
An Approach to Uncertainty of a 
Long Range Air Pollutant Transport 
Model

Alcamo, J. and Bartnicki, J.

IIASA Working Paper

WP-85-088

December 1985 



Alcamo, J. and Bartnicki, J. (1985) An Approach to Uncertainty of a Long Range Air Pollutant Transport Model. IIASA 

Working Paper. WP-85-088 Copyright © 1985 by the author(s). http://pure.iiasa.ac.at/2615/ 

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


Working Paper 

A N A P P B O A C E T O U N C E B T ~  
OF A  LONG W G E  AIEt POUUTILNT 
TEANSPOBT YODEL 

Joseph Alcamo 
J e n y  Bartnickf 

December 1985 
UP-85-88 

International Institute for Applied Systems Analysis 
A-2361 Laxenburg, Austria 



AN APPROACH TO UNCERTAINTY 
OF A LONG RANGE AIR POLLUTANT 
TRANSPORT MODEL 

Joseph Alcamo 
Jerzy Bartnicki 

December 1985 
UP-85-88 

Worktnq h p e r s  are interim repor ts  on work of t he  International 
Institute f o r  Applied Systems Analysis and have received only lim- 
ited review. Views or opinions expressed herein do not neces- 
sar i ly  represent  those of the Institute or of i ts National Member 
Organizations. 

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 
2361 Laxenburg, Austria 



PREFACE 

One of t he  goals of IIASA's Acid Rain project  is to create a model tha t  
could be  used in negotiations about control strategies fo r  acid deposition 
between European countries. To that  end i t  is necessary tha t  t he  model 
builders present t he  model users a c lear  picture of the credibil ity of t he  
model. One way to maximize credibil ity would be  to create a very complex 
model with as many as possible (mostly non-linear) relationships. O u r  stra- 
tegy has been another  one: construct  a simple model and evaluate i ts uncer- 
tainties. Thus uncertainty analysis forms an important pa r t  of the  Acid Rain 
project 's research  agenda. This paper  describes a general framework f o r  
o u r  uncertainty analysis. Moreover the authors have applied the  framework 
to t he  atmospheric submodel of our RAINS (Regional Acidification Informa- 
tion and Simulation) model. I am convinced that  this paper not only is a sub- 
stantial contribution to evaluation of t he  credibility of RAINS, but tha t  i t  is 
also of importance f o r  the fu r ther  development of the long range t ranspor t  
model which is incorporated in RAINS and has been built by the  Norwegian 
Institute of Meteorology under the  Co-operative Programme fo r  Monitoring 
and Evaluation of the  Long-Range Transmission of Air Pollutants in Europe 
(EMEP). 

This paper  i s  t he  product of a collaboration with the  Institute f o r  
Meteorology and Water Management in Warsaw (Poland) under a study con- 
tract "Analysis of Uncertainty in Modeling Atmospheric Processes". 

Leen Hordijk 
Pro Ject Leader 
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ABSTRACT 

This paper presents a preliminary framework fo r  analyzing uncertainty 
of a long range a i r  pollutant transport model.  This framework w a s  used to  
assess EMEP mode l  uncertainty. The uncertainty problem is defined in a 
decision-making context and a distinction is made between uncertainty 
analysis, sensitivity analysis, and model  calibration/verification. A taxon- 
omy is introduced to organize uncertainty sources. The taxonomy includes: 
model s t ructure,  parameters, forcing functions, i n i t i a l  s ta te  and model 
operation. These categories are further subdivided into diagnost ic and 
fbrecasting components. To limit the number of uncertainties fo r  quantita- 
tive evaluation, some uncertainties are "screened". Methods are introduced 
to evaluate uncertainties. These include (1) Monte Carlo simulation of com- 
posite parameter, forcing function and initial state uncertainties, and (2) 
statistical analysis of EMEP source-receptor matrices. Preliminary results 
of applying this methodology to the EMEP model are presented. 

