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Abstract

Bilingual dictionary induction (BDI) is the task of accurately translating words to the target
language. It is of great importance in many low-resource scenarios where cross-lingual training
data is not available. To perform BDI, bilingual word embeddings (BWEs) are often used due to
their low bilingual training signal requirements. They achieve high performance, but problematic
cases still remain, such as the translation of rare words or named entities, which often need to
be transliterated. In this paper, we enrich BWE-based BDI with transliteration information by
using Bilingual Orthography Embeddings (BOEs). BOEs represent source and target language
transliteration word pairs with similar vectors. A key problem in our BDI setup is to decide
which information source – BWEs (or semantics) vs. BOEs (or orthography) – is more reliable
for a particular word pair. We propose a novel classification-based BDI system that uses BWEs,
BOEs and a number of other features to make this decision. We test our system on English-
Russian BDI and show improved performance. In addition, we show the effectiveness of our
BOEs by successfully using them for transliteration mining based on cosine similarity.

1 Introduction

The task of Bilingual Dictionary Induction is defined as finding target language translations of source
language words. It is an important building block in the area of Machine Translation (MT) and it is one
of the main tasks for bilingual word embedding evaluation (Mikolov et al., 2013b; Vulic and Korhonen,
2016). Recent work shows that good performance can be achieved relying only on BWEs, which can
be built with only a weak bilingual signal, such as a small seed lexicon of a few thousand word pairs
(Mikolov et al., 2013b) or common tokens in the source and target languages (Artetxe et al., 2017). In
addition, they can even be built without any bilingual signal (Conneau et al., 2018; Artetxe et al., 2018),
making them the basis of unsupervised MT systems (Lample et al., 2018; Artetxe et al., 2019).

Standard BDI learns word representations based on approaches that exploit solely word-level informa-
tion such as word2vec (Mikolov et al., 2013a) or fasttext (Bojanowski et al., 2017) and then map them to
a shared BWE space. Although BWE-based approaches show high BDI performance, they struggle with
a subset of hard-to-translate words such as named entities for which orthographic information should be
used instead of semantic information. Several approaches have integrated orthographic information into
the BDI system. Heyman et al. (2017) relied on character-level information in their classification based
BDI system by using an RNN architecture. Braune et al. (2018) combined orthographic information with
BWE-based word similarity information using an ensembling method. Both of these approaches showed
improved results, but they relied on Levenshtein distance to get translation candidates for a source word
during prediction, which is not applicable for language pairs with different scripts. To bridge the gap be-
tween languages with different scripts, a transliteration system was employed by Severini et al. (2020).
They followed the approach of Braune et al. (2018) but used the transliteration system instead of Leven-
shtein distance to get candidates used in the ensembling model. On the other hand, as they also showed,
the ensembling approach often fails to decide correctly if a word has to be transliterated or not; this is
because there are only two independent scores available, the score of the (semantic) BWE, and the score
of the (orthographic) transliteration model.
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In this paper, we present our novel approach to BDI focusing on words that have to be transliterated
to another script, which is especially important for low-frequency words, but also relevant for high-
frequency named entities. Our aim is to improve BDI systems in two respects: (i) eliminating the need
for language specific orthographic information, such as is used in Levenshtein distance, and (ii) to be
able to better decide when to choose transliteration over semantic translation. We propose a new ap-
proach for language pairs with different scripts by combining semantic information with orthographic
information. For the latter we introduce Bilingual Orthographic Embeddings (BOEs) of words, which
represent transliteration pairs in the source and target language with similar vectors. We build BOEs
using a novel transliteration system trained jointly for both language directions. We refer to this novel
system as seq2seqTr. seq2seqTr can also be used to extract candidate transliterations for a source word.
It is applicable to any language pair (as opposed to Levenshtein distance). To make a more informed
decision about which words should be transliterated (which means we shoud primarily trust the BOEs)
and which should be semantically translated (which means we should primarily trust the BWEs), we
use a classification approach similar to (Heyman et al., 2017), exploiting our pretrained encoder from
seq2seqTr. In contrast to their approach, we use additional features, such as frequency, length, similarity
scores, and the ranks assigned by the semantic and character-level submodels, and show that they are
necessary to make the right decision.

