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Abstract 

Techniques from t h e  theory  of singulari t ies of smooth mappings are employed t o  
study t he  reduct ion of nonl inear optimization problems t o  simpler forms. I t  is 
shown how singulari ty theory  idezs can be used t o  : 1) r educe  decision space 
dimensionality; (2) t ransform t h e  constra int  space t o  simpler form f o r  primal algo- 
r i thms; (3) provide sensit iv i ty analysis. 



SINGULARITY THEORY FOR NONLINEAR 
OPTIMIZATION PROBLJDIS 

J. Cast i  

I. Background 
Consider a smooth (Cm)  function f :Rn -, Rm and assume t ha t  f has  a cr i t i ca l  

point a t  t h e  or ig in,  i .e. df  ( 0 )  = 0 .  The theory  of singulari t ies as developed by 
Thorn, Mather, Arnol'd and o the rs  [I-31 addresses  t h e  following basic questions: 

A. What i s  t h e  local c h a r a c t e r  of f in a neighborhood of t h e  cr i t i ca l  poir,t? 
Basiczlly, th is  questior, amounts t o  asking "at what p o i ~ t  is  i t  sa fe  t o  t r unca te  t h e  
Taylor se r i es  f o r  f ?" This is  t h e  determinacy problem. 

B. What a r e  t h e  "essential" per turbat ions of f ?  That is, what per turbat ions of 
f car, occu r  which change t h e  qual i tat ive nature  of f and which cannot b e  
t ransformed away by a change of coordinates? This is t h e  unfold ing problem. 

C. Can we classify t h e  types of s ingular i t ies which f can have up t o  dif- 
feomorphism? This is  t he  classiptcation problem. 

Elementary cz tas t rophe theory  largely solves these  t h r e e  problems (when 
m = I ) ;  i t s  general izat ion t o  singulari ty theory  solves t h e  f i r s t  two, and gives rela- 
t ively complete information on t h e  th i rd  f o r  m ,  n small. Here we outl ine a program 
f o r  t h e  uti l ization of these resu l t s  in a n  appl ied set t ing t o  deal  with ce r ta in  t ypes  
of nonl inear optimization problems. In t h e  following sect ion we give a brief sum- 
mary of t h e  main resu l t s  of singulari ty theory  f o r  problems A-C f o r  jktnct ions 
(m =I) and then  proceed t o  a discussion of how these  resu l ts  may be  employed f o r  
nonl inear optimization. 

II. Determinacy. Unfoldings, and Classifications 

Equivalence of Germs 
In i t s  local vers ion,  elementary ca tas t rophe  theory  deals with funct ions 

f :U+ R where U i s  a neighborhood of 0 in R n .  The c leanest  way t o  handle such 
functions is t o  pass  t o  germs, a germ being a class of functions which a g r e e  on 
sui table neighborhoods of 0. All operat ions on germs a r e  defined by performing 
s in i l a r  operat ions on representa t ives of t he i r  classes. In t h e  sequel, we shal l  usu- 
ally make no distinction between a germ and a representa t ive  function. 

W e  l e t  En be  t he  se t  of all smooth germs Rn + R ,  and le t  En, be  t h e  set of all 
smooth germs Rn -, R m .  Of course En,1 = En . These sets are vec to r  spaces  ove r  
R ,  of infinite dimension. We abbrev ia te  ( z l ,  .. . ,zn ) E Rn t o  z . If f E En, then 

f ( 2 )  = CPl(z), - .  . , f m ( z ) )  

and t h e  f i  are t h e  components of f .  



A dif feomorphism germ 4p:Rn -+Rn sat is f ies ~ ( 0 )  = 0 ,  and h a s  a n  inverse q' 
such thaL y ( y f ) ( z ) )  = z = 4p'(q(z)) f o r  z n e a r  0. I t  r e p r e s e n t s  a smooth, invert i -  
b le local coord inate  change.  By t h e  Inverse Function Theorem, 4p i s  a diffeomor- 
phism germ if and only if i t  h a s  a nonzero Jacobian, tha t  is ,  

Two germs f ,g :Rn -+ R are r i g h t  e q u i v a l e n t  if t h e r e  i s  a diffeomorphism 
germ y and a coristant y E R such t h a t  

This is  t h e  na tu ra l  equivalence f o r  studying topological p r o p e r t i e s  of t h e  g ra -  
d ient  Of (Poston and Stewar t  [4]). I f f ,  r a t h e r  than O f ,  i s  important ,  t h e  t e r m  y 
i s  omitte?. 

A t y p e  of germ is a r i g h t  equivalence c lass  and t h e  classif icat ion of germs up 
to r i g h t  equivalence amounts t o  a clzssif icat ion of types. Each t ype  forms a subset  
of En, and t h e  c e n t r a l  ob jec t  of study is t h e  way these types f i t  t oge the r .  

A p r e c i s e  descript ior,  i s  comp!icated by t h e  fac t  t h a t  most t ypes  have infinite 
dimension; but  t h e r e  is a mezsure of t h e  corfiplexity of a type,  t h e  cod imens ion,  
which is  general ly  f ini te. Heurist ical ly,  i t  is t h e  d i f ference between t h e  dimension 
of t h e  t ype  and t h a t  of En (even though both are infinite). A p r e c i s e  definit ion is  
given below. 

The l a r g e s t  t ypes  have codimension 0 and form open sets in En. Their  boun- 
d a r i e s  contain types of codimension 1 ;  t h e  boundaries of t h e s e  in t u r n  contain 
t ypes  of codimension 2, and so on,  with h igher codimensions reveal ing progressive-  
ly more complex types.  Types of infinite codimension ex is t ,  but form a v e r y  small 
s e t  in a reasonab le  sense.  