- vii - 
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AN APPROACH TO UNCERTAINTY 
OF A LONG RANGE AKFl POLLUTANT 
TRANSPORT MODEL 

Joseph Alcamo and Jerzy Bartnicki 

1. INTRODUCTION 

Along with the recognition of regional and interregional a i r  quality 

problems, came the need for  new tools to analyze these problems. Among 

these new tools are atmospheric long range transport models which help to 

establish the relationship between pollutant emissions and their  deposition 

hundreds o r  thousands of kilometers away. The importance given to these 

models by the scientific community is clear f r o m  recent national and inter- 

national publications (see, e-g., OECD (1979), U.S. National Research Coun- 

cil (1983), MOI (1982)). 

A key issue in using these and other a.k pollution models for decision 

making (any mathematical model, fo r  that matter) is the credibility of the 

model's results. An essential aspect of this credibility is how we l l  the model 

user understands the model's uncertainty. This paper presents a framework 



to comprehensively treat the uncertainty of long range transport  of a i r  pol- 

lutants models (sometimes re fe r red  to as LRTAP models) and applies this 

framework to the analysis of uncertainty of the so-called EMEP model* 

(Eliassen and Saltbones, 1983). From a l a rger  perspective, w e  believe tha t  

the  framework presented herein can be generally applied to other  types of 

environmental models. Throughout the  paper  w e  (1) discuss key issues con- 

cerned with uncertainty analysis, (2) present numerical examples of dif- 

ferent  aspects of this analysis based on preliminary results from the IIASA 

Acid Rain Project,  (3) denote fu ture work that  will be conducted within the  

frame of the  IIASA Project. Since this research is only in i ts ear ly stages, 

w e  intend this to be a discussion paper. 

In this paper  w e  are specifically interested in determining the uncer- 

tainty of w i n g  model results i n  a decision-making contezt. Our goals 

fo r  the  uncertainty analysis include: 

1. To quantify, where possible, the combined uncertainties of many 

different uncertainty sources, i.e. determine the uncertainty 

range of model calculations. 

2. To determine under what conditions the model performs best. 

3. To make more explicit the  assumptions behind model parameters, 

forcing functions, etc. 

4. To identify the sources and relative importance of uncertainties 

as a guide to model use and sett ing research priorities. 

 he EhIEP model is described in Sect ion 3.2 of t h i s  paper. 



The analysis repor ted in th is paper  builds on previous work on model 

uncertainty in the fields of decision analysis (cf. Howard and Matheson, 

1983) and econometrics (cf. Griliches and Intri l l igator, 1983), as we l l  as 

investigations in water quality modeling (cf. Fedra, 1983 and Beck and V a n  

Straten, 1983) and ecological modeling (cf. Gardner et al ,  1982). Compared 

t o  these fields, much less quantitative analysis has been conducted on 

atmospheric model uncertainty. A notable exception is  t he  work done at 

Carnegie-Mellon University ( Morgan et al. 1984). Also, a repo r t  from an 

American Meteorological Society Workshop outlines some key issues in t he  

quantitative assessment of atmospheric models (Fox, 1984). Unfortunately a 

review of the  aforementioned work is  outside of this paper 's scope. 

1.1- Uncertainty and Model Credibility 

Model credibil ity is  based on several  ill-defined cr i ter ia .  One cr i ter ion 

is the  s c i e n t ~ c  b&s of t he  model equations, i.e. the  soundness of the  

physical/chemicaVbiological concepts behind the model. Another is  ve t i j t -  

cat ion and va l ida t ion ,  generally meaning the comparison of model resul ts  

with observations and the  examination of model behavior to see if i t  is real- 

istic. Still another  way to enhance the  credibility of model resul ts is to per- 

form sensitivity analysis. Collectively, these approaches make model users  

more confident in using a model yet they do not specifically address the  

question of t he  unce r ta in t y  of model results. In th is sense model uncer-  

t a i n t y  is the  depar tu re  of model calculations from cur ren t  or fu ture "true 

values". Mathematically, o u r  meaning of uncertainty can be  expressed as 

the  following. 



