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Abstract

Techniques from the theory of singularities of smooth mappings are employed to
study the reduction of nonlinear optimization problems to simpler forms. It is
shown how singularity theory ideas can be used to : 1) reduce decision space
dimensionality; (2) transform the constraint space to simpler form for primal algo-
rithms; (3) provide sensitivity analysis. '
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SINGULARITY THEORY FOR NONLINEAR
OPTIMIZATION PROBLEMS

J. Casti

[. Background

Consider a smooth (C™) function f:R™ -+ R™ and assume that f has a critical
point at the origin, i.e. df (0) = 0. The theory of singularities as developed by
Thom, Mather, Arnol'd and others [1-3] addresses the following basic questions:

A. What is the local character of f in a neighborhood of the critical point?
Basically, this question amounts to asking "at what point is it safe to truncate the
Taylor series for f7?" This is the determinacy problem.

B. What are the "essential” perturbations of f ? That is, what perturbations of
J can occur which change the qualitative nature of f and which cannot be
transformed away by a change of coordinates? This is the unfolding problem.

C. Can we classify the types of singularities which f can have up to dif-
feomorphism? This is the classification problem.

Flementary catastrophe theory largely solves these three problems (when
m =1); its generalization to singularity theory solves the first two, and gives rela-
tively complete information on the third for m, n small. Here we outline a program
for the utilization of these results in an applied setting to deal with certain types
of nonlinear optimization problems. In the following section we give a brief sum-
mary of the main results of singularity theory for problems A-C for functions
(m =1) and then proceed to a discussion of how these results may be employed for
nonlinear optimization.

II. Determinacy, Unfoldings, and Classifications

Equivalence of Germs

In its local version, elementary catastrophe theory deals with functions
f:U- R where U is a neighborhood of 0 in ™. The cleanest way to handle such
functions is to pass to germs, a germ being a class of functions which agree on
suitable neighborhoods of O. All operations on germs are defined by performing
similar operations on representatives of their classes. In the sequel, we shall usu-
ally make no distinction between a germ and a representative function.

We let £, be the set of all smooth germs ™ + R, and let E,,, be the set of all
smooth germs R™ - R™. Of course E, ; = E, . These sets are vector spaces over
R, of infinite dimension. We abbreviate (:1,...,:n) ceRMtoz. If f ¢ E, . then

F@)=0y=z) ... . Sp(x)

and the f,;, are the components of f.
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A diffeomorphism germ ¢:R™ -R" satisfies ¢(0) = 0, and has an inverse ¢’
such thalt ¢(¢)(z)) =x = ¢ (¢(z)) for z near 0. It represents a smooth, inverti-
ble local coordinate change. By the Inverse Function Theorem, ¢ is a diffeomor-
phism germ if and only if it has a nonzero Jacobian, that is,

det[8p, / 8z,(0)] #0.

Two germs f.,g:R"+ R are right equivalent if there is a diffeomorphism
germ ¢ and a constant ¥ € & such that

g(z) =1 (e(z)) + 7.

This is the natural equivalence for studying topological properties of the gra-
dient VS (Poston and Stewart [4]). If f, rather than Vf, is important, the term ¥
is omitted.

A type of germ is a right equivalence class and the classification of germs up
to right equivalence amounts Lo a classification of types. Each type forms a subset
of E_ , and the central object of study is the way these types fit together.

no

A precise description is complicated by the fact that most types have infinite
dimension; but there is 2 measure of the compiexity of a type, the codimension,
which is generally finite. Heuristically, it is the difference between the dimension
of the type and that of E,, (even though both are infinite). A precise definition is
given below.

The largest types have codimension 0 and form open sets in E,,. Their boun-
daries contain types of codimension 1; the boundaries of these in turn contain
types of codimension 2, and so on, with higher codimensions revealing progressive-
ly more complex types. Types of infinite codimension exist, but form a very small
set in a reasonable sense.

Codimension and the Jacobian ideal
Let £, be the set of germs RE™ > R, and let F be the set of formal power series

in z4,...,z,;. There isa map j:E - F defined by
, af 1 82
=f(0)+ ) —0O)x, + =) ———(0 4+ -
F=rO+y 8z, ©)z; 22 oz; azj( )Z1 %

where the right-hand side is the Taylor series, or jef, of f. Note that it exists asa
SJormal power series for all smooth f: convergence is not required in what follows.
The map jJ 1is onto, linear over K&, and preserves products (i.e.,
JUe)=30Ue)=0r39)) .

