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Life expectancy in a heterogeneous population can be  increased by lowering 
mortality rates or by avert ing deaths a t  dif ferent ages, f r o m  different causes, for 
different groups, as well as by changing the  proport ions of individuals in various 
r isk groups, perhaps by altering the  transition rates between groups. Under- 
standing how such changes in population s t ruc tu re  af fects life expectancy is useful 
in evaluating al ternat ive lifesaving policies. 



Targetting Lifesaving: 
Demographic Ihkages Between 

Population Structure and Life Expectancy 

James W. Vaupel a n d  Anatol i  I. Yashin 

The individuals comprising the  typical population of men, mice, or machines 

face differing mortality chances. This heterogeneity arises, in par t ,  from indivi- 

dual character ist ics that  change or can be  changed, l ike age, behavior, occupa- 

tion, or residence. Alteration of the age composition, occupational s t ruc tu re ,  or 

o the r  pat tern of heterogeneity in a population, perhaps as the resul t  of some poli- 

cy intervention, will change the  distribution of mortality chances and hence 

change the life expectancy of t he  population. In this paper w e  develop some formu- 

las f o r  analyzing how various kinds of changes in population s t ruc tu re  will af fect  

l i fe expectancy. 

Change in l ife expectancy i s  a measure of t he  number of yea rs  of l i fe saved 

(or  lost) by an  alteration in population s t ruc tu re  and hence is a useful measure for 

policy analysis. In part icular,  th is measure is appropr iate f o r  what might be  

called ta rge t  analysis. If limited resources are available f o r  lifesaving interven- 

tions, how should the resources  be  targeted? How effective would programs be  

tha t  are directed toward di f ferent age groups, diseases, r isk groups (like 

c igaret te  smokers), regions, e t c?  A complete ta rge t  analysis would have to include 

consideration of how difficult i t  is to focus an  intervention on a par t icu lar  group 

and how resistant the  group is  to change. Nonetheless, understanding the  benefits 

of a change, if achieved, in l i fe expectancy gained or l ife-years saved is c lear ly a 

key component of any ta rge t  analysis. 

In addition to such policy applications, the  methods and formulas presented in 

th is paper  are useful in gaining a deeper  demographic understanding of how mor -  

tality ra tes ,  deaths, r isk groups, and life expectancy are interrelated. How, for 

instance, do mortality rates change if some deaths are averted? 



Four different analytical approaches are used in the  paper  to analyze the 

demographic linkages between population s t ructure and life expectancy: the 

comparative-statics approach,  the  dynamics approach, computer simulation, and a 

novel method that  w e  call t he  "second-chance" approach. The paper  provides some 

discussion and il lustration of t he  strengths, weaknesses, and interrelationships 

among these alternative methods of demographic analysis. 

LIFE AND DEATH RATES 

Consider, f i rs t ,  age  structure as characterized by the survivorship function 

where p ( z )  represents  the  fo rce  of mortality at age I. (Formula (1) and the 

resul ts that  follow can be  interpreted as pertaining to e i ther  period or cohort  cal- 

culations.) A change in p will change this age s t ruc tu re  and hence life expectancy 

at birth: 

where o is an  age beyond which no one lives. 

The effect of a change in p on eo  can be analyzed by e i ther  of two approaches. 

In the  comparative-statics approach, the trajectory of p is assumed to change to 

p', where 

the  analyst relates t he  change b(z)  to the change in eo, perhaps a s  measured by: 

In the  dynamics approach, t h e r e  is  some ra te  of change in p ( z  , t  ) over  time t : 

the  analyst relates th is rate of change p(z  , t  ) to the  rate of change in eo(t ): 



Both approaches are informative and w e  will consider both. For  notational simpli- 

ci ty, w e  will d rop  t h e  argument t throughout and wr i te A x )  r a t h e r  than CL(z,t) and 

eo  r a t h e r  than eo( t ) .  

If p ( z )  is  constant  ove r  a n  interval  of time of length T, then 

Combining th is resu l t  with (3) yields t h e  relationship between p and 6: 

If 6 i s  small, th is  reduces  t o  

Hence, resu l ts  concerning p ( x )  can be derived from resu l t s  concerning 6 ( z )  and 

visa-versa: t he  comparative-stat ics approach and t h e  dynamics approach  comple- 

ment each o ther .  Note t h a t  p ( z )  can be  a rb i t ra r i l y  la rge,  as long as T is  small 

enough. 

