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ABSTRACT 

This paper  serves two purposes, to  which w e  give equal emphasis. 
First,  it describes an optimization system fo r  solving large-scale stochastic 
l inear programs with simple (i.e. decision-free in the  second stage) 
recourse and stochastic right-hand-side elements. Second, i t  is a study of 
the means whereby large-scale Mathematical Programming Systems may be 
readily extended t o  handle certain forms of uncertainty, through post- 
optima! options akin t o  sensitivity on parametric analysis, which w e  t e r m  
"recourse analysis". This la t te r  theme (implicit throughout the  paper)  is  
explore6 in a proselytizing manner, in the concluding section. 
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DESIGN AND ELEXENTATION OF A STOCHASTIC 
PROGRAMMING OPTIMIZER WlTH RECOURSE AND TENDERS 

J.L. Nazareth 

1. Introduction 

This paper  is a sequel t o  Nazareth and Wets [21] and serves two purposes, t o  

which w e  give equal emphasis. First, i t  describes an  optimization system f o r  solving 

a restr icted but important class of large-scale stochastic l inear programs with 

recourse. Second, i t  is a study and detailed il lustration of the  means whereby any 

large-scale Mathematical Programming System (MPS) designed f o r  solving deter- 

ministic l inear programs, could be  readily extended t o  handle some forms of uncer- 

tainty, in part icular, via post-optimal analysis options. This latter theme (implicit 

throughout the paper) is  explored, in a proselytizing manner, in t he  concluding 

section. 

The class of practical stochastic l inear programs with which w e  are con- 

cerned (termed C 1  problems in [21]) a r i se  as a natural extension of the  l inear pro- 

gramming model as follows: given a l inear program with matrix A ,  i t  is often the 

case that some of the  components of the right-hand-side (exogenous) vector of 

resource availability o r  resource demand, are known only in probability and have 

been replaced (in the  deterministic LP formulation) by some expected value. W e  

seek t o  extend this l inear program, using the recourse formulation. Rows of A 

corresponding to  t he  stochastic right-hand-side are used t o  define the technology 

matrix T (we follow the  notation and terminology of [21]) and the  remaining rows of 

A are used to  define the  constraint matrix A ,  both A and T being typically large, 

sparse matrices. The recourse is assumed t o  be  simple (i.e. decision-free in the 

second-stage problem) and specified in terms of costs (or  penalties) on shortage 

and surplus. Furthermore, w e  res t r i c t  attention t o  the case where each component 

This paper is a draft for Chapter 14 of Numerical Techniques for Stochastic C&timization 
Roblems, Y .  Ermoliev and RJ.-B. Wets, eds., Springer-Verlag, t o  appear. 



of the stochastic right-hand-side has a given discrete probability distribution. 

There are many applications fo r  such a model, see Ziemba [Z?], and more complex 

stochastic l inear programs with recourse can sometimes be solved by a n  iterative 

discretization or sampling procedure involving definition and solution of a 

sequence of C1 problems. 

The above considerations are very much in the  background of ou r  implementa- 

tion design, our  choice of algorithms and of the more general issues which w e  wish 

to discuss regarding the  extension of conventional Mathematical Programming Sys- 

tems, so as to be able t o  handle at least some forms of uncertainty. Our optimiza- 

tion system is based primarily upon a version of Wolfe's generalized programming 

algorithm (see Dantzig [4]) given in Nazareth and W e t s  [21] Section 3.2.1 and, in 

more detail, in Nazareth [18]. I t  also includes a version of an  algorithm based 

upon bounded variables (see Wets [25]) given in [21] Section 2.1 and, again in more 

detail, in [20]. Two simpler options, namely to solve an  initial l inear program and 

to permit some of i ts constraints t o  be "elastic" are also included t o  help get a 

recourse problem "off t he  ground." In our implementation (see Nazareth [I91 fo r  

an  overview of our  overal l  approach) w e  have utilized cur ren t  mathematical pro- 

gramming technology fo r  specifying the  problem (using standard MPS conventions 

[14] for the  LP portion and a suitable extension to provide the  added stochastic 

information), t o  represent  t he  data internally (in packed data structures, space 

for which is dynamically allocated within a work storage a r ray )  and to implement 

our  solution strategies (using an  efficient and numerically stable implementation of 

the simplex method, namely the  MINOS System of Murtagh and Saunders [15], [16]). 

Finally, w e  want our design to mesh as naturally as possible with current  

Mathematical Programming Systems. In part icular, w e  argue in the concluding sec- 

tion of our  paper,  tha t  t'recourse analysis" (simple recourse t o  start off with, but 

also more general forms of recourse) could be provided as a post-optimal analysis 

option in any large-scale MPS, t o  augment the  options fo r  parametric and sensi- 

tivity analysis that  are now usually available. 