Let m, be the set of f ¢ E,, such that f(0) =0. This is an ideal of E,, (mean-
ing that if fe m, and g¢ E, then fg¢& m,, which we write briefly as m_E,, Cm,).
Its kth power m% consists of all JEeE, such that
0=7(0)=df(0) =d?7(0) = --- =d*¥71f(0). In particular, f is a singularity
if and only if f &€ m, . The ideals mﬁ form a decreasing sequence.

E, 2m, 2m2fom32 -

There is a similar chain in F,. Lel M,k = j(m,l) : this is the set of formal power
series with zero constant term. Then M = j(m;) is the sel of formal power series
without terms of degree <k —1 . The intersection of all Mﬁ is 0; the interesection

of all mﬁ is the set m;" of flat germs, having zero Taylor series.
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The Jacobian ideal of a singularity f is the set of all germs expressible in the
form

8 8,
gl_L +...+ gn f

8z, 8z,

for arbitrary germs g; . We denote it by A(f) ., or merely A when f is understood.
Its image jA(f) € F,, has an analogous definition, where the partial derivatives
are defined formally. Since f is a singularity, A(f) € m, . The codimension of f
is defined to be

cod (f) = dimgm, / A(S).

Similarly, at the formal power series level, we define
cod(jf) = dimpM, / 7 A(S).

The codimension of an orbit is the same as that of its tangent space T. This is the
same as the dimension of the quotient vector space E/T. In E, , the analog of this
tangent space is the Jacobian ideazl, so the codimension should be dim E, / A(f).
This measures the number of independent directions in £, "missing” from A(f) , or
equivalently missing from the orbit of f.

The computation of cod (f) is effected by means of the following result: if ei-
ther cod (f) or cod (jf) is finite then so is the other, and they are equal. Thus, the
computation may be carried out on the formal power series level where it is a com-
binatorial calculation. For examples in classical notation, see Poston and Stewart
4l

Determinacy

Let fe £, and define the k-jet j"(f) to be the Taylor series of f up to and
including terms of order k. For example,

i8%sin(z)) =z —z3/3! +z5/5!.

We say that f is k-deierminate (or k-determined) if for any ge E, such that
j"g = j"f , it follows that g is right equivalent to fF.

A germ is l1-determined if-its linear part is nonzero, that is, its derivative
does not vanish. So the non-l-determined perms are the singularities.” If f is a
singularity and f(0) =0 (as we can assume) then the second derivative gives the
2-jet of f in the form

jzf(zlv'--!zn) = Zi'jHijzizj

where the Hessian matrix
H = (Hy;)(0)

is symmetric. It can be shown that f is 2-determined if and only if def (H) # 0 ; in
this case f is right equivalent to

+zf - xzl *
This is a reformulation in determinacy terms of the Morse Lemma (Milnor [5]). A
germ equivalent to (*) is szid to be Morse. Morse germs are precisely those of
codimension 0. The number I of negative signs in (*) is the index of f, and f is an
l-saddle. Morse theory (Milnor [5]) describes the global properties of a function



-4 -

f:X » R where X is a smooth manifold, and f has only Morse singularities. (See
Casti [8] for more details). :

There exist rules for computing the determinacy of a given germ: an easy
necessary condition, an easy (different) sufficient condition, and a harder
necessary-and-sufficient condition.

Let A be the Jacobian ideal of f. Then:

(i) If m,’i C m, Athen f is k-determined.
(ii) If f is k-determined then m: 1o m, A
(iii)  f is k-determined if and only if mE*1 Ccm_ A(f +g)forallg e mk+1.

There is a slightly stronger form of (i), namely

(") 1f mE*l ¢ mZAthen f is k-determined.

Numerous examples in Poston and Stewart [4] and Gibson [3] show how to com-
pute the determinacy of a given f. For example, suppose f is in Morse form (*).
Then A = < +2z,,...,+ 2z, > =m, and m2 = m, A. By (i), f is 2-determined as as-
serted above.

A germ in finitely determined if it is k-determined for some finite k. The fol-
lowing are equivalent:

(iv) f has finite codimension
W) f is finitely determined
(vi) m,‘l ¢ Afor some &.