Codimension and the Jacobian ideal 
Let En b e  t h e  set of germs R n  -+ R ,  and let F b e  t h e  s e t  of formal  power s e r i e s  

in zl, ..., z,. T h e r e  is  a map j:E + F  defined by 

where t h e  r ight-hand s ide is  t h e  Taylor se r ies ,  or j e t ,  o f f .  Note t h a t  i t  ex is ts  as a 
fo rma l  power s e r i e s  f o r  al! smooth f :  convergence is  not requ i red in what follows. 
The map j i s  onto,  l inear  o v e r  R ,  and p r e s e r v e s  products  (i.e., 
jCP.9)  = j u g )  = ( j f  . j g ) ) .  

Let mn b e  t h e  s e t  of f E En such t h a t  f (0) = 0.  This is a n  i d e a l  of En (mean-' 
ing t h a t  if f E mn and g E E ther, f g  E mn , which we wr i te br ief ly  a s  mnEn C m,). 
I t s  k th  power 'k m, consists of all f e E n  such t h a t  
0 = f (0) = df (0.) = dZf (0) = - = dk-If (0). In par t icu lz r ,  f is a s i n g u l a r i t y  
if and only i f f  E m, . The ideals mk form a decreasing sequence. 

There  is a similar chain in Fn. 
Let M'k = j ( m  ) : th is  is t h e  set of formal power 

? s e r i e s  with z e r o  coxstant  te rm.  Then h& = j(m,) is t h e  set of formal power series 
without te rms  of d e g r e e  S k  -1 . The intersect ion of al l  M: i s  0; t h e  in teresect ion  
of al l  mk is t h e  set m," of f l a t  germs, having ze ro  Taylor se r ies .  



The Jacob ian i dea l  of a singulari ty f is  the  set of 211 germs express ib le  in t h e  
form 

f o r  a r b i t r a r y  germs gi . W e  denote i t  by AV)  , o r  merely A when f i s  understood. 
I ts  image j ACf) C Fn has an analogous definition, where t h e  par t i a l  der ivat ives 
are defined formally. Since f i s  a singulari ty, AV) c m,. The cod imens ion of f 
i s  defined t o  be  

cod Cf)  = dimRmn / AV). 

Similarly, at t h e  formal power se r i es  level,  we define 

The codimension of an  o rb i t  is  t h e  same as tha t  of i ts  tangent space  T. This is  t he  
same as t he  dimension of t he  quotient vector  space E/T. In En, t h e  analog of th is 
tangent space  is  t he  Jacobian idezl,  s o  t h e  codimension shon!d b e  d im  En / AV).  
This mezsures t h e  number of independent direct ions in En "missing" from ACf) , o r  
equivalently missing from t h e  o r b i t  o f f  . 

The computation of cod Cf)  i s  ef fected by means of t h e  following resu l t :  if ei- 
t h e r  cod Cf ) o r  cod (j f ) is  f ini te then  s o  i s  t he  o ther ,  and they are equal.  Thus, t h e  
computation may be  ca r r i ed  ou t  on t h e  formal power se r i es  level where i t  i s  a com- 
binatorial  calculation. For  examples ir, classical notation, see Poston and Stewart 
[&>. 

Determinacy 
Let f e En, and define t h e  k- je t  j k V )  t o  be  the  Tzylor se r i es  of f up t o  and 

including terms of o r d e r  k . For  example, 

W e  say t ha t  f i s  k-determinate ( o r  k-determined) if f o r  any g e  En such t ha t  
j k g  = jk f , i t  follows t ha t  g i s  r i gh t  equivalent t o  f .  

A germ i s  1-determined if- i t s  l i near  p a r t  is  nonzero, t h a t  is ,  i t s  der ivat ive 
does not  vanish. So  t h e  non-1-determined germs a r e  t h e  singularities: If f is  a 
singulari ty and f (0) = 0 (as we can assume) then the second der iva t ive  gives t he  
2-jet o f f  in t h e  form 

2 
j f ( z l n - - - p z n )  = ~ i , j ~ i j z i z '  

where t h e  Hessian matr ix 

i s  symmetric. I t  can b e  shown t h a t  f is 2-determined if and only if de t  (H) # 0 ; in 
th is  case  f is  r i gh t  equivalent to 

This i s  a reformulat ion in determinacy terms of t he  Morse Lemma (Milnor 151). A 
germ equivalent t o  (*) i s  szid t o  be  Morse. Morse germs are prec ise ly  those of 
codimension 0.  The number L of negative signs in (*) is t h e  i n d e z  of f ,  and f is  an 
1-saddle. Morse theory  (Milnor [5]) descr ibes t he  global p roper t ies  of a function 



f : X  -. R where X i s  a smooth manifold, and f has  only Morse singulari t ies. (See 
Casti [9] f o r  more detai ls).  

There exist  ru les  f o r  computing the  determinacy of a given germ: an easy 
necessary condition, an  easy (dif ferent) suff ic ient condition, and a ha rde r  
necessary-and-sufficient condition. 

Let A be  t he  Jacobian ideal  of f . Then: 

(i) If mk c m, A then f i s  k-determined. 
(ii) If f is  k-determined then mk s m, A. 
(iii) f is  k-determined if and only if rn: s m, A(J +g ) f o r  a l l  g E m: . 

There is  z slightly s t r onge r  form of (i), namely 

( is)  If mk+l s  mi^ then f is  k-determined. 

Nurcerous examples in Poston and Stewart  [4] and Gibson [3] show how to  com- 
pute  the  determinacy of a given f .  For example, suppose f i s  in Morse form (*). 
 the^ A = < +2zl, . .  . , + 22, > = m, and m: = m, A. By (i), f is 2-determined as as- 
ser ted  above. 