* 
Let us assume that an environmental model can be expressed as: 

Y = G(X) 

where 

Y = (y ,yn)  is an output vector (model results) 

X = (zl, ..., z,) in an input vector (input model variables) 

6 is an operator (usually a differential). 

Since the input vector usually contains variables which a r e  dependent on 

space and t ime ,  the output vector is also a function of space and t ime. In 

addition, output variables depend on s o m e  constants in time and space, i.e. 

parameters. 

If w e  assume now, that "true values" of the output variables are 

represented by vector Y ,  the model uncertainty can be defined as: 

C=Y-r 

where: 

I t  should be mentioned here. that it is extremely difficult to compute 

the complete uncertainty vector because, among other reasons, "true 

values" are illusive. There are ways however to circumvent this problem. 

Repeated comparisons of observed versus m o d e l  computations (model 

.Even though the  model def in i t ion used in  t h i s  paper is not thd the  most general possible, 

it is s t i l l  general enough f o r  most o f  the environmental models. 



calibration/verification) yields insight to  r ,  though in sections 1.2 and 6.1 

w e  discuss drawbacks to this approach. Another strategy, which is dis- 

cussed in Section 6.3, is to assess the uncertainty of the X vector in (1.1), 

and compute a new Y. This provides an indirect estimate of c. Other stra- 

tegies are reviewed in the text. 

The equation (1.2) used here to define uncertainty is related as w e l l  to 

model calibration/verificatioh. However, the important difference is, 

that in the case of model calibration/verification, the components of the 

vector T have to be measurable, while in case of uncertainty, this is not 

necessary. In this sense our definition of uncertainty is more general. 

1.2. Sensitivity Analpis and CalibrationNerification 

Though "sensitivity analysis" and "model calibration/verifi~tion" are 

relevant to a model's uncertainty, both approaches have limitations. 

* 
Sens i t i v i t y  ana l ys i s  in the conventional sense is difficult to perform 

for  two or more variables and tends to emphasize extreme events. It  is dif- 

ferent from model uncertainty because sensitivity analysis is interested in 

the incremental changes of model results caused by an incremental change 

in input variables. In fact,  the objective of m o s t  sens i t i v i t y  analyses Is, of 

course, to determine the relative importance of one independent variable 

compared to another; not how much model calculations depart  from reality. 

In this sense sensitivity analysis is an essential pa r t  of model development. 

Mathematically w e  can express sensitivity analysis as a procedure fo r  com- 

laather than add yet another definition of sensitivity analysis we quote a published do- 
finition: "Sensitivity analysis involves ... maklng a series of runs with a model and noting 
the magnitude of the changes in results as assumptions, parameters and initial conditions 
are changed in an orderly fashion." (McLeod, 1982. p. 96). 



puting matrix S: 

The elements of the sensitivity matrix S = [si,] a r e  given by the relation: 

Model calibration/veriftcatioh, i.e. comparison of model output with 

observations has the following limitations in assessing model uncertainty: 

(i) Observations are onen unrel iable.  Eliassen and Saltbones 

(1983) present one example of analytical e r r o r s  in sulfate data 

used to check EMEP model calculations. 

(ii) Model ou tpu t  is not necessar i ly  "observable" in nature,  espe- 

tidy iJ the model describes an aggregated system. For models 

with large temporal/spatial resolution such as the EMEP model, it 

is difficult t o  rely on comparisons of model output with observa- 

tions. Strict ly speaking, since the EMEP model computes SO2 gas 

and SO; in rain over 150 km long orthogonal coordinates and a 1 

km vertical mixing layer, model output should be checked with 

observations averaged over the same spatial scale. This class of 

e r r o r  is termed aggregation e r r o r  and has been dealt with in 

s o m e  detail in the ecological modeling l i terature (Gardner, et d, 

1982). A related problem occurs when an important model output is 

virtually unobservable as in the case of total sulfur deposition. 

