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PREFACE 

As  in natural  sciences like physics the  primary aim of a systems ana- 
lytic study is t o  find a synthesis of formal and informal, mathematical and 
non-mathematical methods, procedures, approaches, etc., and to  design a 
computer-based system as a qualitatively new tool f o r  the  analysis of con- 
crete problems pert inent to  a concrete rea l  system under study. 

This process of design should be  able to  incorporate dif ferent types of 
available knowledge and information about the  real system. The non- 
quantifiable knowledge of people, who from the i r  experience know many 
important propert ies of the  rea l  system, is often of a high value. There- 
fore,  having efficient channels of communicating this type of knowledge into 
the process of design is very desirable. 

This type of a communicating channel is one of the  character ist ic 
features of the modeling procedure described in this paper.  I t  accepts two 
types of information about a rea l  system: measurement data and also exper t  
knowledge about the  system's structure.  The use of the highly interactive 
computer system based on this procedure is an i terat ive process in the 
course of which the  subjective exper t  knowledge can be utilized to a grea t  
advantage. 

This interactive system has been applied successfully by the IIASA 
Regional Water Policies Project (WAT) f o r  the  development of simplified 
models of complex groundwater-crop growth systems fo r  the i r  subsequent 
incorporation in the decision support system fo r  the Southern Peel  region 
in the  Netherlands. This application will be  described in a forthcoming 
paper  and also in the final repor t  of the WAT project. 

Sergei Orlovski 
Pro ject  Leader 
Regional Water Policies Project  



ABSTRACT 

Key Words. Complex system, computer assistance, identification, man- 
machine interface, model simplification, structural  modeling. 

A computer-assisted mathematical modeling method tha t  emphasizes the  
interaction between analysts and computers is presented. I t  combines 
algebraic and graph-theoretic approaches t o  ex t rac t  a trade-off between 
human mental models and models based on the  use of data collected from the  
system under study. The method is oriented t o  the modeling of the  so-called 
"gray box" systems which often involve human behavioral aspects  and also 
knowledge of t he  exper ts  in relevant fields. By recursive dialogues with the  
computer, the  modeler finds a system model which can be nonlinear with 
respect  t o  descript ive variables. The s t ructure of the  computer program 
packages is also presented. 



AN INTERACTIVE MODELING SUPPORT SYSTEM (KMSS) 

Y. ~akamor i ' ) ,  M. ~yobu' ) ,  H. ~ u k a w a ~ )  and Y. sawaragi2) 

1. INTRODUCTION 
Kalman (1983) has emphasized tha t  "a model must explain real data; i t  

must not be an  ar t i fac t  expressing the  modeler's prejudices." He (1982) 
claims tha t  "the principal modeling problems fo r  the  fu ture are not statisti- 
cal, but system-theoretical," and continues tha t  "the immediate task is t o  
begin developing p r e  judice-free modeling theory." His words are impressive 
and shocking f o r  applied systems analysts. The state-of-the-art of t he  
mathematical systems theory is, however, not so w e l l  developed that  i t  can 
cope with complex large-scale systems which lie outside of t he  domain of 
validity of t he  physical laws. Such systems must involve human behavioral 
aspects and may not provide behavioral data sufficient both in quality and 
quantity. We reply t o  Kalman's addresses by quoting the  assert ion in Gaines 
(1984) tha t  "the powerful methods of l inear systems theory work not 
because they re f lect  real i ty but ra the r  because w e  have built worlds of 
mechanical and electronical systems which are l inear, and hence can be 
modeled, designed and controlled; outside technologically created real i ty 
l inear systems theory has f a r  less t o  of fer  in modeling the  worlds of 
nature." On the  o ther  hand, i t  is also the  fact  tha t  w e  often face situations 
where any classical, stat ist ical procedures would not work adequately. To 
deal with such problems w e  must consider effective utilization of the  exist- 
ing theor ies and tools. 

''on l e a v e  f rom t h e  Department o f  Applied Mathematics, Facu l ty  o f  Sc ience ,  Konan Univer- 
s i t y ,  Kobe, Japan. 
 he Sapan I ns t i t u t e  o f  S y s t e m s  Research.  
' ;~epartment o f  Applied Mathematics and Phys i cs ,  Kyo to  Un i ve rs i t y .  



T'ne process of mathematical modeling involves a certain number of 
stages and cycles. In a classical framework of system modeling th ree  funda- 
mental stages a r e  considered: selection of the type of model, parameter 
estimation and the validation of the model. El-Sherief (1984) defines the 
system identification problem in his recent survey concerning multivariable 
system modeling as follows: "from a given set  of input and output measure- 
ments (cause and effect), i t  is required to  estimate a mathematical model 
within 'a specified class of models' which f i ts the measurements as closely 
as possible." He observes that  "one important factor  in identifying mul- 
tivariable systems is the  determination of the structural  parameters; each 
type of model has i ts own structural  parameters which must be known before 
an attempt is made to  estimate the model parameters." This statement is 
related to the main point in Kalman (1980): "there is a one-to-one 
corresponcience between the data and i ts canonical realization (model); 
with the same data each modeler must a r r i ve  at the same conclusion as any 
other  modeler, except f o r  a possibility inevitable but always irrelevant 
relabeling of the variables." But there  certainly exist worlds that  the (par- 
tial) reaiization theory would not be accepted yet, and under such uncertain 
circumstances we must make important decisions. 

A great  majority of tendency has been rapidly arising in modeling of 
badly posed systems in which emphasis lies on s t ructure characterization 
instead of parameter estimation. In fact, Linstone e t  al. (1979) identify 
about 100 structural  modeling techniques, and develop guidelines in the 
choice and proper  use of 7 famous tools. They define a structural  model as 
"any model which represents  a complex system as a set  of elements with 
relations - nearly always pairwise - linking some o r  all of them; and places 
the emphasis on the geometry o r  s t ructure ra the r  than on quantitative 
aspects of the relationships." Because generally decision-makers are not 
mathematicians o r  scientists a structural  model is  much more appropr iate 
than others fo r  learning experience. The s t ructure of a system is funda- 
mental t o  the understanding of what is happening. I t  gives new insights into 
the system to  decision-makers and the modelers a s  wel l .  Among many tools 
of structural  modeling we ex t rac t  the idea, fo r  our  purpose, from the Inter- 
pretive Structural  Modeling (ISM) proposed by Warfield (1974); w e  have 
found in i t  the importance of a bird's eye view. 