2. Overview of the SPORT System 

2.1. Problem 

SPORT (pronounced SUPPORT) is an  acronym fo r  Stochastic R-ogramming 

Gptimizer with Recourse and Zknders. The cur ren t  version solves large-scale sto- 

chastic programs with simple (decision-free in the second stage) recourse and 

discrete distribution of right-hand-side elements (termed C1 problems). The for- 

mal statement of such problems may be found in [21] (see (1.1) through (1.3) where 

W = [I , -I ] and where the  right-hand-side h (a) is t he  only stochastic quantity, 

with a known d iscrete distribution) and w e  shall not repea t  here. Instead, w e  shall 

state the  problem from the  perspective emphasized in th is paper ,  namely tha t  of a 

given l inear program in which inherent uncertainty in some of the right-hand-side 

(exogenous) elements is  t o  be  more fully taken into account. Consider therefore 

the  l inear program 

minimize cz 
subject t o  A z  = d 

z 2 0  

where A is an m x n  matrix (which is  generally large and sparse). d i s  a given m- 

vector and c is a given n-vector.  Some of the  elements of d which correspond t o  

demands (o r  available resources) may be, in real i ty, only known in probability and 

defined in (2.1) by taking some expected value. For simplicity, let us suppose tha t  

the  corresponding "technology" constraints of (2.1) are t he  last m 2  constraints 

and let  us denote them by Tz = K ,  where T is  an m 2  x n matrix. Let the remaining 

m constraints be  A x  = b where A i s  an m  X n matrix and d = . [:I 
A useful extension t o  the  LP model (2.1) is t o  permit the  constraints Tz = h t o  

be "elastic" (Tomlin [24]) by imposing a penalty q< on shortage in the  i th technol- 

ogy constraint when demand (corresponding to  the right-hand-side element 6 ) 
exceeds the supply (Tz),, s o  tha t  y; = Ef -(%), 2 0. Similarly let qf- be  the  

penalty imposed on surplus (when the  reverse  of the ear l ie r  conditions holds) s o  

tha t  y,- = (Tz), -Kf 2 0. (The choice of notation q< f o r  shortage and q,- f o r  

surplus is a l i t t le unfortunate, but is  now standard.) Thus associated with the  deci- 

sion z f o r  the  ''first-stage" o r  decision variables, w e  have a penalty of 

- I qi+(Kf -(%),) when (K, -(Tz),) r 0 - 
4 ( z 1 h f )  = qf7(%), -h i )  when (K, -(TI),) S O .  



To minimize f i r s t  stage costs and all penalty costs w e  can formulate the extension 

of (2.1) as a problem with "elastic" constraints as follows: 

+ + minimize c z  + q y + q -y - 
subject t o  h = b  

RE + y + - y -  = ji 
z 2 0 ,  y + 2 0 ,  y - 2 0  

where q + and q - are m-vectors with components q: and qt- respectively. 

Unfortunately (2.2) does not address the  uncertainty in the  right-hand side 

vector,  which s o  f a r  has been replaced by h. One way to  address uncertainty is t o  

compute the  penalty cost associated with each realization of t he  random vector 

h (a) .  Let us also define the  "tender" o r  'bil l of goods" associated with a decision 

z by x = RE. Thus w e  have 

me me me 
Let * ( X I  E C $< (xi 9 hi (a ) )  = C E a($< (x< 1 hi (a ) )  C *< (x< 1. W e  seek t o  

t =l t =l t =l 

minimize the cost of the  decision c z  and the  expected value of t he  penalty costs. 

Thus we can formulate this extension of (2.1) as 

me 
maximize c z  + *t (xi ) 

t =l 

sub jec t to  Ax = b  

= - X  = 0 
x r o  

For C1 problems i t  can be  readily demonstrated (see, f o r  example [25], [20]) tha t  

where stL and etL are defined from the  probability distribution of hi (.). Let th is be  

given by values hi l,ht 2,. .. ,h*, with htL Shil l  +1, with associated probabilit ies 

pi l ,pt ,..., psi. Then, f o r  l = O  ,..., kt 



0 
where, by convention, = 0 ,  qt = (qi+ +qi-) > 0  and Ki is the expected value of 

i=1 

hi(o).  Finally, using a theorem in [18], i t  is  possible t o  s ta te  (2.3) in an 

equivalent form and in s o  doing also unify with (2.2) as follows: 

me 
minimize c z + q + y + + q - ~ - + ~ * ~ ( x ~ )  

i =1 

subject t o  Az 

T x + y + - y - - x  

For j &  h w e  obtain (2.2) since +(K) i s  then a constant t e r m .  (2.5) is a piecewise- - 
l inear separable convex programming problem with which w e  shall be  concerned 

henceforth. I t  makes possible both convenient implementation of the algorithms 

which we employ and the  various options that  w e  provide, as discussed in the  next 

section. 

2.2 Algorithms 

The system is  based primarily upon the Wolfe generalized programming 

approach as discussed in [21], Section 3.2.1. The part icular algorithm imple- 

mented here  termed ILSRDD (Inner Linearization - Simple Recourse - Discrete Dis- 

tribution) is  described, in detail, in [18]. The generalized programming approach 

was chosen because i t  proved effective in ear l ie r  experimental versions (see [18]) 

and because of i ts  potential applicability t o  a wide class of stochastic programs 

(including problems with complete recourse and problems with probabilistic con- 

straints,  see  [18]). We also include an  alternative t o  ILSRDD. This is algorithm 

based upon problem redefinition and the  introduction of bounded variables given 

by Wets [25] and implemented in the  simpler form given in Nazareth and Wets [20]. 