A germ in f i n i te l y  determined if i t  i s  k-determined f o r  some f ini te k . The fol- 
lowing are equivalent: 

(iv) f has  f ini te codimension 
(v) f i s  f initely determined 
(vi) m i  s A f o r  some t . 

The solution t o  t h e  Determinacy Problem is thus t ha t  i t  i s  sa fe  (up t o  r i gh t  
equivalence) t o  t runca te  a k-determined germ at degree  k of i t s  Taylor ser ies .  
For a germ such as zZy E E2, which is not f initely determined, i t  is not sa fe  t o  
t runcate  h igher  o r d e r  per turb ing terms (and indeed z 2 y t y t  has  a type tha t  
depends on t ) .  Germs t ha t  are not f initely determined e i t h e r  a r i se  in a context  
where some symmetry is act ing (and should be analyzed by methods similar t o  those 
above but  which t ake  symmetry into account - which can  be  done) o r  must be  
viewed with suspicion. By (iv), w e  may summarize: "nice" germs hzve f ini te codi- 
mension. 

Suppose that  f is not 2-determinate, s o  t ha t  det  (H)=O. Let t he  rank of t h e  
matrix H be  r and cal l  n -r i t s  corank.  A useful resul t .  cal led t h e  Sp l i t t i ng  Lem- 
ma, szys  t ha t  f is r i gh t  equivalent t o  a germ of t h e  form 

For many purposes,  t h e  quadrat ic  t e r m s  may be ignored. So t h e  Splitt ing Lemma 
reduces t h e  effect ive number of var iab les  t o  n --r. A simple proof f o r  f ini te di- 
mensions is  in Poston and Stewar t  141. 

The determinacy calculat ions, and t he  appl icat ion of t h e  Splitt ing Lemma, may 
be  ca r r i ed  out  equally well on j k  f in F, , provided t h e  codimensior, of f i s  f inite. 
The formal power se r i es  set t ing is  be t t e r  f o r  computations. 

Unfoldings 
An unfolding of a singulari ty i s  a "parametrized family of perturbat ions."  The 

notior. is  useful mainly because,  f o r  f ini te codimension s ingular i t ies,  t h e r e  ex is ts  a 
"universal unfolding" which i s  a sense cap tu res  al l  possible unfoldings. 



More r igorously,  let  f c E n .  Then ar: I -parameter  unfo ld ing of f i s  a germ 

F ' Fn+ i l  t ha t  is,  a real-valued germ of a funct ioz 
F ( z l  ,..., z,. E ~ , .  . . , E ~ )  = F ( x , E ) ,  such tha t  F (z ,O)  = f ( 2 ) .  

An unfolding F is  i n d u c e d  from F if 

F ( z  ,6)  = F ( P ~ ( z ) ~ # ' ( ~ ) )  + ~ ( 6 )  

where 

6 = ( d l , .  . . ,6,) c R m  

p6:Rn + R n  

$:Rm -, R1 

7:RL -, R. 

Two ur,fo!dings a r e  equ iva len t  if each czr. be  induced f r o x  t he  o the r .  An 1- 
pa ramete r  unfolding i s  versa1 if all o t he r  unfoldizgs can b e  induce2 from it; 
u n i v e r s a l  if in addition, 1 is  as small a s  possible. 

Suppose t ha t  f has  f ini te codimension c .  Let ul,  . . . , u c  be  a basis f o r  
mn / ACf). Then i t  i s  a theorem tha t  z u n i v e r s a l  unfold ing i s  given by t he  germ 

F(z) ,E)  = f (z )  + e l u l ( z )  + - . + cCuc (z ) , c i  E R (**> 

While d i f fe rent  choices of t he  ui can be made, a universzl unfolding i s  unique up t o  
equivalence. The existence of universal unfoldings in finite codimension, and t he  
method f o r  computing them, is probably t h e  most significant and useful resu l t  in 
e lementary catas t rophe theory .  (Note tha t  (**) i s  l inear in t h e  unfolding var iab les  
E . This i s  a theorem, and i s  no t  built into t h e  definition of an unfolding.) 

For  example, if f ( z , y ) = z 3 + y 4 ,  then  a basis f o r  m2/ACf)  i s  
Iz , y , z y  , y 2,zy 1. So a universal unfolding i s  given by 

The codimension of a germ f has  severz l  in terpretat ions:  

(i) The codimension of t h e  Jacobian ideal in mn , 

(ii) The number of independent d i rect ions "missing" from t h e  o rb i t  of f , 
(iii) The number of parameters  in any universal unfolding of f . 

In addition, if t h e  codimension of f is  c ,  i t  can be shown t ha t  any small pe r tu r -  
bat ion of f has  at most c +I cr i t i ca l  points. 

Classification 
W e  sketch how these  ideas may be  used t o  classify germs of codimension at 

most 4. 

Let f e En . If f i s  not a singulari ty then f ( z )  is  r i gh t  equivalent t o  z l .  If f 
is  a s ingular i ty ,  and i t s  Hessian has  nonzero determinant, then f i s  r i gh t  
equivalent t o  * 212 * . . . * z: . Otherwise, det  (H)=O. Let k =n -r be  t h e  corank 
of H ,  and spl i t  f as 



I t  can be  proved tha t  the classif icat ion of possibil i t ies f o r  f depends only on the  
similar classification f o r  g .  

The Taylor se r ies  of g begins with cubic o r  h igher terms. F i rs t  suppose tha t  
k =I, and le t  t he  f i r s t  nonzero jet of g be  atzt  . This i s  t-determined, and sca les  
t o  5 z ( t  even), z t  ( t  odd). The codimension i s  t -2, s o  t = 3 ,  4, 5 o r  6. 