(iii) Certa in  cause-eflect re lat ions m a y  not be readi ly  observable. An 

example of this is the relationship between sulfur emissions from a 

particular country and its deposition at a particular location in 



Europe. Though wind sector malysis may help to quantify this 

relation for short periods of time, i t  is difficult to do so over a 

longer time scale, say one year. Nevertheless this time scale and 

relationship is computed by the EMEP model and is of particular 

importance in decision making. 

(iv) Agreement @ model ou tpu t  with data  does not settle t h e  ques- 

t i o n  of model uncer ta in ty  w h e n  the model i s  used jbr forecast- 

i n g  purposes. For example, model agreement with observations 

does not address the impact of interannual meteorological varia- 

bility on the uncertainty of model forecasts. 

(v) Sometimes model parameters can  be " a r t ~ c i a l l y  tuned"  s u c h  

tha t  model o u t p u t  closely agrees with data. Under these cir- 

cumstances i t  may appear that the model has little or no uncer- 

tainty, although the uncertainty has simply been transferred to 

the uncertainty in choosing the correct parameters for forecast- 

ing purposes. 

(vi) It is often d m c u l t  to assemble data  for a comprehensive range 

of environmental conditions. Even though w e  test the model 

against data f r o m  several time periods, w e  still may have l ow  con- 

fidence that w e  have covered a representative range of environ- 

mental conditions. 

Despite the preceding caveats, model calibration/verification remains 

the only sure "benchmark" of a model's relationship to reality. As  such, 

model c a l i b r a t i o n / v e ~ c a t i o n  together with sensitivity a n a l y s i s  is 

necessary and us*l though i n s y r j t d e n t  in evaluating environmental 



model uncertainty. In the following sections we propose a comprehensive 

framework to assess model uncertainty which incorporates elements of both 

model calibration/verif ication and sensitivity analysis. 



2. PROPOSED FRAYLEWORK 

A comprehensive approach to analyze long range transport  model  

uncertainty should include the following: 

(i) Rob lem Formulat ion - Despite the trivial nature of this step it is 

surprising how often investigators discuss uncertainty of a model  

without specifying the time and space scales of interest. In Section 

7.2 of this paper w e  present an example of the dependence of 

mode l  uncertainty on the temporal-spatial dimensions of the prob- 

lem. Before proceeding with an uncertainty analysis it is there- 

fore vital to carefully formulate the problem of interest. 

(ii) Inventory of Uncer ta in ty  - In this step w e  assemble and classify 

the sources of uncertainty for further analysis. Our goal is to list 

as comprehensively as possible every major source of uncer- 

tainty. To do this w e  propose a taxonomy of mode l  uncertainty in 

Section 4.1 of this paper. 

(iii) Screening a n d  Ranking ~ Uncertainty - Virtually every model  

used to describe a real system wi l l  have a very large number of 

uncertainties. To l im i t  the sources of uncertainty fo r  quantitative 

evaluation w e  try in this step to identify the most important 

sources. This is accomplished through conventional sensitivity 

analysis or qualitative judgement and need not have time-space 

scales identical to those in step number one. 

(iv) Evaluat ion qf Uncer ta in ty  - The sources of uncertainty which 

remain after step (iii) can be evaluated by a number of different 

quantitative techniques. Sections 6 and 7 describes some 



approaches being taken in t he  IIASA Acid Rain Project 's analysis 

of EMEP model uncertainty. 

(v) Application to Decision Making - Once an estimate of uncertainty 

i s  der ived in s tep (iv), we st i l l  must in terpret  th is estimate in a 

way useful to decision making. For  example, we could express the  

uncertainty of EMEP calculations of sulfur deposition as spat ia l  

variat ions of deposition isolines, or as deposition ranges around 

individual isolines. Alternatively we could apply an "average" 

uncertainty estimate to each EMEP gr id element. These and o the r  

al ternat ives are addressed in Section 8 of th is paper.  



