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PREFACE

As in natural sciences like physics the primary aim of a systems ana-
lytic study is to find a synthesis of formal and informal, mathematical and
non-mathematical methods, procedures, approaches, etc., and to design a
computer-based system as a qualitatively new tool for the analysis of con-
crete problems pertinent to a concrete real system under study.

This process of design should be able to incorporate different types of
available knowledge and information about the real system. The non-
quantifiable knowledge of people, who from their experience know many
important properties of the real system, is often of a high value. There-
fore, having efficient channels of communicating this type of knowledge into
the process of design is very desirable.

This type of a communicating channel is one of the characteristic
features of the modeling procedure described in this paper. It accepts two
types of information about a real system: measurement data and also expert
knowledge about the system’s structure. The use of the highly interactive
computer system based on this procedure is an iterative process in the
course of which the subjective expert knowledge can be utilized to a great
advantage.

This interactive system has been applied successfully by the IIASA
Regional Water Policies Project (WAT) for the development of simplified
models of complex groundwater-crop growth systems for their subsequent
incorporation in the decision support system for the Southern Peel region
in the Netherlands. This application will be described in a forthcoming
paper and also in the final report of the WAT project.

Sergei Orlovski

Project Leader
Regional Water Policies Project
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ABSTRACT

Key Words. Complex system, computer assistance, identification, man-
machine interface, model simplification, structural modeling.

A computer-assisted mathematical modeling method that emphasizes the
interaction between analysts and computers is presented. It combines
algebraic and graph-theoretic approaches to extract a trade-off between
human mental models and models based on the use of data collected from the
system under study. The method is oriented to the modeling of the so-called
"gray box" systems which often involve human behavioral aspects and also
knowledge of the experts in relevant fields. By recursive dialogues with the
computer, the modeler finds a system model! which can be nonlinear with
respect to descriptive variables. The structure of the computer program
packages is also presented.

-iv -



AN INTERACTIVE MODELING SUPPORT SYSTEM (IMSS)

Y. Nakamoril), M. Ryobuz). H. Fukawa®’ and Y. Sawaragiz)

1. INTRODUCTION

Kalman (1983) has emphasized that "a model must explain real data; it
must not be an artifact expressing the modeler's prejudices.” He (1982)
claims that "the principal modeling problems for the future are not statisti-
cal, but system-theoretical,” and continues that "the immediate task is to
begin developing prejudice-free modeling theory." His words are impressive
and shocking for applied systems analysts. The state-of-the-art of the
mathematical systems theory is, however, not so well developed that it can
cope with complex large-scale systems which lie outside of the domain of
validity of the physical laws. Such systems must involve human behavioral
aspects and may not provide behavioral data sufficient both in quality and
quantity. We reply to Kalman's addresses by quoting the assertion in Gaines
(1984) that "the powerful methods of linear systems theory work not
because they reflect reality but rather because we have built worlds of
mechanical and electronical systems which are linear, and hence can be
modeled, designed and controlled; outside technologically created reality
linear systems theory has far less to offer in modeling the worlds of
nature.” On the other hand, it is also the fact that we often face situations
where any classical, statistical procedures would not work adequately. To
deal with such problems we must consider effective utilization of the exist-
ing theories and tools.

1"On leave from the Department of Applied Mathematics, Faculty of Science, Konan Univer-
s\ity, Kobe, Japan.

“The Japan Institute of Systems Research.

S’Department, of Applied Mathematics and Physics, Kyoto University.
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The process of mathematical modeling involves a certain number of
stages and cycles. In a classical framework of system modeling three funda-
mental stages are considered: selection of the type of model, parameter
estimation and the validation of the model. El-Sherief (1984) defines the
system identification problem in his recent survey concerning multivariable
system modeling as follows: "from a given set of input and output measure-
ments (cause and effect), it is required to estimate a mathematical model
within 'a specified class of models’' which fits the measurements as closely
as possible.” He observes that "one important factor in identifying mul-
tivariable systems is the determination of the structural parameters; each
type of model has its own structural parameters which must be known before
an attempt is made to estimate the model parameters.” This statement is
related to the main point in Kalman (1980): '"there is a one-to-one
correspondence between the data and its canonical realization (model);
with the same data each modeler must arrive at the same conclusion as any
other modeler, except for a possibility inevitable but always irrelevant
relabeling of the variables.” But there certainly exist worlds that the (par-
tial) realization theory would not be accepted yet, and under such uncertain
circumstances we must make important decisions.

A great majority of tendency has been rapidly arising in modeling of
badly posed systems in which emphasis lies on structure characterization
instead of parameter estimation. In fact, Linstone et al. (1979) identify
about 100 structural modeling techniques, and develop guidelines in the
choice and proper use of 7 famous tools. They define a structural model as
"any model which represents a complex system as a set of elements with
relations - nearly always pairwise — linking some or all of them; and places
the emphasis on the geometry or structure rather than on quantitative
aspects of the relationships.” Because generally decision-makers are not
mathematicians or scientists a structural model is much more appropriate
than others for learning experience. The structure of a system is funda-
mental to the understanding of what is happening. It gives new insights into
the system to decision-makers and the modelers as well. Among many tools
of structural modeling we extract the idea, for our purpose, from the Inter-
pretive Structural Modeling (ISM) proposed by Warfield (1974); we have
found in it the importance of a bird’s eye view.