Next, l e t  k =2, and le t  

By a l inear  change of var iable,  th is  cubic may b e  brought t o  t h e  form z 3  + zy2 
(one r e a l  roo t ) ,  z3  - zy2 ( t h ree  dist inct r e a l  roots) ,  z2y ( t h r e e  r e a l  roo ts ,  one 
repeated) ,  z 3  ( th ree  r e a l  roo ts ,  a l l  repeated) ,  o r  0.  

The forms z3  i zy2 a r e  3-determined, and of codimension 3. 

The form zZy i s  not 3-determined, s o  w e  corisider h igher  terms. A se r i es  of 
changes of var iable bring any h igher  o r d e r  expznsion t o  t he  form z2y + y t  , which 
is  t-determined and of codimension t . Only t =4 is  re1evar.t t o  o u r  problem h e r e .  

No h igher  term added t o  z 3  produces a codimension 4 resu l t ;  znd no h igher  
term added t o  0 does. 

Finally, let k r 3. Then t h e  codimension can b e  proved t o  b e  at least 7, s o  th is 
case  does not ar ise .  

Thus, w e  have classified t h e  germs of codimension 5 4 into t h e  canonical forms 

z: + (MI 
3 

2 1  2,222 + (N) 

213 + zlz; + (N) 

213 + 224 + (N) 

where 

(M) = 5222 + . . .  i z , ,  2 (N) = + z 3  2 - c . . .  i z n .  2 

The ce lebrated elementary catas t rophes of Thom are t h e  universal  unfoldings 
of t h e  singulari t ies on th is l is t ,  o r  i ts  extension t o  h igher codimensions. The 
universal unfolding arises when we t r y  t o  classify not germs, but  I-parameter fami- 
l ies of germs. For I 5 4, "almost all" such a r e  given by universal  unfoldings of 
germs of codimension S4. 

Table 1 sumxarizes t h e  l is t  of germs and t he i r  unfoldings up t o  codimension 5 ,  to- 
ge ther  with t he i r  customzry name and symbol in t he  systemztic notzt ion of Arnol'd [I]. 
The terms (M) and (N) a r e  omitted f o r  c lar i ty ,  x and y rep lzce  z l  and z2; and unfolding 
paramete rs  are l isted as (a ,b ,c ,d ,e)  r a t h e r  than ( c ~ , c ~ , c ~ , E ~ ,  E ~ ) .  



TABLE 1: The e lementary  c a t a s t r o p h e s  of codimension 5 5 . When t h e  + sign o c c u r s ,  germs with sign (+) are 
cal led standard, (-) are ca l led  dual .  

symbol 

A2 

+A3 

A4 

3 4 5  

A6 

D i- 

Di+ 

* 5  

D 6  

D6C 

*6 

name 

fold 

cusp  

swaLlowt.ai1 

butt.erf ly 

wigwam 

el l ip t ic  umbilic 

hyperbo l i c  umbilic 

parabo l i c  umbilic 

second e l l ip t ic  umbilic 

second hyperbo l i c  umbilic 

symbol ic umbilic 

germ 
- - -. . - . -- - . - - - 

un iversa l  
unfolding 

x3+ax 

CO- 

r a n k  
codi- 
mension 

1 

2 

3 

4 

5 

3 

3 

4 

5 

5 

The a b o v e  ske tch  shows how t h e  classification problem r e d u c e s  to t h e  de terminacy  and  unfoldfng prob-  
lems (and i s  re la t i ve ly  e a s y  o n c e  t h e s e  are solved) .  In appl icat ions,  t h e  main in f luence of t h e  c lass i f icat ion 
i s  a n  organiz ing one: t h e  de terminacy  and  unfolding theo rems  p lay a more  d i r e c t  role. 



IIt. Singularity Theory and Nonlinear Programming 
We consider t h e  problem 

max f ( z  

ove r  al l  z  E Rn such t h a t  

Q ( Z )  0 ,  

where f ,g E mn . There  are at least t h r e e  dif ferent aspec ts  of th is  s tandard nonlinear 
optimization problem which singulari ty theory can shed some l ight  upon: (1 )  reduction 
of dimensionality in t h e  decision space  fo r  dual, penalty, and b a r r i e r  type algorithms 
[?I; (2) t ransformation of t h e  constra int  space into simpler form f o r  primal type algo- 
r i thms [?I and (3) sensit iv i ty analysis. Let us examine ezch  of these  areas in tu rn .  

Dimensionality Reduction and the Splitting Lemma 
If t he  optimization p rob lea  (1)-(2) is  t o  be zpproached using one of t h e  dual penal- 

ty ,  o r  b z r r i e r  a l g o r i t h ~ s  [?], t h e  Splitting Lemma can be  used t o  reduce  t h e  dirne~sior. 
of t h e  decisior: ves to r  in t h e  su r roga te  objective functior,. For example, consider t he  
augmented Lagrangian method, f o r  which the  sur rogate  object ive function is  

where a is a vec to r  of multipliers and p is  some positive constant. The pzrameters  a 
are updated according to ,  say,  t he  augmented Lagrangian scheme of Hestenes. 