3. PROBLEM FORKULATION 

3.1. Time and S p a c e  Scales 

The degree to  which uncertainty can vary depending on spatial- 

temporal scales is illustrated in Figure 7.1 which summarizes an analysis of 

uncertainty in computed sulfur deposition due to interannual variation of 

precipitation and wind patterns. Since we have specified above that w e  are 

interested in "determining the uncertainty of using model results in a 

decision-making context", w e  must now clarify t h e  t i m e  and space scales 

relevant to decision-making. First. w e  assume that w e  are interested in a 

specific source-receptor relationship fo r  sulfur emissions. sulfur deposition 

and a i r  concentration. Next w e  assume that the country-scale is the 

appropriate spatial-scale fo r  sulfur emission sources because (1) most 

countries in Europe report  t h e i r  sulfur emissions as country totals, 

although a f e w  repor t  additional spatial information, (2) most proposed 

international control policies (for example, the 'Thirty Percent Club") 

refer to country-scale sulfur emissions. The EMEP grid element is an 

appropriate spatial scale fo r  receptor sulfur deposition since a coarser 

resolution would be unsuitable fo r  analyzing known spatial variations of 

environmental impact (such as forest damage) which occurs within coun- 

tries. In addition, since a model fo r  analyzing international control policies 

in Europe should cover all of Europe, a spatial scale much smaller than 150 

km may increase the number of computational steps to an unacceptable 

level. Moreover, the spatial resolution of meteorological data in Europe is 

4 2 also approximately 10 km . 



The time scale of the source-receptor relationship should take into 

account that confidence of any a i r  pollution mode l  increases with the 

* 
averaging period of results . In addition, the time step should be compatible 

with the long t i m e  period and broad spatial coverage needed f o r  policy 

analysis. With these considerations in mind, an  annual time step is  taken to 

be an appropriate scale. This t i m e  s tep is  also appropriate for assessing 

forest damage since m o s t  field studies record annual pollutant deposition or 

air concentration. 

W e  may summarize the discussion to this point by specifying the 

source-receptor time resolution as one year, countty-scale as the spatial 

resolution for  sulfur emissions, and EMEP grid element as the spatial reso- 

lution fo r  sulfur deposition and a i r  concentration. The relationship of 

interest, therefore, between deposition and sulfur emissions can be 

expressed as: 

di j  = s t  aij 

where 

dv = total sulfur deposition at grid element j due to country i 

(g s m -2 yr -I) 

st = total sulfur emissions from country i ( t  S yr -I) 

atj = element of source-receptor matrix 

W e  define our uncertainty r of deposition as '% 

(3.  l a )  

where d i j  is  the "true" deposition. 

- ~ e  an example, one EMEP revlew states that the model "continued t o  demonstrate i t s  ef- 
fectiveness in modelling air concentrations and depositions when averaged over seasons 
or years" (WMO, 1903). 



W e  are also interested in the uncertainty of the total deposition at grid 

element j (where bj is background deposition): 

fo r  j=l.. m 

and 

E ~ ,  = d j  - d j  (3.2b) 

The same form of equations (3.1a) through (3.2b) can be applied to the other  

EMEP state variables (e.g. SO2 air concentration). These other  state vari- 

ables will be introduced in the next section. 

It follows from the above that w e  are interested in the uncertainty of 

computed annual sulfur deposition at various locations In Europe, where 

these locations are defined by EMEP grid elements. This can be expressed 

ei ther as an uncertainty range around a l inear source-receptor relation- 

ship (Figure 3.1) o r  a frequency distribution of computed sulfur deposition 

(Figure 3.2). In summary. equations (3.1) and (3.2) define our uncertainty 

problem. Figures 3.1 and 3.2 illustrate this problem graphically. 
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Figure 3.2. Frequency distribution of computed deposition. 



3.2. W Model Dercription 

A general form of the EMEP model is: 

where 

B c  - 
B t  

= change in concentration with time. 

U ,V = orthogonal wind velocities. 