The solution to the Determinacy Problem is thus that it is safe (up to right
equivalence) to truncate a k-determined germ at degree k of its Taylor series.
Yor a germ such as z%y £ E,, which is not finitely determined, it is not safe to
truncate higher order perturbing terms (and indeed zzy +y' has a type that
depends on t). Germs that are not finitely determined either arise in a context
where some symmetry is acting (and should be analyzed by methods similar to those
above but which take symmetry into account - which can be done) or must be
viewed with suspicion. By (iv), we may summarize: "nice’” germs have finite codi-
mension.

Suppose that f is not 2-determinate, so that detf (A)=0. Let the rank of the
matrix A be r and call n —r its corank. A useful result, called the Splitting Lem-
ma, says that f is right equivalent to a germ of the form

’ 2 2
g(Ty Ty ) 2Ty g 2 Ty

For many purposes, the quadratic terms may be ignored. So the Splitting Lemma
reduces the effective number of variables to » —r. A simple proof for finite di-
mensions is in Poston and Stewart [4].

The determinacy calculations, and the application of the Splitting Lemma, may
be carried out equally well on j"f in F,,, provided the codimension of f is finite.
The formal power series setting is better for computations.

Unfoldings

An unfolding of a singularity is a 'parametrized family of perturbations.” The
notion is usefu! mainly because, for finite codimension singularities, there exists a
"universal unfolding” which is a sense captures all possible unfoldings.
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More rigorously, lel fe E,. Then an l-parameter unfolding of f is a germ
FeFy that is, a real-valued germ of a function
F(zq.....%y,, &4, ..., &) = F(x,€), such that F(z,0) = f(z).

An unfolding F is induced from F if

F(z.,8) =F(pg(z).¥(8)) + 7(6)

n

where
§=(6y,...,65)€R™
pgR™ - RT
Y:R™ - R!
7:RL -+ R.

Two unfoldings are equivalent if each can be induced from the other. An I-
parameter unfolding is versal if all other unfoldings can be induced from it;
untversal if in addition, [ is as smal! as possitle.

Suppose that f has finite codimension ¢. Let w4, ...,u. be a basis for
m, / A(f). Then it is a theorem that a universal unfolding is given by the germ

F)e)=f(z)+equ(xz)+ - +e,u(z)e; €R (**)

While different choices of the u; can be made, a universzl unfolding is unique up to
equivalence. The existence of universal unfoldings in finite codimension, and the
method for computing them, is probably the most significant and useful result in
elementary catastrophe theory. (Note that (**) is linear in the unfolding variables
€ . This is a theorem, and is not built into the definition of an unfolding.)

For example, if f(z.,¥)= z3+y4, then a basis for m,/A(f) is
tz .,y .2y ,yz.ryz{. So a universal unfolding is given by

F(z,y.,t) + z3 + y4 + &8, + &y + EqTy + £4y2 + eszyz.

The codimension of a germ f has several interpretations:
rp

1)) The codimension of the Jacobian ideal in m,, ,

(i) The number of independent directions "missing’ from the orbit of f,
(iii) The number of parameters in any universa! unfolding of f.

In addition, if the codimension of f is ¢, it can be shown that any small pertur-
bation of f has at most ¢ +1 critical points.

Classification

We sketch how these ideas may be used to classify germs of codimension at
most 4.

Let f ¢ E, . If f is not a singularity then f(z) is right equivalent to z,. If s
is a singularity, and its Hessian has nonzero determinant, then f is right
equivalent to = :512 +-- % :c,f . Otherwise, det (A)=0. Let £ =n —r be the corank
of A, and split f as

F(@)=9(@y, .. Ty £ Tf 2+ TE
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It can be proved that the classification of possibilities for f depends only on the
similar classification for g.

The Taylor series of g begins with cubic or higher terms. First suppose that
k=1, and let the first nonzero jet of g be a;z! . This is t-determined, and scales
to + z¢ (t even), zt (t odd). The codimensionist—-2,sot =3, 4, 5or 6.

Next, let k=2, and let
i%g(z.y) = az® + bz%y +cxy? +dy’

3 2

By a linear change of variable, this cubic may be brought to the form z° + zy
(one real root), z3 - zyz (three distinct real roots), zzy (three real roots, one
repeated), z3 (three real roots, all repeated), or 0.

The forms z°3 + :z:y2 are 3-determined, and of codimension 3.

The form z?y is not 3-determined, so we consider higher terms. A series of
changes of variable bring any higher order expansion to the form zzy + y‘, which
is t-determined and of codimension t. Only t =4 is relevant to our problem here.

No higher term added to z3 produces a codimension 4 result; and no higher
term added to O does.