Assume tha t  t he  c r i t i ca l  point of G is  located at z = z m , a  = am , and tha t  t h e  
corank of G ( z  , a )  = r. Then t h e  Splitting L e ~ m a  insures tha t  t h e r e  exist coordinate 
transformations z -, 5 ,  a -, 6 such tha t  G -, G ,  where 

where c = codim G  while GI( - )  i s  a function O ( ( z  j 3, , which i s  l i near  in Gl, . . . , a, . 
The function M(- )  i s  a p u r e  quadrat ic .  The important point h e r e  i s  t h a t  usuzlly r C C n  , 
which implies t ha t  most of t h e  computational work i s  involved in minimizing t he  quadrat- 
ic  M, which can be done ve ry  e f f i c i e ~ t l y  by any of a number of quasi-Newton schemes. 
The essentially nonl inear p a r t  of t he  problem involves t h e  minimization of G ,  which, 
however, involves only r var iables.  Often r = 1 o r  2, even if n i s  ve ry  la rge,  say,  
hundreds, so  t h e  computational savings can be significant. 

The potential  drawback t o  t h e  above scheme is t hz t  in o r d e r  t o  compute r ,  t h e  
corank of G ,  we need t o  know t h e  Hessian 

at t h e  cr i t i ca l  point (zm , a o ) .  Since i t  is  precisely z *  which w e  seek ,  i t  appears  at 
f i r s t  glance t ha t  t he  si tuzt ion i s  not  too promising. However, th is problem can be c i r -  
cumvented in a t  least  two d i f fe rent  ways: 

(i) Often i t  can be  seen t ha t  t he  Hessian will be of constznt  r ank  in some neigh- 
borhood D of z m  , even if w e  don't know z '  exactly. This si tuat ion comes about s ince 
we usually have a t  l eas t  some idea of the  region D containing z '  . Thus, if we have an 
est imate of D and know tha t  rank  H ( z  , a )  = constant f o r  a l l  z E D ,  t hen  we can use th is  
information in a successive approximatior. scheme generat ing a sequence zn -, z The 
idea is  to  apply t h e  Spl i t t ing Lemma t o  each approximate problem at t h e  point zn . 



(ii) if t h e r e  is  no informztion about  the  rank H, then w e  car, appezl  t o  t he  inequa!- 
ity 

r ( r  +1)/2 S codim G ,  

which always holds. W e  can take  a pessimistic est imate of r which, at worst,  means only 
tha t  w e  include a few more variables in o u r  nonlinear optimizatior, of GI(.) than might 
have been needed. If codim G S 2 , then we can see from the  inequality t ha t  r =1 and 
t h e r e  is only a single esseztial ,  nonlinear vzr iable,  regardless of where z '  i s  located.  
Otherwise t h e r e  mzy be  severa l  nonlinear var iables,  but the  number will s t i l l  b e  
severe ly  limited by t h e  above inequality. 

An essent ia l  ingredient in making t he  above scheme work in p rac t i ce  is  t h e  ezse  of 
determining t h e  coordinate transformations z -, 2 , a  -r 6 . A s  noted in Section 11, t he  
theory  guarantees such transformations exist  and, moreover, t ha t  they are themselves 
dif feor~orphisrns. Thus, t he  coordinate changes 

have convergent  power se r ies  e_xpansions. Consequently, since we know t h e  or ig inal  
form of G and i t s  normal form G,  in pr inc ip le w e  can subst i tute t h e  above expansions 
and match coeff icients in o r d e r  t o  determine t he  expl ici t  form of t he  transformations. 
The operat ional  implementation of th is  idea, however, may requ i re  a substantial  amount 
of z lgebra ,  depending upon the  exac t  na tu re  of G. 

Simplifying the Constraint Space 
For  nonl inear constrained optimizatioc problems hzving nonlinear const rz ic t  sets, 

t he  coord inate  changes discussed above cac b e  employe? t o  "straighten-out" t h e  bind- 
ing const ra in ts  in a neighborhood of regu la r  points, s o  tha t  primzl methods f o r  solving 
constra ined optimization problems can  b e  used, dealing only with l i near  side con- 
s t ra in ts .  The essence of the primal methods is  t o  start with a feasible d i rect ion along 
which t h e  object ive functior, is  improving. A one-dimensional l ine sea rch  ( interval  
bisect ion, Newton's method, e tc . )  is  then used t o  solve t h e  one-dimensional optimization 
p r o b l e ~  along t he  improving feasible d i rect ion,  constra ined s o  tha t  the  resul t ing solu- 
t ion remains feasib le 173. 

A speci f ic  example ,of such 2 primal method i s  t he  gradient  project ion technique 
due t o  Rosen. This method generates  an  improving feasib le direct ion by project ing t h e  
negative of t h e  gradient  vector  of f onto t h e  aff ine subspace determined by t h e  in ter -  
sect ion of t h e  binding constra ints,  assuming t h e  constra ints a r e  l i near .  A project ion 
matr ix P is  formed from a suitable l inezr  combination of t he  normal vec to rs  of t h e  con- 
s t ra in t  subspaces (i.e. t he  gradients of t he  binding constra ints) .  The result ing one- 
dimensional optimization is then guaranteed t o  remain feasible as long as a sui table 
upper  bound i s  observed on t he  l ine search  [7]. 