Our ultimate goal is t o  obtain some numerical relationships between 
system variables which should be, we believe, comprehensive o r  descriptive 
ra the r  than intrinsic. Much attention has been also devoted to  the exten- 
sion of the classical image of modeling in uncertain environments. An 
unorthodox approach is known as the Group Method of Data Handling 
(GMDH) proposed by Ivakhnenko (1968). I t  is based on heuristic principles 
of self-organization and rel ies on bioengineering concepts. Despite the 
energetic research activities of Ibakhnenko and his colleagues after i ts  
introduction, the method seems to  be f a r  from world-acceptance. A critique 
is the following: by application of the self-organization method, the com- 
puter itself finds a unique model, but ignores any theories and consensuses 
developed in the relevant field. Look, this is a good example of the lesson 
f o r  applied systems analysts. If w e  define the direction of new systems 
analysis as a discipline that  provides decision support systems in any fields 
of human activities, then of vital importance is communication at every 
level, f o r  instance dialogues between citizens and mathematicians, between 



economists and system analysts, between exper ts  and decision-makers 
between people and computers, and between mental images and the  data. W e  
will borrow a p a r t  of Ibakhnenko's idea, but w e  do not necessarily re ly on 
the whole process of heurist ic self-organization. 

The method presented in this paper  consists of a combined modeling 
technique of a lgebraic and graph-theoretic approaches, and related man- 
machine interfaces. A new simulation model must be comprehensible, flexi- 
ble anci simple but appropriately complicated f o r  the purpose of prediction 
o r  decision-making. But nei ther exactly defined stopping ru le  nor com- 
parison cr i ter ion is imposed in our  method. The pessimism of untouchability 
of the  rea l  s t ruc tu re  does not allow t o  rely entirely on any traditional, sta- 
t istical c r i te r ia  because most of them have been invented t o  measure dis- 
tance between the  model and the rea l  system. Some of them are, however, 
used in our  method just as re ference material, whenever required. Our 
mainpoint is  how t o  balance, with computer assistance, the  experts '  mental 
models with those which the  data tells. 

In the  next section w e  descr ibe the  outline of the  method, and then in 
Section 3 w e  present the main pa r t  of this paper  involving multistage dialo- 
gues in the  modeling process and related man-machine interfaces. To make 
the paper  self-contained, the details of graph-theoretic and algebraic 
phases of modeling will be  presented in Sections 4 and 5, respectively, 
which are related t o  the  principal computer program packages. Finally, in 
Section 6 we descr ibe a personal computer software of the  modeling support 
system. 

2. STRUCTURE OF THE METHOD 

PROBLEM. Suppose w e  have a real object t o  obtain a mathematical model. 
We introduce a set of names of variables: 

and suppose w e  have a measurement data table: 

where zij represents  j -th measurement of i -th variable. 

W e  introduce a cause-effect relat ion B, on the  product set S x S, 
defined by 

(zi , z j )  E B if and only if zi influences zj , 

o r ,  equivalently, a matrix A = (a i j  ) defined by 

- (I if ' " * J j )  E"  

a ~ j  - 0 otherwise 

This matrix descr ibes character ist ic set of the relat ion B and is called the  
adjacency ma t r i z .  The matrix A represents  a type of our  knowledge about 
the  dependency relat ion between system variables, and is not determined 
clearly at the  initial stage of the  modeling process. 



The problem is t o  obtain a mathematical model of the system in terms of 
a set  of equations which governs the elements of S using the measurement 
data X and the information A .  

OUTLING. The modeling process consists of th ree  different but interdepen- 
dent stages of dialogues. 

The f i r s t  s t a g e  d i a l o g u e  is required fo r  preparation of the modeling, 
including input of measurement data and the initial version of cause-effect 
relation on the s e t  of variables, transformation of variables, data screen- 
ing, and refinement of the cause-effect relation. 

The second  s t a g e  d i a l o g u e  is devoted t o  find a trade-off between the 
measurement data and the modeler's knowledge about dependencies between 
the variables. Based on the measurement data and the initial version of the 
cause-effect relation, using the  option of regression method, the computer 
finds a l inear m o ~ e l  and the corresponding digraph model. The modeler 
modifies the new relation refer r ing to  these computer models and his 
knowledge. The process continues repeatedly until no change occurs o r  the 
modeler is satisfied with the  modified relation. 

The t h i r d  s t a g e  d i a l o g u e  is related t o  model simplification and ela- 
boration. Model simplification is based on the use of equivalence relation, 
and model elaboration is an application of regression analysis including the 
hypothesis testing on estimated coefficients, and examinations of the expla- 
natory and predictive powers of the model. 

Figure 1 shows the s t ructure of the modeling process. 

3. INTERACTIYIi: MODELING METHOD 

3.1. T h e  F i r s t  Stage Dia logue  
The f i rs t  stage of the modeling process consists of the following steps 

that a r e  necessary fo r  preparation of the modeling. 

1. D a t a  I n p u t  

We call the  tr ipl icate ( S . X , A )  the modeling knowledge which is fed into 
the computer at the f i r s t  step. The manner of filling the adjacency matrix A 
should be negative. Here negative means that  the modeler should enter  the 
computer a p a r t  of his knowledge, putting 0's at the r ight places. The res t  
of entr ies in A will be  filled with 1's by the computer. The underlying idea 
is that  we should inquire into strength of relationship between every pair  of 
variables except those which a r e  definitely irrelevant. 

In filling the adjacency matrix A = ( a i j ) ,  we allow to  use an extension 
of binary relation: 

1 2 if xi certainly influences x j  

ail = { 0 if xi never influences x j  

1 otherwise 

There is no difference between 1 and 2 in digraph modeling. They a r e  
treated differently in choosing explanatory variables in l inear modeling, 
i.e., the variables indicated by 2 a r e  regarded as the core variables and 
those indicted by 1 the  optional variables. We redefine the cause-effect 



Figure 1: The s t ruc tu re  of the  modeling process 

ENTRANCE TO THE SYSTEM 

relat ion B as follows: 

EXIT FROM THE SYSTEM 

(xi,xj) E B if and only if aij + 0 

W e  have another option of filling the  matrix A .  The relat ion con- 
sidered is the  cause and effect that  is not necessarily transitive. But i t  may 
be quite feasible t o  employ the  assumption of transitivity t o  develop a l inear 
model. The modeler can choose the  option of a transit ive embedding method 
which is a modified version of that  in Warfield (1976). The resulting matrix 
A is a transit ive matrix with elements 0 o r  1. The advantage of this method 
is tha t  i t  can reduce the  number of pairwise comparisons remarkably. One 
caution in using this method is that  the  modeler should consider indirect 
cause-effect relationships as well a s  d i rect  ones. 
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2. Transformat ion of Variables 

The modeler can feed into t he  computer another  type of knowledge: 
time-lag ef fects o r  functional relationships. The result ing model can be  
fa i r ly  complicated by transformation of variables. Transformation is  a lso  
needed t o  make distr ibut ions of var iables symmetric because, according t o  
Hartwig and Dearing (1979), non-symmetric distr ibut ions and non-linear 
relat ionships often exist  together .  If every  distr ibut ion of var iables i s  
roughly symmetric, then w e  will have a high chance t o  obtain a l inear model. 
For th is purpose t h e  computer helps t h e  modeler offer ing possible t ransfor-  
mations. The options of these  include: 

y = z ( n  : given integer)  , y ( t  ) = z ( t  -1) ( t  : time) , 

y = a +bz + cz  + dz lz2 ( a  ,b ,c and d : given constants) , 

and the i r  combinations. Needless t o  say,  some transformations have con- 
s t ra in ts  with r espec t  to t h e  range of numbers. The computer provides his- 
tograms of t he  original and transformed var iables to ass is t  t h e  modeler's 
judgement. The modeler can  choose a t ransformation by which t h e  result ing 
new var iable has  a satisfactori ly symmetric histogram a f t e r  severa l  exami- 
nation. 