Finally, let £2 3. Then the codimension can be proved to be at least 7, so this
case does not arise.

Thus, we have classified the germs of codimension < 4 into the canonical forms
zi
+zf t- - xzx
1 n
::13 + (M)
z} + (M)
zlf’ + (M)
zp + (M)
z3—z.2% + N)
1 1<2
zf + 2:1122 + (N)
z13 +zé’ + (W)

where

2

My=z2zf+ - zzf W)y==2zf+ - 222

The celebrated elementary catastrophes of Thom are the universal unfoldings
of the singularities on this list, or its extension to higher codimensions. The
universal unfolding arises when we try to classify not germs, but [-parameter fami-
lies of germs. For I < 4, "almost all” such are given by universal unfoldings of
germs of codimension =4.

Table 1 summarizes the list of germs and their unfoldings up to codimension 5, to-
gether with their customary name and symbol in the systematic notation of Arnol'd [1].
The terms (M) and (N) are omitted for clarity, x and y replace z, and z,; and unfolding

parameters are listed as (a,b,c,d,e) rather than (81'82‘53,84,85).



TABLE 1: The elementary catastrophes of codimension <5 . When the + sign occurs, germs with sign (+) are

called standard, (-) are called dual.

symbol | name germ universal co- codi-
unfolding rank | mension
A, fold z? z3+azx 1 1
+A4 4 cusp +zf +z Y +az?+bz 1 2
Ay swallowtail z z3+azd+br+cx 1 3
+Ag butterfly +x8 t+z%+art+bri+cz+dr 1 4
Ag wigwam z’! z7+azS+bzt+cx3+dzl+rex 1 5
Dy elliptic umbilic x3—:cy2 3 —zyl+azi+bz +cy 2 3
Dy hyperbolic umbilic z3+zy? z3+zyl+az®+bx +cy 2 3
+Dg parabolic umbilic i’xzy +y 1 i(zzy +y4)+axz+by2+cz’ +dy 2 4
D¢ second elliptic umbilic z3—zy? d—zyl+ayd+bz+oyl+dz +ey 2 5
Dg second hyperbolic umbilic :z:5+z:y2 x5+xy2+ay3+bx2+cy2+dx +ay 2 5
tF' symbolic umbilic t(13+y4) i(z3+y4)+axy2+by2+cxy +dx +ey 2 5

The above sketch shows how the classification problem reduces to the determinacy and unfolding prob-
lems (and is relatively easy once these are solved). In applications, the main influence of the classification
is an organizing one: the determinacy and unfolding theorems play a more direct role.
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. Singularity Theory and Nonlinear Programming
We consider the problem

max f(z) 1
over all z& R™ such that

g(z) =<0, ()

where f.,g € m,. There are at least three different aspects of this standard nonlinear
optimization problem which singularity theory can shed some light upon: (1) reduction
of dimensionality in the decision space for dual, penally, and barrier type algorithms
[7]; (2) transformation of the constraint space into simpler form for primal type algo-
rithms [7] and (3) sensitivity analysis. Let us examine each of these areas in turn.

Dimensionality Reduction and the Splitting Lemma

If the optimization problem (1)-(2) is to be approached using one of the dual penal-
ty, or barrier algorithms [7], the Splitting Lemma can be used to reduce the dimension
of the decision vezior in the surrogate obiective function. For example, consider the
augmented Lagrangian method, for which the surrogate objective function is

G@,0)=a'g +f +p/2||g!l%

where a is a vector of multipliers and p is some positive constant. The parameters a
are updated according to, say, the augmented Lagrangian scheme of Hestenes.

Assume that the critical point of G is located at z =z ,a = a’ , and that the
corank of G(z,a) = r. Then the Splitting Lemma insures that there exist coordinate
transformations z -+ £,a - a such that 6 » G, where

G(z.,a) = 01(51, . ,f,,&l, - ,&c) +M(Zpiqs Ty

where ¢ = codim G while G4(-) is a function 0(|z i3) , which is linear in &, ...,0c -
The function M(-) is a pure quadratic. The important point here is that usually » <<n ,
which implies that most of the computational work is involved in minimizing the quadrat-
ic M, which can be done very efficiently by any of a number of quasi-Newton schemes.
The essentially nonlinear part of the problem involves the minimization of &, which,
however, involves only r variables. Often r = 1 or 2, even if n is very large, say,
hundreds, so the computational savings can be significant.