A comparative-stat ics re lat ionship can readi ly be der ived from (1)-(4): 

s 

In t h e  case  of a uniform change in mortality at al l  ages,  

b ( z )  = 6  , a l l z  , 

formula (9) can b e  rewr i t ten as 

0 

For  small 6 ,  



Hence 

where 

In t he  limit, a s  b approaches zero,  formula (12) holds exactly. Consequently, i t  is  

apparent  that  

where p is t he  uniform rate of progress in reducing mortality rates: 

d t  
P = , all z . 

d z  

Thus, for small changes in & t h e  comparative-statics approach yields t he  same 

formulas as t he  dynamics approach. Keyfitz (1977) derived (14) and noted tha t  H 

is  a measure of age heterogeneity; a s  Demetrius (1979) indicated, H can b e  inter- 

p re ted  as the entropy of the  age  composition of the  population. 

THE SECOND-CHANCE APPROACH 

Interventions to reduce mortality (or  equipment fai lure) work by saving lives, 

i.e. by avert ing the  scythe of death. Suppose that  for some proport ion 6 of a 

cohor t  (perhaps a synthetic per iod "cohort"), death is aver ted once. Let 1 ( z )  

represent  the proport ion of t h e  cohor t  at age z that is alive and has  not been 

saved and le t  t + ( z )  represent  t h e  proport ion of t he  resuscitated who are alive at 

age  z. Since t h e  proport ion of t h e  cohor t  surviving at age z i s  given by 

t he  new life expectancy, 8 ;  , i s  given by 



The relative change in life expectancy is simply 

An expression f o r  l + ( z )  is  readily developed. Assuming that  the  resuscitated 

face the  same fo rce  of mortality as those who have not been saved, the probability 

of survival to age z f o r  those whose lives were saved at age w i s  given by 

where T represents  t he  time of death. Because the  distribution density of w i s  

CL(w)l(w), 

Substituting (20) in (18) yields 

Note tha t  t he  H in (21) denotes the  same expression as Keyfitz's H in (12) and 

(14). Hence, (21) provides a th i rd  interpretation of H as a measure of the  propor- 

tional increase in l ife expectancy if everyone's life were saved once, o r  alterna- 

tively, as t he  proport ional increase in a randomly chosen individual's life span if 

t ha t  individual's l ife is saved. For Swedish males in 1982, H was .15 and so was 72 

years. Consequently, at 1982 period mortality ra tes,  avert ing the  death of a Swed- 

ish male would give the  resuscitated about 11 years  of life expectancy. 



The formula fo r  beo/ eo in (21)  holds exactly f o r  any 6, whereas t h e  analogous 

formula in (12) only holds approximately, f o r  s m a l l  6. The reason can b e  under- 

stood by considering some simple diagrams. The model where death is only aver ted 

once can be represented as: 

Individuals are al l  initially in t he  lef t  box. A proportion 6 of those who would have 

died are saved. but just once: t h e  resusci tated experience the  original force of 

mortality A z ) .  On the  o ther  hand, t h e  model where mortality rates are decreased 

by 6 can be represented as: 

T H E  
RESUSCITATED 

ORIGINAL 
COHORT 

Because the  force of mortality in any state is  (1 - 6 ) p ( z ) ,  t he  overal l  f o r ce  of 

mortality must also be (1 - 6)p (z  ). What the  decomposition into an  infinite stream 

of states reveals is that  a reduction in mortality rates may resul t  in some people's 

'I 'I 

6 p ( z  ) * 

bp(z) 
t m m m  

- 

t v t 
(1 - 6)P(r) (1 - ~ ) P ( z )  (1 - ~ ) P ( Z )  

SAVED 
TWICE 

8P(l  
C 

- 
THOSE 
SAVED 
ONCE 

ORIGINAL 
POPULATION 

8 ~ ( r  rn 



lives being saved severa l  times. 

L e t  represent  t he  expected life years lived by an  individual in the  i ' t h  

state,  i.e., by a n  individual whose life has been saved i and only t times: 

where ( z )  denotes the  probability that a newborn individual is alive and in state 

i at age z. Note that  T: i s  equal to eo, the original l ife expectancy before the  11- 

fesaving intervention. Clearly, 

When 6 i s  small, i t  is  unlikely that  anyone will gain much life expectancy by being 

saved more than once, i.e., t h e  terms T:, 703, and so on are unimportant. (We prove 

and expand on th is  intuitively plausible result elsewhere, in Vaupel and Yashh 

(1985).) Hence, 

In the two-state model, where death is only averted once, 

The similarity between (29) and (25) sheds light on why Keyfitz's H in (12) is  identi- 

cal to the H in (21). 

