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ABSTRACT 

The f i rs t  p a r t  of th is paper  is devoted to consideration on the defini- 
tion of "supremum" in a multi-dimensional Euclidean space. A desirable 
definition is looked f o r  among several  possible alternatives. In the second 
pa r t  conjugate duality in multiobjective optimization is  developed. 
Supremum is  defined in t he  extended multi-dimensional Euclidean space on 
the basis of consideration in the  f i rs t  par t .  Some useful concepts such as 
conjugate maps and subgradients are introduced f o r  vector-valued set- 
valued maps. Finally a strong duality result f o r  a multiobjective optimiza- 
tion problem is proved under a regularity condition. 

- iii - 
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Consideration on Supremum in a Multi-Dimensional 
Space and Conjugate Duality in Multiobjective 

Optimization 

T e t s u z o  l l hn ino  

1. Introduction 

In th is paper  w e  develop a conjugate duality theory in multiobjective optimiza- 

tion. Conjugate duality has been fully developed in scalar optimization by 

Rockafellar [I] and provides a unified framework f o r  the duality theory. The 

author  and Sawaragi extended i t  to the  case of multiobjective optimization by 

introducing some new concepts such as conjugate maps and subgradients f o r  

vector-valued, set-valued maps ([2],[3]). Their resul ts are based on the  efficiency 

(Pareto maximality). Kawasaki refined the i r  resul ts and obtained a reciprocal  

duality by introducing the  concept of "supremum set" in an  extended Euclidean 

space ([4],[5]). His supremum is based on the  weak efficiency (weak Pareto maxi- 

mality) of t he  closure of a set in an extended sense. 

On the  other  hand, t he re  are some other  definitions of "supremum" (Zowe [6], 

Gross [7], Nieuwenhuis [B], Brumelle 191, Ponstein [lo] and so on). In t he  f i r s t  p a r t  

of th is  paper ,  w e  consider t he  definition of "supremum" in t he  multi-dimensional 

Euclidean spaces. A s  a conclusion, t he  definition based on the  weak efficiency 

seems to be t h e  most appropr ia te  f o r  our  purpose from t h e  mathematical point of 

view. 

In t he  second p a r t  w e  define the  supremum of a set in t h e  extended multi- 

dimensional Euclidean space on the  basis of weak efficiency. W e  also show tha t  ou r  

definition is almost equivalent to tha t  of Kawasaki [4]. Conjugate maps and subgra- 

dients are defined for vecot-valued, set-valued maps as extensions of ordinary 

conjugate functions and subgradients, respectively. Finally, duality results in mul- 

tiobjective optimization are provided. Since our  definition of supremum is almost 

equivalent to Kawasaki's, t he  duality resul ts finally obtained are similar to his 

resu l ts  in [5]. However, our  approach makes the  proofs eas ier  and ref ines some 

resul ts  along with some new proper t ies  concerning "supremum". 
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Part I: Consideration on the Definition of Supremum in Rp 

2. Sweral definitions of maximum and saprunurn in RP 

In this section we wi l l  consider several  kinds of definitions of maximum and 

supremum f o r  se ts  in the p-dimensional Euclidean space RP (p 21). Though w e  deal 

only with maximum and supremum, analogous resul ts can be also obtained fo r  

minimum and infimum. 

Let D be a fixed pointed closed convex cone with the  nonempty inter ior in RP. 

The reader  might imagine the simplest case where D is equal to the nonnegative 

orthant R< . W e  use the following th ree  symbols as inequalities: For y , y '  €RP , 

The relation 2 i s  transit ive, reflexive and antisymmetric; while r and > are transi- 

tive and irref lexive. Note that 2 is equivalent to > and S and 4 are all 

equivalent when p = 1 and D = R+. 

First, we consider the  maximum of a se t  Y in RP. We must recal l  the definition 

in the case p = 1: 

~ € ~ c ~ i s a m a x i m u m o f Y - ~ € Y  and G h y  t / y E y  

Since &, S and 4 a r e  equivalent in this case, we may consider t h ree  kinds of 

ex tensions. 

Definition 2.1 For YC RP , 

G =max Y - G € Y  and $& W E Y ,  

5 =P-max Y - S € Y  and Gsfy V ~ E Y ,  

G = W - m a x Y - S E Y  and G 4 y  V y E Y ,  

Here note that  max Y is a single point, but P n a x  Y and W-max Y a r e  sets. I t  

is c lear  that  



We usually cal l  max Y the  greatest element of Y end an arb i t ra ry  y in P-max Y a 

maximal element (efficient o r  Pareto maximal point) of Y. An element in WP-max Y 

is called a weakly efficient o r  weakly Pareto maximal point. 

Now w e  turn t o  the  definition of supremum of Y. If p =1, t he  supremum of Y, 

sup Y, is defined as the smallest upper bound f o r  Y, namely. 

I ( i )  G&y t rS/cY; and 
f =supY - 

( i i )  if y'&y ~ E Y ,  then yPrG. 