We test our system on the English-Russian (En-Ru) data provided in the BUCC 2020 shared task (Rapp
et al., 2020). Test dictionaries were released in three frequency categories: high, middle and low. We
evaluate our system on all three sets, both separately and jointly, and show improved performance on all
three frequency ranges compared with previous approaches. Furthermore, we show that our classification
system is more robust than the ensembling of Severini et al. (2020), which required specialized tuning
on each frequency set. Lastly, we conduct a further analysis of the quality of the proposed BOEs by
running transliteration mining on the NEWS 2010 shared task data (Kumaran et al., 2010) by using the
vector similarity of Bilingual Orthographic Embeddings of words. We show good performance on the
task indicating the usefulness of BOEs for other downstream tasks.

2 Related Work

2.1 Bilingual Dictionary Induction

BWEs are often used for solving BDI tasks by calculating cosine similarity of word pairs and taking
the n most similar target candidates as translations for a source word. As opposed to general MT based
approaches that rely on parallel sentences, BWEs are also effective when only a small seed lexicon is
provided (e.g., (Mikolov et al., 2013b)). Conneau et al. (2018) and Artetxe et al. (2018) dispense with
seed dictionaries and iteratively improve the mapping from an initial weak solution in a self-learning
approach. This setting provides a building block for unsupervised MT and is particularly effective in the
low-resource setting where less parallel seed data is available (Artetxe et al., 2019; Lample et al., 2018).

BWE-based methods perform worse for low frequency words due to poor vector representations
(Braune et al., 2018; Riley and Gildea, 2018; Czarnowska et al., 2019). Koehn and Knight (2002)
and Haghighi et al. (2008) show that orthographic features help in the translation process. Languages
with a common alphabet (e.g., English/German) often have word pairs with similar orthography (e.g.,
Concepts/Konzepte, Philosophies/Philosophien), especially in the case of low frequency words. Riley
and Gildea (2018) integrate orthographic information into the vector representation of such words and
into the mapping procedure of BWEs to improve their quality. Braune et al. (2018) use character n-gram
representations and Levenshtein distance to improve BDI while Heyman et al. (2017) extract this feature
automatically from training data. In languages with different scripts (e.g., English/Russian), the source
word is often written with the closest corresponding letters of the target alphabet, i.e., it is transliter-
ated. Richard/Ричард and integrator/интегратор are examples of transliterations between English and
Russian. Irvine and Callison-Burch (2017) applied Levenshtein distance to language pairs with different
alphabets by first transliterating from non-Latin to Latin scripts. In contrast, we use a novel translit-
eration model that encodes the relevant information directly into BOEs without requiring a separate
transliteration step.



2.2 Transliteration

As motivated above, transliteration mining is an important task that bridges the gap between languages
with different scripts. The NEWS transliteration shared task has been a continuous effort to promote
research on this task since 2009 (Li et al., 2009; Chen et al., 2018). A fully unsupervised transliter-
ation model was proposed by Sajjad et al. (2017); it consists of interpolated statistical sub-models for
transliteration and non-transliteration detection. In this work we follow a similar idea and propose an
unsupervised neural network based system to look for transliteration pairs of source words as possible
translation candidates. We also use this system to build BOEs of words.

In a parallel sentence mining approach, Artetxe and Schwenk (2019) use a shared encoder and decoder
for all languages to build a language agnostic sentence encoder. They use the encoder representations
as sentence embeddings to efficiently mine parallel sentences. Similarly, our BOEs are extracted from
a single language agnostic encoder, for both English and Russian. In an ablation study, we check the
quality of our BOEs on the NEWS 2010 shared task (Kumaran et al., 2010); see below.