I t  is sometimes eas ie r  to analyze the two-state model than the many-state 

model. Since the  two models have equivalent implications fo r  l ife expectancy in 

the  limit f o r  small 6, the  two-state model may provide a convenient line of at tack.  

W e  exploit this, and the  relationship between 6 and p discussed ear l ier ,  in severa l  

subsequent derivations in th is  paper. W e  call the method involving the two-state 

model the "second-chance" approach, in contrast with t he  comparative-statics ap- 

proach and the  dynamics approach. Although in this paper  t h e  second-chance ap- 

proach is only used to analyze changes in l ife expectancy. i t  has more general ap- 

plications to any situation, including marriage, divorce, abortion, unemployment, 

the  repa i r  of equipment, etc., where changing some rate can be  considered as 

equivalent to giving some individuals a second chance. 

Suppose, as above, tha t  some proportion 6 of deaths are averted once. How 

will the t ra jectory  of mortality ra tes ,  as given by p(z) ,  change? In brief, how does 

saving lives af fect  mortality ra tes? Substituting (20) in (16), taking log deriva- 



t ives, and then simplifying yields: 

A t  age  zero, when I ( z )  i s  one, t h e  formula simplifies to 

A s  survivorship decreases, however, p'(z)  approaches p (z ) .  Thus, reducing 

deaths by some proport ion b at all ages  reduces the fo rce  of mortality by less than 

b at all ages a f t e r  b i r th.  The distribution of death times, as given by Az)L ( z ) ,  

changes to 

so t ha t  a reduction in deaths by b leads to a new distribution of death times shifted 

to older  ages. Since death,  a s  Shakespeare put it. "is cer ta in  to all", i t  i s  c l ea r  

tha t  a death aver ted today i s  an additional death tomorrow. The mathematics of 

th is  adjustment is captured by (26) and (28). 

IF THE RESUSCITATED ARE DWPERENT 

The formulas and calculations above assume that  a resusci tated person would 

face t he  same force of mortality ove r  t he  rest of his or h e r  l ife as a person whose 

l i fe had not been saved. To general ize the  formula, i t  i s  useful to consider t he  fol- 

lowing variation on t h e  model discussed above: 

Note tha t  now individuals who are saved exper ience a mortality t ra jec to ry  given 

by p+ (z ) ,  r a t h e r  than by dz). Let r ' ( 2 )  be the  remaining life expectancy at a g e  

THE 
RESUSCITATED 

ORIGINAL 
COHORT 

. 

bp(z * 



z of t he  resuscitated: 

where 

Because the  density at age z of t h e  distribution of (f irst) death i s  given by 

I.l(z)l(z), t he  value of beo must b e  given by 

Hence 

where 

If p + ( z )  equals A z ) ,  so tha t  individuals are, in ef fect ,  saved from death once, 

then H+ equals H. If p + ( z )  equals (1  - 6)p(z),  so t ha t  death rates are reduced 

uniformly for everyone, regard less of whether they have been resuscitated or not, 

H+ will be  close in value to H as long as b i s  small. Consequently, 

where 

This expression for H, which is equal in value to Keyfitzss expression fo r  H, was 

derived by Vaupel (1986) direct ly from Keyfitz's formula. The expression clear ly 



indicates how the ef fect  of saving lives on life expectancy depends on the number 

of deaths at various ages and on the number of additional years of life a resusci- 

tated person might have. 

SAVING THE OLD BEBORg THE YOUNG 

A s  Vaupel (1986) discusses at length, if death rates a r e  reduced by some pro- 

portion 6 between ages a and @, then for small 6, 

where 

Correspondingly, if progress is being made at a rate p against mortality between 

ages a and @, then 

The values of H a p  for various five year  age categories for  Swedish males and f e  

males in 1982 are given in Table 1. Remarkably, i t  is f o r  males 70 t o  75 and fo r  f e  

males 75 to 80 that  H a p  is largest. A one percent reduction in mortality in those 

age categories would increase life expectancy at bir th by more than twice as much 

as a one percent  reduction in mortality in infancy and ear ly childhood. 