The second condition can be written in the  contrapositive form: 

t (iiJ)jif y' < 6, then the re  exists y EY such that  y' < y . 
As  in the case of maximum, w e  can consider the  following th ree  kinds of supremum: 

Definition 2.2 For Yc Rp 

( l i )  G&y W E Y ;  and 
f =supY- 

( l i i )  i f y p & y  W E Y ,  then y 'a f .  

( 2 i )  f P y  t r y ~ Y ; a n d  
~ E P  -supY - 

(2 i i  ) if y'S6 then the re  exists y EY, such that  y'S y. (S2) 

( 3 i )  6 U  y t / y ~ Y ; a n d  
QEW-supY-  

( 3 i i )  if y' <Q , then the re  exists y E Y, such tha t  y' < y. 
(S3) 

Remark 2.1 If we use the  ordering cone D explicitly, these definitions can 

be  rewritten as follows: 

t ( l i )  Yc6-D;  and 
f =supY- 

( 1 4 2 )  if Yc  y ' -D,  then 6 €y'-D. 

I (2 - i )  ( 6+D\  tO])nY=#; and 
f E P  ( z i i )  Q-D\ I O ~ C Y - D \  to!. 

( 3 i )  (Q + i n t D ) n Y = # ;  and 
Q E W - s u p Y -  ( 3 i i )  Q - intDcY-intD. 

In the above definitions, sup Y is  a point, while P-sup Y and W - sup Y a r e  

sets. I t  is c lear  that  P -supYc  WP-sup Y. However sup Y is  not generally con- 

tained in P-sup Y. The f i rs t  definition (Sl )  was used by Brumelle [9] and many oth- 

ers. The third definition (S3) was adopted by Nieuwenhuis [8]. 



Noting that  

sup Y = max [cl (Y-R+)] 

when p = l , D  = R +  and Y is bounded above, w e  may obtain o ther  definitions of 

supremum. 

Definition 2.3 Given a set YcRP, w e  define the  following: 

sup' Y = max [cl (Y - D)] (S l l>  

P -sup' Y =P -max[cl (Y -D)] (s2') 

. WP-sup'Y=WP-max[c l (Y-D) ]  (s3') 

Note that  cl (Y -D) = cl (Y - int D). The definitions (S 2') and (S 3') are essen- 

tially equivalent to those given by Gross [7] and Kawasaki [4 1, respectively. 

3. Some properties of several kinds of supremum 

In th is section w e  will study some propert ies of supremum defined in the  previ- 

ous section. First,  w e  may expect  tha t  the  definitions with and without t he  prime 

"'" are closely related to each other.  

Proposition 3.1 @) f l  Y i s  bounded above, supY =suptY. f l  Y i s  no t  

bounded above, n e i t h e r  sup Y n o r  sup' Y ez is ts .  

(2) WP-supY=WP-suptY=[cl(Y-D)]\(Y-intD). 

(Proof) (1) Easy. (2) The proof of the  fac t  

WP -sup Y = [cl (Y -D)]\ (Y -int D) can be  found in Nieuwenhuis [8] (Theorem 1-17). 

Hence w e  will show tha t  WP -supt Y = [cl (Y -D)]\ (Y - intD). First ,  if 

$ E WP -supt Y = WP -max[cl (Y-D)], then i t  i s  clear that  9 E cl (Y -D) and 

$ g Y -int D.  Suppose conversely that  9 E [cl (Y-D)]\ (Y -int D) but not 

$ E WP --max[cl (Y-D)]. Then the re  exists y E cl (Y -D) such tha t  $ < y , i .e. 

y E $ + int D. Hence, for sufficiently small E >0, y + EB c $ + intD, where B is  the  

unit ball in RP . Since y E cl  (Y -D), t he re  exists y '  E Y and d E D such tha t  

y ' - d ~ y  +a. Therefore, y ' - d E $  + in tD,  namely y ' - $ E d  + in tDc in tD .  This 

implies that  $ E Y - int D and so  leads to a contradiction. Hence 9 E WP -supt Y and 



the proof is completed. 

Thus w e  need not discriminate between sup Y (resp. W - supY) and sup'Y 

(resp. W P  -sup' Y). 

Remark 3.1 There is no inclusion relat ion between P -sup Y and P -sup'Y. 

For example, if Y =  ty  € R e : y l U , y e U  j u 1 y E R ~ : ~ ~ ~ o , ~ ~ = ~  1 and if D =R:, then 

P s u p  Y = I (0 , l )  1 and P -sup'Y = 1 (1 , l )  1. 

The following proposition is obvious. 

Proposition 3.2 P -sup Yc  W P  -sup Y and P -sup'Yc W P  -sup Y. Moreover 

we have some reLationships between m&mum and supremum. 

Proposition 3.3 01 U sup YE Y, then sup Y = max Y. 

(Proof) The proofs are easy. 

Remark 3.2 The relat ion Y n P  -sup'Y =P -max Y does not always hold. In 

fact, in t he  example in Remark 3.1, 

P-maxY =I (0 , l )  1 and W -sup'Y n Y  =#. 