Our ultimate goal is to obtain some numerical relationships between
system variables which should be, we believe, comprehensive or descriptive
rather than intrinsic. Much attention has been also devoted to the exten-
sion of the classical image of modeling in uncertain environments. An
unorthodox approach is known as the Group Method of Data Handling
(GMDH) proposed by Ivakhnenko (1968). It is based on heuristic principles
of self-organization and relies on bioengineering concepts. Despite the
energetic research activities of Ibakhnenko and his colleagues after its
introduction, the method seems to be far from world-acceptance. A critique
is the following: by application of the self-organization method, the com-
puter itself finds a unique model, but ignores any theories and consensuses
developed in the relevant field. Look, this is a good example of the lesson
for applied systems analysts. If we define the direction of new systems
analysis as a discipline that provides decision support systems in any fields
of human activities, then of vital importance is communication at every
level, for instance dialogues between citizens and mathematicians, between
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economists and system analysts, between experts and decision-makers
between people and computers, and between mental images and the data. We
will borrow a part of Ibakhnenko’s idea, but we do not necessarily rely on
the whole process of heuristic self-organization.

The method presented in this paper consists of a combined modeling
technique of algebraic and graph-theoretic approaches, and related man-
machine interfaces. A new simulation model must be comprehensible, flexi-
ble and simple but appropriately complicated for the purpose of prediction
or decision-making. But neither exactly defined stopping rule nor com-
parison criterion is imposed in our method. The pessimism of untouchability
of the real structure does not allow to rely entirely on any traditional, sta-
tistical criteria because most of them have been invented to measure dis-
tance between the model and the real system. Some of them are, however,
used in our method just as reference material, whenever required. Our
mainpoint is how to balance, with computer assistance, the experts’ mental
models with those which the data tells.

In the next section we describe the outline of the method, and then in
Section 3 we present the main part of this paper involving multistage dialo-
gues in the modeling process and related man-machine interfaces. To make
the paper self-contained, the details of graph-theoretic and algebraic
phases of modeling will be presented in Sections 4 and 5, respectively,
which are related to the principal computer program packages. Finally, in
Section 6 we describe a personal computer software of the modeling support
system.

2. STRUCTURE OF THE METHOD

PROBLEM. Suppose we have a real object to obtain a mathematical model.
We introduce a set of names of variables:

S=iz;:i=1.2,....n{ ,
and suppose we have a measurement data table:
X=(z:,lj) , t=1.2,..,n,7=1.2,... N,
where Zyy represents j-th measurement of i-th variable.

We introduce a cause-effect relation B, on the product set S xS,
defined by

(x4 ,z:j) € B if and only if z; influences z; .
or, equivalently, a matrix 4 = (a..lj) defined by
1 if (zi,zj) €ER
215 = |0 otherwise

This matrix describes characteristic set of the relation Z and is called the
adjacency mairiz. The matrix 4 represents a type of our knowledge about
the dependency relation between system variables, and is not determined
clearly at the initial stage of the modeling process.
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The problem is to obtain a mathematical model of the system in terms of
a set of equations which governs the elements of S using the measurement
data X and the information 4.

OUTLINE. The modeling process consists of three different but interdepen-
dent stages of dialogues.

The first stage dialogue is required for preparation of the modeling,
including input of measurement data and the initial version of cause-effect
relation on the set of variables, transformation of variables, data screen-
ing, and refinement of the cause-effect relation.

The second stage dialogue is devoted to find a trade-off between the
measurement data and the modeler’s knowledge about dependencies between
the variables. Based on the measurement data and the initial version of the
cause-effect relation, using the option of regression method, the computer
finds a linear model and the corresponding digraph model. The modeler
modifies the new relation referring to these computer models and his
knowledge. The process continues repeatedly until no change occurs or the
modeler is satisfied with the modified relation.

The third siage dialogue is related to model simplification and ela-
boration. Model simplification is based on the use of equivalence relation,
and model elaboration is an application of regression analysis including the
hypothesis testing on estimated coefficients, and examinations of the expla-
natory and predictive powers of the model.

Figure 1 shows the structure of the modeling process.
3. INTERACTIVE MODELING METHOD

3.1. The First Stage Dialogue

The first stage of the modeling process consists of the following steps
that are necessary for preparation of the modeling.

1. Data Input

We call the triplicate (5,X,4) the modeling knowledge which is fed into
the computer at the first step. The manner of filling the adjacency matrix 4
should be negative. Here negative means that the modeler should enter the
computer a part of his knowledge, putting 0’s at the right places. The rest
of entries in 4 will be filled with 1's by the computer. The underlying idea
is that we should inquire into strength of relationship between every pair of
variables except those which are definitely irrelevant.

In filling the adjacency matrix 4 = (a.,j), we allow to use an extension
of binary relation:
2 if z; certainly influences z,
a;; =1 0 if z; never influences z;
1 otherwise
There is no difference between 1 and 2 in digraph modeling. They are
treated differently in choosing explanatory variables in linear modeling,

i.e., the variables indicated by 2 are regarded as the core variables and
those indicted by 1 the optional variables. We redefine the cause-effect
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Figure 1: The structure of the modeling process

relation B as follows:

(zt,zj) € B if and only if a;; # 0

We have another option of filling the matrix A. The relation con-
sidered is the cause and effect that is not necessarily transitive. But it may
be quite feasible to employ the assumption of transitivity to develop a linear
model. The modeler can choose the option of a transitive embedding method
which is a modified version of that in Warfield (1976). The resulting matrix
A is a transitive matrix with elements 0 or 1. The advantage of this method
is that it can reduce the number of pairwise comparisons remarkably. One
caution in using this method is that the modeler should consider indirect
cause-effect relationships as well as direct ones.



2. Transformation of Variables

The modeler can feed into the computer another type of knowledge:
time-lag effects or functional relationships. The resulting model can be
fairly complicated by transformation of variables. Transformation is also
needed to make distributions of variables symmetric because, according to
Hartwig and Dearing (1979), non-symmetric distributions and non-linear
relationships often exist together. If every distribution of variables is
roughly symmetric, then we will have a high chance to obtain a linear model.
For this purpose the computer helps the modeler offering possible transfor-
mations. The options of these include:

vy =exp(x), y =log(z), vy =log(z/(1—x)) ,
y =z™ (n:giveninteger), vy (t)==z(t-1) (¢:time)
Yy =a+bxy + cx, +dxyz, (a,b,c and d: given constants) ,

and their combinations. Needless to say, some transformations have con-
straints with respect to the range of numbers. The computer provides his-
tograms of the original and transformed variables to assist the modeler's
judgement. The modeler can choose a transformation by which the resulting
new variable has a satisfactorily symmetric histogram after several exami-
nation.