B c  B c  -- = orthogonal concentration gradients. 
B z '  6y 

4 = change in concentration due to chemical reactions and sink 

processes. 

4i = pollutant emissions. 

The EMEP model uses a Lagrangian approach to solve equation (3.3). 

Concentrations of SO2 and SO; are computed along a moving fx-ame of 

reference. The computation procedure consists of two steps. Trajectories 

are f i rst  calculated, and then mass-conservation equations are solved on 

these traJectories to compute the concentrations at the receptor point. An 

additional procedure is used for  computing dry and w e t  deposition of sulfur. 

The theoretical formulation of the EMEP model is described by Eliassen 

and Saltbones (1975) and Eliassen (1978). This model is similar to the one 

used in the OECD program (OECD, 1979). The main difference is that the 

EMEP model is based on trajectories followed for 96 hours instead of 48 

hours, and grid size of 150 km instead of 127 km. 



3.2.1. Determining Air Trajectories 

A trajectory can be considered as the path of an air parcel followed 

by the wind. In the EMEP model two-dimensional trajectories are calculated 

which neglect vertical motion of the air. The wind field from the 850 hPa 

level is assumed to be the transport wind within the mixing layer. 

Petterssen's method (Petterssen, 1956) was chosen for  numerical computa- 

tions of the trajectories. If z is the position of the trajectory at t ime f ,  the 

next position E + &- is calculated using the wind field (Z.f) as follows. Let 

&-, be the f i rs t  estimate fo r  the position increment : 

&-, = C(Z.f) Af 

The i-th estimate &-< f o r  & is: 

N e w  estimates fo r  & are computed until: 

where r is a small positive number equal 0.003 in the EMEP model. If the 

condition (3.6) is satisfied fo r  i-th estimate then: 

ls = Gf (3.7) 

The t ime  step At is 2 hours, which means that each trajectory is 

represented by a set of 49 discrete points, including the receptor point. 

This procedure is sufficiently fast and in most  cases condition (3.6) is 

quickly satisfied. 



3.2-2. Yodel Aren, M o n a  and Meteorological Data 

The coverage of the  EMEP model is shown on Figure 3.3. I t  covers al l  

Europe, a large p a r t  of t he  Atlantic Ocean and a small pa r t  of Northern 

Africa. The numerical grid system has 39 points in the  x-direction and 37 in 

the  y-direction. As w a s  mentioned ear l ier ,  the grid size is  150 km. The grid 

elements are identified by the  coordinates ( i s  j ) .  The relation between g- 

graphical latitude p, and longitude X and a point ( i  , j )  is  given by the  equa- 

tions: 

p = w - -  360 Arctan r 
7r R 7r 

(3.8) 
-(I + sin-) d 3 

where 

r = $(i - 312 + - 3712' 

(the coordinate of the  Northern Pole is (3,37)) 

R = 6370km - radius of the  Earth 

d = 150 km - grid size 

Al l  meteorological and emissions data are given in the  grid sysiem 

denoted by equations (3.8) and (3.9). The meteorological data a re :  wind field 

at 850 hPa level - every 6 hours (with l inear interpolation in-between), and 

precipitation f o r  the  last 6 hours. In the routine computations emission data 

were taken from an inventory prepared by Dovland and Saltbones (1979). 

Seasonal variation of emission is introduced into the  model calculations. I t  

has a shape of sinusoidal function with amplitude 302 and maximum in the  

beginning of January. 



Figure 3.3:Area covered by the EMEP model calculations. Tralectories are 
followed from arrival points within heavy line. 



Concentrations of SO2 and SO: and dry and w e t  deposition of sulfur 

are computed fo r  t h e  ent i re grid system. 