The algorithm is  termed BVSRDD (Bounded Variables-Simple Recourse-Discrete 

Distribution). This approach is  much more limited in i ts  range of possible applica- 

tion as w e  have discussed in [21], but we include i t  f o r  the  following reasons: (a) i t  

is very convenient t o  have a second algorithm that  works on basically the same 

input as ILSRDD, f o r  purposes of comparisons of answers and validation of imple- 

mentation. Two identical answers on a part icular problem from two different algo- 

rithms a r e  ra the r  comforting in th is world of uncertainty and although this is no 

guarantee of correctness, i t  provides some indication that  an e r r o r  (if any) is  in 

the  input data o r  i ts conversion into internal representations. (b) A fa i r  amount 

of experience has been accumulated with an ear ly  implementation of th is method 



for dense problems (see Kallberg & Kusy [ I l l )  and a more advanced implementa- 

tion (which handles sparsity) should be available. (When the re  a r e  relatively few 

points in each distribution of h i ( . )  then this may even be  a quite efficient way t o  

solve C1 problems. (c) The algorithm BVSRDD makes possible a simpler and more 

direct  extension of a deterministic MPS when the  aim is  only t o  handle simple 

recourse. 
- 

Two fu r ther  options a r e  provided in o rde r  to be able t o  solve (2.5) with x = h 

(ELASTIC option) and in o rde r  t o  solve an initial l inear program, equivalent to - - 
(2.5) with x = h ,  qif = qi = - (MINOS option). Here, denotes an arb i t ra ry  

right-hand-side vector. Both of t h e s e  options a r e  useful as preliminaries to the  

recourse formulation. 

2.9 Implementation 

From a pract ical  standpoint, t he  l inear programs which w e  want t o  solve and 

extend a r e  of the  more general  form: 

minimize cz 

where = indicates tha t  constraints take one of t h r e e  possible forms and u and L I:] 
are vectors of upper and lower bounds. Furthermore, w e  cannot usually expect 

the  part i t ion A = with technology rows T coming last in the  matrix A .  In gen- 11 
eral, rows of A and rows of T will be interleaved in A .  In addition, i t  is  worthwhile 

t o  explicitly include a scale factor  p to permit a weighting of t he  second-stage 

objective relat ive to t he  f i r s t  (see [18]). Thus the  pract ical  problems which we 

seek t o  solve, a r e  derived from (2.5) and (2.6) and take the  form 

mi? 
minimize cz  + q +y + + q -V - + p qt (x i  ) 

i =1 

subject to (Aai)z (S  = 2 )  bi . q 
T ~ ~ Z  + y: - yi- - x i  = O  , Ti El-' 

L S Z  s u ,  y + ,  Y - 2 0 .  



where A a i ,  ai E A defines the  rows of A ,  T ~ ' ,  ri E r defines the  rows of T ,  and A and 

rare index sets with 1 Al =nil, I ri =ni2 (I A (  denotes the  number of indices in A). 

Our system f o r  solving recourse problems of the  form (2.7) has th ree  main 

phases: 

Phase 1:  Problem Setup and Generation 

Phase 2: Specialized Setup and Solution 

Phase 3: Output 

This is summarized in Figure 2.1. A design goal w a s  that  all algorithms work 

on essentially the  same input and each ignore input data tha t  is only required by 

the  others,  e.g. the  limit on the  number of cycles, which is  only required by 

ILSRDD. The input is  specified in the form of t h ree  fi les of information which are 

described in more detail in t he  next section. All tha t  is  often necessary t o  switch 

options is t o  change the  algorithm card  in the  "control" f i le and check that  enough 

work space has been provided f o r  various items. The Problem Setup and Genera- 

tion Phase resul ts in t he  creat ion of two fi les required by MINOS - the  SPECS fi le 

and the  MPS file. The next main phase consists of reading in these fi les by MINOS, 

inserting additional columns into i ts  packed data s t ructures and finding the  solu- 

tion of the  problem. Finally the  Output Phase augments the  solution output by 

MINOS with some additional information about the  solution of the  stochastic pro- 

gram with recourse. 

The next t h ree  sections go into this in more detail. 

3. Problem Setup and Generation 

To be  specific, w e  discuss this within the context of an example. Consider t he  

following product-mix example (due t o  J. Ho [lo]). The problem has two products 

and th ree  ingredients. W e  seek t o  minimize cost of production while maintaining 

the  levels of f a t  and protein at acceptable levels, and not exceeding availability of 

ingredients. The demand f o r  each product is a random variable with d iscrete dis- 

tribution but in an LP formulation this must be  replaced by some expected value. 

The problem is summarized as follows, where x i ,  yi, zi denote the  amount of each 

ingredient in product i (i =1,2). 