3 Approach

To tackle the BDI task we exploit BWEs, character-level information (in the form of BOEs) and manually
engineered features – such as word frequency and length – and integrate them into a classifier that predicts
if the word pair is a translation or not. We extract candidate translations for a source word based on (i)
BWEs and (ii) seq2seqTr (our transliteration model) as described in the following sections. Finally, we
rerank the two groups of candidates with our classification system described below and take the top
ranked candidates as our prediction.

3.1 Bilingual Word Embeddings

To create BWEs we use monolingual word embeddings (MWEs), learned with fasttext skipgram (Bo-
janowski et al., 2017), and align them to a shared space with a seed dictionary that consists of high fre-
quency word pairs using the approach of Artetxe et al. (2018). We then generate translation candidates
for each source word by taking the n target language words that are the most similar. Our similarity mea-
sure is the cosine-similarity-based Cross-Domain Similarity Local Scaling (CSLS) measure (Conneau et
al., 2018). We use these target candidates along with the corresponding source words as classification
samples during prediction.

3.2 The Transliteration Model: seq2seqTr

In this work, we focus on two languages that have different alphabets since our aim is to improve ap-
plication scenarios in which the Levenshtein distance is not applicable. To address language pairs with
different scripts and pairs of infrequent words such as named entities, we propose seq2seqTr, a novel
transliteration system. seq2seqTr is trained on a list of word pairs that are translations of one another
– both transliterations and non-transliterations. It is unsupervised because we do not rely on labels to
distinguish between transliteration and non-transliteration training pairs. seq2seqTr is a character-level
sequence-to-sequence model (Sutskever et al., 2014) with a single-layer encoder and a single-layer de-
coder. The encoder is a bidirectional GRU (Cho et al., 2014) while the decoder is unidirectional with
attention (Luong et al., 2015). The input characters are represented as vectors. Figure 1 (bottom) depicts
the model. We use this model to calculate the probability of each word in the target language vocabulary
with respect to each source test word. The probability corresponds to the average negative log likelihood
of the characters in the target word with respect to the source word. We select n target transliteration
candidates for each source word.

To train seq2seqTr, we start with the same training dictionary as for building BWEs. Since it contains
many non-transliteration pairs, we reduce their number with an iterative cleaning process. The dictionary
is considered “cleaner” if it contains fewer non-transliteration pairs than the initial one; but it should still
have enough transliteration pairs to allow the effective training of the transliteration model. In more
detail, we first select 100 pairs randomly from the training dictionary. We call this the comparison
set. We limit the sampling to pairs that have the same length to make sure that a sufficient number of



transliterations is in the comparison set. Then, we split the dictionary1 into train and test (80%-20%)
and we train seq2seqTr on this new training set with early stopping. We calculate the 95% confidence
interval for the scores (average log likelihood, see above) of the comparison set. Let θ be the upper bound
of the confidence interval. We then remove the pairs in the secondary test set that have a score lower
than θ. Finally, we merge secondary training set and cleaned secondary test set, shuffle them and iterate
the process until we can no longer remove pairs. The intuition for the choice of θ is that we only want
to keep pairs in the final training set that are transliterations with high probability – pairs whose scores
are clearly higher than the typical scores in the comparison set (i.e., are larger than θ) should have this
property. The same iterative method is run to clean the development set portion of the dictionary.

3.3 Bilingual Orthography Embeddings
As a representation that is informative about orthography of source and target words, we build Bilingual
Orthography Embeddings (BOEs). The BOE space is a common representation space – just like the
BWE space – and transliteration pairs are represented with similar vectors. We again use the same
training set (the cleaned training set) and our seq2seqTr architecture, but we tune GRU hidden and
character embedding sizes for the BDI task. More importantly, we employ a slightly different training
procedure to tie the two languages together and to build a language agnostic encoder that works for both
source and target languages. To this end, we train seq2seqTr with source-to-target and target-to-source
word pairs where we indicate the output language using a language specific marker at the first position
of the target decoder output. Since we want a language agnostic encoder, we do not use such a marker
on the encoder side.