3.2.3. S& and SO: Concentrations 

Emissions are computed by l inear interpolation in each of 49 points 

from the  four nearest grid points, and occurrence of precipitation is 

checked. Having this information, equations fo r  SO2 and SOT can be 

solved. Denoting SO2 concentration by cl and SO: concentration by c2 

(both measured in sulfur units), we can write these equations in the  follow- 

ing form: 

D 
The operator  - is t he  total time derivative, Q is sulfur emission pe r  

dt 

unit area and time. Values for all other  symbols and parameters in equations 

(3.10) and (3.11) are given in Table 3.1. 



Table 3.1. Parameter values in the EMEP long-range transport model 
(from Eliassen and Saltbones, 1983). 

Notation Explanation Parameter value Parameter unit 

d Deposition velocity for SO2 8x10 -3 m  s - I  

vds Deposition velocity for SO: 2 x i0  " m  sY1 

h Mixing height 1000 m  

kt Transformation rate of SO2 to SO: 2 x 1 0 ~  s -I 

kw W e t  deposition ra te  of SO2, 

used only in grid elements and 

six-hour periods when i t  rains 

a Additional dry deposition in 

the same grid square 

where emission occurs 

Part of sulfur emission assumed to 

be emitted directly as sulfate 

Overall decay rate f o r  SO: 

Proportionality coefficient in 

equation (3.13) 

In Finland and Norway 

In other countries 

Background concentration in 

equation (3.13) 

In Finland and Norway 0.27 m 9 s l - l  

In other  countries 0.40 m 9 s l - l  



Equations 3.10 and 3.11 a r e  ordinary linear equations solved fo r  a 

particular trajectory. In regions where precipitation occurs ei ther con- 

stantly o r  not at all, there is also the analytical solution fo r  these equations 

presented by Eliassen (1978). 

3.2.4. Deposition of Sulfur 

D r y  deposition of sulfur is computed by applying deposition velocities 

to SO2 and SO; concentrations: 

d d  = GI. Zld + C 2  Zldr) T 

where: 

d d  =dry deposition of sulfur during time T 

T = period of the transport (T= usually 1 year 

in the EMEP model). 

and other variables are as previously defined. 

In the routine model w e t  deposition is not calculated directly from the 

mass-conservation equations 3.10 and 3.11, because of the constant k, 

rate. I t  is estimated by an indirect method instead, in which the mean con- 

centration of sulfur in precipitation E3 is estimated from the computed mean 

concentration of sulfate during the rain 62 using a l inear empirical rela- 

tionship: 

where C12 and E3 are averaged over time T. The precipitation-weighted mean 

c2 is calculated from 



where pi is the amount of precipitation observed on day i, c2,( is the 

corresponding calculated daily mean a i r  concentration of SO4= and P is the 

total amount of precipitation during time T in a specific grid element. Days 

without precipitation do not contribute to Cz. 

The empirical proportionality coefficient a in (3.13) corresponds to  a 

scavenging rat io  for  anthropogenic sulfate. The constant b accounts for 

background concentration in the rain. The values of a and b are also given 

in Table 3.1. 

The value of the  w e t  deposition in the model d, is computed as: 

d, = 6, . P 
and total deposition of sulfur (1, is: 

dt = dd + ti,,, (3.15) 

Units of dd ,d, , and dt a r e  in g - m -2. In order  to  compute the mass dep* 

sited in a grid element, the  values of the deposition must be multiplied by 

the area of the grid element. 



4.1. Taxonomy 

A f t e r  formulating our  uncertainty problem in Section 3 of this paper. 

w e  now wish to assemble and classify the sources of uncertainty. To assist in 

this classification w e  propose the following taxonomy of m o d e l  uncertainty: 

(1) Model Structure 

(2) Parameters 

(3) Forcing Functions 

(4) Initial State 

(5) M o d e l  Opel-ation. 

Uncertainty due to Model SYructure results f r o m  imperfect or inaccu- 

l-ate representation of reality by a model. In this sense mode l  structure is 

taken as the collection of model variables and parameters together with 

their  relationships. 

Pbrameters are defined as those variables which are constant in 

ei ther t ime  o r  space, are usually estimated or confirmed as par t  of the 

model  calibration, and are meant to approximate a more complicated pro- 

cess. 