When a transformation is done, the computer modifies the modeling
knowledge (S,X.4) in the following way. If a single variable is transformed
by a formula except the time-lag operation, then the corresponding row of
the data matrix X is simply rewritten with the transformed numbers. Other-
wise, a new variable is added to the set S, a new row is added to the data
matrix X for the transformed data, and the adjacency matrix is extended in
such a way that the new row (resp. column) is given by Boolean addition of
the corresponding rows (resp. columns) of original variables.

3. Cause-Effect Relation

If the modeler wants to look at the structure of his mental model, then
the computer will show the digraph of hierarchy based on the adjacency
matrix A, taking its transitive closure and extracting the skeleton. The
process of obtaining a digraph will be explained in detail in Section 4.
Moreover, if the modeler wants to check the relationship between a pair of
variables, then the computer will show two dimensional scatter plots. The
modeler can change the relation characterized by A referring to these
information.

If the objective of modeling is not just description but control or pred-
iction of the real system, then the control variables or the variables whose
data can be obtained accurately should be placed in appropriate positions
in the hierarchy. The introduction of the modeler’s assumptions or preju-
dices at this stage should be as little as possible.

4. Linear Relation

The computer checks and displays pairs of variables which have high
correlation coefficients. To avoid the problem of multicollinearity and also
to simplify the model, it is recommended that one of the pair is set aside
when they are supposed to be linearly dependent. If the pair z; and zy is
such a pair and the modeler wants to exclude zy, then the 7-th row and



column of 4 will be rewritten as
aﬁ=3 and ajk=0.k¢1'..k¢j
a..lj=2 and akj=0,k¢i,k¢] '

where 3 is treated the same as 1 or 2 in the digraph modeling, but it is
treated as O in the linear modeling. Thus, z; will be explained only by z;
and z; will not be an explanatory variable for z;.

The underlying idea is that if we put a; = 2, then there will be a high
possibility that z; is also explained only by z; and this is not interesting. If

there are more than two variables that are highly correlated, then the
modeler can remove some of them in the same manner.

If there are some known relationships between variables in terms of
linear equations, then the modeler can enter the facts into the computer.
This information will save time in the second stage dialogue.

5. Dala Screening

If at some step the modeler wants to check distributions or outliers of
the data for some variables, the computer assists the modeler by showing
the list of candidates of outliers, histograms or scattergrams. The modeler
can designate the case numbers which he does not want to use in modeling.

After the first stage dialogue, the set of variables S and the data
mailriz X are fized and will be used in the next siage as they are. The
adjacency matriz A which contains the modeling knowledge obtained up
to this stage is alone open for further modification. Figure 2 shows a
visual description of the first stage dialogue.

3.2. The Second Stage Dialogue

The purpose of this stage is to elaborate the cause-effect relations
which are summarized in the adjacency matrix. A series of reciprocal con-
siderations and calculations by the modeler and the computer will continue
until at least one of them recognizes that the further repetition would not
improve the model. The information exchange process is the following:

1. Selection of Regression Method

The modeler should choose one of the options of regression methods
with self-selection of explanatory variables, which will be used in the next
step. The options of these include:

- the forward selection procedure,

- the backward elimination procedure,

- the all possible selection procedure, and

- the group method of data handling.
The last one is most recommended in our method because we have in mind the
real world that can hardly provide the data with which the traditional, sta-
tistical inferences work well. If this method is selected, the computer asks
the modeler about the data division into the training and testing sets. We
use a modified or simplified version of this method, i.e., the partial
descriptions will be written in a linear form (linear in variables). This
point will be discussed in Section 5.1.
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2. Estimation of Linear Relationships
First the computer prepares an n X (n +1) vacant array C:

C=(cy), i=12,...,n, j=01,...,n
For the convenience we write ¢, for the first column vector of C and C for
the remaining n X n matrix, i.e.,
C = (€o.C)
The array C is prepared for the coefficient matrix of a set of linear equa-
tions which the computer will search from now on:
z =cog+ Cx with ¢y =0, all ¢

where £ denotes the n-column vector whose components correspond to the

names of variables z,,z,,..., Z,.

By the selected _automatic modeling method, the computer will estimate
the row vectors of C one by one referring to the matrix 4 (which can be
converted to a transitive matrix before going into modeling) in the following
way:

~ Suppose now a turn is i -th row vector of C.

- The computer refers the i-th column of the adjacency matrix 4, and
defines two subsets of S':

Siz=f:cj;a.ﬁ =2,7 #1i{

The variables z:j in Si are always chosen as explanatory variables for z,,
and those in St are candidates of explanatory variables for :c.l (the
explained variable). Let us call St the set of core variables and Si the set
of optional variables.

- By the specified method the computer will find the best fit equation (the
meaning of the best fit will be explained in Section 5):

z, =G+ Y €154
z; ES,'_lLJSia
where C,q, C;; are estimated coefficients.
- The computer substitutes:
10 =€10 -
jc‘ if z, eStuUS?
i §) i i
€5 =0 otherwise
Thus the computer will have found a linear model:
M = (S,C)
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3. Eziracilion of Skeleton

A linear manifold indicates a relationship between variables, but it
does not tell about the cause-effect relationships. But, here we impose on
the computer a heuristic assumption: /n the linear model

Mo = (5.C) or z =cy + Cz
the explanatory variables are regarded as the causal variables to the
explained variables.

Following this assumption the computer modifies the adjacency matrix
A= (a.ij) referring to C = (cij) as follows: Let us denote the new i,j7 entry
of 4 by a.{} and the old ©,7 entry by a.{’j.