In t h e  event  t h e  constra ints are nonl inear, t h e  gradient  of f is  pro jec ted onto t h e  
intersect ion of t h e  tangent spaces t o  t h e  binding constra ints,  s o  tha t  movement along 
t he  improving fezsible direct ion will, in genera!, t ake  t h e  solution oxtside t h e  feasib le 
region (see Figure 1) .  This necessi tates a cor rec t ion move t o  bring t h e  solutions back 
into t he  feasib le regions a f t e r  the  one-dimensional search  hzs been completed. Singu- 
la r i ty  theory  a p p e a r s  t o  o f fer  t he  possibility of materially improving t he  above pro-  
cedure  as we now indicate. 



move 

FIGURE 1 Projected gradient method of Rosen fo r  nonlinear constrzints (From Figure 
10.5, pg. 398 Bazaraa and Shetty, 1979) 

Consider the following nonlinear programming problem: 

minimize: f ( z )  

subject  to: gi ( z )  5 0 i =1,2, ..., m 

z 2 0  

For any x such thz t  z r 0 ,  if I = [ i : g i ( z )  = O j ,  then 

X = [z :gi ( x )  = 0 j = n (gi ( 2 )  n Rn hyperplane) 
i f 1  

will be t he  intersection of a f inite number of manifolds in Rn and thus, with the  possi- 
ble exclusion of a set of points of codimension n ,  (corners) will inherit  the  manifold 
s t ruc tu re  locally. Loczlly, then, a coordinate change could be ef fected in X which will 
cause X t o  take the  form: 

X -, Y = ly :O = a'y + c ,  a ,c constant vectors j  

as long a s  the  gradients of the  binding constraints don't vanish. A trznsversal i ty argu- 
ment can be used to  ru le  out the l a t t e r  possibility. 

Assuming that  only the constraints g i  ( 2 )  = 0 is binding, le t  

Si = T, gi ( z  ) n Rn hyperplane, 

where 

T, gi ( z  ) = tangent space t o  g i  at x. 

Since codim Tzgi ( z )  = 1 and codim IRn hyperplznej = 1, i f  the  intersection is 
t ransverse 



coc5im Tz g i  (2 ) + codim [Rn -I h yperplane j = codim Si = 2 

Results from di f ferent ia l  topology assert t ha t  the  set of c r i t i ca l  points Ri f o r  gi will 
b e  isolated, thus t h e  dim Ri = 0 and codim Ri = n. Therefore ,  

codim Ri + codim Si = n +2 > n. 

So, f o r  Vgi (2)  t o  be  ze ro  zt exact ly  t h e  same points where gi (z)=0 const i tutes a non- 
t ransverse  intersect ion and i s  t he re fo re  non-generic. If any such points should occur ,  
they will b e  isolated and thus not form a constra int  boundary. 

In p rac t i ce ,  finding X and t h e  coordinate transformation necessary  t o  make i t  look 
l ike Y usually requ i res  some ef for t .  However, if pro ject ion onto only one binding con- 
s t ra in t  is  necessary ,  t he  calculzt ion becomes simpler, as t he  following example shows: 

min f (zi ,z2)  = 1/22;  + 1/22;  - z1-z2 

( the geometry in x space  is  shown in Figure 2) 

subject  t o  

z f + z ; - l  s 0 

-21 5; 0 

- 2 2  s 0 

Vp (2 )  = (2,-l,z2-1) at (1,O): Vf (1,O) = (0,-1) 
vg1(2 = (22:,2z2) Vg 1(1,0) = (2,O) - binding 
Vg2(z) = (-1,O) , Vg2(1,0) = (-130) 
vg3(z) = (0, -1) Vg &,O) = (0, -1) - binding 

As can b e  seen,  w e  want t o  p ro jec t  onto gl(z)  . To s t ra ighten out  g l ,  l e t  
2 - 2  y l  = z l  , y 2  - z 2 .  In t henew  coordinates,  VfneWwiLl be  : 

V f  ,,,(Y) = (Y p - 1 , ~  $ -I), Vf ",,(l.O) = (0, -1) 

(Note: This is not t he  gradient  of t h e  transformed object ive function but  r a t h e r  t he  
t ransformed gradient  of t he  old object ive functior,.) 

The new problem is : 

m i n Z ( ~ ~ , ~ ~ )  = 1 / 2 y l  + 1 / 2 y 2  - Y ?  - Y $  

( the geometry in y space in shown in Figure 3) 

subject  t o  

y 1 + y 2 - 1  s 0 

- Y l  s 0 

-y25;  0 

Now t h e  const ra in t  is l inear  and we p ro jec t  Vp,,, onto g1 by forming t h e  project ion 
matr ix: 



FIGURE 2 Configuration in x space  



The oSject ive functior, is  optimized along t he  constra int  by lett ing 

So  t h e  minimum is taken on at 

That th is  i s  t h e  optimum can be  seen by trying to form an  improving feasib le direct ion 
in z space.  The resu l t  w i l l  b e  t h e  ze ro  vector ,  indicating t ha t  t h e  optimum has  been 
reached.  

1 v~(z) = (47-I,*-I) - P =I-M~(MM~)-~M = ;I - [$I + (47 47) = * 
1 ' - 2 1  
2 2 
1 

, 2  2 

d =PVf (z) = - 47-1 



I new 

FIGURE 3 Configuration in y space 



zs clzimed. 

A summzry of t he  algorithm i s  given as follows: 

I n i t i a l i z a t i o n  step: Choose a feasible point z, and find Ii = f i :g l (z)  = O j .  Let u =1 
and go t o  (1). 

(1) If Ii = 0 ,  l e t  P = I ,  form d, = P V f  (2,) and go t o  (3). Otherwise, form t h e  
project ion matr ix in x-space as follows. Let M = Dp (2,) be  t h e  matr ix of gradients of 

t h e  binding const ra in ts  at I,. If P = I- M' (hWt)- M = 0 ,  l e t  W = -(hWf )-' M Vf (2,). 
If W r 0 ,  z, will be  a Kuhn-Tucker point, otherwise, de le te  a row corresponding t o  
Wi r 0 and r e p e a t  s t ep  (1). This has  t h e  ef fect  of eliminating binding constra ints from 
considerat ion which won't generate  an improving feasib le direct ion. Let 
I = f i  :gi ( z )  = O j  a f t e r  a nonzero P has  been found. 