When a t ransformation i s  done, t h e  computer modifies t he  modeling 
knowledge (S,X,A ) in t h e  following way. If a single var iable i s  transformed 
by a formula except  t h e  time-lag operat ion,  then t h e  corresponding r o w  of 
t h e  data  matr ix X is simply rewr i t ten with t h e  transformed numbers. Other- 
wise, a new var iable is added t o  t h e  set S, a new row i s  added t o  t h e  data  
matrix X f o r  t h e  transformed data ,  and t he  adjacency matr ix is extended in 
such a way t ha t  t h e  new row (resp.  column) is  given by Boolean addition of 
t h e  corresponding rows (resp.  columns) of or iginal variables. 

3. Cause-mec t  Rela t ion 

If t h e  modeler wants to look at t h e  s t ruc tu re  of h is mental model, then 
t h e  computer will show t h e  digraph of h ie ra rchy  based on t he  adjacency 
matrix A ,  taking its t ransi t ive c losure and ext rac t ing t h e  skeleton. The 
process of obtaining a digraph will be  explained in detai l  in Section 4. 
Moreover, if t h e  modeler wants t o  check t he  relat ionship between a pa i r  of 
var iables,  then t h e  computer will show two dimensional scatter plots. The 
modeler can change t h e  re lat ion character ized by A re fe r r ing  t o  these 
information. 

If t h e  object ive of modeling is not just descript ion but contro l  or pred- 
iction of t he  r e a l  system, then t he  contro l  var iables o r  t he  var iables whose 
da ta  can be  obtained accurate ly  should be  placed in appropr ia te  positions 
in t h e  h ierarchy.  The introduction of t he  modeler 's assumptions o r  preju- 
dices at th is  s tage should b e  as l i t t le as possible. 

4. L i n e a r  ReLation 

The computer checks and displays pa i rs  of var iables which have high 
cor re la t ion coefficients. To avoid t he  problem of multicollinearity and a lso 
t o  simplify t h e  model, i t  i s  recommended tha t  one of t h e  pa i r  is set aside 
when they are supposed t o  b e  l inearly dependent. If t h e  pa i r  zf and zj is 
such a pa i r  an6 t h e  modeler wants t o  exclude zj, then t h e  j - th  row and 



column of A will be rewritten as 

aji = 3  and ajk = 0 ,  k # i  , k # j 

a i j = 2  and a k j = O , k # i , k # j  ' 

where 3 is t reated the same as 1 o r  2 in the digraph modeling, but i t  is 
t reated as 0 in the linear modeling. Thus, x j  will be explained only by xi 
and x j  will not be an explanatory variable f o r  x i .  

The underlying idea is that  if w e  put aji = 2,  then the re  will be a high 
possibility that  xi is also explained only by x j  and this is not interesting. If 
there  a r e  more than two variables that  a r e  highly correlated, then the 
modeler can remove some of them in the s a m e  manner. 

If t he re  a r e  some known relationships between variables in terms of 
l inear equations, then the modeler can enter  the facts into the computer. 
This information will save time in the second stage dialogue. 

5. Data Screening 

If at some step the modeler wants t o  check distributions o r  outl iers of 
the data fo r  some variables, the computer assists the modeler by showing 
the list of candidates of outliers, histograms o r  scattergrams. The modeler 
can designate the  case numbers which he does not want t o  use in modeling. 

m e r  the first stage dialogue, the set of var iab les  S and  the d a t a  
matr ix  X a re  f ized and  w i l l  be used in  the next  stage as they  are .  The 
adjacency mat r i x  A which  contains the modeling knowledge obtained u p  
to t h i s  stage i s  alone open for m r t h e r  modification. Figure 2 shows a 
visual description of the f i rs t  stage dialogue. 

3.2. The Second Stage Dialogue 
The purpose of this stage is to  elaborate the cause-effect relations 

which are summarized in the adjacency matrix. A ser ies of reciprocal  con- 
siderations and calculations by the modeler and the computer will continue 
until at least one of them recognizes that  the fu r ther  repetition would not 
improve the model. The information exchange process is the following: 

1. Selection of Regression Method 
The modeler should choose one of the options of regression methods 

with self-selection of explanatory variables, which will be  used in the next 
step. The options of these include: 

- the forward selection procedure, 
- the backward elimination procedure, 
- the all possible selection procedure, and 
- the group method of data handling. 

The last one is most recommended in our  method because we have in mind the  
rea l  world that  can hardly provide the data with which the traditional, sta- 
t istical inferences work well. If this method is selected, the computer asks 
the modeler about the data division into the training and testing sets. We 
use a modified o r  simplified version of this method, i.e., the par t ia l  
descr ipt ions will be written in a linear form (linear in variables). This 
point will be discussed in Section 5.1. 
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2. Est imat ion  of L i n e a r  Re la t ionsh ips  

First  t he  computer p repa res  an  n x ( n  +1) vacant  a r r a y  C: 

For t h e  convenience w e  write c o  f o r  t h e  f i r s t  column vec to r  of and C f o r  
t h e  remaining n x n matrix, i.e., 

The a r r a y  C i s  p repa red  f o r  t he  coemcient  matr ix of a set of l inear equa- 
tions which t h e  computer will search  from now on: 

x = c o + C x  with cii = 0 ,  al l  i , 

where x denotes the  n-column vector  whose components correspond t o  t he  
names of var iables x l,x2 . . . . . x, . 

By t h e  selected automatic modeling method, t h e  computer will est imate 
t h e  row vectors  of one by one re fe r r ing  t o  t h e  matr ix A (which can be  
converted t o  a t ransi t ive matr ix before  going into modeling) in t h e  following 
way: 

- Suppose now a t u rn  i s  i - th  row vector  of C. 
- The computer r e f e r s  t h e  i - th  column of t h e  adjacency matr ix A ,  and 
defines two subsets of S: 

The var iables xj  in Sf are always chosen as exp lana to r y  va r iab les  f o r  xi. 
and those in S: are candidates of explanatory var iables f o r  xi (the 
exp la ined  variable). Let us cal l  Sf t he  set of core va r iab les  and St t h e  set 
of op t iona l  va r iab tes .  

- By t he  specified method t he  computer will find t he  best f i t  equation ( the 
meaning of t he  best  f i t  will be  explained in Section 5): 

where Go,  Gj are estimated coefficients. 

- The computer substi tutes: 
* 

C i o = C i o  
[cij if xj E st u S: - - (0 otherwise 

Thus t h e  computer will have found a l inear model: 



3. Extraction ofskeleton 
A l inear manifold indicates a relationship between variables, but i t  

does not tell about the  cause-effect relationships. But, he re  w e  impose on 
the computer a heurist ic assumption: I n  the linear model - 

MC = (S,C) o r  x = co + Cx 

the explanatory variables are regarded as the causal variables to the 
explained variables. 