AVERTING NEOPLASTIC DEATH IN VENICE 

Let p C ( z )  represent  the force of mortality from cancer,  o r  more generally 

any specified cause of death. Suppose tha t  fo r  some proportion d of individuals 

who would have died from cancer,  this ( f i rst)  death from cancer  is averted. Furth- 

er suppose tha t  these resuscitated individuals then have the same remaining life 

expectancy as ordinary individuals. Using the  second-chance approach and the  

same kind of reasoning employed to derive formulas (31)-(33), i t  is c lear  that  



Table 1. Values of Ha,, f o r  Swedish males and females in 1982. 

Age Period Males Females 

H (i.e., total f o r  .I5270 
all ages) 

SOURCE: Vaupel (1986). 

If 6 is small, i t  is unlikely that  an individual would be saved from cancer  death 

more than once. Hence, (39) holds approximately fo r  a reduction 6 in cancer  mor- 

tality ra tes  as long as 6 i s  small. I t  follows that  

where p is the rate of progress in reducing cancer mortality 



If cancer  is independent of o ther  causes of death, then i t  is possible to derive 

an alternative expression f o r  Hc that  is similar t o  Keyfitz's formula f o r  H in (13). 

Let l:(z) represent  t he  proport ion of people in the population who are alive at 

age z and who have been saved once from cancer  death (at any age pr ior  to 2) .  By 

analogy to (20), letting w denote the  age at which cancer  death w a s  averted, i t  fol- 

lows that  

where l c ( z )  can b e  in terpreted as the  survival function when cancer is the  only 

cause of death 

Hence, by the same logic used to derive (21). 

Keyfitz (1977) der ives formula (44) using a different apprmch.  In addition, 

he  presents some i l lustrative examples. For instance, fo r  Italian females in 1964, 

Hc fo r  deaths from neoplasms was 0.0300, compared with a total H of 0.1631. Thus, 

a one percent  reduction in cancer  mortality would increase life expectancy at 

bi r th  by about th ree  percent  of one percent,  o r  by about 8 days given Italian fe- 

m a l e  l i fe expectancy of 72.9 yea rs  in 1964. By way of comparison, Hc f o r  deaths 

from cardiovascular diseases w a s  0.0564, almost twice as high as the Hc f o r  deaths 

from cancer ,  whereas Hc f o r  deaths from influenza, pneumonia and bronchit is w a s  

0.0122, o r  less than half as grea t  as the  Hc fo r  deaths from cancer.  



MALES GO FLRST 

Consider now a population t ha t  is s t ructured according to race ,  sex,  socio- 

economic status, region or some o the r  classification. Adopting t h e  line of a t tack 

of t he  second-chance approach,  suppose tha t  a proportion d i  of t he  f i rs t  deaths in 

group i are averted. What will t he  ef fect  be on the life expectancy of t he  en t i re  

population? Letting & (z), Li (z), and ei  (z) denote the  fo rce  of mortality, sur- 

vivorship function, and remaining life expectancy a t  age z of t he  i -th group, then 

where mi (0) is  the  initial proport ion of t he  population in the  group i .  Hence. 

and 

where 

and 

The U.S. male population, for example, might be classified as white and 

nonwhite. The value of Hi f o r  U.S. nonwhite males in 1950 w a s  about 0.038. So 

reducing nonwhite male mortality by one percent would add about 9 days to t he  

overa l l  U.S. male life expectancy of 65.5 years. By comparison, th is reduction in 

nonwhite male mortality would add about 75 days to nonwhite m a l e  l i fe expectancy. 

The dif ference is largely explained by t h e  proportion of nonwhites at bi r th ,  about 

12.6 percent. 



The U.S. population as a whole can be divided into male and female groups. 

The value of H f o r  males at 1980 mortality ra tes  w a s  0.193, the value fo r  females 

w a s  0.155. If the two groups are given equal weight, then H f o r  the ent i re popula- 

tion is 0.179 and Hi i s  0.096 f o r  m a l e s  and 0.077 f o r  females. Suppose there  are 

th ree  alternative interventions. The f i rs t  reduces m a l e  mortality by 2 percent,  

the second reduces female mortality by 2 percent, and the  third reduces total mor- 

tality by 1 percent.  The male s t ra tegy would save about 11 percent more l i fe years  

than the total st rategy which, in turn,  would save about 15 percent more life years  

than the female strategy. 

