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OPTIMAL HARVESTING POLTCY FOR THE 
LOGISTIC GROWTH MODEL 

V. Fedorov, Y. Plotnikov and C.S. Binkley 

INTRODUCTION 
Logistic growth functions have been widely used t o  study optimal 

management of f isher ies (e.g. Clark, 1976), fo res ts  (Kilkki and Vaisanen, 
1969; Andersson and Lesse, 1984) and mammal populations (see f o r  instance 
Spence, 1973): Although this simple model does not cap tu re  many of the  
important elements of biological dynamics, i t  does possess t h e  cr i t ical  ele- 
ment of saturat ion,  t he  slowing of biomass accumulation as a "carrying 
capacity" is  reached.  Thus t he  theoret ical  resu l ts  based on th is very  sim- 
ple growth model are useful in understanding t h e  resu l ts  of more complex 
and more realistic optimal management problems. In th is l ight, th is paper  
makes four  contributions. 

First,  w e  introduce constraints on t he  control  var iable (Heaps and 
Neher, 1979). Rarely if e v e r  are harvest  levels in real is t ic  problems com- 
pletely unconstrained, so  th is f i r s t  complication of t h e  tradit ional bionomic 
model provides a n  important added degree of realism. 

Second, w e  study t he  situation where the  boundary conditions of the 
state var iabie are specif ied. Generaliy the  resource  manager is  not free t o  
choose the  initial resource  conditions (indeed much of resource  manage- 
ment is concerned with decisions when these conditions are judged t o  be  
somehow undesirable) so th is complication of the model is important. Termi- 
nal conditions are sometimes specified by l a w  o r  administrative direction. 
Furthermore,  i t  is  frequently computationally infeasible t o  soive real is t ic  
planning models f o r  an  infinite time horizon. Examination of t h e  system 
behavior near  a specified terminal value is  consequently useful t o  under- 
standing applied management problems. 



Third, we show that  the solution derived by applying Pontryagin's max- 
imum principle is indeed globally optimally. Other treatments of this prob- 
lem do not attend to  this important detail of sufficiency. 

Finally, w e  state and solve the dual optimization prcblem. V e r y  often 
the duals of many complex management problems a r e  far easier  t o  solve 
than' a r e  the primals. In our  case the dual problem also has a very c lear  
interpretation f o r  management: maximize the terminal inventory stock sub- 
ject to  the condition that  harvest levels should never fa1 below a prescribed 
level. 

The conclusion outlines a somewhat more realist ic model where the bio- 
logical system is character ized by an age-class model, and indicates the 
kind of issues which a r e  interesting in that context. 

1. OPTIldAL HARVESTING POLICY 

System 

where K ,  T a r e  given positive numbers, z  and u  a r e  the s tate and control 
variables correspondingly. The point above the charac te r  stands f o r  the 
time derivative. 

B o u n d a r y  C o n d i t i o n s  

z (0 )=zo>O , z (T )=zT  > O  

C o n s t r a i n t s  

The pair  z (t ),u ( t  ), which satisfies the conditions (1)-(3), will be called 
admissible. 

O b j e c t i v e  f u n c t i o n a l  

I t  is required to  find out an admissible pair  zO(t ),u ' ( t  ) such that  the value 
I (x  ' ( t  ),u ' ( t  )) is minimal among the values I f o r  all admissible pa i rs  z ,  u  . 



Maximum Principle for the Above Problem 

If t he  optimal pa i r  z O ( t ) , u O ( t )  exists,  then one can t r y  t o  find i t  by 
applying the  tradit ional technique of t he  maximum principle of Pontryagin 
[1962]. For the  above problem i t  involves the  introduction of t he  Hamil- 
tonian function 

where $(t ) is  t he  adjoint function satisfying t he  equation: 

a H  4 = - 1  0  o =  -$[K -2Kr0 ( t )  - u O ( t ) ]  - ~ ~ u ~ ( t ) e - ~ ~  . az = (6) 

By t he  maximum principle t he  optimal pa i r  z O ( t  ),u '(t ) has  a p roper ty  tha t  
f o r  any t E [O,T] 

M(t) h - H( t ,$ ( t ) , z0 ( t )uo ( t ) )  = max ~ ( t , $ ( t ) , z ~ ( b ) . u )  , 
osu sii 