Following this assumption the  computer modifies the adjacency matrix 
A = (a i j )  re fer r ing t o  C = (c i j )  as follows: Let us denote the  new i ,  j entry 
of A by a; and the  old i , j entry by at j .  

I 0 if cji = 0 and xi E S? 
a; = a!j otherwise 

Thus some of 1's in A will turn into 0's. The corresponding relation B is 
then defined by 

( x i , x j )  E B  i fandonly  if aij Z 1  . 

Let us introduce a digraph D defined by 

where the elements of S are identified as vertices and those of B arcs. The 
vert ices a r e  represented by points and the re  i s  a directed line heading 
from xi t o  x j  if and only if (xi , x j )  is in B.  Let B denote the transit ive clo- 
su re  of B ,  i.e., 

(a) B contains B ,  
(b) B  is transit ive, and 

(c) B is the  minimal relat ion satisfying (a) and (b). 

Suppose the variable set S can be divided into m equivalence classes 
Ei,E2 , . . . , Em. Here an  Ep is  defined by - 

xi , x j  E Ep if and only if (xi ,xj) , ( x j  , X i  ) E B . 
By the graph-theoretic terminology an  equivalence class is  called a 

strong component o r  a cycle set of the  digraph D. For details see Section 
4.1. Then w e  can define new sets: - 

S = IEp ; p = 1 , 2 , . .  . ,  m {  , 

B' = ~ ( E ~ , E ~ )  : some ( x i . z j )  E B .  xi E E ~  , xj E E ~ I  
and the corresponding digraph is called the  condensation digraph: 

D* = (S,B*) . 
Finally w e  introduce the  skeleton digraph 5 which i s  a minimum-arc subdi- 
graph of D, f o r  which removal of any arc would destroy reachability 
present in the  relation. Actually the  above process is carr ied out by some 
matrix operations in the computer. The detai ls will be described in Section 
4.2. 



After a l l ,  t h e  computer will have found t he  digraph model: 

MD = (S ,E)  . 
This i s  a visual version of t he  l inear model MC. The digraph model i s  
uniquely led from t h e  l inear model by t he  heur ist ic  assumption, but  t h e  
r eve rse  i s  not t rue .  

4 .  Information Exchange 
Now the  computer has  a l inear model MC and t h e  corresponding digraph 

model MD. This s t ep  i s  devoted t o  t he  learning exper ience f o r  both t he  
modeler and t h e  computer. Showing i t s  digraph model MD, t h e  computer 
asks  t h e  modeler modification of t he  re lat ion present  in t he  l inear  model. 
The allowable amendments t o  t h e  digraph model and the i r  ref lect ion on t he  
adjacency and reachabi l i ty  matr ices are summarized as follows; if an  amend- 
ment a f fec ts  t h e  skeleton matr ix, t h e  digraph model is immediately modified. 

(1) Format Amendments t o  Hierarchy 

To faci l i tate in terpre ta t ion of t he  relat ion, t h e  modeler can amend t h e  
format of h ierarchy t ha t  a f fec ts  only t he  skeleton matrix. Such amendments 
include replacements of ver t ices ,  t he  contract ion of ver t ices  in d i f ferent  
levels and t h e  pooling of ver t ices  in t h e  same level. The ver t ices  con- 
t rac ted  o r  pooled are drawn in d i f ferent  co lors  t o  distinguish them from t h e  
strong components. 

(2) Substantial Amendments t o  Cycles 

The modeler can  look at t he  adjacency s t r uc tu re  of each cycle (strong 
component) and modify i t  by adding o r  removing arcs. Addition of a n  arc t o  
a digraph map of a cycle has  no e f fec t  on t he  reachabi l i ty  but  corresponds 
t o  replacing a 0 in t h e  adjacency matrix with a 1. On t h e  o t h e r  hand, remo- 
val of an  arc causes t he  r e v e r s e  operat ion on t h e  adjacency matrix. When 
an  arc is removed, t h e  computer finds t h e  t ransi t ive c losure of t he  revised 
adjacency matrix and rewr i te  t h e  reachabi l i ty matrix. But a n  arc removal 
from a cycle sometimes p reserves  the  universal reachabi l i ty.  If t h e  cycle 
clipping i s  desired,  a cycle can b e  divided into two s t rong components which 
can be  e i the r  in t h e  same level o r  in d i f ferent  levels. When a cycle is 
clipped by th is manner, t h e  corresponding interconnecting en t r ies  between 
divided s t rong components in t h e  reachabi l i ty matr ix, and a lso those of t he  
adjacency matr ix filled with l 's, will be  replaced by 0's. The modeler 
should pay care fu l  at tent ion t o  t h e  cycles forming t he  ver tex  bas is .  Here  
t he  ve r tex  basis of a digraph is  t h e  set of ver t ices  which consists of all ver -  
t ices with no incoming arcs. The var iables in t h e  ver tex  basis should be  
measurable with relat ively small measurement e r r o r s  and should b e  
appropr ia te  as t h e  contro l  variables. 

(3) Substantial  Amendments t o  Hierarchy 

Addition of a new arc t o  t h e  h ierarchy causes t he  same change in t he  
adjacency and reachabi l i ty  matr ices in such a way t ha t  all 0 's  between two 
strong components are rep laced by 1's. But t he  latter matrix may not be 
reachable;  hence t h e  computer finds t h e  t ransi t ive c losure of t h e  revised 
matrix. Removal of a n  arc from the  h ie ra rchy  often a f fec ts  t h e  reachabi l-  
ity. If an  arc is  removed, t h e  adjacency matrix i s  f i r s t  modified by replac-  
ing al l  1's between two s t rong components with 0's. Then t h e  computer finds 



the transit ive closure of the revised adjacency matrix and see  i t  thereaf ter  
as the transit ive matrix. If an  arc removal causes the violence of the total 
reachability necessary in the system, the modeler should compensate i t  by 
adding appropr ia te  arcs. 

Even the  exper t  can hardly tell whether the  obtained l inear equations 
are appropr iate o r  not because of the difficulties of checking validity of 
the hypothesis testing and giving meaning t o  regression coefficients. 
Therefore the  l inear equations are not shown here.  But the  d i rect  modifica- 
tion of the  adjacency s t ruc tu re  between cycles is sometimes required. W e  
prepare  another program fo r  this purpose. 

(4) Amendments t o  Adjacency St ructure 

The computer exhibits the  columns of the  adajcency matrix A one by 
one which may present the  l inear relationship of variables. The modeler 
can change 0's t o  1's in each column, and vice versa. Moreover he can 
write 2 's at some ent r ies if the  indicated variables should always be neces- 
sary  as the  explanatory variables, i.e., the  co re  variables. If any change is 
done, the  reachabil i ty matrix is recalculated and the revised digraph is 
shown. 

the modeler does not  change a n y  re la t ionsh ips ,  t h e n  the model ing 
process w i l l  proceed to the t h i r d  stage dia logue.  Otherwise, the second 
stage dia logue w i l l  be repeated aga in .  In t h i s  case the modeler c a n  
in form the computer  the Linear re la t ionsh ips  w i t h  w h i c h  he  is a l r e a d y  
sat is f ied  for s a v i n g  t ime.  He c a n  subs t i t u te  the reachab i l i t y  m a t r i x  f i r  
the ad jacency m a t r i x  to f ind  m r t h e r  poss ib i l i t ies  in the l i n e a r  model- 
i n g .  Figure 3 sketches this stage of dialogue. 

