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Abstract

Self-Attention Networks (SANs) are an integral part of successful neural architectures such as
Transformer (Vaswani et al., 2017), and thus of pretrained language models such as BERT (De-
vlin et al., 2019) or GPT-3 (Brown et al., 2020). Training SANs on a task or pretraining them on
language modeling requires large amounts of data and compute resources. We are searching for
modifications to SANs that enable faster learning, i.e., higher accuracies after fewer update steps.
We investigate three modifications to SANs: direct position interactions, learnable temperature,
and convoluted attention. When evaluating them on part-of-speech tagging, we find that direct
position interactions are an alternative to position embeddings, and convoluted attention has the
potential to speed up the learning process.

1 Introduction

Self-Attention mechanisms are at the core of successful neural network architectures in natural language
processing (e.g., Transformer by Vaswani et al. (2017)). Compared to recurrent neural networks they do
not have an inherent sequential bias, yet they allow the network to transfer knowledge across a sequence
of length t in a constant number of steps. Typically, a self-attention layer consists of multiple attention
heads and is itself part of a more sophisticated layer such as a Transformer Encoder Block.

We propose three minor modifications to the self-attention mechanism: (1) Position embeddings (Col-
lobert et al., 2011; Vaswani et al., 2017) are used to inject positional information into SANs. We argue
that learning position interactions can be modeled more directly than learning separate position embed-
dings and propose to replace embeddings with a direct position interaction matrix. (2) We hypothesize
that spiky distributions generated by a softmax function within the attention head hinders the network
from considering the broader sentence context effectively. Thus we introduce additional scalar param-
eters, a learnable temperature, that can support the network in using the context more effectively.
(3) Convoluted Attention: attention matrices have been found to exhibit regular patterns (Clark et al.,
2019; Kovaleva et al., 2019). A convolution which post-processes the attention matrix allows the network
to detect attention patterns, and subsequently to reinforce or weaken attention scores.

We perform experiments on Part-of-Speech (PoS) tagging. We argue that a PoS model can only
be successful for ambiguous and out-of-vocabulary tokens if it carefully considers and processes the
context. Thus we consider PoS a suitable task to probe whether our modifications on the attention
matrix enable more efficient learning. We perform experiments on the Penn Treebank (PTB) and on 47
languages of Universal Dependencies (UD). In short, our findings are: (i) Modeling absolute and relative
position information through direct interaction matrices is a feasible alternative to position embeddings.
(ii) Learnable temperature has almost no effect besides a small increase for out-of-vocabulary tokens.
(iii) Convoluted attention achieves a higher accuracy after fewer epochs (more efficient learning) on PTB
and has higher performance on UD. While results for convoluted attention are promising we are aware
that only evaluating on PoS is a very restricted setting. Thus we plan to extend this study in future work.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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(a) Model architecture. For simplicity only 2 Self-
Attention layers are shown.

Hyperparameter PTB UD

# Layers 4
Char CNN filter width 3
# Char CNN filters 64
# Attention Heads 4
Embedding Dimension d 300 128
Position Emb. Dim. 300 128
Character Emb. Dim. 64
Finetune Emb. No Yes
Use Pretrained Emb. Yes No
Finetune Position Emb. Yes
Finetune Character Emb. Yes
Vocabulary size 20000 50% of unique words
Max Sequence Length t 60
Max Char Seq. Length 20
Early Stopping Yes, 3 epochs patience
Activation Function ReLU
Dropout rate 0.1
Optimizer RMSprop with default parameters as in

keras.io/api/optimizers

(b) Model hyperparameters.

SAN +PE[add] +P +R +Temp +Conv +Conv2d

7,691,823 +18,000 +14,400 +480 +48 +173,760 +160

(c) Number of parameters for PTB when adding each extension to SAN. +R, +Temp and +Conv2d only add very
few parameters to the model. SAN+P has less parameters than SAN+PE[ADD] when t2 × nheads < t× d.