The potential drawback to the above scheme is that in order to compute 7, the
corank of &, we need to know the Hessian

2
e [ 22
8z

at the critical point (z',a’). Since it is precisely z' which we seek, it appears at
first glance that the situation is not too promising. However, this problem can be cir-
cumvented in at least two different ways:

(i) Often it can be seen that the Hessian will be of constant rank in some neigh-
borhood D of z* , even if we don’t know z’ exactly. This situation comes about since
we usually have at least some idea of the region D containing z'. Thus, if we have an
estimate of D and know that rank A(z,a) = constant for all z £ D, then we can use this
information in a successive approximation scheme generating a sequence z, - z" The
idea is to apply the Splitting Lemma to each approximate problem at the point z,, .
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(ii) if there is no information about the rank A, then we can appezl to the inequal-
ity
r(r+1)/2 < codim G,

which always holds. We can take a pessimistic estimate of » which, at worst, means only
that we include a few more variables in our nonlinear optimization of G,(-) than might
have been needed. If codim G =2 , then we can see from the inequality that » =1 and
there is only a single essential, nonlinear variable, regardless of where z'’ is located.
Otherwise there may be several nonlinear variables, but the number will still be
severely limited by the above inequality.

An essential ingredient in making the above scheme work in practice is the ease of
determining the coordinate transformations £ » £,a - & . As noted in Section II, the
theory guarantees such transformations exist and, moreover, that they are themselves
diffeomorphisms. Thus, the coordinate changes

£i =£i($1'x2, PN ,I.n),
44

& =a,(a;. 8z, . .., &py)

have convergent power series expansions. Consequently, since we know the original
form of ¢ and its normal form &, in principle we can substitute the above expansions
and match coefficients in order to determine the explicit form of the transformations.
The operational implementation of this idea, however, may require a substantial amount
of elgebra, depending upon the exact nature of G.

Simplifying the Constraint Space

For nonlinear constrained optimization problems having nonlinear constraint sets,
the coordinate changes discussed above can be employed to "straighten-out” the bind-
ing constraints in a neighborhood of regular points, so that primal methods for solving
constrained optimization problems can be used, dealing only with linear side con-
straints. The essence of the primal methods is to start with a feasible direction along
which the objective function is improving. A one-dimensional line search (interval
bisection, Newton's method, etc.) is then used to solve the one-dimensional optimization
problem along the improving feasible direction, constrained so that the resulting solu-
tion remains feasible [7].

A specific example of such a2 primal method is the gradient projeciion technique
due to Rosen. This method generates an improving feasible direction by projecting the
negative of the gradient vector of f onto the affine subspace determined by the inter-
section of the binding constraints, assuming the constraints are linear. A projection
matrix P is formed from a suitable linear combination of the normal vectors of the con-
straint subspaces (i.e. the gradients of the binding constraints). The resulting one-
dimensional optimization is then guaranteed to remain feasible as long as a suitable
upper bound is observed on the line search [7].

In the event the constraints are nonlinear, the gradient of f is projected onto the
intersection of the tangent spaces to the binding constraints, so that movement along
the improving feasible direction will, in general, take the solution outside the feasible
region (see Figure 1). This necessitates a correction move to bring the solutions back
into the feasible regions after the one-dimensional search has been completed. Singu-
larity theory appears to offer the possibility of materially improving the above pro-
cedure as we now indicate.
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Voix, ) -Vfix,} d==—PVf(x,}

Correction move

_——

K+1
g« 0

N

FIGURE 1 Projected gradient method of Rosen for nonlinear constraints (From Figure
10.5, pg. 398 Bazaraa and Shetty, 1979)

Consider the following nonlinear programming problem:
minimize: f{z)
subject to: 9;(x)=s0 i=12,....m

z 20

For any x such that z 20, if I = {i:g,(z) = 0{, then

X = {z:9;(x) =0} = N (g;(x) N B™ ! hyperplane)
ie]

will be the intersection of a finite number of manifolds in F™ and thus, with the possi-
ble exclusion of a set of points of codimension n, (corners) will inherit the manifold
structure locally. Locally, then, a coordinate change could be effected in X which will
cause X to take the form:

X -+Y={y0=ay +c, a,c constant vectors|

as long as the gradients of the binding constraints don’t vanish. A transversality argu-
ment can be used to rule out the latter possibility.

Assuming that only the constraints g; (z) = 0 is binding, let

S; =T, g;(z) N\ E" ~1 hyperplane,

where

T.g;(z) = tangent space to g, at z.