Suppose that  a population consists of t w o  subpopulations with agespeci f ic  

mortality rates k ( z )  and @(z), where @(z) > k ( z )  and where the t w o  groups 

might be  residents of urban vs. r u r a l  areas,  smokers vs. non-smokers, blue-collar 

workers vs. whi tecol lar  workers. people in the south of a country vs. people in 

the north, people who are overweight vs. people who a r e  not, etc. How will 

changes in the mix of t he  population between these t w o  groups affect l ife expec- 

tancy? 

Consider an intervention tha t  changes n(z), the  proport ion of the population 

in the high-risk group, by some proport ion 6 at all ages a f te r  s o m e  initial age zo: 

I t  is convenient to consider age zo the age at "birth", s o  tha t  eo re fe rs  to remain- 

ing life expectancy at age  zo and z re fe rs  to years of age since zo. The fo rce  of 

mortality f o r  the  population as a whole is given by 

and 

Hence. 

I t  follows that  



If d is small, 

tit -- -pH, . 
e 0 

where 

and 

A s  an example of t he  use of these formulas, suppose that  the  population con- 

s ists of non-smokers and smokers, and that  the population is being studied s tar t ing 

at age 35 (so that  e o  r e f e r s  to l i fe expectancy at age 35). Further  suppose tha t  t he  

fo rce  of mortality f o r  non-smokers is  .001s.~, ( t  being age minus 35). tha t  the  

fo rce  of mortality f o r  smokers is twice as high, and that  half t he  population smokes 

at age 35. Remaining life expectancy fo r  non-smokers in th is case is about 40.8 

years  and remaining life expectancy f o r  smokers about 34.2 years.  Then HI tu rns  

out to equal 0.077. If t he  proport ion of the population that  smokes is reduced by 1 

percent,  then life expectancy (at  age 35) will increase by 0.077 percent,  or by 

about 11 days, given the  average remaining life expectancy f o r  the  population as a 

whole of 37.5 years.  



More generally, i t  is interesting to  investigate the  values of HI, and of ex- 

pected days of l ife saved, at different start ing ages, i.e., at different ages of in- 

tervention. Table 2 presents some sample calculations. Note that  H1 increases 

with age: a reduction in smoking yields a grea te r  proportional increase in life ex- 

pectancy at the ages with t he  highest mortality rates. The absolute increase in l ife 

expectancy, however, as measured by days added, falls off with age. Because i t  

falls off slowly, at least before age  55 or 65, i t may be optimal to target  anti- 

smoking interventions toward o lder  people-if i t  is relatively easier to induce old- 

er smokers to quit. The calculations in Table 2 are merely i l lustrative, but some 

empirical analysis of this sort could shed light on the  effectiveness of targeting 

various kinds of health programs toward individuals in different age classes. 

Table 2. Values of HI, l ife expectancy. and days added to life expectancy if the 
proport ion of a population that  smokes is reduced by one percent,  at 
various ages. 

Days added to 
total l i fe expectancy 

Remaining life expectancy (in years)  for: if proport ion that  
smoke is reduced 

Age H1 Non-smokers Smokers Total population by one percent  

35 .077 40.8 34.2 37.5 10.5 
45 .095 31.4 25.2 28.3 9.9 
55 .I20 22.6 17.1 19.9 8.7 
65 .I50 14.9 10.5 12.7 7.0 
75 .la4 8.8 5.6 7.2 4.8 
85 .215 4.5 2.7 3.6 2.8 

INHIBITING IM.BIBITIONS 

The resul ts in the  previous section can be  g e n e d i z e d  to the case where the 

population consists of N subpopulations with age-specific mortality rates ~4 ( 2 )  

and in proport ions ni (z  ). where 

and 



A s  before, le t  t he  f i r s t  subpopulation be  the  healthiest, %(z)  < & ( z )  for al l  z 

and fo r  al l  t > 1, and le t  6( denote t he  change in proport ions at start ing age  0: 

Clearly, 

For simplicity, assume 

6 , = d  , all i > l  . 

Then i t  i s  not difficult ta show 

- ' 
~ ( 2 )  -22) = d(*(z) -2z ) )  

This formula is identical ta (53). Consequently, 

he0  - wdHl  , f o r s m a l l d  , 
= 0 

and 

where HI is defined as before by (57) and 

8t 
P = , a l l i  > l  . 

~ ( 2  

That HI i s  the  same as before may, at f i r s t  glance, seem puzzling but, on c loser  

thought, i t  is  reasonable because t h e  assumptions group the  sub-populations into 

t w o  par ts .  Other formulas can be  readily derived f o r  o the r  special cases. 