Figure 2.1 Overview 
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minimize z l  + 2 y l  + 32 ,  + z z  + 2 y z  + 3 2 ~  (OB J) 

subject t o  

Fat/Protein : 0 . 3 ~ ~  + 0 . 4 ~ ~  + 0.22, 
Content of Pro- 
duct 1 

Fat/Protein 
Content of Pro- 
duct 2 

Amount of In- : Zi 
gredient 1 

Amount of In- : Y i  + Y 2  C 12.0 (A2) 
gredient 2 - 
Amount of Pro- : z i +  Y l +  21 = hi ( T I )  
duct 1 

Amount of Pro- : 
duct 2 

The penalties f o r  under and over  production are 2.0 and 1.0 units, respec- 

tively, f o r  each product, and the probability distribution on demand h (e) is as fol- 

lows: 

Product 1 Product 2 

Level 8.0 10.0 12.0 15.0 18.0 20.0 
Probability 0.25 0.5 0.25 0.2 0.4 0.4 

hi = 10.0 and hz  = 18.2. The recourse function * ( x )  is defined in the usual 

way with q +  = (2.0.2.0) and q -  = (1.0,l.O). 

3.1 Corefile 

The input data corresponding t o  the  decision variables z of the problem forms 

the "corefile". This specifies 

- the  names and types of each row of the  problem 

- the  objective c 

- the coefficients of A and T 

- the deterministic right-hand-side elements 

- the bounds on variables and ranges on rows 



The "corefile" is  specified in standard MPS format, see 1141 and will often ori- 

ginate in a pr io r  LP formulation. A and T can have interleaved rows and rows 

corresponding to  T should normally be equality rows. However if these 

correspond t o  2 o r  5 rows i.e if t he re  is no penalty on surplus o r  shortage, 

respectively, then provision is  made in the  system t o  change these to  equality rows 

and a warning message is  printed t o  that  effect. This means tha t  qc or qi- must be  

chosen appropr iately at value zero. Note also that  if t he re  w e r e  non-zero elements 

in the  right-hand-side vector  corresponding t o  rows in the  technology matrix they 

will be  ignored by ILSRDD or BVSRDD and a message printed t o  this effect. 

For our  example, the  corefi le is given in Figure 3.1. (Slack variables were 

introduced explicitly in th is case, but th is is  not necessary and could have been 

avoided by appropr ia te definition of row types.) 

3.2 Stochastics File 

The "stochastics" f i le specifies the  information pertaining t o  the  recourse 

problem. I t  gives: 

- the row names identifying the  technology matrix 

- the  probability distribution f o r  each stochastic right-hand side 

- the  penalties q + and q - on shortage and surplus 

- the  set of initial tenders fo r  ILSRDD o r  the base tender f o r  BVSRDD 

An MPS-like format w a s  designed fo r  each of these items of information and is 

explained in the rest of th is subsection. (An extension of th is format is given in 

Edwards e t  al. [7].) 

NAME This is a header  card.  The user  may en te r  any charac te rs  in 

columns 15 t o  72. 

TECHNOLOGY The data consists of a list of names, one f o r  each row in the  tech- 

nology matrix. These must be  a subset of the  list of rownames in 

t he  "corefile". The submatrix corresponding to  this set of rows in 

the  COLUMNS section of the "corefile" defines the  technology 

matrix. One name appears p e r  line in columns 5 through 12. 

DISTRIBUTION The data consists of se ts  of entr ies of the  form "rowname value 

probability". There is  one such set f o r  each of t he  rows named in 

the TECHNOLOGY section. "rowname" specifies the  row associated 

with the  en t ry  (columns 5 through 12). "value" and "probability" 
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Figure 3-1 The corefi le 

specify the  point and i t s  associated probability. They occupy the 

f i r s t  and second numeric fields (columns 25 through 36 and 50 

through 61) respectively and must be  specified as real numbers. 

The "rowname" repeats  itself f o r  each possible value associated 

with the  row and the probabilit ies f o r  this "rowname" must sum t o  

unity. 

The data consists of entr ies of the form "name value value" where 

name is a rowname of T and the f i rs t  value gives the value of qi+ 

and the  second the  value of qi- i.e the penalties on shortage and 

surplus respectively. The name occupies the f i rs t  field (columns 5 

through 12) and the values the f i rs t  and second numeric fields 



(columns 25 through 36 and 50 through 61) respectively. They 

must be  specified as rea l  numbers. 

TENDERS The data consists of entr ies of the form "name rowname value" 

where name is  the  name associated with tender,  "rowname" speci- 

f ies the row associated with the ent ry  and "value" is the level of 

the tender f o r  this row. "name" repeats  itself over  all entr ies 

associated with the tender and there  is one such "name" f o r  each 

tender specified. "name" and "rowname" occupy the  f i r s t  two 

name fields (columns 5 through 12) and (15 through 22) respec- 

tively and "value" the f i rs t  numeric field (columns 25 through 36). 

(If a set of these a r e  provided f o r  ILSRDD then the  f i r s t  one is 

used by BVRDD as i ts base tender, see Sec. 2.1 of [21].) 