(2) If X = n (gi (z )  r\ f R n  -I hyperplane!) i s  a l ready l inear ,  use t h e  matrix in 
i € I  

the' foliowing calculat ions. Otherwise, find a coordinate change such t ha t  X becomes 

Find Vf ,,,(y (2)) ! y (z, ) and conver t  t h e  problem into y coordinates.  Form t h e  pro- 
jection matr ix P = I - a t  (aat  )-la and go t o  (3) a f t e r  forming d, = 
P V f  ,,JY (z 1) l Y (z, 

(3) Let h, be  a solution t o  

Mi~imize f (z, + hd, ) where z, = z,, if in z coordinates and 

z, = y,, if in y coordinates 

0 4 h S  h,,, 

where h,,, i s  determined s o  t ha t  t h e  problem remains feasib le.  

Let z, = z, + hd, , conver t  t o  z coordinates, if necessary ,  and r e t u r n  t o  (1). 

For  more complex problems involving more than one binding constra int ,  t he  coor- 
dinate changes must b e  automated and checks made on t h e  neighborhood of validity of 
t h e  transformations. Application t o  o the r  primal methods can  a lso b e  made using t h e  
same types of arguments. 

Sensitivity Analysis and Unfoldings 
In Section 11, we noted t ha t  a universal unfolding of a smooth function f ( z )  

r ep resen t s  t h e  most genera l  t ype  of smooth per turbat ion t o  which f can  be  subjected 
and t ha t  t h e  number of te rms needed t o  character ize  a l l  such per turbz t ions equals 
codim f . Fur thermore,  if u l(z ), . . . , u, (z ) rep resen t  a basis f o r  t h e  Jacobian ideal 
mn / VCf  ), then t h e  lui { also r ep resen t  a basis f o r  t h e  space  of a l l  such perturbat ions.  
Since per turbz t ions in t he  object ive function and/or const ra in ts  l ie  at t he  h e a r t  of 
sensitivity analysis f o r  nonl inear optimizztion, i t  seems reasonable  t o  con jec ture  t ha t  
t h e  concepts of unfolding and t ransversal i ty  should be of use in character iz ing var ious 
issues ar is ing in t h e  sensit iv i ty analysis of nonlinear programs. Here  we shal l  indicate 
two d i f fe rent  d i rec t ions t o  be  pursued: 1) constra int  qualif ication conditions; 2) 
object ive function stabil izztion and examination of the  stabi l i ty of t h e  dual algori thms 
discussed above.  



T r a n s v e r s a l i t y  and the Kubn-Tucker  Conditions 
A s  an indication of how singularity theory arguments can be  employed t o  study 

constraint perturbations, let us examine the  classical Kuhn-Tucker conditions using 
transversali ty arguments. 

The Kuhn-Tucker necessary conditions play an  important ro le  in the  theoret ical  
development of mathematical programming. These conditions were derived from a more 
general set of conditions, called the  Fritz John conditions by assuming tha t  a con- 
s t ra in t  qualification is in effect. Both the  Fritz John and Kuhn-Tucker conditions a r e  
necessary f o r  z *  t o  be an optimal solution of the  constrained optimization problem. 
One of the most widely used constraint qualifications is  that the gradients of the  bind- 
ing constraints a t  the  point z *  be linearly independent. 

In singularity theory, the  concept of a t ransverse intersection between two mani- 
folds is a cornerstone f o r  s t ructura l  stability arguments. One definition of a 
t ransverse intersection a t  a point is tha t  no vector is perpendicular t o  the  tangent 
spaces of both manifolds simultaneously [4]. Since the gradient vector  of a manifold at 
a point wi l l  also be  the normal vector to the  tangent hyperplane at thz t  point, i t  follows 
that  t he  gradient vectors of two intersecting manifolds wi l l  both be  collinear if and 
only if the  intersection is t ransverse. Furthermore, and more importantly, the  Thom 
Isotropy Theorem [4] states that  t ransverse crossings are structural ly stable. This 
means that  sma l l  perturbations of the  constraints around a Kuhn-Tucker point won't 
change the  geometry of the intersection much. In fact ,  the original constraint confi- 
guration can be recovered by a smooth coordinate change around the  point of interest. 

Let us consider an example demonstrating the  structural  instability of a non- 
t ransverse crossing. In the example, the  following definition of a t ransverse crossing 
will be  used: 

DEFINITION 1 .  Two manifolds, R and S,  embedded in Rn intersect t ransversal ly  if 
1 )  R n S  = # o r  

2) codim (T,R) + codim (T,S) < n and 

codim (T,R) + codim (T,S) = codim T,R nT,S) 

where T, is the  tangest space a t  z . 
Ezample (from 171, see  Figure 4 f o r  geometry) 

Minimize: f ( z l , z 2 )  = -1 

Subject to: z2 - (1  2 S 0 

Vf = (-1,O) at (1,O): Vf (1,O) = (-1,O) 
vgl  = (-X1-f) , I )  V g l  (1,O) = (0 , l )  - binding 
vg 2 = (0,-1) V g  (1,O) = (0,-1) - binding 

The gradients of the binding constraints are not linerly independent. Checking the  
Kuhn-Tucker conditions: 



0 = 1  . , inconsistency, 

showing tha t  the  Kuhn-Tucker conditions don't hold. 