In addition to source-to-target and target-to-source word pairs, we also train seq2seqTr on source-
to-source and target-to-target pairs, i.e., we also train the model as an autoencoder. We use the same
words for within-language as for cross-lingual pairs. Without training seq2seqTr to be an autoencoder,
the encoder representations for Russian and English would not be in the same subspace. As the BOE
representation of a word, we take the final hidden state of the encoder GRU layer since it is also used
to initialize the decoder of the complete transliteration model. We also experimented with taking the
averaged output states of the final encoder layer as BOEs and decoder initialization, similar to (Artetxe
and Schwenk, 2019), but it gave slightly worse results.

3.4 BDI Systems
We first introduce our baselines and then explain our classification model.

Ensembling Baseline Severini et al. (2020) used ensembling to combine the candidate translations for
a source word coming from BWEs and a transliteration module. The combination score of source word
s and translation candidate t is a simple weighted sum:

sim(s, t) = γbwesimbwe(s, t) + γ trsimtr(s, t) (1)

Here, simbwe(s, t) is the CSLS similarity of the word pair, simtr(s, t) is a similarity score based on the
probability of t being the transliteration of s based on the transliteration model (see (Severini et al., 2020)
for details), and the γi are weights of the two modules tuned on dev.

The downside of this approach is that it is strongly dependent on the order of words in the candidate
lists of BWEs and transliterations. If the correct translation is contained in one of the lists but not at
the first position it will not be picked as the output translation. Equation 1 has an implicit reranking
capability, i.e., if a word is contained in both BWE and transliteration lists their scores get summed,
which can move it higher in the final ensembled list compared to words that are present in only one
list. On the other hand, this reranking is limited as we show in our experiments. Moreover, a simple
linear combination, only based on the final scores of the two modules, does not give enough flexibility to
integrate other features that could help decide if a lower ranked candidate should be picked as the final
translation. We aim to overcome these problems in our proposed system.

1Note that we use only the training portion of our dictionary for the three frequency sets (see Section 4) for this process,
i.e., we split the complete training dictionary into a secondary training set and a secondary test set.
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Figure 1: Classifier architecture. Top: input layer, two fully-connected layers and an output unit. Bottom
right: the encoder-decoder model seq2seqTr, used as the transliteration model and to extract BOEs.

Classification Baseline The second baseline is Heyman et al. (2017)’s approach. It is a neural classifier
that takes word-level information and character-level information as input. The system has two parts. The
first is a character-level RNN that aims to learn orthographic similarity of word pairs. At time-step i of
the input sequence, it feeds the concatenation of the ith character embedding of the source and target
language words to the RNN layer. The second part is the concatenation of the BWEs of the two words
learned independently of the model; based on this the model aims to learn the similarity of the two
semantic representations. Dense layers are applied on top of the two modules before the output softmax
layer. The classifier is trained using positive and negative word pair examples. Negative examples
are randomly generated for each positive one in the training lexicon. However, since characters at the
same time steps are compared in the RNN module, transliteration word pairs with 1-to-many character
correspondences are hard to handle correctly – any shift in the alignment then affects subsequent pairs
of letters. Furthermore, apart from the source and target BWEs and their interpolated character string
representation (given by the RNN module), the feed-forward layer has no information to decide whether
a source word should be translated based on transliteration or based on BWEs.2

Classification Model Similar to Heyman et al. (2017), we employ a classification approach. Our
classifier takes as input BWEs, orthography (in the form of BOEs) and additional features.