ENDATA This card  must be  specified and flags the  end of the  "stochastics" 

file. 

For our  example the  "stochastics" file is given in Figure 3.2. 

Figure 3.2.The stochastics fi le 



9.9 Control File 

The "control" file provides the  information needed t o  guide the  solution pro- 

cess. I t  gives: 

- algorithm selected (generalized l inear programming, bounded variable algo- 

rithm, elastic constraints o r  l inear programming) 

- input/output units f o r  the fi les used by the system 

- dimensioning information f o r  various a r rays  within the system 

- names of objective and right-hand-side vectors 

- additional control parameters e.g. output level, cycle limit, etc.  

- specification cards  f o r  MINOS 

Our design h e r e  is  similar t o  the  MINOS SPECS file, but our  format specifica- 

tion is more rigid and is based upon fields of four characters .  Each main section is 

identified by a principal keyword which begins in column 1. Within each of these 

fur ther  options are identified by a second keyword which begins in column 5. Each 

of these options may have fu r ther  suboptions and these are in turn identified by 

keywords beginning in column 9. The numerical str ings o r  integers which provide 

the  information tha t  goes with a keyword are specified in a data field given by 

columns 23 through 30. Integers must of course be r ight justified. Only the f i r s t  

four charac te rs  (including blanks) of any keyword a r e  significant. 

The principal keywords, i.e. the keywords beginning in column 1, must be  

specified even when al l  defaults are selected. 

The keywords a r e  a s  follows: 

BEGIN This is  a delimiter identifying the beginning of the  control fi le 

ALGORITHM This identifies the selected algorithm. Options are ILSRDD, 

BVSRDD, ELASTIC o r  MINOS. 

UNIT The unit numbers are specified as follows: 

CORE unit number of "corefile". Default = 5 

STOCHASTICS unit number of "stochastics" file. Default = 7 

SPECS unit number of the  MINOS SPECS file. Default = 8 

MPS unit numbers of the  MINOS file specifying the  

matrix. Default = 9 



DEBUG unit number for  debugging information. Default = 

0 (no output) 

LOG unit number of the log file. Default = 0 (no out- 

put> 

DIMENSIONS This specifies information for  setting up the  work a r r a y  

ELEMENTS an upper bound on the number of elements in the 

matrix (including space for  input and generated 

tenders). Default = 1500 

ROWS an upper bound on the number of rows (including 

technology). Default = 100 

TECHNOLOGY an upper bound on the  number of technology 

rows. Default = 20 

COLUMNS an upper bound on the  number of columns in the 

matrix (including tenders). Default = 300 

PROBABILITIES an upper bound on the  number of discrete levels 

associated with each stochastic right-hand side. 

Default = 30 

TENDERS This provides information on tenders as follows: 

INPUT an upper bound on the  number specified in the "sto- 

chas t i c~ "  file. Default = 1 

GENERATED an upper bound on the number of tenders saved. 

Used in the round robin strategy. Default = 20 

ELEMENTS an upper bound on the total  number of tender ele- 

ments. Default = 2000 

Note: One must be careful about specifying these quantities. 

SELECTORS 

OBJECTIVE name of the objective row - up t o  8 characters 

(must be provided) 

RHS name of the right-hand-side vector - up t o  8 char- 

ac te rs  (must be provided) 

BOUNDS name of the bounds vector - up t o  8 characters 



RANGES name of the ranges vector  - up t o  8 charac te rs  

CONTROL OPTIONS 

OUTPUT output level. Options are 1, 2 o r  3, which provide 

increasingly verbose output. Default = 2 

CYCLE limit on number of tenders generated. Default = 1 

SCALE scale factor (see (2.1)), expressed as a percentage 

( p  = SCALE/100). Default = 100. 

MINOS SPECIFICATIONS Here one specifies any MINOS options which are 

then echoed into the  MINOS SPECS file. 

END Delimiter indicating the end of t he  control section 

In our  example t he  "control" f i le i s  given in Figure 3.3. 

3 E t I N  
NEW I i i  ! LSD3 
' N I T  % 9 2 5  

C S E  FILE 
STOC!+AST!CS 'ILE 
SPECS FILE 
PllPS 'ILE 
3FsLG =!IF 
I% =!LE 

3!YEVSIGh5 
ELEENTS 
R o w s  
C C L L M  
PRrn!%!L!T!ES 
?-E?CcpE; 

IVY 
m . 4 m  
ELE."I!=?!?S 

Figure 3.3.The control f i le 



3.4 Implementation of Problem Setup 

This is done using some modules from LPKIT (see Nazareth [I?]) suitably modi- 

fied t o  suit ou r  purposes. Additional routines have been written t o  set up informa- 

tion specified in the "stochastics" file into packed data s t ructures and to  generate 

the  MINOS SPECS and MPS files. 