Now w e  shall study some propert ies of the  definitions given above. I t  seems to 

be better tha t  the definition of supremum satisfies those properties. The most 

interesting proper ty  is related to the  existence of supremum and is called t he  

axiom of continuity of real numbers in the  case p =1. This axiom asserts tha t  a set 

which is bounded above has the  supremum. Namely, if Y is a nonempty set and i f  

t h e r e  exists some ER such that  cay for all  y EY (i.e. such tha t  Yc  c -D) ,  then 

the re  exists the supremum of Y. The assumption of boundedness can also be writ- 

ten as Y -D+R or Y - intD+R. As  a n  extension of th is axiom, we have the follow- 

ing theorem: 



Theorem 3.1 For  a nonempty set  YcRF,  

(1) there e r i s t s  sup Y u a n d  only if there aists y ERP s u c h  tha t  G a y  fir d l  

y EY; 

(2) P -suptY# # u there ezists G ER' s u c h  tha t  G & y  fir d l  y EY, a n d  only u 
Y-DfRP.  

(3) P W - s u p Y # # V a n d  on ly  VY-D#RP. 

(Prooi) (1),(2) Not so  difficult. (3) Due to Nieuwenhuis [8] (Theorem 1-10). 

Bemark 3.3 (1) Even when the re  exists €RP such that  G a y  f o r  all y E Y, 

P -sup Y may be  empty.. For example, let Y = [ y c R P  :y < 0 j.  Then P -supY = #, 
though Y= -D = O  -D. 

(2) P -supf Y may not be  empty when Y is not bounded above. For example, if 

~ = f y ~ R ~ : y , + y , = O j  and D=R!, then P - s u p t Y = Y  which is not empty but 

unboundedabove. 

Another interesting and important property of the  supremum is the  fac t  that  i t  

divides the whole real line into two pa r t s  in the case p =I. This resul t  can be  

extended t o  the multi-dimensional case only when w e  consider the  weak Pare to  

supremum. 

Theorem 3.2 (Nieuwenhuis [8] ,  Lemma 1-27) WP -supY # #, then  

RP = (WP -sup Y) u (WP -supY + intD) u (WP -sup Y -int D), 

where the three se ts  in the r ight -hand s ide  a r e  d is jo in t .  

Corollary 3.1 8 W P  -sup Y # #, then  

A s  a counterexample which shows that  the theorem and corol lary are not valid 

if we replace WP -sup Y by P -sup Y o r  P -sup'Y, w e  may consider the  example in 

Remark 3.1. 

Taking these resul ts into account, w e  may conclude tha t  WP -sup Y is the  most 

appropr iate as the definition of supremum of a set Y in RP from the mathematical 

point of view. Namely, i t  satisf ies the extensions of the desirable propert ies of the 



ordinary supremum in the uni-dimensional Euclidear, space. Hence, in the second 

part of this paper, w e  will define the supremum of Y essentially by W -supY and 

develop the conjugate duality in multiobjective optimization. 



Part 11: Conjugate Duality in Multiobjective Optimization 

4. Definition of Supremum in @ 

In this section we redefine the supremum of a s e t  not only in RP but also in the 

extended Euclidean space Ep . In the ordinary case (p = I ) ,  w e  put sup Y  = + - if Y  

is not bounded above and supY = -- if Y  is empty. Moreover these two imaginary 

points +- and -- a r e  quite useful in optimization theory. Therefore we add +- 
and - t o  the p-dimensional space RP and denote the extended space by p. 
These two points satisfy the  following fo r  any y  ERP: 

-<y<-, + -+y=+-  and ---=-. 

Of course we assume that - (+ -)= -. The sum + --- is not considered, since w e  

can avoid it. 

Given a set y c F p ,  w e  define the set  A ( Y )  of al l  points above Y,  and the set 

B(Y) of all points below Y  by 

~ ( Y ) = [ y & ~ : y > y '  forsome y ' ~ Y j  

and 

B(Y)= I y  E*: y  < y' f o r  some ~ ' E Y ] .  

respectively. Clearly A (Y)c RP u I + - 1 and B  (Y)cRP u f -1 

Definition 4.1 Given a set Y C ~ ,  a point c E* i s  said t o  be  a maximal 

point of Y  if f  E Y  and c L B  (Y), that  is, if E Y  and there  is no y ' E Y  such that  

f  < y ' .  The set of al maximal points of Y  is called the maximum of Y  and is  denoted 

by Max Y .  

Definition 4.2 Given a set Y C ~ ,  a point c EF' is said t o  be  a supremal 

point of Y  if f  B(Y) and ~ ( f  ) c B ( Y ) ~ ,  that  is, if t he re  is no y  EY such that  c < y  

and If the relation y' <f implies the  existence of some y  EY such tha t  y' < y .  The 

set of all supremal points of Y  is called the supremum of Y  and is denoted by Sup Y. 

Remark4.1 (1)  M a x 4 = 4 a n d S u p 4 = [ - - j .  

t ~ (  Ig 1 )  is slmply denoted b y  B ( g ) .  



Proposition 4.1 (cf . Proposition 3.3) 

MaxY = Y n SupY 

(Proof) If 6 E YnSup Y ,  i t  is c lear  that f E Max Y. Conversely, if 6 E Max Y,  

then f  €Y\B(Y).  Sincef E Y ,  B ( f  )cB(Y). Hence f €SupY. 