Figure 1 shows the model. It has two fully-connected feed forward layers with dropout and non-
linear activation function. Its input consists of the following: BWEs of the source and target words
(bwes, bwet), their BOEs (boes, boet), log frequency values (fs, ft) and their absolute difference, log
length values (ls, lt), the similarity value of source and target BWEs (simbwe), the conditional probability
P (t|s) computed by seq2seqTr (which we call simtr) and the log of the position of the candidate in the
candidate list (e.g., 1st, 2nd, etc.) for BWEs and for seq2seqTr (posbwe, postr). The intuition behind fs and
ft is that transliteration happens more often in case of rare words but corresponding word pairs should
have similar frequencies, hence the feature indicating their difference. Features ls and lt supply further
surface information about the words, while similarity and rank features are indicative of the quality of
the candidates. We feed BWEs and BOEs of the word pair along with the additional features to the final
feed-forward classifier.

We train the classifier to minimize the binary cross-entropy loss over positive (translation or translit-
eration pairs) and negative word pairs. The positive samples are the pairs in the training dictionary. We

2Section 4 details minor modifications to the originally published system that make it suitable for our setup.



generate two negative samples for each source word: we take one candidate each from the two sorted
lists of candidates (from BWEs and from seq2seqTr) at random between the 10th and 20th position, as-
suming that no positive pairs or their close synonyms belong to this range, but the words are still similar
to the false candidates tested during prediction. We experimented with the range between 10 and 100, but
the performance dropped since many words were used as negatives that are not realistic candidates for
prediction. We note that a similar approach was developed in contemporary work (Karan et al., 2020).

3.5 Discussion

As discussed above the ensembling approach of Severini et al. (2020) has a limited reranking capability
which is shown by our results. In contrast, our system is able to consider multiple candidates from the
BWEs and from the transliteration candidate lists and re-rank them given the supplied information. For
example, consider a non-transliteration pair such as smoking→курение for which a false friend exists:
cмокинг (tuxedo). The classifier can rank the false friend low since the frequencies of source and target
words do not match. Although the system of Heyman et al. (2017) is based on a classifier, similar to
our approach, it fails to pick the gold translation when it is not one of the top candidates in the BWEs
or transliteration candidates since it lacks the additional information coming from our proposed features.
Statistics on the reranking capabilities of the models are shown below in section 5.1.

4 Experimental Setup

We ran our BDI experiments on the BUCC 2020 Shared Task dataset (Rapp et al., 2020); it provides
both monolingual corpora and bilingual dictionaries for English-Russian. Since the official test set of the
shared task is undisclosed, we relied on the released training set, a random subset of the MUSE dictionar-
ies3 released by Conneau et al. (2018). It is divided into three subsets, high, middle and low frequency,
containing words ranked between 1-5000, 5001-20000 and 20001-40000 in the original dictionary, each
having 2000 unique4 source words. We split them into train, development and test sets (70%/15%/15%).
We run experiments on the three frequency sets separately and jointly.

We followed the official setup of the BUCC shared task and relied on the WaCKy corpora (Baroni et
al., 2009) as monolingual data to get the full language vocabularies and their frequencies. As MWEs
we used the fasttext skipgram models (Bojanowski et al., 2017) released by the shared task organizers,
which were trained using the WaCKy corpora with the following parameters: minimum word count 30;
vector dimension 300; context window size 7; number of negatives sampled 10 and number of epochs
10. To align them we used VecMap (Artetxe et al., 2018) in a supervised setup using only high frequency
word pairs for training, since less frequent words can be detrimental for mapping quality (Vulic and
Korhonen, 2016). We use the BWEs of the 200K most frequent words following (Conneau et al., 2018).
In addition, in an ablation study described below we used the 1000 word pairs of the NEWS 2010
transliteration mining test set (Kumaran et al., 2010) to test the quality of the BOEs.

For seq2seqTr we use learning rate 0.01, batch size 32, hidden size 128, single encoder and single
decoder layers with the “dot” attention method of Luong et al. (2015) that compares the states with their
dot product score. As mentioned above we use the same architecture for building BOEs, but we use
different parameters. We tuned the hidden size (2000) of the GRU layers (used as the BOEs) and the
character embedding size (300) along with the classifier on the BUCC high, middle and low frequency
dev sets jointly.