A s  an i l lustration of the use of (66), consider a population of males with a high 

prevalence of alcoholism. In part icular,  assume tha t  50 percent  of t he  population 

dr ink moderately or not at all, tha t  30 percent  drink heavily, and tha t  t h e  remain- 

ing 20 percent  dr ink very  heavily. Fur ther ,  assume tha t  t h e  heavy dr inkers  have 

twice the  mortality and the  very  heavy dr inkers  have four  times the  mortality of 

t he  f i rs t  group. Finally, as in t he  previous example, suppose tha t  the population i s  



being considered start ing at age 35 and tha t  t he  fo rce  of mortality follows a Gom- 

per tz  curve with a = 0.001 and b = 0.1 for t he  healthy subpopulation. 

Remaining l i fe  expectancy for the  t h ree  groups turns out to be 40.8, 34.2, and 

27.9 years  and, f o r  t h e  population as a whole, 36.2 years. The value of Hi is  0.108; 

a one percent reduction in t h e  proport ion of heavy and of very heavy dr inkers,  

would add t w o  weeks to t h e  population's l ife expectancy. 

STARTING STOPPING 

Now consider a population tha t  consists of various subpopulations, with indlvi- 

duals making transit ions f r o m  one subpopulation to another,  such tha t  t he  transi- 

tion rates are changing or can be changed. For instance, the  population may con- 

s ist  of smokers and non-smokers, with some smokers who stop and some non- 

smokers who start. If e i ther  of these transit ions could b e  influenced, what would 

t he  effect b e  on life expectancy? This question i s  similar to t he  question con- 

sidered in t h e  previous t w o  sections, except now the  policy lever  or control 

parameter i s  not t he  proport ion of t he  population who smoke, but the  transit ion 

rates between t h e  non-smoking and smoking states. Changing the  transition rates 

will change t h e  proport ions and hence life expectancy. 

For a cohor t ,  t he  change in t he  proport ion of individuals in state (o r  group) j 

at age r is  given by t h e  equation: 

where Xu ( r )  are t he  transit ion rates from state i to state j a t  age r ,  with t he  ini- 

t ia l  proport ions rrj (0) given. 

In t he  simplest case of a two-state population with mortality rates h ( r )  and 

& ( r )  and transit ion rate X(r) from state 1 to state 2, Ule  proport ion n ( r )  of indi- 

viduals in state 2 is  t h e  solution of the  following equation 

with rr(0) given. Let t h e  rate of progress in reducing X(r) be  given by p(r) :  



Straight-forward calculations show 

where q ( z )  is the  solution of t h e  dif ferential equation 

with q (0)  = 0. Note tha t  th is  equation has to be solved together with equation (70) 

f o r  n ( z ) .  If t he  rate of p rogress  in decreasing X(z) does not depend on age, then 

(72) reduces to 

where 

SIMULATION AS A SLEDGEHAMMER 

Solving (75) for HA i s  not easy, since q ( p )  i s  t he  solution of a differential 

equation (73) tha t  depends on another  differential equation (70). When mathemati- 

ca l  solutions get as complicated as this, they may not only lose elegance but also 

usefulness for e i ther  insight or computation. I t  may then be  fruit ful to take a dif- 

f e ren t  tack and re ly  on numertcal, computer simulation. 



Consider, f o r  instance,  t he  following i l lustrat ive model: 

N O N S M O K E R S .  

k(i: *(i: 1 *(1: 1 
(death)  

X12(z * 

The population i s  divided into t h r e e  groups-non-smokers. smokers, and qu i t te rs .  

The s ta r t i ng  point of t he  analysis i s  age  10: z rep resen ts  age  minus 10. For  non- 

smokers,  t h e  f o r c e  of mortality i s  given by 

f o r  smokers i t  is  

S M O K E R S  

& 

and f o r  qu i t te rs ,  

& ( z )  = 1 . 5 h ( z )  . 

To begin with a l l  individuals are non-smokers: 

nl(0) = 1 , 

n2(0) = n3(0) = 0 . 