Table 1: Model summary.

2 Methods

2.1 Model Architecture
To study our proposed modifications to self-attention we use a simple architectural setup; see Table 1a.
Following embedding lookups for words and positions we deploy multiple layers of self-attention blocks
and subsequently a softmax layer to get final PoS predictions. Our objective function is categorical
cross-entropy. Character information is essential for PoS tagging (dos Santos and Zadrozny, 2014). To
incorporate character information we follow (Yu et al., 2017) and use convolutional neural networks
together with max-pooling to obtain a character level representation for words. We add/concatenate
position embeddings to word embeddings and subsequently concatenate the character level word repre-
sentation. We use a residual connection from the beginning to the end of the network and around each
attention layer. See Table 1a and Table 1b for more details on the overall architecture and hyperparam-
eters, and Table 1c for the number of parameters. We used common hyperparameters and did not tune
them for higher performance.

2.2 Self-Attention
In this section we describe Self-Attention (Vaswani et al., 2017), for which we propose modifications
in the following sections. We loosely follow the notation of Shaw et al. (2018) and define self attention
as a function att : Rt×d → Rt×dh where t is the sequence length, d the input dimension and dh the
output dimension. Consider an input X ∈ Rt×d and weights Wk,Wv,Wq ∈ Rd×dh . We denote the
softmax function as σ. A scaled dot-product attention head is Z := att(X) = σ(A)XWv where
A =

√
dh
−1
XWq(XWk)

ᵀ is the attention matrix and σ is applied along the horizontal axis. One
self-attention layer consists of the concatenation of multiple attention heads. We call the model that adds
(resp. concatenates) position embeddings to word embeddings SAN+PE[add] (resp. SAN+PE[con]).

2.3 Direct Position Interactions
It is well known that SANs are invariant with respect to reorderings of the input. To counteract this effect
position embeddings, that are added or concatenated to the word embeddings, have been used (Collobert
et al., 2011; Bahdanau et al., 2015). When adding position embeddings, parameters in form of a position
embedding matrix P ∈ Rt×d are added to the model. The corresponding position embeddings are then



added to token embeddings in the first layer. More specifically A is modified in the first layer to

APE[ADD] ∼ (X + P )ᵀWqW
ᵀ
k (X + P )ᵀ = XWqW

ᵀ
kX︸ ︷︷ ︸

word-word ∼A

+PWqW
ᵀ
kX

ᵀ +XWqW
ᵀ
kP

ᵀ︸ ︷︷ ︸
word-position

+ PWqW
ᵀ
kP︸ ︷︷ ︸

position-position

.

We now propose to omit the word-position terms and replace the position-position term with the matrix
Ap ∈ Rt×t. The valuesAp

ij are learnable scalar values that directly model absolute positional interaction.
Analogously we can introduce relative position embeddings by replacing position-position interaction
with a matrix Ar ∈ Rt×t, where Ar

i,j = ari−j+t and ar ∈ R2t are the learnable parameters. We refer to
these modifications as SAN+P and SAN+R, respectively. Absolute and relative position embeddings can
then be easily combined by computing AP+R = A + Ap + Ar, which we call SAN+P+R. Analogously
to position embeddings that are only added in the first layer, we add Ap or Ar to the attention heads in
the first layer. Note that the parameters Ap and Ar are not shared across attention heads.

2.4 Learnable Temperature
We propose to multiply each Wi with a trainable scalar weight γi for i ∈ {k, v, q}. We refer to this
modification as learnable temperature, as γk × γq can be interpreted as a temperature of the softmax
function used in attention. While it is related to normalization techniques, such as batch-, layer- or
weight-normalization (Lei Ba et al., 2016; Salimans and Kingma, 2016; Ioffe and Szegedy, 2015), we
only add a single learnable parameter per weight matrix and do not perform normalization. Normaliza-
tion often involves complicating the objective function. We hypothesize that adding a learnable scalar
value γi to scale weight matrices helps the network learn faster.