For training the BDI classifier we used Adam optimizer (Kingma and Ba, 2014) with learning rate
0.001, batch size 32, 2 hidden layers on top of the described features with hidden size 300, dropout 0.01
and ReLu activation function on the inner layer. We used early stopping on the joint dev set, decreasing
the learning rate by 0.1 after not improving for 10 steps. The encoder model is kept frozen during the
classifier training.

All our models are implemented in Python using PyTorch (Paszke et al., 2019), including the re-
implementation of (Heyman et al., 2017). We had to modify the original setup of Heyman et al. (2017)

3Contains up to 100K word pairs, translated with a MT system.
4Some words have multiple translation options.



All High Mid Low
BWEs with CSLS 0.29 (0.46) 0.47 (0.73) 0.29 (0.45) 0.11 (0.21)
Transliteration 0.05 (0.10) 0.05 (0.10) 0.06 (0.09) 0.05 (0.11)
(Severini et al., 2020) 0.33 (0.52) 0.50 (0.76) 0.33 (0.51) 0.16 (0.30)
(Heyman et al., 2017) 0.21 (0.39) 0.28 (0.52) 0.22 (0.40) 0.14 (0.25)
(Heyman et al., 2017) w/ features 0.30 (0.48) 0.47 (0.72) 0.29 (0.45) 0.15 (0.25)
Proposed w/o features 0.22 (0.38) 0.33 (0.55) 0.23 (0.36) 0.12 (0.24)
Proposed w/o BOEs 0.31 (0.48) 0.50 (0.75) 0.30 (0.47) 0.12 (0.22)
Proposed 0.36 (0.55) 0.55 (0.76) 0.33 (0.56) 0.19 (0.33)

Table 1: acc@1 (acc@5) on the test set for All (High+Mid+Low), High, Mid and Low. The first two lines
are obtained by taking the top-1 or top-5 (in brackets) highest scoring candidates from BWE candidates
or seq2seqTr candidates. For acc@1, Severini2020 rank m = 100 candidates while (Heyman et al.,
2017) and we rank m = 2 and m = 4, respectively. For acc@5, Severini2020 rank m = 100 candidates
while (Heyman et al., 2017) and we rank m = 5.

since it relied on Levenshtein distance to look for translation candidates for source words, which is
not applicable in case of language pairs with different scripts; we instead use the same transliteration
candidates as in our proposed system. Furthermore, we use BWEs as the word representations as opposed
to the original work where MWEs were used and the system had to learn the alignment.

5 Experiments and Results

In this section, we show the main results of our approach and compare them with the baselines. We
also show an evaluation of the BOEs on the NEWS 2010 shared task (Kumaran et al., 2010) to better
understand their quality on a dataset that only contains transliteration pairs.

Table 1 shows the main results for our BDI system. Our evaluation measure is acc@n (n ∈ {1, 5}):
we take n predictions from a given model and consider the source word correctly translated if any of the
n predictions is the gold translation. Other than the two baseline systems we show BDI performance by
taking the n highest scoring words as predictions from only BWEs or only transliteration candidates. We
tuned the parameters of all systems on the joint development set, except that we followed the approach
of Severini et al. (2020) and tuned ensembling weights on the three frequency sets separately. Since the
systems of Severini et al. (2020), Heyman et al. (2017) and our approach are able to re-rank translation
candidates, we tune the number of candidates (m) considered during prediction on the development set,
i.e., we take them highest scoring words from both BWEs and seq2seqTr lists, re-score them using one of
the mentioned systems and consider the first n as translations. m = 100 works best on the development
set for (Severini et al., 2020), m = 2 for (Heyman et al., 2017), m = 1 works best for (Heyman et al.,
2017) with features, and m = 4 works best for our system with acc@1. When measuring acc@5, m = 5
works best for the classifiers and m = 100 for (Severini et al., 2020). Larger m values lead to worse
predictions due to noisy elements in the candidate lists in case of the classifiers. In contrast, (Severini
et al., 2020) is more robust against noisy elements since it is only able to rerank if a candidate word is
contained in both lists. Given that the BUCC test set is divided into frequency subsets, we analyze the
performance also for those.