3.3. T h e  Th i rd  Stage Dia logue  
This stage consists of t w o  modes: 

- model elaboration, and 
- model simplification. 

The modeler can move from one mode t o  another at any time he wants. 

1. Model Elaborat ion 

If the  modeler considers that  he has enough data and that  the i r  statis- 
t ics are meaningful, then he can elaborate the  computer model by the  clas- 
sical regression analysis. Even if he has used the  group method of data 
handling at the  second stage, i t  is  recommended in Ivakhnenko et al. (1979) 
that  the  coefficients of all the  models upon comparison and selection can be 
reestimated using the  minimum mean square error method applied t o  the  
whole data table. In this mode the modeler must designate an  explained 
variable, then the  computer will reestimate the  coefficients of the  l inear 
equation and provide the  following statistics: 

- standard e r r o r s  of estimated coefficients, 
- t-ratios of estimated coefficients, 
- standard deviation of residuals, 
- F-ratio against a null hypothesis, and 
- controlled determination coefficient. 

All the  above stat ist ical terminologies will be explained in Section 5.2. 
Moreover, the computer supplies the  routines: 



Figure 3: The second stage dialogue 
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- residual plots, 
- multicolliearity checking, and 
- prediction, if a new data set is available. 

The modeler can elaborate the  computer model by adding o r  removing some 
explanatory variables re fer r ing to these statistics. If the modeler wants 
the data preprocessing, he can call the subroutines in the  f i rs t  stage: 

- transformation of variables, and 
- data screening. 

2. Model Simpli f icat ion 

Because the  variables in an equivalence class may be connected by a 
l inear relationship, i t  is  desirable t o  choose proxy variables for model sim- 
plification and elaboration a s  wel l .  The modeler can ex t rac t  some proxy 
variables in each equivalence class to simplify the computer model in the 
following way. 

(1) If two o r  more explanatory variables in a l inear equation come 
f r o m  the same equivalence class, then the modeler can examine model sim- 
plification by choosing one o r  a f e w  proxy variables and removing the rest. 
The computer will reestimate the coefficients of the  equation and calculate 
some statist ics mentioned in the  model elaboration mode. The modeler can 
ask the  computer t o  choose o ther  variables a s  the proxy variables repeat-  
edly, and if he is satisfied with one of the results, he  will obtain a simplified 
model. 

(2) If the explanatory variables in a l inear equation come from many 
equivalence classes, then the modeler can examine fu r ther  simplification so  
that  the  explanatory variables will come from a small number of equivalence 
classes, a s  long a s  the  simplification does not destroy the  reachability 
present in the model developed a t  the second stage. 

Figure 4 shows the flow cha r t  of the th i rd stage dialogue. The modeler 
can  re tu rn  to the f i rs t  stage dialogue he w a n t s  to reconstruct the 
model b y  us ing  a l ternat ive tools equipped in  the computer. 

4. GEOMXTRIC PHASE OF YODELING 
Having in mind tha t  ou r  final goal is to  ex t rac t  numerical propert ies of 

a complex system, w e  place the  emphasis on the quantitative aspects of the  
relationships. One important thing involved in developing geometric models 
is the learning exper ience about the potential variables and the i r  interac- 
tions. Lack of understanding of the s t ructure of the  underlying systems 
often leads us to - the  wrong conclusion. 

Let us recal l  the notations: S denotes the  set of descript ive system 
variables: 

S = ~ x 1 , x 2  ,....., X, j 

and B a cause-effect relat ion of these variables: 

B = (xi ,zj) ; zi ,zj E S and zi affects zj j . 
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4.1. Graph Theoretic Concepts 
The foundation of s t ruc tu ra l  modeling is  provided by t h e  graph theory  

which has  been impressively developed by Harary  et al .  (1965) and Rober ts  
(1976): t h e  l a t t e r  is  t he  original tex t  of t h e  following descript ion. 

Define a di rec ted g raph  o r  d igraph D as a pa i r  ( S , B ) ,  where S is t h e  
set of elements and B E S X S is  a subset  of o rdered  pa i rs  of elements. W e  
use the  notation S ( D )  and B ( D )  f o r  t he  ve r tex  set and t h e  a r c  se t  of D, 
respectively. The ver t ices  are represented by points and t h e r e  is  a 
ai rec ted l ine leaaing from zi t o  z j  if and only if (zi , z j )  is  in B .  If t h e r e  is 
an  a r c  from ver tex  zi t o  ver tex  z j ,  we shal l  say  t ha t  zi is  adjacent  t o  x j .  
W e  say x j  i s  reachable from zi if t h e r e  is  a p a t h  f rom xi t o  z j  . A p a t h  i s  a 
sequence 

where t  r 0 , t y l , y 2 ,  . . . , y t  is  a subset  of S and each  ( y i  , y i  is  in B .  
A path  is  called closed if yt +l = y l .  If t h e  path is closed and t h e  ve r t i ces  
y 1 , y 2 ,  . . . , y t  are dist inct,  then t he  path  is  called a cycle.  An a r c  from a 
ver tex  t o  itself is called a loop. 

A digraph D i s  s t r o n g l y  connected o r  st rong if f o r  every  pa i r  of ver -  
t i ces  zi and z,, zi is  reachable  from zj  and z j  is  reachable  from z i .  A 
subd ig raph  of D is  a digraph whose ver tex  set is  a subset  of S ( D )  and 
whose a r c  set is a subset  of B ( D ) .  A st rong component o r  a cycle set of D 
i s  a maximal strongly connected subdigraph, where maximal means t ha t  if we 
add more ver t ices ,  t h e  result ing generated subdigraph is not strongly con- 
nected. The ver t ices  in a st rong component form an  equivalence c lass,  i.e., 
they are connected with each o the r  by a ref lexive, t ransi t ive and symmetric 
relat ion. Note t ha t  a single ve r tex  may consti tute a st rong component, and 
each ver tex  is in one and only one strong component. 

W e  can now define a new digraph D ' ,  t h e  condensat ion  d i g r a p h  of D 
as follows. Let E 1 , E 2 ,  . . . , Em be  t h e  strong components o r  proxy ver-  
t ices. Then 

and w e  draw an  arc f rom Ep t o  Eq if and only if p + q and f o r  some ver t ices  
xi E Ep and z j  E E q .  t h e r e  is a n  arc from zi t o  zj  in D. 