0 if 4 =0 and z; ESj1

all =
1] ‘7-1?_1 otherwise

Thus some of 1’s in A will turn into 0's. The corresponding relation B is
then defined by

(zi,zj) € B if and only if a;; # 1

Let us introduce a digraph D defined by
D =(S,B)

where the elements of S are identified as vertices and those of B arcs. The
vertices are represented by points and there is a directed line heading
from z,; to z; if and only if (z; ,xj) is in B. Lel B denote the transitive clo-
sureof B, i.e.,

(@) B contains B,

(b) B is transitive, and

(c) B is the minimal relation satisfying (a) and (b).
Suppose the variable set S can be divided into m equivalence classes
E{Ey,..., Ep. Herean E, is defined by

zy . Zy EE’p if and only if (z; ,xj) . (xj,xi) Y]
By the graph-theoretic terminology an equivalence class is called a

strong component or a cycle set of the digraph D. For details see Section
4.1. Then we can define new sets:

§=}Ep;p=1.2,...,m§ .
B' = EpEg): some (z,.z;) €B ,z; €E, , z; €E]}
and the corresponding digraph is called the condensation digraph:
D' =(5.B")
Finally we introduce the skeleion digraph D which is a minimum-arc subdi-
graph of D, for which removal of any arc would destroy reachability
present in the relation. Actually the above process is carried oul by some

matrix operations in the computer. The details will be described in Section
4.2.
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After all, the computer will have found the digraph model:
Mp =(5.D)
This is a visual version of the linear model M,. The digraph model is

uniquely led from the linear model by the heuristic assumption, but the
reverse is not true.

4. Informalion Exchange

Now the computer has a linear model M, and the corresponding digraph
model Mp. This step is devoted to the learning experience for both the
modeler and the computer. Showing its digraph model Mp, the computer
asks the modeler modification of the relation present in the linear model.
The allowable amendments to the digraph model and their reflection on the
adjacency and reachability matrices are summarized as follows; if an amend-
ment affects the skeleton matrix, the digraph model is immediately modified.

(1) Format Amendments to Hierarchy

To facilitate interpretation of the relation, the modeler can amend the
format of hierarchy that affects only the skeleton matrix. Such amendments
include replacements of vertices, the contraction of vertices in different
levels and the pooling of vertices in the same level. The vertices con-
tracted or pooled are drawn in different colors to distinguish them from the
strong components.

(2) Substantial Amendments to Cycles

The modeler can look at the adjacency structure of each cycle (strong
component) and modify it by adding or removing arcs. Addition of an arc to
a digraph map of a cycle has no effect on the reachability but corresponds
to replacing a 0 in the adjacency matrix with a 1. On the other hand, remo-
val of an arc causes the reverse operation on the adjacency matrix. When
an arc is removed, the computer finds the transitive closure of the revised
adjacency matrix and rewrite the reachability matrix. But an arc removal
from a cycle sometimes preserves the universal reachability. If the cycle
clipping is desired, a cycle can be divided into two strong components which
can be either in the same level or in different levels. When a cycle is
clipped by this manner, the corresponding interconnecting entries between
divided strong components in the reachability matrix, and also those of the
adjacency matrix filled with 1's, will be replaced by 0’'s. The modeler
should pay careful attention to the cycles forming the veriex basis. Here
the vertex basis of a digraph is the set of vertices which consists of all ver-
tices with no incoming arcs. The variables in the vertex basis should be
measurable with relatively small measurement errors and should be
appropriate as the control variables.

(3) Substantial Amendments to Hierarchy

Addition of a new arc to the hierarchy causes the same change in the
adjacency and reachability matrices in such a way that all O's between two
strong components are replaced by 1's. But the latter matrix may not be
reachable; hence the computer finds the transitive closure of the revised
matrix. Removal of an arc from the hierarchy often affects the reachabil-
ity. If an arc is removed, the adjacency matrix is first modified by replac-
ing all 1's between two strong components with 0's. Then the computer finds
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the transitive closure of the revised adjacency matrix and see it thereafter
as the transitive matrix. If an arc removal causes the violence of the total
reachability necessary in the system, the modeler should compensate it by
adding appropriate arcs.

Even the expert can hardly tell whether the obtained linear equations
are appropriate or not because of the difficuities of checking validity of
the hypothesis testing and giving meaning to regression coefficients.
Therefore the linear equations are not shown here. But the direct modifica-
tion of the adjacency structure between cycles is sometimes required. We
prepare another program for this purpose.

(4) Amendments to Adjacency Structure

The computer exhibits the columns of the adajcency matrix 4 one by
one which may present the linear relationship of variables. The modeler
can change 0's to 1's in each column, and vice versa. Moreover he can
write 2’'s at some entries if the indicated variables should always be neces-
sary as the explanatory variables, i.e., the core variables. If any change is
done, the reachability matrix is recalculated and the revised digraph is
shown.

If the modeler does not change any relationships, then the modeling
process will proceed o the third stage dialogue. Otherwise, the second
stage dialogue will be repeated again. In this case the modeler can
inform the computer the linear relationships with which he is already
satisfied for saving time. He can substifute the reachability mairizx for
the adjacency matrix to find further possibiliiies in the linear model-
ing. Figure 3 sketches this stage of dialogue.

3.3. The Third Stage Dialogue
This stage consists of two modes:

- model elaboration, and
- model simplification.
The modeler can move from one mode to another at any time he wants.