Since codim T, g,(z) = 1 and codim [R™ "1 hyperplenel = 1, if the intersection is
{ransverse
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codim T 9, (z) + codim {R" 1 hyperplane| = codim S; =2

Results from differential topology assert that the set of critical points R; for g, will
be isolated, thus the dim &; = 0 and codim k; = n. Therefore,

codim R; +codimS; =n+2 > n.

So, for Vg;(z) to be zero at exactly the same points where g, (z)=0 constitutes a non-
transverse intersection and is therefore non-generic. If any such points should occur,
they will be isolated and thus not form a constraint boundary.

In practice, finding X and the coordinate transformation necessary to make it look
like Y usually requires some effort. However, if projection onto only one binding con-
straint is necessary, the calculation becomes simpler, as the following example shows:

min f(z;.z2,) = 1/2:12 + 1/2:22 -z,-z,

(the geometry in x space is shown in Figure 2)

subject to
zlz + zzz -1 s 0
Vri(z) =(z,-1.2,-1) at (1,0): Vr (1,0) = (0,-1)
Vg.(z) = (Rz, 2z, Vg ,(1,0) = (2,0) - binding
Vgolz) = (-1.0) , Vgo(1,0) = (~-1,0)
Vgs(z) =(0,-1) Vg 3(1,0) = (0,—1) - binding
As can be seen, we want to project onto g,(z) . To straighten out g,, let

Yq = :512 Yo = zzz. In the new coordinates, Vf ., will be :
VF new(¥) = (W —1,¥# —1), VS eu(2,0) = (0,-1)

(Note: This is not the gradient of the transformed objective function but rather the
transformed gradient of the old objective function.)

The new problem is :
min f(y,¥z) =1/2y,; +1/2y, —yf —yf
(the geometry in y space in shown in Figure 3)
stbject to
Yy, +ty,—1 < 0
-y, O
-y, = 0

Now the constraint is linear and we project Vf .., onto g, by forming the projection
matrix:



_'\05

1.50 |~
1.25 |
1.00
0.75

0.50
g, {xq.%,)
0.25 —PVt
Vg1
| pd
0.25 0.50 0.75 5 =Vt 125 1.50

FIGURE 2 Configuration in x space
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Vg, =M =(11), MM' =( 1)&} =2 (MM!)P=(1/2)

|~

p=r-mum =l 9-[Harnay=

™
NI

S

d = —PVUfew = =

N|"‘N|»—»

2
i
2

oy |-
%h-l] |

The objective function is optimized along the constraint by letting

h

|
|
)

0l o Jis
>

f(rR)Y=1/2(1-1/2R)+1/4h - (1 -1/2hYt - (/2R

3 3

_3% =1/4(1-1/2h) 2 =1/4(1/2h) 2 =0 =>h =1

So the minimum is taken on at

1 <
y=? orz = \?
E} VZ

That this is the optimum can be seen by trying to form an improving feasible direction

in = space. The result will be the zero vector, indicating that the optimum has been
reached.

\
Vgqi(z) = [T/?E—%}MM‘ = (VZ V2) ://—EJ! =4 =174
) 1_1)
Vf(z) = (V2 *.\/2—1)ng=]—M‘(MM’)‘1M=BO] [$J£ (V3 VB = 21 21
T2 2z
54
-1 2 2||V2—
d =PVf(z) 72 e N =0
\ 2 2
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as claimed.

A summary of the algorithm is given as follows:

Initialization step: Choose a feasible point z,, and find I; = {i:g,(z) =0{. Let u=1
and go to (1). '

(1) 1f 1, =0, let P =1, form d,, = PVf(z,) and go to (3). Otherwise, form the
projection matrix in x-space as follows. Let M = Df’ (zyy be the matrix of gradients of
the binding constraints at z,,. If P = I-MY MMV "M =0, let W = —(MM”—lMVf (zu).
If W20, z,, will be a Kuhn-Tucker point, otherwise, delete a row corresponding to
W, 2 0 and repeat step (1). This has the effect of eliminating binding constraints from
consideration which won't generate an improving feasible direction. Let
I =4 :g; (z) = 0 after a nonzero P has been found.