2.5 Convoluted Attention

Figure 1: Applying 1d (top) and 2d
(bottom) convolution on the atten-
tion matrix σ(A) to get a postpro-
cessed matrix A′. For 1d convolu-
tion we use one filter per row.

We propose to process the matrix σ(A) in convolutional layers,
i.e., we create the matrix A′ = conv(σ(A)). We experimented
with having the convolution before taking the softmax, but this
resulted in worse results. Note that after the convolution the at-
tention scores are not normalized anymore. We apply both one
and two dimensional convolutions (see Figure 1). This allows at-
tention to reinforce neighborhood patterns, that have been iden-
tified e.g., by Clark et al. (2019; Kovaleva et al. (2019). Consider
a sequence w1, w2, w3 and assume attention weights are high for
w1, w3 and low for w2; then a convolutional filter can learn such
a pattern and increase the attention weight forw2 if this is benefi-
cial for performance. For 1d convolution we use t convolutional
filters per attention head to preserve the shape of the matrix. For
2d convolution we have one filter per attention head. This can be
interpreted as a some sort of smoothing over the attention matrix.
We use filter-width 3 in both cases.

2.6 Data
PTB. We work on the WSJ section of the Penn-Treebank (PTB)
(Marcus et al., 1993) with the usual data split (train: 0-18, dev:
19-21, tst: 22-24). We report accuracy across all words, out of
vocabulary (OOV), and ambiguous words. We consider a word ambiguous if it has more than one unique
PoS tag in the training data. We report mean and standard deviation (in subscript) across three random
seeds. For pretrained word embeddings we use fastttext subword embeddings (Bojanowski et al., 2017).1

UD. We use version 2.2 of the Universal Dependencies as used in the CoNLL 2018 shared task (Zeman
et al., 2018). We consider treebanks that have train, development, and test data and where results are
reported in (Smith et al., 2018). This results in 47 treebanks.

1
https://fasttext.cc/docs/en/english-vectors.html



3 Results
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(a) Development accuracy on PTB during training.

All OOV Ambig.

B
as

el
in

es

SAN 94.62 0.15 80.37 0.72 91.36 0.24
SAN+PE[con] 96.81 0.02 85.45 0.58 95.16 0.01
SAN+PE[add] 96.82 0.07 85.81 0.26 95.19 0.12

M
et

ho
ds

SAN+P 96.84 0.10 85.69 0.41 95.23 0.17
SAN+R 96.33 0.09 83.70 0.85 94.41 0.12
SAN+P+R 96.88 0.05 85.71 0.52 95.33 0.05
SAN+PE[add]+Temp 96.93 0.04 86.15 0.26 95.37 0.10
SAN+PE[add]+Conv 96.93 0.07 86.41 0.35 95.38 0.10
SAN+PE[add]+Conv2d 96.88 0.04 86.48 0.31 95.30 0.08

Meta-Bi-LSTM 97.96
Tag-Dictionary 92.70

(b) Results for PTB. Bold: best result across the proposed
methods. Meta-Bi-LSTM is by Bohnet et al. (2018), Tag-
Dictionary by Huang et al. (2015).

Model All OOV Ambig.

Bl. SAN+PE[add] 92.40 0.31 77.89 1.10 88.85 0.35

M
et

ho
ds SAN+P+R 92.82 0.27 78.77 0.97 89.44 0.39

SAN+PE[add]+Temp 92.49 0.24 78.33 1.01 88.85 0.34
SAN+PE[add]+Conv 94.21 0.17 82.40 0.65 92.20 0.26
SAN+PE[add]+Conv2d 94.40 0.17 82.87 0.69 92.47 0.29

Uppsala 95.62

(c) Results for UD. We report the macro mean across 47
treebanks. Subscript is average standard deviation. For
reference we denote results by Smith et al. (2018) (Upp-
sala) in the last row.