1. Model Elaboration

If the modeler considers that he has enough data and that their statis-
tics are meaningful, then he can elaborate the computer model by the clas-
sical regression analysis. Even if he has used the group method of data
handling at the second stage, it is recommended in Ivakhnenko et al. (1979)
that the coefficients of all the models upon comparison and selection can be
reestimated using the minimum mean square error method applied to the
whole data table. In this mode the modeler must designate an explained
variable, then the computer will reestimate the coefficients of the linear
equation and provide the following statistics:

- standard errors of estimated coefficients,

- t-ratios of estimated coefficients,

- standard deviation of residuals,

- F-ratio against a null hypothesis, and

- controlied determination coefficient.
All the above statistical terminologies will be explained in Section 5.2.
Moreover, the computer supplies the routines:
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Figure 3: The second stage dialogue
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- residual plots,

- multicolliearity checking, and

- prediction, if a new data set is available.
The modeler can elaborate the computer model by adding or removing some
explanatory variables referring to these statistics. If the modeler wants
the data preprocessing, he can call the subroutines in the first stage:

- transformation of variables, and
- data screening.

2. Model Simplification

Because the variables in an equivalence class may be connected by a
linear relationship, it is desirable to choose proxy variables for model sim-
plification and elaboration as well. The modeler can extract some proxy
variables in each equivalence class to simplify the computer model in the
following way.

(1) If two or more explanatory variables in a linear equation come
from the same equivalence class, then the modeler can examine model sim-
plification by choosing one or a few proxy variables and removing the rest.
The computer will reestimate the coefficients of the equation and calculate
some statistics mentioned in the model elaboration mode. The modeler can
ask the computer to choose other variables as the proxy variables repeat-
edly, and if he is satisfied with one of the results, he will obtain a simplified
model.

(2) If the explanatory variables in a linear equation come from many
equivalence classes, then the modeler can examine further simplification so
that the explanatory variables will come from a small number of equivalence
classes, as long as the simplification does not destroy the reachability
present in the model developed at the second stage.

Figure 4 shows the flow chart of the third stage dialogue. The modeler
can reiurn to the first stage dialogue if he wanis to reconsiruct the
model by using aliernative tools equipped in the computer.

4. GEOMETRIC PHASE OF MODELING

Having in mind that our final goal is to extract numerical properties of
a complex system, we place the emphasis on the quantitative aspects of the
relationships. One important thing involved in developing geometric models
is the learning experience about the potential variables and their interac-
tions. Lack of understanding of the structure of the underlying systems
often leads us to the wrong conclusion.

Let us recall the notations: S denotes the set of descriptive system
variables:

S ={z,xp,...... Xy
and P a cause-effect relation of these variables:

B = {(z, ,.'z:j) i y,@; €S and z; affects zj{
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EXIT FROM THE SECOND STAGE DIALOGUE (S, X, A)

MODEL ELABORATION

reestimation

hypothesis
testing

] =
O

residual plots

extrapolation

adding
or removing

—>

explanatory

variables

Date Preprocessing

]

MODEL SIMPLIFICATION

C M

Digraph Model

Mp= (S, D)

-

>

Linear Model

Mg = (S, C)

Proxy
——

variables

d}._, The First Stage

v

EXIT FROM THE SYSTEM

MODEL : Mg = ( S, C)

Figure 4: The third stage dialogue (M: modeler, C: computer)
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4.1. Graph Theoretic Concepts

The foundation of structural modeling is provided by the graph theory
which has been impressively developed by Harary et al. (1965) and Roberts
(1976): the latter is the original text of the following description.

Define a directed graph or digraph D as a pair (S,B), where S is the
set of elements and B € S XS is a subset of ordered pairs of elements. We
use the notation S(D) and B(D) for the vertex set and the arc set of D,
respectively. The vertices are represented by points and there is a
directed line leading from z; to z; if and only if (z, .:z:j) is in B. If there is
an arc from vertex z; to vertex z;, we shall say that z; is adjacent to z;.
We say z; is reachable from z; if there is a path from z; to zy. A path isa
sequence

y]_ 1 (yivyZ) ’ yz ' (y2-y3) [ | (ytlyt+1) ' yt+1
wheret =0, {y4,%2,..., Y41} is a subset of S and each (y;,y; +1) isin B.
A path is called closed if vy;,4 = ¥4. If the path is closed and the vertices
Y1.Y2, ..., Y; are distinet, then the path is called a cycle. An arc from a

vertex to itself is called a loop.

A digraph D is sirongly connected or sirong if for every pair of ver-
tices z; and x4, z; is reachable from z,; and z; is reachable from z;. A
subdigraph of D is a digraph whose vertex set is a subset of S(D) and
whose arc set is a subset of B(D). A strong component or a cycle set of D
is a maximal strongly connected subdigraph, where maximal means that if we
add more vertices, the resulting generated subdigraph is not strongly con-
nected. The vertices in a strong component form an equivalence class, i.e.,
they are connected with each other by a reflexive, transitive and symmetric
relation. Note that a single vertex may constitute a strong component, and
each vertex is in one and only one strong component.

We can now define a new digraph D, the condensation digraph of D
as follows. Let Ey,E,,..., E, be the strong components or proxy ver-
tices. Then

SDY={E{Ey,..., En} .

and we draw an arc from E’p to Eq if and only if p # ¢ and for some vertices
z; € B, and z; € E,, there is an arc from z; to z; in D.

A collection V of vertices of a digraph D is called a vertex basis of D
if every vertex not in V is reachable from some vertex in ¥V and V is minimal.
Here, minimal means that no proper subset of V can reach all vertices. The
concept of the vertex basis is important from the control-theoretic view
point and some theorems have been established:

(1) The condensation digraph D' of a digraph D is acyclic, i.e., it
has no cycles.

(2) An acyclic digraph has a unique vertexr basis, consisiing of all
vertices with no incoming arcs.

(3) Let V' be the unique vertex basis ofD'. Then the veriex basis of
D are those sets V consisting of one vertex from each strong component of
D which isinV'.
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(4) Every two verlex bases of a digraph have the same number of
vertices.

A skeleton digraph D is a minimum-arc subdigraph of D*, in which
each strong component or a cycle in D has been replaced with a proxy ver-
tex, and from which removal of any arc would destroy reachability present
in the relation. A skeleton digraph gives insight into the hierarchical
structure of the underlying system.