(7) 

where ($(t ), Xo) is not ze ro  vector  and M(t ) i s  a continuous function of t 
and f o r  t E ( to ,T) has  t o  sat is fy t o  t he  equation: 

T 
aH 

M(t) = H ( T , $ ( T ) . Z ~ ( T ) , ~ ~ ( T ) )  - ~ K ( ~ . ~ ( i ) . z O ( r ) . u O ( r ) ) d  r 
t 

Equation (7) can be  used t o  define f i rs t ly  u O as a function of t , z , $ . 

u O = u ( t , z , $ )  , 

Since 
-at) H ( t , $ ( t ) , z ( t ) , u ( t ) )  = -$Kz(l - 2 )  +uz(-$+ Aoe 1 

from (7) and positiveness of z ( t  ) i t  follows that  

[Z . when (+( t )  + ~ ~ e - ~ ' )  > O  

us , when (-$(t) + ~ , e - ~ ' )  = 0 

O(t lz ") = I (so ?ailed singular contro l ) ,  (9) 

0 , when (-$(t) + ~ ~ e - ~ ' )  < 0 

Then one can eliminate the  var iab le  u from equations (1) and (6) and come 
t o  the i r  solution as t o  the  two-point boundary value ( tpbv) problem. This 
solution, i f  successful,  wi l l  give z '(t ) and u '(t ). There is no regu la r  way t o  
solve t h e  tpbv problem if i t  is nonlinear (as ours) .  The following is  an 
attempt t o  get  th is solution f o r  all possible combinations of boundary condi- 
t ions (2). 



Singular part of the solution 
If t he re  is an  interval f o r  which @(t ) = Xoe - 6 t ,  then within i t  as follows 

from (6), and from (7), 

K - d  z , ( t )  = z 0 ( t )  = - = const, 
2K (10)  

A t  the same interval 

6' 
1 -- 

M ( t )  = X o e - 6 t ~  lY2 
4 

Since @ ( t )  = ho e-6 t ,  and (@( t ) ,ho )  is nonzero i t  implies that  ho > 0 
and can be taken as ho = 1 f o r  example. 

In general z o  f z, (0 )  and Z T  + z,(T).  Therefore, the  optimal pa i r  
z O ( t  ) , u O ( t )  cannot consist only of z , ( t )  and u , ( t ) .  A t  least in the  vicinity 
of t  = 0 and t  = T the optimal pa i r  should generally dif fer from 
z , ( t> ,u , ( t> .  

The Structure of the Optimal Solution 
Knowing the  singular pa r t  of the  optimal solution on the  interval 

[ t i  ,t,], 0  < ti S t ,  < T ,  one can show that  for all possible boundary condi- 
tions (values z ,, and z T )  the  optimal control u ' ( t  ) consist of the  saturation 
portions near  boundaries, spanned by the singular control in between. 

To show this, one should check near  boundaries the  existence of a 
function @(t ) fo r  which u ' ( t  ,@,z ) generates the  admissible t ra jectory  z ( t  ). 
W e  will do this by studying the  admissibility of t ra jectory  for t he  r ight  and 
left boundary conditions (2 ) ,  separately. 

The Right Boundary 
The Case ZT > z,(T).  To the  boundary condition z~ > z , (T)  one can 

"ascend" f r o m  z , ( t )  with control u ( t )  = 0 , t  > t ,  Time of depar ture t ,  
from z , ( t )  can be chosen from the  condition to  "hit" zT at time T.  If this 
control is  optimal here ,  then f r o m  ( 9 )  the corresponding $ ( t )  should be  
such that  

@ ( t )  > ~ ~ e - ~ ~ ,  (13) 

The Case ZT < z, (T ) .  To the  boundary condition zT < z, ( T )  when - 
K + d  u iT>- 

2 
, and z~ > 1 - -one can "descend" start ing f r o m  the  singular 

k 
level at t  = t ,  with the  control  u ( t )  = C. If th is is the optimal control, 
then from (9 )  the function @ ( t ) ,  corresponding t o  i t ,  should be  such that  

@ ( t )  <hoe-" . (14)  