A collection V of ve r t i ces  of a digraph D is cal led a v e r t e z  bas is  of D 
if every  ver tex  not in V is reachable  from some ver tex  in V and V is minimal. 
Here,  minimal means tha t  no p rope r  subset  of V can reach  al l  ver t ices.  The 
concept of t h e  ve r tex  basis i s  important from t h e  control-theoret ic view 
point and some theorems have been established: 

(1) The condensat ion  d i g r a p h  D' of a d i g r a p h  D is  acycl ic ,  i .e . ,  i t  
has no  cycles.  

( 2 )  An acyc l ic  d i g r a p h  has a u n i q u e  v e r t e z  bas is ,  cons is t ing  of a l l  
ver t ices  w i t h  no  incoming a rcs .  

( 3 )  Let V* be the u n i q u e  v e r t e z  bas is  of D * .  Then the v e r t e z  bas is  of 
D a r e  those s e t s  V cons is t i ng  of one v e r t e z  from each s t rong component of 
D w h i c h  is in v*. 



( 4 )  Every two ver tez bases of a d ig raph  have the same number of 
vert ices.  

A skeleton d ig raph  5 is  a minimum-arc subdigraph of D * ,  in which 
each strong component o r  a cycle in D has been replaced with a proxy ver- 
tex, and from which removal of any a r c  would destroy reachability present 
in the  relation. A skeleton digraph gives insight into the hierarchical  
s t ructure of the  underlying system. 

4.2. Structural Modeling 
System st ructures in t e r m s  of the  graph-theoretic terminologies can be 

conveniently summarized using suitable binary matrices. The process of 
structural  modeling is a ser ies of steps of matrix operations; a brief 
description is presented below. 

Suppose D = ( S , B )  is a digraph. The adjacency matrix A associated 
with D i s  the matrix (a i j )  defined by 

- (1 if (x i  exj)  t B 
aij - 0 otherwise 

One of the  important propert ies of the adjacency matrix is: 

U D  i s  a d ig raph  w i t h  adjacency matr ix A = (a i j ) ,  then i , j  en t r y  of 
A t  gives the number gl paths 41 Length t in D which Lead from xi to z j .  

The reachabi l i ty  matr ix ,  o r  the t rans i t i ve  closure R = ( r i j )  of A is  
the matrix defined by 

1 if zj  i s  reachable from xi 

Note that  each vertex is reachable from itself, since xi alone is a path, s o  
rii = 1, all  i .  The reachability matrix can be  expressed in t e r m s  of the  
adjacency matrix: 

where al l  the  operations are Boolean. I t  is  obvious from the  definition that  
the  reachability matrix descr ibes reflexive, t rans i t i ve  relat ion, i.e., a 
par t ia l  ordering relat ion.  

Many authors have developed partitioning and tearing methods on the  
reachability matrix in o rde r  t o  construct an  interpret ive s t ructura l  model. 
Efficient procedures are found in Warfield (1976) and Sage (1977). A f t e r  
several  part i t ions and rearrangements of the reachability matrix, one can 
obtain a s tandard  o r  canonicaL form which is a lower block tr iangular 
matrix. This matrix can be  converted into a condensation matrix in which 
the  rows and columns of all the  s a m e  levels, i.e., the  cycle sets o r  the 
strong components in D are deleted except one, that  one being identified as 
the proxy element. 

As far as the  extraction of strong components is concerned, the  follow- 
ing theorem is useful. 



Suppose D is  a d i g r a p h  w i t h  the reachab i l i t y  m a t r i x  R = ( r i j ) .  
Then: 

(1) The s t rong component con ta in ing  a vertex xi is g iven  b y  the en t r i es  
of 1 in  the i - t h  row (or column) of R X R ~ ,  where R T  is the t ranspose of R 
a n d  the product  is  the elementwise product ,  i .e..  R X R~ = ( r i j  X r j i  ). 

( 2 )  The number of ve r t i ces  in the s t rong component con ta in ing  xi is the 
i - t h  d iagonal  e n t r y  of R 2 .  

The skeleton mat r i x  ( s i j )  is  a condensation matrix in which al l  diago- 
nal entr ies are 0, and the  entr ies of 1 are changed into 0 until any addi- 
tional ent ry  would destroy reachability present in the condensation matrix. 
An efficient algorithm t o  find the skeleton matrix is presented in Warfield 
(1975). The relat ion modeled is asymmetr ic ,  i.e., an entry si j  = 1 implies 
sji = 0, and no cycle is found in the structure.  The s t ructura l  model of such 
a t r a n s i t i v e ,  asymmetr ic  relat ion is called a h i e r a r c h y .  

These model exchange isomorphisms descr ibe the  process by which 
primitive (mental) models are ultimately transformed into clearly art icu- 
lated interpret ive s t ructura l  models. One of the greatest  advantages of this 
process is that  i t  gives the  modeler insight into t he  s t ruc tu re  itself. A s  
insight i s  gained, the  modeler may want t o  cor rec t  ear l ie r  aspects of the  
model. 

5. ALGEBRAIC PHASE OF MODELING 
Our method requires the  program packages fo r  the  procedures of 

self-selection of explanatory variables a t  t he  second stage. The classical 
regression analysis is also used at the  th i rd stage f o r  model simplification 
and elaboration. 

5.1. Self-Organization Method 
If the  modeler has enough data,  the following self-selection procedures 

are recommended: 

- the  forward selection procedure, 
- the  backward elimination procedure, o r  
- t he  all possible selection procedure. 

The selection cr i ter ion (goodness of f i t)  used in these procedures is usually 
the  controlled determination coefficient . A drawback of these procedures 
i s  that  they need a fair ly long time f o r  calculation when the  number of can- 
didates of explanatory variables is large. If the  modeler does not have 
enough data,  o r  he  wants a quick search fo r  a l inear model at the  second 
stage, then he  can choose a l inear version of 

- the group method of data handling. 

W e  give below a brief summary of this method. 

A s  mentioned in the  introduction we are against some aspects of this 
method: "For the  discovery of laws i t  is  not necessary f o r  the  human opera- 
t o r  t o  specify the  set of explanatory variables, t he  input and output vari- 
ables, the  control variables, and the  disturbances, etc. All of this is done 
by the  computer (Ivakhnenko et al. 1979)." I t  is a matter of common 
knowledge tha t  even apparently i r re levant variables could be 



approximately embedded in a l inear (or nonlinear) equation. The reason 
why w e  use a pa r t  of this method is that  w e  are supposing the  objective sys- 
tems a s  those which could hardly provide adequate data with which 
mathematics o r  stat ist ics would work well t o  develop fantastic models 
acceptable t o  every person. 

Ivakhnenko's idea is the  following: 

- If the data are not too variable, the computer itself can find the best 
unique model f o r  prediction o r  the best one exhibiting cause-effect rela- 
tionships. 

- By application of the  self-organization method, t he  computer should be  
able to  objectively discover the natural law that  exists in the  object  under 
study. 

A prototype of the group method of data handling can be described a s  
follows: 

- The model t o  be  found is t he  complete descript ion, where the explained 
variable is a nonlinear function of al l  the explanatory variables and the i r  
time-delayed variables. This complete description is found by several  
layers of approximation. 