Transversalit y 

Both gl and g will be  embedded in R~ so  

T, g l ( z )  = f (z1,z2,z3): 2 2  - 3(1*1)2z1 = 2 2  - 3(1*1)2 zlj 

T, g 2 ( z )  = !(z1,z2,z3): 2 2  =z2 j  

at (1,O): 

T, g l ( z )  = fz l ,zzz3):  z2 = oj, thus 7'' g l ( z )  n T,g2(z) = T, g l ( z )  

T, g 2 ( z )  = I(zl,zZ,z3): 2 2  = O j  

codim T, g l ( z  ) = 1 

codim T, g 2 ( z )  = 1 

codim (T, g l ( z )  n Tx g2(z ) )  = 1 

Thus, 

codim T, g l ( z )  + codim T, g 2 ( z )  f codim (7'' g l ( z )  n T, g 2 ( z  1) 

so  the  intersection is nontransverse. 

If t he  cubic constraint is  perturbed slightly: 

8 1 ( ~ 1 , ~ Z )  = YZ - (1-111)3 + &, 

then T,gl(z) n T,g2(z) at (1.0) will be  the  empty set ,  so  the  interesection is. by de- 
finition, t ransverse. A t  the i r  point of intersection, z = (l+a,O), s o  

T, g l ( z )  = [(z1,z2,z3): z2 + 3a2 zl = 3 a 2 j  

Tz g 2 ( z )  = f(zl,z2,z3): 2 2  = o j  
and T, g l ( z )  n T, g 2 ( z )  = [(z1,z2,z3): z1 = l j  will be  a line in R ~ .  

Thus, 

codim (T, g ( z  )) = 1 

codim (T, g ( z  )) = 1 

codim (7'' g l ( z )  n T, g 2 ( z ) )  = 2 

s o  codim (T, g l (z ) )  + codim (T, g 2 ( z )  = codim (T, g l ( z  )) n T, g l (z  )) and the  inter- 
section is  t ransverse. 



FIGURE 4 Example of a nontransverse constraint crossing (from Figure 4.5, pg.136, 
Bazaraa and Shetty, 1979) 

The unfolding concept can also be  of use in sensitivity analyses in t h e  following 
manner. As an u n p a m e t r i z e d  function, the objective function f' ( z )  may be  unstable 
with regard to  s m a l l  perturbations (i.e. the  qualitative charac te r  of the  cr i t ical  points 
of f' may change as a resul t  of small changes in I). This is clearly a bad situation as 
f a r  as the credibility of the  resul ts obtained from such an  optimization are concerned. 
However. if codirn f' =c ,  an unfolding of f' involving at least c parameters wi l l  be stable 
relat ive to  all st ructura l  perturbations in the sense that  if f '(z)+p(z) is  a perturba- 
tion of f' , then the  behavior of f' (z  ) + p ( z )  near  i t s  cr i t ical  points can be  captured by 
varying the parameters in a universal unfolding of I. A s  already noted, t he  elements 
ul(z.), ..., u , ( z )  forming a basis f o r  m, / Vw) constitute a basis f o r  exactly the  type of 
perturbations we need to  stabilize f' . 

Unfolding can also be  of use fo r  studying the stabililty of the  dual optimization al- 
gorithms, which requi re the  formation of a surrogate objective function using a compu- 
tat ional parameter. For example, the  augmented Lagrangian method mentioned above 
requi res the use of a parameter p.  These parameterized functions can be  studied t o  
learn what types of objective functions and constraints may lead to  surrogate objective 



functions which are structural ly unstable, and which may behave badly as the  computa- 
tional parameter  i s  varied. 

These ideas can be il lustrated by considering the  standard l inear programming 
problem. In a sense, a l inear objective function is the  linearization of a general non- 
l inear f ( z ) ,  since no rea l  world process even generates a completely l inear potential. 

DEFINITION 2 . 1  i s  s t r u c t u r a l l y  stable if, for sufficiently small smooth perturba- 
tion functions p. the  cr i t ica l  points of f and f + p remain within t h e  same neighborhood 
and have the  same type (max, min, saddle, etc.). 

Consider t he  l inear program: 

maximize: f ( z ) = c t z  

subject  to: Az S 0 

Note t ha t  the  Hessian matrix of f will be identically zero  f o r  all x ,  so tha t  a l inear pro- 
gram has a maximum only by virtue of the  constraints. 

If a small l inear perturbat ion i s  added to  the objective function: 

maximize: f ( z )  = (cf + ct )z,  t i  << 1 

subject to: Az S 0 z =1,2, ..., n 

the  isoclines of the  objective function on the  x hyperplane might shi f t  so  that  the  set of 
isoclines leaves the  feasible region a t  a completely dif ferent extreme point of the  con- 
vex hull of constraints. Thus the linear programming problem is  not even stable with 
respect  t o  l inear  perturbations. 

In cont rast ,  i t  i s  known that  Morse (i.e. quadratic) extrema are t he  only structur-  
ally stable types f o r  nonparameterized functions, although f o r  parameterized functions 
the  situation i s  dif ferent. Similarly, since adding a small perturbat ion to a Morse func- 
tion does not drastical ly change the location of the unconstrained extremum, the  loca- 
tion of the  constrained extremum also shouldn't change too much, since the  constrained 
extremum usually occurs where the constraints a r e  tangent to t he  isoclines of j ( z ) .  

As a final note, t he  computational implications of t he  above discussion are not by 
any means as d i re  as might seem. While the  general nonlinear programming problem is  
computationally difficult, numerical methods f o r  quadrat ic programs, both constrained 
and unconstrained, are w e l l  developed. Ir: fact ,  since Morse functions are the  only 
structural ly stable types of smooth unparametrized functions, a case could be  made f o r  
transforming even nonquadratic nonlinear programs into quadrat ic form using the  dif- 
feomorphic coordinate changes guaranteed by singularity theory. Thus, a quadrat ic 
program represents ,  in a cer ta in  sense, t he  canonical problem f o r  mathematical pro- 
gramming. 
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