Proposition 4.2 fl) Sup Y = i -- j and only tr B (Y) = #. This i s  the case 

whenand onlywhen Y=#o rY= i - - 1 .  

(2) SupY=f+ - j i f and  only i fB (Y )=RPu f - -1 .  

(3)  Except the above two cases. Sup YcRp . 

(Proof) (1) I t  is  c lear  that  B(Y) = # when and only when Y = # o r  Y = f - - 1 .  
I t  is also obvious that  Sup Y = f -- j if B(Y) = #. Finally, if Sup Y = i - - j ,  then 

--L B(Y),  which implies tha t  B(Y) = #. 

(2) If B(Y) =RP u i -- j ,  then SupYci+- j .  Since 

B( + -) =RP U i -- j = B (Y) , + W E  SUP Y. Hence Sup Y = i + - j .  Suppose conversely 

that  SupY= i+-j .  Then +-L B(Y) and B(+-)cB(Y).  Since B ( + - ) = P u t - - 1 ,  

B(Y)=RPuf - - j .  

(3) Since --< y < + - f o r  any y € RP , Sup Y C  RP except the  above two special 

cases. 

Now w e  shall consider a characterization of Sup Y as the  maximum of the  clo- 

su re  of B(Y) in Ep (cf. Proposition 3.1). The above proposition suggests us to 

define the closure of B(Y) in Ep as follows: For Y C ~  , let 

if B(Y) = # 
cl B(Y) = if ~ ( Y ) = R p u f - - j  

k : (Y)nRp)ut  - - I  otherwise. 

Here the symbol "cl " in the  right-hand side means the usual c losure in RP . 
Minimum and inflmum can be defined analogously t o  maldmum and supremum, r e s p e c t i v e -  

l y .  



Lemma 4.1 B(cl B(Y)) =B(Y). 

(Proof) If B(Y) = @ or B O  =RP v I - - j ,  the  lemma is obviously t rue.  Hence 

w e  consider the remaining general case. The point -- is  clearly contained in both 

sets.  Thus le t  y €B(Y) and y +--. Then the re  exists y1€YnRP such that  y < y'. 

Hence 

ay +( I -a)y '€B(Y)  f o r  any a ,  O<a<l .  

Taking the  limit when a +0, w e  can prove tha t  y' E cl B (Y) and so y E B (cl B(Y)). 

Conversely suppose that  y E B (cl B(Y)) and y + -. Then the re  exists a sequence 

fykjcB(Y)nRP such that  yk +y' and y <y ' .  Therefore,  y < y k  for sufficiently 

large k , and so y E B 0. 

Proposition 4.3 Sup Y = [cL B(Y)] \ B(Y) = M a x  [cl B (Y) ]  

(Proof) Since M a x 2  =Z\B(Z) generally, the  r ight  equality follows directly 

from Lemma 4.1. Hence w e  prove the  lef t  equality, namely tha t  

Sup Y = [cl B(Y)] \B(Y). Let f E [cl B (Y)]\B (Y). I t  suffices to consider the  case 

where 6 E cl (B(Y) nRP),  since the  proposition i s  tr ivial in t he  other  cases. Then 

the re  exists a sequence f yk j c B O n R p  such tha t  yk +6. For any y < f  , w e  have 

y < yk for sufficiently large k .  Hence B ( f ) c B ( Y )  and so f €Sup Y. Conversely 

suppose that  6 E S U ~ Y .  Then f L B(Y) and B($)cB(Y).  Since w e  may assume tha t  

6 € R P ,  f o r  an arb i t ra ry  fixed d ~ i n t  D, 

f -ad EB(G)cB(Y) f o r  any a >O. 

By taking the limit when a+O, w e  can prove tha t  f EcLB(Y). Hence 

6 E [cl B(Y)]\B(Y). This completes t he  proof. 

Corollary 4-1 Sup Y =Sup (B(Y)) =Sup (cL B O )  

(Proof) F r o m  Proposition 4.3, 

SupY = Max [cl B(Y)], 

Sup ( B O )  = Max [cl B(B(Y))] 



Sup (cl B(Y)) =Max [cl B(c1 B(Y))]. 

Since B(B(Y)) = B(Y) clearly and B(c1 B(Y)) = B(Y) from Lemma 4.1, the  above 

th ree  sets coincide. 

Lemma 4.2 y ERP a n d  d Eint D, then  there ez is ts  a pos i t ive number  a. 

s u c h  t h a t  y + a d ~ i n t ~ j b r  d l  aza,. 

(Proof) If such a. does not exist,  we can take a sequence of positive number 

f a k  j such that a k  -. +a* and y - a k  d SC intD. Since in tD is a cone, 

y / a k  -dSC inW. Noting tha t  (intD)' is a closed set and taking the  limit when 

k -. w, we have -d SC intD. However, this is a contradiction. 

Proposition 4.4 B (Y) = B (Sup Y). 

(Proof) I t  is  c lear  tha t  B(Sup Y) cB(Y) from the  definition of supremum. W e  

shall  prove the converse inclusion Bm c B(Sup Y). if Sup Y = f +w j or [ -- j , the  

relat ion is obvious. In the  o the r  case, -- is  contained in both sets. Let s EB(Y) 

and f + - w. Then there  exists y EY such tha t  s < y . Take an  a rb i t r a r y  d E int D. 