The Left Boundary 
The Case  zo < r,(O). From this boundary condition one can "ascend" 

with control u ( t  ) = 0  t o  the singular level. For this ascent to  be the pa r t  
of the optimal t rajectory i t  is necessary that - 

+ ( t )  > hoe-6t ,O s t < ti , (15)  

The Case  z > z, (0 ) .  From this boundary condition one can "descend" 

with control u ( t  ) = u (when - +' < a) to  the singular level. For this des- 
2 

cent to  be pa r t  of the  opt imaltrajectory i t  is necessary (as follows from 
( 9 ) ) ,  that 

To prove that the inequalities (13)-(16) are fulfilled f o r  the chosen 
controls w e  introduce the  new variable p  by the formula 

+( t )  = A, e-6t p ( t )  (17)  

The inequalities +( t )  > ho e -dt and +(t ) < will become equivalent t o  
p( t )  > 1 and p ( t )  < 1 correspondingly. On the singular par t  p ( t )  = 1. From 
( 6 )  we can get that  

p = -p(K - d - 2 K z )  + u ( p  -1). (18) 

This equation is simpler than ( 6 )  and will more easily bring us to  ou r  goal. 
0 C a s e u  G O  ( z T > z , ( T ) a n d z o < x s ( 0 ) )  

For u = 0  
b = - p ( K - d - 2 & )  
x = K x  -&' 

From these two equations and the fact  that in the "singular" interval p  = 1 
one can find 

It  proves the optimality of uO( t )  = 0  a t  the boundaries f o r  the cases 
ZT > Zs ( T )  and Z o  < X ,  (0) .  

W e  u ' ( t  ) = u (xT < z, ( T )  and z,  > z,  ( 0 ) )  

When u ( t )  = < ,  then by substitution z = - KY y  t o  (18)  and (1) we 
K  

come to the equation 

K  withy > l .  y ,  = z z s .  

I t  follows from (20)  and p(y,) = 1 that  



From this and (20) one can conclude that p is decreasing (being positive, 
see p. 7-8) when y  < y ,  and y  is  decreasing and when y  > y, and y  is 
increasing 

That gives also the  required proof fo r  optimality of u O ( t )  = u a t  the  boun- 
dar ies fo r  the  cases z~ < z, ( T )  and z,  > z,  (0) .  By these four possible 
boundary conditions the  s t ruc tu re  of optimal solution w a s  proven valid. 

Equation for the Boundary Portion 
For the intervals with u ' ( t  ) = 0  and u ' ( t  ) = iT the  state equation has 

the form 

with a = K o r  K - C correspondingly. The solution f o r  t  2 t o  and a + 0 is 

Q z ( t )  = 
(az  -l(t o )  - K)e -cr(t  + 

and when a = 0 

z ( t )  = (z- ' ( to)  + K .  ( t  -to)- ' .  
For given boundary conditions z o  and zT this solution can be used t o  

define the values of ti and t ,  (t i  < t ,  )-moments of time fo r  joining the  boun- 
dary  portions of optimal solution with the singular arc (10). 

If fo r  t he  given boundary conditions t ,  s ti then the  optimal solution 
has no portion with the  singular arc and consists of only two conjuncted 
boundary portions. 

2. THE GLOBAJ., OPTIHALITY OF THE SOLUTION GIVEN BY THE 
lUXIMlJM PRINCIPLE FOR THE B O W  PROBLEX 

To prove this w e  will use the  approach t o  global optimality developed 
by Krotov (1962, 1963). In this approach one can prove the  global optimal- 
ity of z O ( t ) . u O ( t )  from the  discussed problem by constructing the  function 

where \k(t , z )  is  the so-called Krotov's function, and by checking for this 
function the  fulfillment of the following condition 

R ( t , z o ( t ) . u o ( t ) )  = m a x  R ( t , z , u ) ,  OSt ST 
u ,Z 

subject t o O s u  S c .  
Let \k(t ,z  ) = $(t )z and let $(t ) be the adjoint variable from the  dis- 

cussed problem. 

With such Krotov's function the  maximum of R ( t , z , u )  with respec t  t o  u 
is  reached along u = u ' ( t  ) since 



where H(t  ,$,z , u )  is the Hamiltonian for  our problem, which reaches its 
maximum with respect to u along u = u ' ( t  ) . 