4. Specialized Setup and Solution 

This pa r t  of the  implementation is  built around MINOS Version 5.0 whose 

outermost routines MINOSl and MINOS2 were modified f o r  ou r  purposes. In part ic- 

ular,  the PHANTOM COLUMNS option of MINOS (simply a device t o  provide some 

"elbow-room" in the data s t ructures holding the problem) is  extensively used in 

o rde r  t o  complete the setup of the  recourse problem in the  packed data s t ructures 

used by the MINOS system. 

4.1 ILSRDD 

The master program is defined by expression (3.7) in [21] with W 4 [ I ,  -I ] - 
and the obvious extension t o  match expression (2.7) in this paper.  MINOS 5.0 sets 

up the  A and T matrices in packed data s t ructures from the MPS file which w a s  

generated in the previous phase. Then our  modifications t o  subroutine MINOS2 

pack in the  additional columns corresponding t o  tenders. Other routines 

developed by us, which are called within the subroutine MINOS2, implement the 

generalized l inear programming algorithm in coordination with the solution of each 

master program by MINOS 5.0. The detailed algorithm is given in [18]. 

This is an implementation of the bounded variable method of Wets [25] in the  

form given in [21], Section 2.1. Further details of the algorithm may be  found in 

[20]. There is a danger of performing a large number of pivot operations when the  

probability distribution of each right-hand-side element has many points (the so- 

called epsilon-to-death problem) but the associated computational e f fo r t  is allevi- 

ated by the way in which MINOS updates i ts basis matrix representation. I t  is pos- 

sible t o  improve the  implementation (a) by using some of the  acceleration tech- 

niques discussed in Wets [25] which, in effect, c a r r y  out several  basis changes a t  

t he  same time, (b) by specifying a good start ing basis from the special s t ructure in 



(2.7). 

In contrast to  ILSRDD, implementation is much more straightforward because 

only an initial linear program must be set up. 

4.3 ELASTIC 

This option implements the linear program (2.2) (see Section 2.1 of this 

paper), thereby permitting the "technology rows" to  be elastic. The row names 

defining the technology rows and the penalties q + and q - are defined by the sto- 

c h a s t i c ~  file. Other data in this file is ignored. 

4.4 MINOS 

This simply provides the preliminary option of solving an initial l inear pro- 

gram. The data in the stochastics file is not required here. 

5. Output Phase 

The output consists of two parts: 

(a) MINOS output in standard MPS format. For a description of this see Murtagh & 

Saunders [16]. 

(b) SPORT output. This gives the first-stage and second-stage costs the optimal 

tender, the dual multipliers (prices) associated with the technology rows in 

the optimal solution and the probability levels of the equivalent chance- 

constrained program. 

For the earl ier example the output is given in Figure 5.1. 



Pigare 5.1 The output for the earlier example 

9 3 0 R T ( I W ) :  O P T I N  SOUrrION OF RECCCRSE RmBl FOU9 

OBJECTIK W 4.36&500000d+01 

STATLS (PTIPW, saJlr ITERATION 1 -I= 0 

O B J U T I K  OBJ (HIN) 
Fb6 m 
R P M S  
80U95 

SECTION 1 - Ra6 

NSeER ...ROW.. STATE ... ACTIVITY. .. 9PM K T I V I T Y  ..L= LIMIT.  . .LPER LIMIT.  .DLYIL ACTIVITY 

n AZ A M 12.00000 0. 12.00000 12.00000 0. 
28 A3 EQ 3. MOO0 0. 3.30000 3. MOO0 5.62'500 
29 AI, EQ 4.00000 0. 4.00000 4.00000 1.12500 
30 T I  EQ 0. 0. 0. 0. 4. 25000 
31 f2 EQ 0. 0. 0. 0. 1.4- 
32 CCWXITY M 1. OOOOD 0. 1.00000 1. O O O M  26.962'50 

... ACTIVITY. .. .m m!mImT. 

1. oomo 
2. C0000 
3.00000 
0. 
1 . ooom 
2.00000 
3. WOOO 
0. 
C. 
0. 
2.0co00 
2.00000 
1 .00000 
1 .00000 
3.660W 

10.400m 
7.90000 
4.20000 
8.40WO 
0. 
0. 
0. 
0. 
0. 

..L= L IMIT .  . .LPER LIHIT .  

w U 
@J's ffi 
CLPIb 85 
CLM7 LL 
CL* u 
CLPR !L 
CLnlO 85 
M l O O l  LL 
i u m o r n  LL 
M 1 0 0 3  LL 
M l O D G  U 
M l O E  LL 
M l O W  LL 
M I 0 0 7  85 
M l O O B  u 
M I 0 0 9  ffi 
M l O l O  A EQ 
M I 0 1 1  A Ea 
RNTlOlZ A M 
M 1 0 1 3  A Ea 
RNT1014 A Ea 

0.56250 
0. m o o  
2.4- 
0 . ~ 0  
3.00000 

4. oomo 
0. 