Then the re  exists a positive number a. such tha t  y + a d  Zi cl Bm for all  a > ao ,  

since otherwise cl B(Y)>RP (see Lemma 4.2). Thus we can define a finite nonnega- 

t ive number by 

Then i t  is c lear  that  y + Ed E Sup Y = Max [cl Bm]. Since f < y gy + E d ,  we have 

proved tha t  Bmc B(Sup Y). 

Corollary 4.2 

(Proof) I t  is  c l ea r  tha t  YC cl B(Y). Since Sup Y = [cl B(Y)]\ B(Y) f r o m  Pro- 

position 4.3 and B(Y)c c l  B(Y), 

The last  equality directly follows f r o m  Proposition 4.4. 



Proposition 4.5 (cf. Theorem 3.2) 

and the above three sets are d is jo in t .  (7hey may  be empty.) 

(Proof) I t  is  c lear  that  the  th ree  sets  a r e  disjoint. Since 

Sup YuB(Sup Y) = cL B(Y) 

from Corollary 4.2, i t  suffices to prove that  y €A (Sup Y) if y cL B(Y). When 

Sup Y = f -- j o r  f + - j ,  the  above statement is  obviously t rue.  So  we consider the 

remaining ordinary case. Since + -€A (Sup Y), we take y s! cL B (Y) with y + + - and 

prove tha t  y € A  (Sup Y).' Fix an arb i t ra ry  d Eint D. Since YnRP + $ in th is case, 

y - a d  €B(Y) f o r  sufficiently large a > O  by Lemma 4.2. Let 

and c = y - -Ed.  Showing that  €Sup Y completes the  proof. Since 

c EcL B(Y) =Sup Yu B(Y), i t  suffices to  show that  c s! B 03. If w e  suppose to the  

contrary that  c€B(Y),  then y -ad  €B(Y) from some a slightly smaller than z, 
which contradicts t he  definition of E .  Therefore c s! B(Y) as was to be proved. 

Proposition 4.6 v ylc ygcFp ,  then 

SUP Yl CSUP YguB(Sup Ye) 

Lemma 4.3 Ci) B(Y1 +Ye) =B(Yl) +B(Ye) jbr y l ,  ye*, where i t  i s  assumed 

that the sum + - -- does not occur. 



(Proof) Not s o  diff icult. 

Proposition 4.7 Let F1 and F, be set-valued m a p s  f rom a space  X to *. 
&re t he  s u m  +- -- is a s s u m e d  n o t  to occur.  Then 

= Sup u [B(F1(z)) +B(F,(z 111 CLemma4.3,(1)) 
I 

= Sup u [B(Fl(z)) +B (Sup Fe(z  ))I (Proposi t ion 4.4) 
t 

= Sup B ( U  [F1(z) +Sup F,(z) l)  (Lemma4.3,(2)) 
s 

= Sup u [F l ( z )  +SupF,(z)]  (CoroLLaty4.1) 
s 

Corollary 4.3 UF is a set -va lued mapf rom X to 2, t h e n  

Sup u F ( z )  =Sup u SupF(z ) .  
s s 

(Proof) Take F l ( z  ) = F ( z  ) and Fe(z  ) = 10 j in Proposit ion 4.7. 

Corollary 4.4 f i r  y l ,  yec j rP ,  

Sup (Yl u Ye) =Sup (Sup Yl u Sup Ye) 



(Proof) Take an  a rb i t ra ry  Z EX, and le t  F ( i )  = Y, and F ( z )  =YE for any z f i  

in Corollary 4.3. 

Corollary 4.5 Sup (Sup Y) =Sup Y jb r  YC* . 

(Proof) Let Y1 =Ye=Y in Corollary 4.4. 

Proposition 4.8 Given a set Y*, 

Sup(InfY) =InfX 

(Proof) From Corollary 4.2, 

Inf YC Sup (Inf Y)uB(Inf Y) 

Since Inf YnB(1nf y ) = 4,  Inf YcSup(1nfY). Conversely, if 6 e Inf Y, then 

6 EA(Inf Y)uB(Inf Y) from Proposition 4.5. If 6 EB(1nf Y). then 6 e Sup (Inf Y). If 

6 EA(1nf Y), then 6 e cl (B(1nf Y)) and so 6 Sup(1nf Y). Therefore Sup(1nf Y)cInf Y. 

This completes t he  proof. 

The final proposition in this section provides a character izat ion of t h e  

supremum by scalarization under the convexity assumption. 

Proposition 4.9 

and the converse inc lus ion is d s o  v d i d  if cl B(Y) is a convez set.  Here Do is a 

d u d  Qosi t ive polar)  cone 410, i .e.  

(Proof) A similar version of this proposition is known well (e.g. [3] Chapter 

3) and the  proof of this proposition can be  easily modified from tha t  of the existent 

result.  Hence i t  is omitted here.  



5. Conjugate maps 

In th is section w e  shall  define the conjugate map of a set-valued map from a 

l inear topological space  X to Ep. This concept i s  an extension of that  of well- 

known conjugate functions. 