Baseline Methods
UD Treebank SAN SAN SAN

SAN SAN + PE[add] + PE[add] + PE[add]
+ PE[add] + P + R + Temp +Conv + Conv2d Uppsala

Afrikaans-AfriBooms 92.11 92.02 92.06 94.50 94.75 96.28
Ancient,Greek-PROIEL 94.79 95.01 95.03 95.81 95.99 97.05
Ancient,Greek-Perseus 89.50 89.09 89.34 89.12 89.11 92.40

Arabic-PADT 94.21 94.05 94.14 95.22 95.36 90.70
Basque-BDT 90.86 91.09 90.68 92.38 92.79 96.05

Bulgarian-BTB 96.32 96.74 96.15 97.15 97.37 98.85
Chinese-GSD 88.54 88.45 88.36 91.44 91.42 89.15
Croatian-SET 95.65 95.81 95.70 96.23 96.42 97.93

Czech-CAC 97.66 97.79 97.80 98.10 98.25 99.17
Czech-FicTree 96.41 96.44 96.46 96.88 97.07 98.42

Danish-DDT 90.25 90.78 90.45 93.82 94.50 97.14
Dutch-Alpino 92.14 92.61 92.08 93.83 93.88 95.78

Dutch-LassySmall 92.17 92.18 92.28 93.45 93.22 96.18
English-GUM 89.42 88.93 89.17 92.38 92.35 94.67
English-LinES 89.38 89.53 88.69 93.34 93.56 96.47
Estonian-EDT 94.24 94.32 94.23 95.19 95.30 97.16

Finnish-FTB 90.12 89.89 90.31 91.72 91.79 96.30
Finnish-TDT 93.43 93.78 93.63 94.01 93.83 97.06
French-GSD 93.99 95.48 94.05 96.29 96.33 96.86

French-Sequoia 94.45 94.88 94.54 96.00 96.37 97.92
French-Spoken 86.50 88.27 87.93 91.17 92.20 95.51

German-GSD 90.57 91.32 90.72 92.26 92.48 94.02
Gothic-PROIEL 92.84 92.24 92.87 93.11 93.79 93.43

Greek-GDT 92.94 93.22 93.57 95.02 94.99 97.26
Hebrew-HTB 92.62 92.59 92.67 94.64 94.90 80.26
Hindi-HDTB 93.20 94.96 93.18 95.80 95.86 97.44

Hungarian-Szeged 87.38 88.90 88.76 89.47 89.97 94.60
Korean-Kaist 92.59 92.81 92.70 93.92 93.95 95.21

Latin-ITTB 95.94 96.40 95.75 97.04 97.09 98.34
Latin-PROIEL 93.83 93.74 93.89 94.12 94.46 96.21

Norwegian-Bokmaal 93.22 95.57 93.40 96.17 96.30 98.04
Norwegian-Nynorsk 92.33 94.64 92.52 95.89 95.85 97.57

Old,Church,Slavonic-PROIEL 92.37 91.99 92.64 93.36 93.84 95.76
Old,French-SRCMF 88.65 92.71 88.84 93.32 93.71 95.48

Persian-Seraji 94.53 94.22 94.57 95.69 95.95 96.79
Polish-LFG 96.29 96.20 96.21 96.49 96.85 98.57

Polish-SZ 94.57 94.11 94.49 95.17 95.31 97.95
Portuguese-Bosque 92.55 94.73 92.59 96.05 95.80 95.90

Serbian-SET 95.33 95.23 95.39 96.27 96.56 97.61
Slovak-SNK 92.49 91.39 92.68 93.42 93.58 96.57

Slovenian-SSJ 94.72 94.95 94.81 95.81 96.06 97.99
Spanish-AnCora 95.14 96.92 95.09 97.61 97.65 98.69
Swedish-LinES 88.94 88.95 88.70 92.72 93.00 96.64

Swedish-Talbanken 90.38 90.47 90.01 94.06 94.55 97.45
Ukrainian-IU 93.21 93.14 93.34 93.86 94.41 96.89
Urdu-UDTB 89.62 89.34 89.67 92.31 91.53 93.66

Vietnamese-VTB 84.42 84.77 84.78 86.29 86.52 78.89

(d) Results per treebank. Accuracy computed across all words.