COSrS PeSOCIATED UITH aeOK SOUrrION 

W.uZ% D I R T  - 35. MOO0 RECOLRQ - 
Q W n I T I n  ABSOCIATED UITH MUX U I M  

R W m  TPOERS RlIQS KfQJIvPlLPm 

T I  10.25000 4.325000 0 . m W  

R 15. woo0 1 . 4 ~  0 . 1 ~ 7 ~  



6. Testing 

The program has been exercised on severa l  test problems as follows: 

(a) The product-mix example of Section 3 due to J. Ho. This is a "toy" problem 

with 5 rows of which 2 are technology rows and 6 f irst-stage decision vari- 

ables. 

(b) The test problem given by Kallberg & Kusy [ll]. This too is  a ' toy" problem 

with 3 rows of which 2 are technology rows and 6 f irst-stage decision vari- 

ables. (Documented in King [12].) 

(c) The test problem given by Cleef [3]. This has 9 rows of which 6 are technology 

rows and 1 6  first-stage decision variables. (Documented in King [12].) 

(d) The problem of allocating a i rc ra f t  to routes given in Dantzig [4]. This has 9 

rows of which 5 are technology rows and 29 first-stage decision variables. 

(Documented in King [12].) 

(e) A discretized version of the  stochastic transportat ion problem given by Qi 

[23] formulated as a standard stochastic l inear program with simple recourse. 

This has  78 rows of which 44 are technology rows and 1496 first-stage deci- 

sion variables. 

The bank asset and liability model given by Kusy & Ziemba [13] and a full- 

sca le  version of problem (d) above both provide good il lustrations of the  pract ical  

applications f o r  which our  program is designed. 

7. Sportsmanship 

The cur ren t  system can be  applied to a wider range of problems than would 

appear  at f i r s t  sight. For example when the  stochastic l inear program has sto- 

chastic technology matrices with a few discrete probability levels (which are 

independent of the right-hand-side distribution) say, TI, ..., Tt with probabilit ies 

pi, ...,pi, then w e  can express  this as an equivalent problem 



minimize cz + P ' ~ Q + Y ~ +  + P ' ~ Q - U ~  + ' * + P ' ~ Q  +vt+ + PtQ -Yt- 

subject t o  

dx = b 

= h (o)  

(7.1) 

= h (o)  

Let us treat T defined by 

as a technology matrix in the  usual way. Then w e  can set up the  problem s o  that  i t  

can be solved by the  system, as described ear l ie r ,  with appropr iate definition of 

penalties and distribution determined by (7.1). 

In some situations the  underlying probability distribution of h (.) i s  only known 

implicitly through a simulation model involving the  random elements o. Nazareth 

[I81 discusses how the  system can be  extended t o  this case (see, in part icular,  Sec- 

tion 3.2 of [la] f o r  some numerical experiments). 

When the probability distribution of h(.) is not discrete,  SPORT 2.0 can be  

used in conjunction with some i terat ive discretization procedure and computation 

of e r r o r  bounds (see, f o r  example, [26]). 

When a more complex penalty s t ructure is imposed on the second stage, pro- 

gram modifications would be required. This could, in many cases, be  done fair ly 

easily. 

8. Availability 

The Fortran implementation described here,  SPORT 2.0 (pronounced SUPPORT 

Version 2.0) w a s  developed f o r  use at IIASA on the VAX 11/780 (under the UNIX 

operating system). I t  uses MINOS 5.0 (the latest documented version), which is 

available in-house. Using the terminology in Nazareth 1191, the cur ren t  version of 

ou r  system is  a level-2 implementation, designed f o r  algorithmic experimentation 



and fo r  problem solving by an experienced user (one expected t o  be  familiar both 

with his problem and with the  implemented algorithm). 

To use SPORT 2.0 at another s i te,  i t  would be  necessary t o  obtain MINOS 5.0 

independently from Stanford University and t o  substitute our  set of Fortran rou- 

tines fo r  the two MINOS 5.0 fi les MIOOMAIN and MIIOMACH. (Note that  SPORT 2.0 

will not run  with versions of MINOS below 5.0.) 

An ear l ie r  version of ou r  system, designed f o r  MINOS 4.9, SPORT 1.1, is avail- 

able on the  SDS/ADO tape, which is  a collection of a number of routines fo r  sto- 

chastic programming. This version provides readable Fortran and a manual (see 

Edwards [6]) t o  document our  implementation. Note that  i t  is  not executable, since 

MINOS 4.9 is not included with it. 

In o rde r  to  obtain a copy of SPORT 2.0, please contact the  author  of this art i -  

cle at ei ther  of the  following addresses: 

IIASA, System & Decision Sciences, A-2361, Laxenburg, Austria 

o r  

CDSS, P.O. Box 4908, Berkeley, California 94704, USA 

9. Stochastic Programming with Recourse as a Form of Post-Optimal 

Analysis in a Mathematical Programming System 

Many large-scale Mathematical Programming Systems (for example, MPSX/370 

[I]) provide options fo r  performing parametric and sensitivity analysis in the  

optimal solution of a l inear program and fo r  repeated (and efficient) reoptimiza- 

tion through a dual simplex procedure, when the right-hand-side is changed. (For 

MINOS, post-optimal analysis routines have been developed by Dobrowski, et a1 

[51.) 