Given a l inear topological space X, w e  consider the space of a l l  l inear con- 

tinuous opera to rs  from X to RP as a dual space of X with respect to P. This space 

is simply denoted by XC in th is paper.  Namely, f o r  z EX and TEX* , h. represents  

an element in RP . If X=Rn , then T  is  identified with a p xn matrix. In this section 

let  F  b e  a set-valued map from X to Ep. 

Definition 5.1 A set-valued map P f r o m  XC to 3 defined by 

FC(T) = S u p  u [Tz -F ( z ) ]  f o r  TEXL 
t r X  

is called t he  conjugate map of F. Moreover, a set-valued map FC* f r o m  X to * 
defined by 

FC* ( z )  = Sup u [Tz -FC (T ) ]  for z EX 
T EX' 

is  called t he  biconjugate map of F .  When f  is  a function f r o m  X to 9, i ts  conju- 

gate map and biconjugate map can be  defined by identifying i t  with a set-valued 

map zt+ I f ( z )  I. 

Proposition 5.1 Let Z be a point i n  X. we d m n e  a set-valued map G 

from X to Rp bp G (z  )=F(z + Z) jbr all z E X ,  then 

(1) G*(T)=F* (T ) -z5 ,  

(2)  GL* (Z  ) =P* ( Z  + z). 

= Sup u [ T z  -F (z  +z)] 
z 

= Sup u I [ T k f  -F(z f )1  -Sj 
a' 

= SUP u[=' -F ( z f ) ]  - 
a' 



= P  ( T )  -75.  

G** ( 2 )  = Sup U [h: -G* ( T ) ]  
T 

= Sup y [Tz -P ( T )  +%]  = P *  ( x  +z). 
T 

Proposition 5.2 Let c be a point in RP . Then 

(1) (F+G)* (TI =P(T)*- 

(2 )  (F+F)* * (z )  = P * ( z )  + c .  

(F + y ) *  ( T )  = Sup y [Tz -F (x )  -51 
Z 

= Sup y [Tz -F(z) l  -y  
Z 

= S U P ~  [Tx -P ( T ) ]  + c  = P * ( x )  +c .  
Z 

Lemma 5.1 Let InfF be another set-valued map from X to Ep defined by 

(Inf F ) ( z  ) = Inf F ( z  ) f o r  all z EX. Then 

P ( T )  = (Inf F)* ( T )  and P *  ( 2 )  = (Inf F) ** ( z ) .  

(Proof) 

(Inf F)* ( T )  = SupU [Tz -(Inf F ) ( z ) ]  
2 



= S u p ~ [ T z  - F ( s ) ]  =I;) ( T ) .  
s 

Proposition 5.3 (Extension of Fenchel's inequality) @ y W ( z )  and 

y' EFI ( T ) ,  then y + y' < lk. In other words, for any z EX and any TEX, 

(Proof) Since 

i t  is clear f r o m  Corollary 4.2 and Proposition 4.5 tha t  

This proves the  proposition. 

Corollary 5.1 U y  EF(0) and y f € + ( T ) ,  then y < y f .  

(Proof) Let y' = --yf and z = O  in Proposition 5.3. 

Corollary 5.2 @ y EF(z) and y'EF)*(z). then y < y'. In other words, 

F(z)cFL* (z)uA(Fe*(z)) .  

(Proof) From Proposition 5.3, 

F(z )  n B ( n  -F* ( T ) )  = #. 

However, B(Tz -FL ( T ) )  = B(P* ( 2 ) )  by Proposition 4.4 and hence 

F(z)nB(FL* ( 2 ) )  = #. 

This implies 



from Proposition 4.5. 

6. Subgradients 

In th is section w e  introduce the  concept of subgmdients for set-valued maps 

f r o m  a l inear topological space to *. The differentiability of a map is closely 

connected with a relationship between itself and its biconjugate map. In th is sec- 

tion F is  assumed to be a set-valued map f r o m  a l inear topological space X t o  *. 
Definition Let f E X  and 6 EF ( f  ). An element T E X C  is  said to be  a subgra- 

dient of F at ( f  ;$) if 

Tf -6 €Max [ I t  -F (z  )]. 
8 

The set of al l  subgradients of F at (2;s) i s  called the  subdifferential of F at (2;s) 

and is  denoted by OF(2;P) .  Moreover w e  let We) = U BF(2 ;p ) .  W e  can simi- 
i.m 

lar ly define 8 f ( z ' )  f o r  a function j. When dF(z';c)## f o r  every p € F ( 5 ) ,  F  is  

said to be  subdifferentiable a t  2 .  

The f i r s t  resul t  is  a character izat ion of a minimal point of a set-valued map. 

Proposition 6.1 A point G E F ( 5 )  is in M i n ~ F ( z )  if' a n d  on ly  ij 

O E  BF(5 ; p  ). 

(Proof) Obvious from the  definition of t he  subgradient. 

The second result is  a relationship between the  subgradient and the  conjugate 

map. 

Proposition 6.2 Let 6 E F ( ~ )  for some z' E X .  men T E 8F(z' ; 6 ) if and  on ly  

if TS -6 EP (T) .  