The t rans i t ion  intensit ies are 

xl,(z) = .o6r-Sh , 

=.028.O* , 

X32(2 ) = .5 8 -aoa , 

A Z 3 ( ~  ) 
C 

* 
X32(z 

QUITTERS 



These transition intensities imply: 

- about 6 percent  of non-smokers start smoking a t  age 10. about 2 percent  at 

age 20, and less than 1 percen t  at age 30; 

- the  proport ion of smokers who quit smoking r ises f r o m  about 2 percent  p e r  

year  at age 10  to 10 percen t  p e r  year  at age 50 and 22 percent  p e r  yea r  at 

age 70; 

- the  recidivism rate of qu i t te rs  resuming smoking falls from 50 percent  p e r  

year  at age 10  to 33 percen t  at age 30 and 15 percent at age 70; 

- 10  percent of qu i t ters  become non-smokers each year. implying that  i t  takes 

ten years,  on average,  for a former  smoker to re turn to t h e  health s ta tus of a 

non-smoker. 

The following formulas and approximations can be used to analyze this model: 

where 

where 

where the  pi Cf), t h e  proport ions of t he  original cohort  that  are in state i at time 

1 ,  are given by 

where 



and 

With the parameter  values given above, remaining life expectancy a t  age  10 

turns out t o  be  61.5 years.  The proport ion of the surviving population that smokes 

r ises t o  33 percent  a t  age  30 and then fal ls off to 23 percent at age 50 and 6 per-  

cent a t  age  70. 

The model can be  used to explore various kinds of interventions. If no one 

ever  smoked, o r  if t he  health hazards of smoking were eliminated, l ife expectancy 

would increase by 1.4 years. If t he  rate at which people began to smoke were cu t  

in half, l i fe expectancy would increase by 0.6 years. If the  rate at which people 

gave up smoking doubled, the gain would b e  0.4 years.  If the rate of recidivism 

could b e  cut  in half, 0.3 years  would be gained; if recidivism could be eliminated, 

the increase in l i fe expectancy would be  0.7 years.  If the  duration of the lingering 

excess r i sks  faced by former smokers could be  cut  from an  average of 10 yea rs  to 

an average of 5 years ,  0.3 years  would be  added to l i fe expectancy. Finally, if t he  

excess r isk of smoking were cut  In half, so tha t  ~ 1 2  equaled 1.5~. r a t h e r  than 2p, 

about half a yea r  would be  gained. 

This example provides a simple il lustration of how micro-simulation can shed 

light on models t ha t  are difficult to analyze formally. More elaborate, more real is- 

t i c  models f o r  t a rge t  analysis can be handled in t he  same general way. 

CONCLUSION 

The life expectancy of individuals (or units) in a heterogeneous population 

can b e  increased by numerous strategies,  including 

- lowering overal l  mortality (or  fai lure) rates. 

- reducing mortality rates in specif ic age  categor ies,  

- avert ing deaths,  

- lessening mortality rates from some cause, 

- diminishing mortality rates in some region or f o r  some population group, 



- decreasing the proport ion of individuals in high-risk groups, and 

- changing transit ion rates between r isk groups. 

A s  the various formulas derived ln th is paper  i l lustrate, these changes a f fec t  life 

expectancy in di f ferent ways. 

The formulas, and various extensions or adaptations of them, may be useful to 

policymakers in ta rge t  analyses of the benefits of alternative interventions intend- 

ed to save lives. In addition, the  formulas descr ibe the linkages that  exist between 

population s t ruc tu re  and life expectancy. Individuals di f fer  on numerous dimen- 

sions tha t  are related to mortality chances. including age, sex. race. s o c i e  

economic status. occupation. place of residence. and personal behavior. A change 

in population s t ruc tu re  along any of these dimensions will change life expectancy. 

Four dif ferent approaches were used to analyze the  impact of a change in po- 

pulation s t rvc tu re  on life expectancy: t he  comparative-statics approach. t he  

dynamics approach. t h e  method w e  called t he  "second-chance" approach. and com- 

puter  simulation. The f i r s t  t h ree  approaches yield analytical solutions tha t  are 

general and tha t  may faci l i tate insight. In the  limit. when d is  small. the  t h ree  ap- 

proaches produce equivalent formulas, so which approach to adopt is to some ex- 

tent  a matter of taste and convenience. The th ree  approaches. however. may not 

be  equivalent when d is  not small. and each approach may yield a different insight 

and provide a dif ferent perspective. Computer simulation is useful in attacking 

complex models t ha t  do not yield to t he  o the r  t h ree  approaches. The answers pro- 

duced by simulation pertain to part icular realization of a model in which the  coef- 

f icients are specified: t he  answers are thus not general o r  elegant. but  they are 

answers. 
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