A common approach f o r  handling uncertainty in the  right-hand-side is t o  use 

scenario analysis, which is  indeed greatly facil itated by the above post-optimal 

options. Ermoliev and Wets [8] character ize this approach t o  dealing with uncer- 

tainty as being "seriously flawed" and explain why as follows: "Although i t  

(scenario analysis) can identify 'optimal' solutions f o r  each scenario (that speci- 

f ies some values f o r  the unknown parameters), i t  does not provide any clue as t o  

how these 'optimal' solutions should be  combined to  produce a merely reasonable 

decision." Another approach that  has been utilized by mathematical programmers 

as discussed in Section 2.1 is t o  introduce elastic constraints by defining 



penalties on shortage and surplus fo r  a given right-hand-side. This, as we have 

noted, is in the sp i r i t  of the  recourse model, but i t  does not yet address the sto- 

chastic aspect of the right-hand-side elements. 

One aim of ou r  paper  has been to  demonstrate (hopefully convincingly) that  

recourse analysis could be  introduced in a very natural way as a post-optimal 

analysis option in an MPS and that i ts implementation is not substantially more dif- 

ficult than tha t  of o ther  post-optimal analysis options current ly provided within 

them. I t  could be  argued, of course, since problem (2.7) can be  directly expressed 

as a l inear program, tha t  i t  could be  left up t o  the  user  t o  set up this l inear pro- 

gram, c rea te  the appropr iate MPS file and solve it in the conventional way. This is 

t o  impose upon him o r  h e r  a laborious and e r r o r  prone task. To do s o  would be  as 

unreasonable as requiring that  t he  user  implement his own post-optimal parametric 

and sensitivity analysis. Another approach is t o  use an extended LP system based 

upon piecewise-linear (separable) programming (see Fourer 191) t o  solve (2.5) o r  

(2.7). Unfortunately such systems a r e  not available as general purpose software. 

Thus i t  is necessary t o  fall back upon the more conventional mathematical pro- 

gramming systems. 

The part icular implementation described in ear l ie r  sections of th is paper  w a s  

developed f o r  MINOS (specifically Version 5.0) in i ts  l inear programming mode, but 

an implementation f o r  another large-scale l inear programming system (MPS) could 

be  patterned along r a t h e r  similar lines (see, in part icular,  Figure 2.1). This would 

requi re the following: 

(a) Firstly, augmentation of the standard MPS description of a l inear program 

(which may be  formulated and solved as a f i rs t  step) by some standardized 

description of the stochastic information. A format along similar iines t o  Sec- 

tion 3.2 would be  quite appropr iate.  Note tha t  this does not conflict with the  

trend toward high-level modeling systems fo r  defining mathematical program- 

ming problems (see, f o r  example, the  GAMS System of Brooke, et al. 121). MPS 

format (and i ts extension to  stochastic problems) primarily serves the  pur- 

pose of formalizing the  interface t o  optimization codes and indeed MPS format 

continues to  play this ro le  in systems like GAMS. (With regard t o  the third 

"control" fi le of Figure 2.1, note that  this is specific t o  the  MINOS implementa- 

tion and would obviously vary with different MPS systems.) 



(b) Secondly, se t  up of one o r  more l inear programming problems corresponding 

t o  (2.7) by augmenting internal data structures. The more straightforward 

implementation (because i t  involves only one augmentation) is t o  use some ver- 

sion of the bounded variable method of Wets [25] as in BVSRDD (see Section 

4.2.). Assuming that  a deterministic version of the  problem has already been 

solved, the additional columns could be inserted directly into the packed data 

representation used by the MPS from the stochastic information supplied as 

described in (a) above, and the problem reoptimized. (It would be wasteful t o  

generate a f resh MPS file f o r  (2.7).) In MPSX/370, the augmentation and reop- 

timization could be done through the Extended Control Language (see [I]). 

The difficulty with the bounded variable approach ar ises when the distribu- 

tion has many points, f o r  example, when i t  is obtained by discretizing a con- 

tinuous distribution. See the discussion in Section 4.2. Also i t  does not gen- 

eral ize t o  non-simple recourse. The alternative is  t o  implement the general- 

ized l inear programming approach, again directly inserting the  added columns 

into internal data s t ructures and solving a sequence of l inear programs, each 

start ing off where the  previous one left off (as in ILSRDD, Section 4.1). A s  w e  

have seen, implementation required modification only of the  outermost level of 

MINOS and we believe this would be t rue  fo r  o ther  MPS systems as well. The 

ILSRDD algorithm is very efficient in this context and as w e  may note, the 

approach applies t o  more general forms of recourse. 

(c) Thirdly, the output of t he  solution in an appropr iate way, again done most con- 

veniently through access t o  the  internal data structure.  

To summarize, the mathematical programming field is r ipe  f o r  incorporating 

some forms of stochastic programming with recourse into cur ren t  large-scale MPS 

systems. W e  have provided a detailed il lustration of how i t  can be  done f o r  one 

current ly available MPS and how i t  could (possibly even should) be done fo r  o ther  

systems. 
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