(Proof) From the definition of t he  subgradient, T E  8 F ( S ; c )  if and only if 



The la t ter  condition is equivalent to the following by Proposition 4.1: 

Hence the proposition is obviously t rue. 

Moreover, t he  subdifferentiability guarantees a relationship between a map 

and its biconjugate. 

Theorem 6.1 If F is subdwerenf iab le  at 5 E X ,  then F ( Z ) C P *  (k ). More- 

over, U F ( Z )  = In fF(2)  in  addi t ion,  then F ( 5 )  = P *  (5) .  

(Proof) In view of Proposition 5.1, i t  suffices t o  prove the case 2 = 0 .  

First, let 6 EF(O). Since F is subdifferentiable at 0 ,  t h e r e  exists ~ E P  such that  

E -FI (p). Then, from Corollary 5.1, 

6 E Max [-P"(T)]CSup [-P ( T ) ]  =F** (0 ) .  
r r 

Thus w e  have proved tha t  F ( Z ) c P *  ( S ) .  Next w e  assume that  F(0)  =Inf F(0) and 

take an arb i t ra ry  6 E P *  (0 ) .  From Proposition 4.5, 

In view of Corollay 5.2, 6 # A(F(0)).  If we suppose that  E B V ( 0 ) ) .  there  exists 

y' EF(0) such tha t  6 < y ' .  Then there  exists T EX* such that  y' E -FI ( T )  since F 

is assumed to be subdifferentiable at 0 .  However, th is implies that  6 EB(--P (T'))  

and hence contradicts the assumption 6 E P *  (0 )  = Sup y [-FI ( T ) ] .  Therefore 
r 

6 EF(O) and w e  have proved that  P *  (5 ) c F ( 2 ) .  

Finally we will show tha t  a convexity assumption guarantees the  subdifferenti- 

ability of a map as in the ordinary case of a scalar-valued function. To this end, 

we must define the  convexity of a set-valued map F by 

e p i F  = ~ ( Z , ~ ) E X X R ~ : ~  ay' f o r  some y' E F ( z ) J ,  

and say that  F is convex when e p i F  is a convex set in XxRP. W e  also define the 

effective domain of F by 



Proposition 6.3 a set-valued map F from a .Locally convez l i n e a r  two-  

Logical space X to RP u +- { i s  convez, iJ f Eint dom F a n d  i fF ( f )  c InfF(f  ), then 

F i s  s u b d ~ e r e n t i a b l e  a t  5 .  

(Proof) Let Q EF(5.). Since F ( 5 )  cInfF(5. ), (5. , c )  is  clearly a boundary pont 

of e p i F  in XxRP. Therefore there  exists a hyperplane which supports the convex 

se t  e p i F  at ( f  ,Q). Namely there  exists a nonzero vector (X,p) f X'XRP such that  

where X' is a usually paired space of X and <*,a> denotes the pairing o r  the inner 

product. Since f E intdomF, p i s  not equal t o  the zero vector. Hence w e  can take 

some T E P  s o  that  

In fact, t he re  exists a vector e ERP such that  <p.e > = -1 since p + O .  So we may 

define T as 7!z = <X,z > e .  Then 

< p , ~ - ~ > ~ < p l y - 7 ! z >  f o r a n y  ZEX and y ~ F ( z ) .  

In view of Proposition 4.9, th is implies that  

namely, that  T E 8 F ( g ; c  ). Thus F is subdifferentiable a t  2 .  

7. Duality in multiobjective optimization 

In th is section we shall derive duality results in multiobjective optimization. A 

domination cone D l  which is of course a pointed closed convex cone, is  assumed t o  

be  given in RP. Let f be a function from a locally convex l inear topological space 

X to RP u + 00 { and consider a multiobjective optimization problem 

(PI minimize f (2 )  

Solving this problem means to find the set 

Min (P) = Min [f ( 2 ) : ~  EX 1 



o r  the se t  

Inf (P)=Inf l J ( x ) : x E X  1. 

W e  introduce a perturbation parameter u EU and imbed the  primal problem 

( P )  into a family of multiobjective optimization problems, where U is another  

locally convex l inear topological space. Let Q be a function from XXU t o  

RP u 1 +- 1 such that 

Then the perturbed problem is the following: 

(Pu) minimize p ( z  ,u ). = 

Definition 7.1 The set-valued map W from U t o  2 defined by 

W ( u )  =Inf ( P J  = Inf l ~ ( z  ,u ) : z  EX] 

is called the perturbation map fo r  Problem ( P ) .  

Of course, Inf ( P )  = W ( 0 ) .  

Now w e  consider the conjugate map of Q:  

Q* ( T ,  A) = Sup 1 Tz + Au - Q(Z ,U ):z E X , u  EU j f o r  T EXC and AEU*. 

Then 

= Inf 1 p ( z  ,u ) - A u : z  EX.U EU j. 