@) UX =N (gz)N R ~1 hyperplanel) is already linear, use the matrix P in
it el
the foliowing calculations. Otherwise, find a coordinate change such that X becomes

Y = {y:aly +¢c =0}
Find Vf pew(v(z)) | v(z,) and convert the problem into v coordinates. Form the pro-

jection matrix P =7 —al(aat)a and go to (3) after forming d, =
PVfpew(v () | w(zy)

(3) Let h,, be a solution to
Mirimize f(z,, + hd,, where 2z, =z, Iifinz coordinatesand

Zy = Yy if In ¥ coordinates

O0Shshp,

where A is determined so that the problem remains feasible.

max
Letz,,, =2, +hd, ,

For more complex problems involving more than one binding constraint, the coor-
dinate changes must be automated and checks made on the neighborhood of validity of
the transformations. Application to other primal methods can also be made using the
same types of arguments.

convert to x coordinates, if necessary, and return to (1).

Sensitivity Analysis and Unfoldings

In Section 1lI, we noted that a universal unfolding of a smooth function f(z)
represents the most general type of smooth perturbation to which f can be subjected
and that the number of terms needed to characterize all such perturbations equals
codim f. Furthermore, if u;(z),...,u.(z) represent a basis for the Jacobian ideal
m, / V(f), then the {u, | also represent a basis for the space of all such perturbations.
Since perturbations in the objective function and/or constraints lie at the heart of
sensitivity analysis for nonlinear optimization, it seems reasonable to conjecture that
the concepts of unfolding and transversality should be of use in characterizing various
issues arising in the sensitivity analysis of nonlinear programs. Here we shall indicate
two different directions to be pursued: 1) constraint qualification conditions; 2)
objective function stabilizetion and examination of the stability of the dual algorithms
discussed above.
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Transversality and the Kuhn-Tucker Conditions

As an indication of how singularity theory arguments can be employed to study
constraint perturbations, let us examine the classical Kuhn-Tucker conditions using
transversality arguments.

The Kuhn-Tucker necessary conditions play an important role in the theoretical
development of mathematical programming. These conditions were derived from a more
general set of conditions, called the Fritz John conditions by assuming that a con-
straint qualification is in effect. Both the Fritz John and Kuhn-Tucker conditions are
necessary for z* to be an optimal solution of the constrained optimization problem.
One of the most widely used constraint qualifications is that the gradients of the bind-
ing constraints at the point £* be linearly independent.

In singularity theory, the concept of a transverse intersection between two mani-
folds is a cornerstone for structural stability arguments. One definition of a
transverse intersection at a point is that no vector is perpendicular to the tangent
spaces of both manifolds simultaneously [4]. Since the gradient vector of a manifold at
a point will also be the normal vector to the tangent hyperplane at that point, it follows
that the gradient vectors of two intersecting manifolds will both be collinear if and
only if the intersection is transverse. Furthermore, and more importantly, the Thom
Isotropy Theorem [4] states that transverse crossings are structurally stable. This
means that small perturbations of the constraints around a Kuhn-Tucker point won’t
change the geometry of the intersection much. In fact, the original constraint confi-
guration can be recovered by a smooth coordinate change around the point of interest.

Let us consider an example demonstrating the structural instability of a non-
transverse crossing. In the example, the following definition of a transverse crossing
will be used:

DEFINITION 1. Two manifolds, R and S, embedded in R™ intersect transversally if
1RNS = ¢or
2) codim (T, R) + codim (T,.S) <n and
codim (T, R) + codim (T, S) = codim T, R N\T,S)
where T, is the tangest spaceat z .
Ezample (from [7], see Figure 4 for geometry)
Minimize: S(zy27) = —x4

Subject to: z, - (1-z,)®=0

-zz <0
Vs = (-1,0) at (1,0): Vs (1,0) = (-1,0)
Vg, = (-3(1-=§.1) Vg, (1,0) = (0,1) - binding
Vg, = (0,-1) Vg, (1,0) = (0,-1) - binding

The gradients of the binding constraints are not linerly independent. Checking the
Kuhn-Tucker conditions:



-17 -

[ 3]sl 9o ual 2=

”'1[ 8] + uz[ —01 = [ (1)] = u? : tz' inconsistency,

showing that the Kuhn-Tucker conditions don't hold.