- A t  the f i r s t  layer of selection the  complete description is substituted by 
some part ia l  descr ipt ions which are nonlinear functions of every  possible 
combinations of pa i rs  of t he  explanatory variables and the i r  time-delayed 
variables. The values of the  part ia l  description coefficients (goodness of 
f i t)  can be  found by t he  mean squares e r r o r  method. Then some of the  par-  
t ial descriptions are chosen such that  the  e r r o r s  of selected ones are less 
than a specified threshold value. 

- A t  the  second layer of selection, the selected par t ia l  descriptions at the  
f i r s t  layer  play the ro les of explanatory variables. The estimation of coef- 
ficients and the  choice of some part ia l  descriptions (the number should be  
less than that  of the  f i r s t  layer)  are repeated again. 

- The number of selection layers increases as long as t he  lower value of the  
cr i ter ia  is decreasing. Thus the  process is continuously repeated with the  
imposition of eve r  more rigid thresholds so  that  finally a unique model is 
selected. When the model complexity gradually increases, the  selection cr i -  
ter ion passes through a minimum, and thus obtains t he  model of optimal com- 
plexity. 

- The above process is the  mathematical counterpart  of the process used by 
a gardener in selectively raising various species f o r  the  purpose of obtain- 
ing a hybrid type that  has desired propert ies.  

A variety of heurist ic c r i te r ia  and algorithms are proposed by Iva- 
khnenko and his followers. The modeler must specify a cr i ter ion,  a n  algo- 
rithm, some types of part ia l  descriptions, etc.  They are summarized as fol- 
lows (we omit the  explanation of terminologies). 

- The operator  (they cal l  the  modeler just as an operator )  must convey to  
the  computer a cr i ter ion of model selection according t o  his purpose, f o r  
example, 



- the  regulari ty cr i ter ion,  
- the  minimum-of-bias cri terion, 
- the  combined cr i ter ia ,  and 
- the  balance-of-variance cri terion. 

- The operator  must reduce the  amount of data used in 

- model development (training set) ,  

where coefficients are estimated by t he  mean squares error method, and 
use the rest in 

- model verification (testing set) ,  

i.e., selection of the  part ia l  descriptions. 

- The operator  must specify t he  l ist of feasible re ference functions, such as 

- polynomiales, 
- rat ional fractions, 
- harmonic ser ies,  etc. 

- The operator  must specify the simulation environment, tha t  is, a l ist of 
possible explanatory variables and the i r  time-delayed variables. 

- The operator  must determine an  algorithm fo r  model sifting, fo r  example, 

- the  multilayer threshold algorithm, 
- t he  combinatorial algorithm, o r  
- the  adaptive learning network algorithm. 

According to  Ibakhnenko et al. (19?9), there  already exist  about 100 algo- 
rithms. This fact itself tel ls how heurist ic this method is. 

In our  method w e  use (heuristically) 

- the  regulari ty cr i ter ion,  
- the  multilayer threshold algorithm 

which w e  have already described as a prototype of t he  group method of data 
handling. W e  res t r i c t  the  part ia l  descriptions t o  l inear equations (l inear in 
variables). I t  should be noted that  in this paper  a l inear model means tha t  
the unknown parameters in each equation are embedded linearly. Because 
the  modeler can transform variables as mentioned in Section 3.1, he can 
construct nonlinear models (nonlinear in the original variables). The rea- 
son of ou r  constraint on the  part ia l  description tha t  they should be l inear 
in variables i s  tha t  if w e  permit nonlinear equations fo r  the  part ia l  descrip- 
tions, by application of the  self-organization method the  computer will often 
find a nonlinear equation with very high degree as the  best model which 
cannot be interpreted at all. 

5.2. Class ica l  Procedures 
Suppose now xi is  chosen fo r  an  explained variable, then from the 

adjacency matrix A = (ai j)  w e  have 

which corresponds t o  the  union of co re  and optimal sets of explanatory 
variables fo r  xi. Let us introduce an  N-column vector: 



Y = ( Y ~ , Y ~ .  . . . . where y j  = x v  , j = l . Z . .  . . . N , 

and the relabeled data matrix corresponding to  Si : 

with x  0k = 1, all  k , where p = I Si 1 , the number of elements in S f .  In the 
classical regression analysis the disturbances in data a r e  usually taken into 
account only f o r  the explained variable. We introduce the noise of the 
explained variable as an N-column vector: 

with assumptions: 

E ( u )  = O ,  V a r  (u )  = E ( u u ~ )  = $ I ,  ui - N ( O , $ ) ,  4: unknown , 

where E (  - ) denotes the expectation and N ( .  , - ) the normal distribution. We 
write the coefficients t o  be estimated as a @ +l)-column vector: 

8=(B0 .B18  - pP lT  . 
By applying the least squares method we search the best approximation 

of the unknown vector in the se t  of assumed l inear equations: 

The least square estimator b of 0 is given by 

b = (ZTZ)- I  Z T y  , 

if ZTZ is nonsingular. The estimator of y and the residual a r e  given by 

respectively. The unbiased estimator of the variance u2 is given by 
T 

s2 = e e  - Y  - T y  -b TzTu 
N - p  -1 N - p  -1 t 

where the number N - p  - 1 is called the degrees offreedom. 

The estimator b is independent of s2 and 
2 T b - N ( @ ,  u (Z z)-l) . 

This means that  b is unbiased, and i t  is well known that  the least square esti- 
mator has the minimum variance in all unbiased estimators which a r e  l inear 
with respect t o  measurements. Given a new measurement vector: 

the prediction of the explained variable is given by 

with variance: 

v a r ( y ^ z ) = ( z T ( ~ T ~ ) - l z + l ) $  . 
The standard e r r o r  s.e. (gz ) of 5, is the square root  of var  (5, ) where c? 
is substituted by s2.  The confidence Limit with significance level a f o r  g, 
is given by 



where t  (p ,q  ) is  the  (1  --q ) percenti le point of the  t  -distribution with 
degrees of freedom p . 

The t  -rat io o r  t  -statistic is defined by 

t =  
b* -B: 

, where c y :  i .  j entry  of (ZTZ)" . 
s G  

If the  null hypothesis Ho(& =@:) is t rue,  then this stat ist ic follows the  
student's t  -distribution with degrees of freedom N  p -1. The stat ist ic 
s 6 i s  an  unbiased estimator of d v a r  (bi) and called the  s t a n d a r d  
e r ro r  of bi. In case tha t  @: = 0 ,  the confidence limit with significance level 
a is  given by 

On the o ther  hand the  F-ra t io  is used fo r  another type of hypothesis 
testing: 

- all o r  some of the  regression coefficients are zeros, 

- two o r  more regression coefficients are identical. 