We define the dual problem to ( P )  as follows: 

@> maximize - Q* ( 0 , A ) .  
A 

Since - Q* (O,.) i s  not a function but a set-valued map from U* t o  2, the  dual prob- 

l e m  is not a usual multiobjective optimization problem. However i t  can be  under- 

stood as a problem to obtain the set Sup u [ -Q* (O,A) ] ,  that is, 
A 

SUP (D) = Sup U[ -v* ( 0 . A ) ) .  
A 



Remark 7.1 If w e  would like to make much of the symmetry between the pri- 

mal and dual problems, w e  may consider a set-valued map 9 from XXU to RP u f +am j 

such that  @(z ,0) = Inf ff ( z )  f o r  all z EX. Then the  primal and d u d  problems may 

be written as 

(PI minimize 9(z ,0), and 
s 

@> maximize -O* (0, A). 
h 

The f i r s t  resu l t  w e  can prove is a weak duality theorem, which states that  any 

feasible value of the  primal problem is not below any feasible value of the dual 

problem. 

Proposition 7.1 For any z EX and A€ LP , 

lO>P B(-v* (0.A))). 

And hence 

Inf (P) nB(Sup 0)) = $I. 

(Proof) From Proposition 5.3, 

that  is 

This completes the proof of the proposition. 

The following relationship between the perturbat ion map and the  dual map is 

quite important. 

Lemma 7.1 W* (A) = p* (0, A). 

(Proof) 

W* (A) = Sup u [hu - W ( u  )) 
Y 

= Sup u [Au -1nf t p(x ,u ):z EX j ] 
Y 



= Sup u [Au +Sup [ - q ( z  , u  ):z EX j ] 
Y 

= Sup u [Sup I h -rp(z ,u ):z EX 1 I 
Y 

= Sup u [ h - q(z  ,u ):z EX 1 (Corollary 4.3) 
Y 

=Sup [ A u  -~p (z ,u ) : zEX,u  E U ]  

In view of th is lemma, we can rewri te Sup(D) as 

S.up (D) = Sup u [- Wr (A)] = W** (0). 
A 

Since Inf (P) = W(O), the  relationship between the primal problem and the dual 

problem is nothing but the  relationship between the values of t he  perturbation map 

and i ts biconjugate map at the nominal point u = 0. Hence we may pay attention t o  

the following class of problems. 

Definition 7.2 The primal problem (P) is said t o  be stable if the  perturbation 

map W is subdifferentiable at 0. 

We can obtain the  strong duality for  this class of problems. 

Theorem 7.1 PProblem (P) is stable, then 

Inf (P) = Sup @) 

(Proof) Obvious from Theorem 6.1. 

The following proposition and corollary show tha t  convexity is  essentially suf- 

ficient f o r  guaranteeing the  stability of the  primal problem. 

Proposition 7.2 U the B n c t i o n  q S x U  +RP u [ + 1 is convez,  then the 

per turbat ion map W is a convez set-valued map. 

(Proof) Let 



Y ( u )  = [ q ( z , u ) : z E X j ~ R P u [ + - 1  

f o r  each u EU. Then, by Proposition 4.3, 

W ( u  = I n f  Y ( u  = [cl A  (Y(u ))]\A (Y(u 1). 

Let ( u l , y l ) , ( u L , y ~ E e p i  W .  Then 

y ' c w ( u i )  + ~ c c l  d ( Y ( u i ) )  f o r  i =1,2. 

For each a such that  0 S a S 1 ,  

a y 1 + ( 1 - a ) y e € a c l  ~ ( Y ( u l ) )  + ( I  -a )c l  A ( Y ( u ~ )  

c cl [ ad ( Y ( u  I ) )  + (1 - a)A (Y(u 1 .  

Since q  is  convex, w e  can easily prove that  

ad ( Y ( u l ) ) + ( l  - a ) A ( Y ( u e ) ) c A ( Y ( a u l + ( l  -a)uE)).  

Therefore 

which implies that  

a(u ' ,  y  l )  + (1 - a)(u ' ,  y  4 Eepi W. 

Hence epi W i s  a convex set in UxRP,  tha t  is, W is  a convex set-valued map. 

Corollary 7.1 f l  the -nction q  is convez a n d  iJ O E  int dom (p(z ,u ) for 

some z ,  t h e n  Problem (P) is stable. 

(Proof) Obvious from Propositions 7.2 and 6.3. 

8. Conclusion 

In th is paper  w e  have considered what kind of definition is appropr ia te  f o r  

t he  supremum of a set in the  multi-dimensional Euclidean space. From a mathemati- 

cal  point of view, a definition based on the  weak efficiency seems to be the  most 

appropr ia te ,  though the  oridinary efficiency is be t te r  f r o m  a pract ical  point of 



view. Therefore w e  have defined the  supremum of a set in the  extended Euclidean 

space containing two imaginary points *-, on the  basis of the  weak maximality. 

This definition satisf ies some desirable fundamental propert ies.  

Some useful concepts such as conjugate maps and subgradients have been 

introduced for vector-valued set-valued maps also on the  basis of weak maximality. 

These concepts have enabled us to develop the  conjugate duallty in multiobjective 

optimization. Although the resul ts obtained are qui re  similar to the  ear l ie r  works 

by the  author  and Sawaragi [ 2 ]  or Kawasaki [ 5 ] ,  our  new approach makes t h e  

proofs much eas ier  and more understandable. 
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