4.2. Structural Modeling

System structures in terms of the graph-theoretic terminologies can be
conveniently summarized using suitable binary matrices. The process of
structural modeling is a series of steps of matrix operations; a brief
description is presented below.

Suppose D = (S,B) is a digraph. The adjacency matrix A associated
with D is the matrix (a;;) defined by

1 if (:ci.:cj) €erR
245 = |0 otherwise

One of the important properties of the adjacency matrix is:

If D is a digraph with adjacency matriz A = ("-t ), then 1,7 entry of
At gives the number of paths of length t in D which lead from z; tlo z;.

The reachability malriz, or the transitive closure R = (rtj) of 4 is
the matrix defined by

1 if z; isreachable from z;

= |0 otherwise

Note that each vertex is reachable from itself, since z,; alone is a path, so
ry4 =1, all i. The reachability matrix can be expressed in terms of the
adjacency matrix:

R=I+A+4+ - +4"T=+a)n™?

where all the operations are Boolean. It is obvious from the definition that
the reachability matrix describes reflexive, transitive relation, i.e., a
partial ordering relation.

Many authors have developed partitioning and tearing methods on the
reachability matrix in order to construct an interpretive structural model.
Efficient procedures are found in Warfield (1976) and Sage (1977). After
several partitions and rearrangements of the reachability matrix, one can
obtain a standard or canonical form which is a lower block triangular
matrix. This matrix can be converted into a condensation matrix in which
the rows and columns of all the same levels, i.e., the cycle sets or the
strong components in D are deleted except one, that one being identified as
the proxy element.

As far as the extraction of strong components is concerned, the follow-
ing theorem is useful.



-18 -

Suppose D is a digraph with the reachability matrix R = (r”).
Then:

(1) The strong component containing a vertex x; is given by the entries
of 1 in the i-th row (or column)of R X RT, where RT is the transpose of R
and the product is the elementwise product, i.e., R X RT = (ryy X ry).

(2) The number of vertices in the strong component containing x; is the
i-th diagonal entry of R*.

The skeleton matriz (s”) is a condensation matrix in which all diago-
nal entries are 0, and the entries of 1 are changed into 0 until any addi-
tional entry would destroy reachability present in the condensation matrix.
An efficient algorithm to find the skeleton matrix is presented in Warfield
(1976). The relation modeled is asymmetric, i.e., an entry Sy = 1 implies
Sy = 0, and no cycle is found in the structure. The structural model of such
a transitive, asymmetric relation is called a hierarchy.

These model exchange isomorphisms describe the process by which
primitive (mental) models are ultimately transformed into clearly articu-
lated interpretive structural models. One of the greatest advantages of this
process is that it gives the modeler insight into the structure itself. As
insight is gained, the modeler may want to correct earlier aspects of the
model.

3. ALGEBRAIC PHASE OF MODELING

Our method requires the program packages for the procedures of
self-selection of explanatory variables at the second stage. The classical
regression analysis is also used at the third stage for model simplification
and elaboration.

3.1. Self-Organization Method

If the modeler has enough data, the following self-selection procedures
are recommended:

- the forward selection procedure,

- the backward elimination procedure, or

- the all possible selection procedure.
The selection criterion (goodness of fit) used in these procedures is usually
the controlled determination coefficient . A drawback of these procedures
is that they need a fairly long time for calculation when the number of can-
didates of explanatory variables is large. If the modeler does not have
enough data, or he wants a quick search for a linear model at the second
stage, then he can choose a linear version of

- the group method of data handling.

We give below a brief summary of this method.

As mentioned in the introduction we are against some aspects of this
method: "For the discovery of laws it is not necessary for the human opera-
tor to specify the set of explanatory variables, the input and output vari-
ables, the control variables, and the disturbances, etc. All of this is done
by the computer (Ivakhnenko et al. 19798).” It is a matter of common
knowledge that even apparently irrelevant variables could be
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approximately embedded in a linear (or nonlinear) equation. The reason
why we use a part of this method is that we are supposing the objective sys-
tems as those which could hardly provide adequate data with which
mathematics or statistics would work well to develop fantastic models
acceptable to every person.

Ivakhnenko’s idea is the following:

- If the data are not too variable, the computer itself can find the best
unique model for prediction or the best one exhibiting cause-effect rela-
tionships.

- By application of the self-organization method, the computer should be
able to objectively discover the natural law that exists in the object under
study.

A prototype of the group method of data handling can be described as
follows:

- The model to be found is the complete description, where the explained
variable is a nonlinear function of all the explanatory variables and their
time-delayed variables. This complete description is found by several
layers of approximation.

- At the first layer of selection the complete description is substituted by
some partial descriptions which are nonlinear functions of every possible
combinations of pairs of the explanatory variables and their time-delayed
variables. The values of the partial description coefficients (goodness of
fit) can be found by the mean squares error method. Then some of the par-
tial descriptions are chosen such that the errors of selected ones are less
than a specified threshold value.

- At the second layer of selection, the selected partial descriptions at the
first layer play the roles of explanatory variables. The estimation of coef-
ficients and the choice of some partial descriptions (the number should be
less than that of the first layer) are repeated again.

- The number of selection layers increases as long as the lower value of the
criteria is decreasing. Thus the process is continuously repeated with the
imposition of ever more rigid thresholds so that finally a unique model is
selected. When the model complexity gradually increases, the selection cri-
terion passes through a minimum, and thus obtains the model of optimal com-
plexity.

- The above process is the mathematical counterpart of the process used by
a gardener in selectively raising various species for the purpose of obtain-
ing a hybrid type that has desired properties.

A variety of heuristic criteria and algorithms are proposed by Iva-
khnenko and his followers. The modeler must specify a criterion, an algo-
rithm, some types of partial descriptions, etc. They are summarized as fol-
lows (we omit the explanation of terminologies).