Table 1 shows that our approach outperforms all previous approaches both on the joint (“All”) and the
separate frequency sets. The BWE based approach in the first row of the table achieves high performance
on the high frequency set, but it suffers a significant drop as word frequency decreases. The transliteration
model by itself managed to correctly induce some of the words achieving around 10% acc@5, which
shows that a significant amount of words have to be transliterated in the datasets. The ensembling
approach of Severini et al. (2020) combines the two sources of information well – the acc@1 score is
almost the sum of the two combined models. It also outperforms the classifier baseline of Heyman et al.
(2017). As mentioned above, best results were achieved with the classifier baseline when considering
only 1 or 2 candidates each from BWEs and seq2seqTr, indicating that the system is struggling with
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Figure 2: acc@1 on the development set as a function of the number of candidate words (e.g., 2 means 2
candidates from BWEs and 2 from seq2seqTr).

reranking candidates. In contrast, our approach is able to exploit the additional candidates and achieves
best results on all frequency sets in terms of acc@5 and three out of four sets in terms of acc@1.

5.1 Reranking Analysis

To analyze the reranking capability of our model, Figure 2 shows the performance as a function of the
number of candidate words (m) on the dev set. The performance of our model improves as the number
of candidates increases up to m = 4, and after a small performance drop at m = 5, it has a stable
performance until 10 candidates, which further emphasizes that it is able to re-rank the candidates. When
no features are used for our model, the best result is with one candidate and the performance decreases
together with the re-ranking capability when using more candidates, indicating that the features are
relevant to the system. Finally, we can see the behavior of our model when we rely on word embeddings
and features but not on BOE information. The model acts similarly to the full version improving the
results by using a few more candidates but performing near constantly after a drop as the number of
candidates gets larger. On the other hand, the performance is constantly lower than the results of the
full system meaning that the BOEs play a crucial role and are able to encode the orthographic structure
of the words. We also added our novel features to the classifier of Heyman et al. (2017) to show the
performance gain by themselves. Based on Figure 2 and Table 1, we can conclude that features clearly
improve the performance of the baseline system, meaning that they are useful to decide if the BWEs
or the character-level information should be emphasized. On the other hand, they are not enough to be
able to positively exploit more translation candidates than 1 from this model. Similarly to our model, the
performance of Severini et al. (2020) improves constantly as m increases and plateaus around m = 100.
Still, our approach achieves better performance overall, since it does not require a given translation
candidate to be contained in both candidate lists to be reranked. On the other hand, the performance
of the classification based models drop significantly when m > 10 due to the noisier candidate lists
while (Severini et al., 2020) is more robust against such noise since the noisy elements of the BWE and
transliteration candidate lists are non-overlapping most of the time, thus they are not getting reranked.
Our approach achieves 29.67% acc@1 withm = 100 but we only showm ≤ 10 in figure 2 for simplicity.

We computed statistics, on the dev set, on the number of cases where a candidate is correctly chosen
by the model and it is at rank 1 in neither the BWE nor the seq2seqTr ranking. We analyze the cases
where the best m value on the dev is greater than 1. Our model with m = 4 correctly predicts 15.7%
of the candidates that are not in the first place while (Heyman et al., 2017) with m = 2 predicts only
8.8% and (Severini et al., 2020) with m = 100 predicts only 3.6%. Our model without BOEs is able
to find only 3.8% of the candidates; thus, BOEs play a crucial role for the reordering capability of our
system. We also consider the cases where the correctly chosen candidates are not at rank 1 against the



P R F
(Jiampojamarn et al., 2010) 88.0 86.9 87.5
(El-Kahky et al., 2011) 92.1 92.5 92.3
(Nabende, 2011) - - 82.5
(Sajjad et al., 2017) 67.1 97.1 79.4
BOEs 47.0 87.2 61.1
BOEs best 88.8 68.2 77.1

