draw the line VW passing through

1

R1 and parallel to the line A1C1. On the interval VW let us
choose two points G and H at a distance € from Rq- ‘
If
£(G) > f(R1) and £(H) > f(R1)
then R1 is (within e-accuracy) a minimum point of £ on VW and
£(2) > f(R1) ¥ZcVBW .
Consider the case f(H) < f(R1). Then we conclude that
£(z2) > f(R1) VZEVBFR1

and furthermore,
£(2) > f(R1) ¥VZEVBPF o

Thus, we have a new quadrilateral A1VFC1 which contains a mini-
mum point.

Let us define the ratio of the area of the quadrilateral
A1VFC1 and the gquadrilateral ABCD. Let h be the height of the

triangle ABC. We have

_ 1 . _1 .

Sapcp = 7 AqCqchy SA1BC1 = 3 (14a) A Cych

S = L (1+a) a.Cc.+h

VBF 6 1€1 -
Hence,

:

SA1VFC1 =3 (1+a) A/Cyh
and

SA1VFC1 ,

3 =3 (1-a) . (5)



Let us consider the case where the triangle A1R1C1 (see Fig. 4)
does not contain a minimum point of £. Let us draw the line VW
passing through the point R, and parallel to the line A1C1, and
argue as above. Let VBC1 be a triangle which contains a minimum

point of £f. We get

S c.h

_ 1
A, VC, = 1€1

and the ratio of the area of the new triangle VBC1 and the qua-
drilateral ABCD is % (14+a), i.e. (5) holds again.

If a £ ay~ 0.335, then we must construct a triangle since
it guarantees a greater decrease in the uncertainty area. The
quantity a, is then a solution of the eguation
- a2(2+a) = 2

3

(1+a) .
(1+a)3

The convergence of this modification of the method from (1]

is geometric with the rate

g =% (1+ap ~o0.89 .




2. Second modification. Let us again (see Fig. 5) assume that

£(M) < £(R) .
Then

£(z) > £(R) ¥YZ€ORCD .
Furthermore,

£(z) > £(R) ¥Z€VCD .

Let us draw tae line FF1 passing through R and parallel to the
line VC. On the interval FF4 let us choose two points T and S
at a distance ¢ from R.
If
£(r) > £(R) and £(S) > £(R)

then R is (within e-accuracy) a minimum point of f on FF1'and

£(2) > £(R) VZEFF1CD .

Let
£(s) < £(R) .

Then

£(z2) > £(R) ¥ZEFRCD
and furthermore
£(z) > £(R) ¥Z2€FCD -

Now let us again draw the line KL passing through R and parallel
to FC and proceed as above.

As a result we get the new quadrilateral ABCK which con-
tains a minimum point of £f. HNow let us compute the ratio of
the areas of the new gquadrilateral ABCK and the gquadrilateral
ABCD.



Assume that

RD AR
BR - % RC 2

>
BR ~ ¢

* aR - M

Let h be the Height of the triangle ABC. It follows from the
computations above that

1

— l 3 [ J——— 3 -
SABCD =3 (1+a)AC*h, SACD =z AC*h ,
a1 a-aﬂ2+a1)
RC = AC, S = ————— AC-*h
1+a1 FCD 2(1+a1)2
.. . _1 . '
Let us find h3. Since SAFC =3 AC h3 and
1 a-a1(2+a1)
S = § - S = = a*AC*h - AC+*h =
AFC ACD FCD 2 2(14_0"1)2
a, (2+a,)
= 7 a*AC*h (1 - ) ) = —2% — ac-h
(1+a,) 2(1+a,)
we have
Q 1 C,'.0'1
h, = =————— AC-+h, S = S = =~ RC°h, ® ———= AC*h .
3 (1+a1)2 FKC FRC 2 3 2(1+0’.1)3
Therefore
a-a1(1+a1)
S =S + S = AC+h +
KCD FCD FRC 2(1_‘_&1)2
aca, a-a, 1
+ —3 AC*h = p) AC-h (2+a1+w)
2(1+a1) 2(1+a1) 1
2
a-a1(a1+3a1+3)
= AC+h

2(1+a1)3

The ratio of the areas of the new quadrilateral ABCK and the
quadrilateral ABCD is
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ao (a2+3a +3)
1 1 1
(1+a)(1+a1)

Since

2
aqlagtdegtd) g (a?e3043)

(1+a1)3 - (1+a)3

it follows from (6) that

2 ..
- aa1(a1+3a1+3) <1 a‘(a‘+3a+3)

(1+a) (1+a1)3 - (1+a)u

. (7)

If we decrease the uncertainty area as shown in Fig. 6, we again
obtain the same relation (7).

Let (see Fig. 7)

£f(H) < £(R) .
Then

£(2) > £(R) ¥2€VRCD

and furthermore
£(z2) > £(R) ¥ZeVCD .