- The operator (they call the modeler just as an operator) must convey to
the computer a criterion of model selection according to his purpose, for
example,



-20 -

- the regularity criterion,

- the minimum-of-bias criterion,

- the combined criteria, and

- the balance-of-variance criterion.

- The operator must reduce the amount of data used in

- model development (training set),

where coefficients are estimated by the mean squares error method, and
use the rest in

- model verification (testing set),
i.e., selection of the partial descriptions.

- The operator must specify the list of feasible reference functions, such as

- polynomiales,
- rational fractions,
- harmonic series, etc.

- The operator must specify the simulation environment, that is, a list of
possible explanatory variables and their time-delayed variables.

- The operator must determine an algorithm for model sifting, for example,

- the multilayer threshold algorithm,
- the combinatorial algorithm, or
- the adaptive learning network algorithm.

According to Ibakhnenko et al. (1973), there already exist about 100 algo-
rithms. This fact itself tells how heuristic this method is.

In our method we use (heuristically)

- the regularity criterion,
- the multilayer threshold algorithm

which we have already described as a prototype of the group method of data
handling. We restrict the partial descriptions to linear equations (linear in
variables). It should be noted that in this paper a linear model means that
the unknown parameters in each equation are embedded linearly. Because
the modeler can transform variables as mentioned in Section 3.1, he can
construct nonlinear models (nonlinear in the original variables). The rea-
son of our constraint on the partial description that they should be linear
in variables is that if we permit nonlinear equations for the partial descrip-
tions, by application of the self-organization method the computer will often
find a nonlinear equation with very high degree as the best model which
cannot, be interpreted at all.

£.2. Classical Procedures

Suppose now z, is chosen for an explained variable, then from the
adjacency matrix 4 = (a.tj) we have

Sy =ljiay =1, 0oray =2,5 #1i]

which corresponds to the union of core and optimal sets of explanatory
variables for z,. Let us introduce an N-column vector:
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v =YYz, yN)T.where Yy =zu,j =12,..., N ,
and the relabeled data matrix corresponding to S;:
Z=(@y)' . 7=01,...p,k=12,...,N ,

with z4, =1, all k&, where p = |S; |, the number of elements in S;. In the

classical regression analysis the disturbances in data are usually taken into
account only for the explained variable. We introduce the noise of the
explained variable as an N-column vector:

wu =(u1,u2,..., u_N)T 1
with assumptions:
E(u) =0, Var (u) =E(uul) = #I, u; ~N(@©0,0%, 0* unknown |,

where E(-) denotes the expectationand N(-,-) the normal distribution. We
write the coefficients to be estimated as a (p +1)-column vector:

B=(BoBy.--» Bp)T
By applying the least squares method we search the best approximation
of the unknown vector in the set of assumed linear equations:
y=Zf+u
The least square estimator & of 8 is given by
o =z 1zTy
it zTz is nonsingular. The estimator of ¥ and the residual are given by
Y=2b, e=y~-y=vy —-2b |,
respectively. The unbiased estimator of the variance o? is given by
2 - ele =yTy—bTZT1
N—op-1 N—op-1
where the number N —p — 1 is called the degrees of freedom.

s

The estimator & is independent of s®and
b~N(B, d*2ZTZ)™Y)

This means that b is unbiased, and it is well known that the least square esti-
mator has the minimum variance in all unbiased estimators which are linear
with respect to measurements. Given a new measurement vector:

z=(1,29,22,-..,2) .
the prediction of the explained variable is given by
Y, = 2b
with variance:
var (¥,) = TzTz)1z +1)0?

The standard error s.e. (¥,) of ¥, is the square root of var (¥,) where a®
is substituted by s®. The confidence limit with significance level a for z')z
is given by
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Y, tt(N—p-1,a/2)s.e.(F,) .,
where t(p,g) is the (1—g) percentile point of the t-distribution with
degrees of freedom p.
The t-ratio or t-statistic is defined by
_ b8

sVeyy '
If the null hypothesis Hy(8; =5i°) is true, then this statistic follows the
student’'s {-distribution with degrees of freedom N—p —1. The statistic
s v/c;; is an unbiased estimator of ~/var (b;) and called the standard

error of b;. In case that 5i° =0, the confidence limit with significance level
«a is given by

where cij:i,j entry of (ZTZ)'1

b, tt(N—p-1,a/2)s Ve

On the other hand the F-ratio is used for another type of hypothesis
testing:

- all or some of the regression coefficients are zeros,

- two or more regression coefficients are identical.

The original model is called the full model (FM) and a model in which some
coefficients are specified is called a reduced model (RM). Let ¥, , ¥; be

the estimates by FM, RM, respectively. Sums of squares due to error are
defined by

SSE(FM) = Y (y; —¥;)% .
i
SSE(RM) = ¥, (v, =9;)° .
i

respectively. Assume that the RM contains & parameters to be estimated.
Then F-ratio is defined by

_ [SSE(RM)-SSE(FM)]/ (p +1-=k)

- SSE(FM)/ (N —p —1) '

which follows the F-distribution with degrees of freedom (p +1—%k , N—p —1).
If the value of F-ratio is less than a given percentile point of F-distribution
with degrees of freedom (p +1—k , N —p —1), then the null hypothesis will be
rejected.

F

It should be noted that the hypothesis testing is meaningful only when
the assumptions on the error term is valid. To check this, the modeler
should look at the residual plots.