Table 2: Results.

The plot in Table 2a shows development accuracy on PTB over training time. Convoluted attention
yields a much steeper learning curve. Accuracy goes up quicker and the model seems to be converged
after just 5 epochs. Learnable temperature does not have any visible effect on the learning curve and
SAN+P+R seems to have a slightly steeper learning curve. After training for more than 10 epochs they
converge to a similar performance. This is expected as our modifications do not make the model more
expressive, they target more efficient learning.

Table 2b shows test results for PTB. All our modifications achieve comparable performance to
SAN+PE[add]. Convoluted attention even achieves a slight performance improvement. Similarly learn-
able temperature has slightly higher performance for OOV. Replacing position embeddings both with
absolute and relative direct position interactions is feasible and yields similar performance. Using only
relative position interactions is slightly worse. It is surprising that +R reaches almost the same perfor-
mance as +PE[add] with far less parameters. The combination, SAN+P+R, does not work better than
just using SAN+P. Overall we reach a reasonable performance of almost 97%.

Table 2c, 3d show results across 47 treebanks. The overall conclusions are similar: Learnable tem-
perature does not have any effect. SAN+P+R performs as well as SAN+PE[add] and indicates that this
is a possible alternative to position embeddings. Surprisingly, convoluted attention yields much better
results on UD with a 2 percentage point increase over SAN+PE[add]. Investigating the reason for this is
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Figure 2: Development accuracy during training for PTB (left) and UD (right). For UD we report the
average across languages. Compared to Table 2a this is a more detailed view on the first training steps.

part of future work. Both 1d and 2d convolution perform similar. +Conv2d yields performance improve-
ments with only 10 additional parameters per attention head added in the model (see Table 1c). This
indicates that our hypothesis that convolutions are suitable to reinforce patterns in the attention matrix is
reasonable.

Figure 2 shows the learning curves for PTB and UD for the first training steps (around 1 epoch for
PTB). One can see that convoluted attention exhibits a somewhat steeper learning curve from the very
beginning, but the overall effect is more visible in Table 2a.

4 Related Work

Many variants of positional embeddings have been explored: Vaswani et al. (2017) reported on sinusoidal
and learned position embeddings, Shaw et al. (2018) explored relative position embeddings and Shen et
al. (2018) introduced directional self-attention. We propose to replace traditional position embeddings
by a direct position interaction matrix. Recently Raffel et al. (2020) proposed to model relative positions
with scalar values, an idea also investigated by Schmitt et al. (2020). This approach is similar to our
SAN+R. Contemporary to this submission, Ke et al. (2020) proposed TUPE, which is similar to SAN+P.
They also find it to be a feasible alternative to position embeddings and report slight performance in-
creases. In contrast to weight normalization (Salimans and Kingma, 2016), a related method to learnable
temperature, we do not normalize the weight matrices. Instead we only add a learnable scalar parameter
and observed that normalizing the weights actually harms performance. Lin et al. (2018) introduced a
self-adaptive temperature. However, they focused on parametrizing the temperature of timestep t using
the activations from timestep t−1. Contemporary to this work, Henry et al. (2020) proposed query-key
normalization in Transformers. There is range of work trying to combine attention with convolution (Yin
and Schütze, 2018; Yu et al., 2018). We are not aware of any work that applies convolution directly to
attention weights.

5 Conclusion

We conclude that position embeddings can be replaced with direct position interactions.2 Learnable
temperature has almost no effect. Convoluted attention speeds up learning on PTB and yields better
results on UD. We are aware that this paper is a small study with limited validity as it considers only one
task. Given that convoluted attention yielded promising results, we plan to extend this line of experiments
to additional tasks and architectures in future work. Our code is available.3
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