Let us draw the line FF1-passing through the point R and parallel

to the line VC. On the interval FF1 let us choose two points

T and S at a distance ¢ from R. If
£(T) > £(R) and £(S) > £(R)
then R is (within e-accuracy) a minimum point of f on FF, and

£(z) > £(R) VZEFF1 CD .

Let

£(T) < £(R).
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Then

£(z2) > £(R) VZGVRF.l CD

and furthermore

£(z) > £(R) vZevVF,CD .
Let us again draw the line KL passing through R and parallel to
the line VF, and argue as above. As a result we get a new gquad-
rilateral ABF1K which contains a minimum point of £. Find

the ratio of the areas of the quadrilaterals ABF,K and ABCD.

1
Assume that

RD AR
-B-§=a,—=a=a,§c—:_>_a .
The triangles DRC and ABR are similar since

RD _ RC _ L = L
= = ap = o L DRC ARB .

Wa have %% = o and DC is parallel to AB.
The line VW is parallel to the line DC by construction. Thus,
VWIAB. The triangles ABD and VRD are also similar since the
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corresponding angles are equal. Therefore

BD _ AB

RD VR :

Analogously the fact that the triangles BCD and BWR are similar
implies that

BD _ DC
RB WR

Therefore VR = WR and . ARV = /. CRW. We have VV1 = WW1. The

line E‘F1 is parallel to the line VC by construction. Since the
triangles VWC ana RWF1 are similar, we have

W _ W _ .,
WR ~ WF, .
Hence,
WF, = F.C, F.F., = + wW, = L vv
1 16 FqFp = g W, =5 W, .
We have
SKF1CD = Syep * SVF1C M SKF1V = Syep * sv1='1c * SVRF1
=S + S + S )

vCD VRC RF1C

From the computations above it follows that

G a a%y
RC=WAC1VV1=h2-Wh.S = —=—a———0 AC*h

1 VvCD 2(1+a1)

_ 1 . =1 .
Sypc = ———% AC*h, S,p.p = 3 (1+a)AC-h .
2(1+a,)
Thus,
1 acq
S = = RC+FF, = AC*h .
RF,C 2 L u(1+a1)2

Then

14
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aa1(2a1+5)
S = = Ac.h L]
KF1CD 4 (1+ay) ?

The ratio of the areas ¢of the new gquadrilateral ABF1K and the
guadrilateral ABCD is

aa1(2a1+5) - a2(2a+5)
1 - 2 =V - == (8)
2(1+a1) (1+a) 2(1+a)
(since a, = a).
If we decrease the uncertainty area as shown in Fig. 8
then we again have (8). The estimate (8) is worse than (7).
In the case
RD
AR - % 7 ¢
we always have an estimate better than (8). If at some step
RD _
BR %= %

then we enlarge the quadrilateral to a triangle and instead of
the gquadrilateral ABCD we take the triangle A,BC, (Fig. 9).
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Let R, be the point of intersection of the medians of triangle
A,BC,. Let there be no minimum point of £ in the quadrilateral
KBFR1. Then let us draw the line VW passing through the point
R
points G and H at a distance & from R,. If

and parallel to the line A,Cq. On the interval VW choose two

£(G) > £(Ry) and £(H) > £(R,)

then R, is (within e-accuracy) a minimum point of £ on VW and

1

£(z2) > f(R1) ¥ZeVBW .
In the case f£(H) < f(R1) we have

£(z) > f(R1) VWZE\IBE‘R1

and moreover
£(z) > ﬂRﬂ ¥YZ€VBF .

Let us draw the line V’IF1 passing through the point R, and
parallel to the line VF, and argue analogously. Let a quadri-
lateral A1VF1C1 be obtained which contains a minimum point of £.
Let h be the height of the triangle ABC. We have

=1 . = 1 .
SPECD = 3 A,C, h, SA1BC1 = > (1+0.)A1C1 h ,
.1 ‘h - - .
S F =& (1+or.)A1C1 h, SVFF1 = SVFR1 36 (1+a)A1C1 h ,
—1 [ ]
SVBF = 37 (1+a) A1C1 h .

The ratio of the new quadrilateral A1VF o

ABCD is

and the quadrilateral

1™

]_,;- (1+a) . (9)

If we decrease the triangle as shown in Fig. 10, then the

ratio of the areas of the new triangle FBC, and the gquadrila-

1



-15-
teral ABCD is

2 (1+a) . (10)

The estimate (9) is worse than the estimate (10).
If

a < a, ~ 0.3787

- 0

then it is necessary to construct a triangle. The quantity a,

is a solution of the equation

2
1 - 2 (20#3) 11 44y .

2(1+a)> 18

This modification of the method displays geometric convergence
with a rate g ~ 0.8425.
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