Since R ( t  , z  ,u )  is the quadratic function of z ,  we will check the vali- 
aR a2R 

dity of (23) with respect to z by calculating - and - . 
a2  a2  

and due to (6) with X o  = 1. 

- *R = -2K$. 
ax2 

If $ ( t )  r 0 then (24) holds and the global optimality fo r  zO(t ) ,uO(t )  is pro- 
ven. Let us check this. 

On the singular a r c  $(t ) = Xoe -" > 0.  Then for  the' cases with boun- 
dary conditions z~ > z, ( T )  and zo < z,(O) i t  was shown that 

For the cases z, > z, (0 )  and zT < z,  ( T )  due to (17) the positiveness 
fo r  $ ( t )  follows from p ( t )  > 0. This inequality is t rue because as  follows 
from ( 7 ) ,  (7a) ,  (8) for z (t ) > z, ( O ) ,  t < ti , 

p ( t )  > L - 
uz - K  . z (l-z) 

This proves the global optimality for  zO(t ) ,uO( t  ) 



3. THE DUAL PROBLEM 

System and Boundary Conditions 
See (1) and (2 ) .  

Constraints 

Objective functional 

The optimization problem (I), ( 2 ) ,  (25) ,  (26) can be t racted as a maximi- 
zation of an inventory stock at the given moment T  with total harvesting no 
less than the prescr ibed volume W. The straightforward elaboration led to  
the same conditions of maximum principle fo r  this problem as in Section 1 
with the following additions: $ ( T )  r 0 and the sign of X o  is initially not 
specified now. 

This means that  our  considerations concerning the s t ructure of optimal 
control fo r  the f i rs t  problem a r e  applicable here  too and will produce the 
same conclusions as before: namely, f o r  all possible initial conditions 
(values of zo)  near  boundaries the optimal control u ' ( t )  consists of the 
saturation portions (u ' ( t  ) = 0 o r  u ( t  ) = c) spanned in between by the same 

0 K f 6 , t i  S t  S t , .  singular control us (t ) = - 2  

If z o  > z s ( 0 )  , then uO( t )  = O  , t S ti , - 
if z o  <z, (O)  , then uO( t )  = u  , t S ti 

6  
1 - -  

After t  = t i  the optimal t rajectory zO( t )  = z , ( t )  = 2  till the time 

t  = t ,  < T which is defined by the moment when 

H e r e f o r t ,  < t  S T  u O ( t ) = O , a n d z O ( ~ )  > z , ( T ) .  

If t ,  > T  then t ,  time of "departure" Fs from z, (t ) is defined as 

and in  this case fo r  rs < t  S T  uO( t )  =c  a n d z O  ( T )  > z , ( T )  



4. CONCLUSIONS 
Bioeconomic models based on logistic biological dynamics are widely 

used in the f isheries, forest ry  and renewable resource Literature. W e  
present a r a t h e r  complete solution to the resource management problem 
with logistic growth, showing the effect of control constraints and a rb i t r a r y  
boundary conditions as we l l  as demonstrating the  sufficiency of t he  maximum 
principle solution and solving the  dual problem. These solutions have some 
utility in the i r  own r ight  for prescribing optimal management policies. 
Furthermore, they suggest how a more real ist ic system might behave. 

How would one complicate this model to  capture the  next degree of 
realism? Let us consider the case of forest growth. In many par ts  of the 
world forests regenerate a f t e r  e i ther  natural catastrophic disturbances 
(e.g. f i re ,  windthrow o r  insect defoliation) o r  anthropogenic ones (timber 
harvesting, agricultural abandonment). The dynamics of the  resulting 
even-aged forests can be  character ized by the aging of individual stands 
and the regeneration of new stands through the  harvest of old ones. 
Optimal control can be  studied in this context. 

Heaps (1984) and heaps and Neher (1979) examined the continuous time 
process. While some of the character ist ics of the  solutions have been 
derived, o thers  have not. In part icuiar,  the temporal asymptotic behavior 
is not wel l  understood: under what circumstances does the  rate of harvest 
converge? What i s  the  nature of the  asymptotic age s t ruc tu re  of the  forest? 
While the logistic model provides some insight into the  development of a 
renewable resource. i t  obscures the answer to  some of these interesting 
questions. 
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