The coefficient of multiple correlation R is the sample correlation
coefficient between ¥y and vy, and often used for the goodness of fit of the
regression equation. The square of R is called the determination coeffi-
cient given by (after a little manipulation)

Z(yt "’!‘/‘1)2
i

=1 ———————  wherey =

R* .
2 ('yt —'!7)2
i

==

Zyi
1
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This statistic is the ratio of the generated variation to the total variation.
In other words, R? identifies a good regression, in the sense of the
estimated funclion contributing most to the total variation of the explained
variable. If we add a further explanatory variable to an equation, R?
increases in return for the decrease of degrees of freedom. The variation
in residuals will be smaller, and the confidence interval will be wider. The
most often used criterion for model selection is then the controllied deter-
mination coefficient defined by

I3 (v —¥;)%/ (N -1) . _N=1
[Y(yy —7)%)/ (N-1) N-p-1

This statistic is useful in prediction application, where we want a set of
explanatory variables which minimizes residual variance.

Rf=1- (1-R%)

6. COMPUTER PROGRAM PACKAGE

We have developed a program package for the modeling support sys-
tem, which runs on a personal microcomputer. The system structure is
described in Figure 5. The list of subprograms in the program package,
with functions and hierarchical levels in the program structure, is shown in
Table 1, and data files for modeling information to be prepared or gen-
erated are summarized in Table 2.

7. CONCLUDING REMARKS

The two well known methods to infer causal relationships from non-
empirical data are Blalock’s causal inference (Blalock, 1872) and the path
analysis (for instance, Kenny, 1973). The former is used for verification of
hypothetic causal models, and the latier for analysis of strengths of causal
relationships in assumed models. Both fall under the category of
correlation-regression analysis, and could not infer causal relationships
completely. To express non-symmetric causal relationships, a set of linear
equations which we described in Section 3.2 is often adopted. If the rela-
tionships are asymmetric and acyclic (the so-called recursive system), the
treatment of such a system is relatively easy. Otherwise, some of the
regression coefficients should be specified before solving the problem (see,
for instance, Johnson, 1872). If the whole variables in the system can be
successfully divided into output (endogenous) and input (exogenous) vari-
ables, one can use a model written in a set of linear simultaneous equations.
The so-called simultaneous equation estimation has been employed in
econometrics for quite some time now. This method also requires a priori
model specification, and an error in model formulation can easily influence
the validity of the total model.

Most of the theoretical approaches in modeling analysis in
econometrics, ecology and sociology seem to enter too many mathematical
constraints in return for removing human knowledge. The proposed method
in this paper is not mathematics-oriented but application-oriented. The
interactive modeling support system is a tool for enlightening both the com-
puter and the modeler about the underlying complex system. The main point
is how effectively extract reality from human mental models with computer
assistance. Even Kalman (1983) states that "in the modeling context preju-
dice may sometimes be good and in fact most valuable, such as a brilliant
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Tabie 1: The program package of the interactive modeling support system

code stage level function

100 0 1 file control (open, create or erase)
200 0 i the master menu for stage menus

300 1 2 the menu for the first stage dialogue
310 1 3 initialization of the modeling

320 1 3 the menu for measurement data lnput
321 1 4 fillng the original measurement data
322 1 4 appending data of new varlables

323 1 4 appending up-dated measurement data
324 1 4 correction of mistyped data

330 1 3 the menu for the relation input

331 1 4 fillng the relation one-by-one

332 1 4 filing the relation by transitive embedding
333 1 4 modification of the cause-effect relation
334 1 4 calculation of the transitive closure
340 1 3 transformations of variables

350 1 3 digraph models of the initial relation
360 1 3 checking the relation by correlations
370 1 3 outlier checking or elimination

380 1 3 calculation of basic statistics

400 2 2 the menu for the second stage dialogue
410 2 3 the menu for the regression methods
411 2 4 the forward selection procedure

412 2 4 the backward elimination procedure
413 2 4 the all possible selection procedure
414 2 4 the group method of data handling

420 2 3 refinement of regression coefficlents
430 2 3 digraph modeling

440 2 3 digraph models of the revised relation
450 2 3 amendments of the digraph model

500 3 2 the menu for the third stage dlalogue
510 3 3 model simplification

520 3 3 the menu for model elaboration

521 3 4 hypothesis testing

522 3 4 residual plots

523 3 4 multicollinearity checking

524 3 4 estimation by the model

524 3 4 information of regression results

530 3 3 prediction based on new data

540 3 3 digraph modeling

600 1 3 the menu for modeling information
610 1 4 the initial version of the relation

620 1 4 the original measurement data

630 1 4 the standardized data

640 1 4 the averages and variances

650 1 4 the correlation coefficlients

660 1 4 the menu for scatter dlagrams

661 1 5 histograms and scattergrams

662 1 S5 scatter plots between two variables
663 1 S5 scatter plots between three variables
700 4 2 the current linear model

guess about the nature of the data.” We admit that there is no unique way to
complex-system modeling. But we believe that the proposed method cer-
tainly directs to the right way in this field. The development of the model-
ing support system is still in its first stage and some important issues are
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Table 2: Data files for modeling information

code contents

00 the list of systems in the disk
01 commonly used parameters
02 the list of names of variables
03 the list of outliers

04 the original data table

05 sample means of variables

06 sample variances of variables
o7 the standardized data table
o8 correlation coefficients

09 the initial ad jacency matrix

10 the initial reachabllity matrix
11 the initial skeleton matrix

12 the revised adjacency matrix
13 the revised reachablility matrix
14 the revised skeleton matrix

15 regression results (statistics)
16 the linear model (coefficients)
17 the data table for prediction

left for future study. They are, for example, the problems of non-pairwise
relationships, non-binary relationships, intransitive relations, cumulative
connections, dynamics and structural changes.
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cause-effect

relation
system variables basic statistics
measurement data pre-calculations
modification of transformation
relationships data screening
STAGE 1 Y,

|digraphs Ihistograms
@ >{ MASTER
MENU

current
linear model STAGE 2
stop
[linear model |
STAGE 3
|digraph model|
lelaboration | [simplification| [new relation |
regression digraph models [modification |
analysis linear models

model building, hypothesis testing, residual plots,
multicollinearity checking, extrapolation

Figure &: The interactive modeling support system
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