Transversality
Both g, and g, will be embedded in k3 so

T, 91() = {x1.22,23): T, —3(1—z)%z, =z, —3(1-z,)? z,}
T, gplz) = 5(21.22,1:3): Z, =z,
at (1,0):
Tr 91(x) = {21 2,%3): 2, =04, thus T, g,(z) N Tp9,(z) =T, g,(z)
T 92(z) = [(z1,2,23): 2, =04
codim Ty g4(z) =1
codim T, go(z) =1
codim (T, g1(z) N T go(z)) =1
Thus,
codim T, g4(z) + codim T, go(z) # codim (T; g (z) N\ T; g2(z))

so the intersection is nontransverse.
If the cubic constraint is perturbed slightly:

91V ¥2) =V, —(1—y3 + ¢,

then T g (z) N Trg,(x) at (1,0) will be the empty set, so the interesection is, by de-
finition, transverse. At their point of intersection, z = (1+¢£,0), so

T, 91(x) =z 2,%3): z, + 32 z, = 3%}

Tr 92(z) = (z32223): 2, =0]
and Tp g4(z) N\ Tz 92(z) = [(z32,23): 25 = 1] will be a line in R3.
Thus,

codim (T, g(z)) =1

codim (T, g(z)) =1

codim (T, gs(z) N T, go(z)) =2

so codim (T, g4(z)) + codim (T, g,(z) = codim (T, g4(z)) N Ty 94(z)) and the inter-
section is transverse.
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g

///// o

Vg, {x) ‘ gix) =0

FIGURE 4 Example of a nontransverse constraint crossing (from Figure 4.5, pg.136,
Bazaraa and Shetty, 1979)

The unfolding concept can also be of use in sensitivity analyses in the following
manner. As an unparametrized function, the objective function f(z) may be unstable
with regard to small perturbations (i.e. the qualitative character of the critical points
of f may change as a result of small changes in f). This is clearly a bad situation as
far as the credibility of the results obtained from such an optimization are concerned.
However, if codim f =c, an unfolding of f involving at least ¢ parameters will be stable
relative to all structural perturbations in the sense that if f(z)+p(z) is a perturba-
tion of f, then the behavior of f(z) + p(x) near its critical points can be captured by
varying the parameters in a universal unfolding of f. As already noted, the elements
u,(x),...,u.(z) forming a basis for m, / V(/) constitute a basis for exactly the type of
perturbations we need to stabilize f.

Unfolding can also be of use for studying the stabililty of the dual optimization al-
gorithms, which require the formation of a surrogate objective function using a compu-
tational parameter. For example, the augmented Lagrangian method mentioned above
requires the use of a parameter p. These parameterized functions can be studied to
learn what types of objective functions and constraints may lead to surrogate objective
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functions which are structurally unstable, and which may behave badly as the computa-
tional parameter is varied.

These ideas can be illustrated by considering the standard linear programming
problem. In a sense, a linear objective function is the linearization of a general non-
linear f (z), since no real world process even generates a completely linear potential.

DEFINITION 2. f is structurally stable if, for sufficiently small smooth perturba-
tion functions p, the critical points of f and f + p remain within the same neighborhood
and have the same type (max, min, saddle, etc.).

Consider the linear program:
maximize: f(z) = ctz
subject to: Az =0

z =20

Note that the Hesslan matrix of f will be identically zero for all x, so that a linear pro-
gram has a maximum only by virtue of the constraints.

If a small linear perturbation is added to the objective function:
maximize: f(z)= (c‘ + et)z, g K1
subject to: Ax =<0 i=1,2,....n
z =0

the isoclines of the objective function on the x hyperplane might shift so that the set of
isoclines leaves the feasible region at a completely different extreme point of the con-
vex hull of constraints. Thus the linear programming problem is not even stable with
respect to linear perturbations.

In contrast, it is known that Morse (i.e. quadratic) extrema are the only structur-
ally stable types for nonparameterized functions, although for parameterized functions
the situation is different. Similarly, since adding a small perturbation to a Morse func-
tion does not drastically change the location of the unconstrained extremum, the loca-
tion of the constrained extremum also shouldn’t change too much, since the constrained
extremum usually occurs where the constraints are tangent to the isoclines of f(z).

As a final note, the computational implications of the above discussion are not by
any means as dire as might seem. While the general nonlinear programming problem is
computationally difficult, numerical methods for quadratic programs, both constrained
and unconstrained, are well developed. In fact, since Morse functions are the only
structurally stable types of smooth unparametrized functions, a case could be made for
transforming even nonquadratic nonlinear programs into quadratic form using the dif-
feomorphic coordinate changes guaranteed by singularity theory. Thus, a quadratic
program represents, in a certain sense, the canonical problem for mathematical pro-
gramming.
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