The original model is called the full model (FM) and a model in which some 
coefficients are specified is called a reduced model (RM). Let Gi , Gi  be 
the  estimates by FM, RM, respectively. Sums of s q u a r e s  d u e  to e r ro r  are 
defined by 

respectively. Assume tha t  the  RM contains k parameters t o  be estimated. 
Then F-rat io is defined by 

= JSSE(RM) -SSE(FM)] / (p + l  -k ) 
SSE (FM) / (N p -1) 

which follows the  F-distribution with degrees of freedom (p +1-k , N p  -1). 
If the  value of F-rat io is less than a given percenti le point of F-distribution 
with degrees of freedom (p +1-k , N p  -I), then the  null hypothesis will be  
rejected. 

I t  should be noted tha t  the  hypothesis testing is meaningful only when 
the  assumptions on the  e r r o r  t e r m  is valid. To check this, the  modeler 
should look a t  t he  residual plots. 

The coemcient  of mu l t i p le  cor re la t ion  R is  the sample correlat ion 
coefficient between y and <, and often used fo r  the  goodness of f i t  of the  
regression equation. The square of R i s  called t he  de te rm ina t ion  c o e m -  
c ien t  given by (af ter  a l i t t le manipulation) 

- - 

~ ~ = 1 -  i , where y = - 1 x y i  . 
C(Y*  -a2 
i 

N i 



This stat ist ic is the ra t io  of the  generated variation t o  the  total variation. 
In o ther  words, R2 identifies a good regression, in the sense of the 
estimated function contributing most t o  the  total variation of the  explained 
variable. If w e  add a fu r ther  explanatory variable to  an  equation, R2 
increases in re tu rn  f o r  the  decrease of degrees of freedom. The variation 
in residuals will be smaller, and the  confidence interval will be wider. The 
most often used cr i ter ion fo r  model selection is then the  controlled deter- 
m ina t ion  coeppicient defined by 

This stat ist ic is useful in prediction application, where w e  want a set of 
explanatory variables which minimizes residual variance. 

We have developed a program package fo r  t he  modeling support sys- 
tem, which runs on a personal microcomputer. The system s t ruc tu re  is 
described in Figure 5. The list of subprograms in the  program package, 
with functions and hierarchical  levels in the  program st ructure,  is  shown in 
Table 1, and data fi les fo r  modeling information t o  be prepared o r  gen- 
erated are summarized in Table 2. 

7. CONCLUDKhTG REMARKS 
The two well known methods to  infer causal relationships from non- 

empirical data are Blalock's causal inference (Blalock, 1972) and the  path 
analysis (for instance, Kenny. 1979). The former is used fo r  verification of 
hypothetic causal models, and the  latter f o r  analysis of strengths of causal 
relationships in assumed models. Both fall under the  category of 
correlation-regression analysis, and could not infer causal relationships 
completely. To express non-symmetric causal relationships, a set of l inear 
equations which w e  described in Section 3.2 is often adopted. If the  rela- 
tionships are asymmetric and acyclic (the so-called recursive system), the  
treatment of such a system is relatively easy. Otherwise, some of the 
regression coefficients should be specified before solving the  problem (see, 
f o r  instance, Johnson, 1972). If the  whole variables in the  system can be 
successfully divided into output (endogenous) and input (exogenous) vari- 
ables, one can use a model written in a set of l inear simultaneous equations. 
The so-called simultaneous equation estimation has been employed in 
econometrics fo r  quite some time now. This method also requires a prior i  
model specification, and an  e r r o r  in model formulation can easily influence 
the  validity of the  total  model. 

Most of t he  theoretical approaches in modeling analysis in 
econometrics, ecology and sociology seem to  en te r  too many mathematical 
constraints in re tu rn  f o r  removing human knowledge. The proposed method 
in this paper  is not mathematics-oriented but application-oriented. The 
interactive modeling support  system is a tool f o r  enlightening both the com- 
puter  and the modeler about the  underlying complex system. The main point 
is  'low effectively ex t rac t  real i ty from human mental models with computer 
assistance. Even Kalman (1983) states that  "in the  modeling context preju- 
dice may sometimes be good and in fact  most valuable, such as a bril l iant 



TaSie 1: The program package of the interactive modeling support system 

code stage level function 

Z le  control  (open, create o r  e rase )  
t h e  master menu fo r  s tage menus 
t h e  menu fo r  the  f i rs t  s tage dialogue 
initialization of t he  modeling 
t h e  menu fo r  measurement da ta  input 
filing the  original measurement da ta  
appending da ta  of new variables 
appending up-dated measurement da ta  
correct ion of mist yped da ta  
t h e  menu fo r  t he  relat ion input 
filing the  relat ion one-by-one 
filing t h e  relat ion by t rans i t ive embedding 
modification of t h e  cause-effect relat ion 
calculation of t he  t rans i t ive closure 
transformations of variables 
digraph models of t he  init ial relat ion 
checking t h e  relation by corre lat ions 
out l ier checking o r  elimination 
calculation of basic s tat is t ics 
t he  menu fo r  t he  second s tage dialogue 
the  menu fo r  t h e  regression methods 
t h e  forward selection procedure 
t h e  backward elimination procedure 
the  al l  possible selection procedure 
t h e  group method of da ta  handling 
refinement of regression coefficients 
digraph modeling 
digraph models of t he  revised relat ion 
amendments of t he  digraph model 
t h e  menu f o r  t h e  th i rd  s tage dialogue 
model simplification 
t h e  menu fo r  model elaboration 
hypothesis test ing 
residual plots 
multicollinearity checking 
estimation by the  model 
information of regression resul ts  
prediction based on new data  
digraph modeling 
t h e  menu fo r  modeling information 
the  init ial version of t h e  relat ion 
the  original measurement da ta  
t h e  standardized da ta  
t h e  averages and varianoes 
t h e  corre lat ion coefficients 
t he  menu fo r  scatter diagrams 
histograms and soattergrams 
scatter plots between two variables 
scatter plots between th ree  variables 

700 4 2 t h e  cu r ren t  l inear model 

guess about t he  nature of t he  data." We admit that  t he re  is no unique way t o  
complex-system modeling. But w e  believe that  the proposed method cer -  
tainly d i rects  t o  the  r ight  way in this field. The development of the  model- 
ing support system is st i l l  in i ts f i rs t  stage and some important issues are 



Table 2: Data files fo r  modeling information 

code contents 
00 t he  l ist of systems in t h e  disk 
01 commonly used parameters 
02 t he  l ist of names of variables 
03 t he  l ist of out l iers 
04 t h e  original da ta  table 
05 sample means of variables 
06 sample var iances of variables 
07 t h e  standardized da ta  table 
08 corre lat ion coefficients 
09 t h e  init ial adjacency matrix 
10 t he  init ial reachabi l i ty matrix 
11 t he  init ial skeleton matrix 
12 t he  revised adjacency matrix 
13 t he  revised reachabi l i ty matrix 
14 t he  revised skeleton matrix 
15 regression resul ts  (stat ist ias) 
16 t he  l inear model (coefficients) 
17 t h e  data tab le f o r  prediction 

left for  future study. They a re ,  f o r  example, the problems of non-pairwise 
relationships, non-binary relationships, intransitive relations, cumulative 
connections, dynamics and structural changes. 
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Figure 5: The interactive modeling support system 
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