Table 2: Precision, Recall and F-measure for our BOEs and for state-of-the-art models on transliteration
mining. (Sajjad et al., 2017) and our system are unsupervised while the others are (semi-) supervised.

total number of correct pairs found. 29.3% of the candidates correctly found by our model are not first
ranked according to BWE and seq2seqTr, while 27.1% is the corresponding percentage for (Heyman et
al., 2017). Note that the number of correct pairs are different for the two models and our proposed model
translated more words correctly. Keeping this in mind, the small difference between the two models
indicates that our model does not only have a performance advantage because of the better reranking
capability, but it is also better at deciding to choose the first candidate from either the BWE or seq2seqTr
lists.

5.2 BOE Evaluation

As shown above, BOEs are a crucial part of our classification model because they encode the similarity
of two words based on their orthographic structure and not on their semantic meaning. The model with
2000 hidden BOE size and 300 character embedding size worked best on the BDI development set. To
check the quality of the BOEs in a task where they are the only source of information, we conduct an
evaluation on transliteration mining using the NEWS 2010 En-Ru test set (Kumaran et al., 2010). The
task consists of the development of a mining system for identifying single word transliteration pairs
from the Wikipedia Inter-Language Links (WIL) dataset in one or more language pairs. In particular,
participants are required to identify word pairs in parallel sentences that are transliterations of each other.
Note that the organizers provided a seed dataset of 1K transliteration pairs and a noisy training set which
we ignore in these experiments and use the BUCC training dictionaries as already described to show the
quality of BOEs which were used for the BDI task.

We pre-process the test sentences similar to (Kumaran et al., 2010). Given a pair of parallel sentences,
for each word in the first sentence we look for the word in the second that has the highest score according
to the model. We used the same model to obtain BOEs of words as in the BDI classifier. To get the
score of two words, we calculate the cosine similarity of their BOEs, and we used a threshold of 0.5 to
discriminate between pairs that are transliterations vs. those that are not (Sajjad et al., 2017). In Table 2
we show the precision, recall and f-measure for state-of-the-art models and our BOEs on this task. Our
BOEs together with (Sajjad et al., 2017) are unsupervised and, although the BOEs are not specific for this
task, they perform well. The last row of Table 2 shows the results when a threshold of 0.7 is used, that is,
the best performing threshold found on the test set, thus it can be viewed as an oracle experiment. With
this more accurate parameter, the system was able to reach better results compared to the naive threshold
selection, which indicates the need for a development set. On the other hand, in this ablation study our
goal was not to develop the best transliteration mining approach but to show the quality of BOEs. The
good performance shows that BOEs have a universal embedding property of representing English and
Russian words in a shared space although they use different scripts.

6 Conclusion

Bilingual Dictionary Induction is a relevant task for many applications and it is an important building
block in the area of MT. In this paper we described our system for BDI for language pairs with different
scripts focusing on words for which semantic information alone is insufficient. We combined semantic
and orthographic information via transliteration. Our proposed model has the novel ability to make a



reasonable decision on which source of information to choose via a classification approach that exploits
– together with manually designed features – word embeddings and character-level information (BOEs).
Our novel BOEs were learned by a language agnostic transliteration system. We tested our system on the
English-Russian BUCC 2020 dataset and we showed improved results compared to the baselines. We
also showed that our model is able to re-rank the candidate words better in contrast to other approaches.
We evaluated our system on high, middle and low frequency sets separately and jointly. Finally, we
evaluated our BOEs by running transliteration mining on the NEWS 2010 dataset, showing that they
achieve good performance even if they were not meant for that specific task. Also, BOEs were shown to
be able to encode the orthographic structure of words independent of the language. That means that they
are universal embeddings that represent transliteration pairs similarly – a property that is useful for other
downstream tasks as well. All in all, we presented a system able to combine word-level information with
character-level information by means of transliteration and classification models for BDI that improved
the baseline results.
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