Forcing j b n d i o n  in this taxonomy is a model  variable which inherently 

changes in time and space, serves as input for model  calibration, and is 

assumed to be wel l  known (or at least bet ter  defined) compared to parame- 

ters.* 

*Forcing f i n c t i a  corresponds to the concept of input distudhann i n  systsms science 
terminology and crogcnmrs variable i n  econometric terminology. 



Initial State uncertainty results from the e r r o r  in assigning boundary 

and initial conditions. 

Finally, uncertainty due to Model meration re fe rs  to e r r o r s  in t he  

solution techniques of model equations o r  in processing model input and out- 

put. e.g. numerical e r r o r  arising from approximation of differential equa- 

tions and interpolation of model input and output. The sum of forcing func- 

tion and initial state errors can also be termed input uncertainty. 

Each of t h e  above categor ies can be fu r ther  sub-divided into t w o  addi- 

tional classes: diagnostic uncertainty and forecasting uncertainty. Diag- 

nostic uncertainty pertains to model use in simulating past and cur ren t  

conditions. Forecasting uncertainty arises when the  m o d e l  i s  used to esti- 

mate future conditions.** Each source of uncertainty (according to the  

model taxonomy, presented above) has both a diagnostic =d forecasting 

component. 

Before proceeding with t he  application of t he  above taxonomy to the  

EMEP model, w e  note tha t  th is taxonomy is  hierarchical ly organized as illus- 

trated in Figure 4.1. This f igure notes that uncertajnties due to parameters, 

forcing functions, initial state and model operation depend on model struc- 

ture.  A s  an  example. let us assume that w e  are uncertain of the exact value 

of t he  dry deposition velocity ud in the  EMEP model, but can estimate i ts  

interval as [vd 1. W e  then estimate the  uncertainty of computed sulfur depo- 

sition by using, f o r  example, a Monte Carlo technique described in Section 

6.3. This computed uncertainty wi l l  depend on the  form and content of t he  

==Other inveetigators use different terms to make the same dietinction. For example, 
Beck (1983) uses Zdmt*cation and Rediction. 



model  equations, i.e. the model structure. Thus it is unlikely that the uncer- 

tainty of Model 'A' wi l l  be exactly the same as the uncertainty of Model 'B' 

even if both mode ls  use duplicate environmental conditions and parameters 

values, etc., as input. This idea is illustrated in Figure 4.2. In other  words, 

quantitative estimates of uncertainty due to parameters, etc., pertain only 

to a particular model. 

Figure 4.3 also notes that parameter, etc., uncertainty depends on 
. t 

environmental conditions. This is also obvious if w e  consider that the uncer- 

tainty of vd wil l  have a small influence on computed sulfur deposition if con- 

ditions are very wet, i.e. if w e t  deposition is  the predominant sulfur removal 

mechanism. For dr ie r  conditions the reverse will be true. This implies that 

conclusions about model uncertainty must always include information about 

the environmental conditions under which these uncertainty estimates were 

made. This leads to the concept of a "frequency distribution of uncertainty" 

and "expected value of uncertainty", illustrated in Figure 4.4. 

Of course if the departure of model calculations from observations is 

relatively constant for many different environmental conditions, then w e  

may suspect that r wi l l  also not vary very much for  different environmental 

conditions. 

4.2. Application to EMEP Model 

The diagnostic and forecasting uncertainties due to model stmcture 

wi l l  be the same if the system doesn't change, 1.8. if the model  contains the 

dominant variables and interrelationships of the real system for both future 

and current  conditions. However, if for example the alr concentnitions of 

co-pollutants such as Og or NOz increase such that they affect the transfor- 



MODEL STRUCTURE 

ENVIRONMENTAL C O N D I T I O N S  

PARAMETERS FORCING I N I T I A L  MODEL 
FUNCTIONS STATE OPERAT I O N  

Figure 4.1. Hierarchy of model uncertainty 
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mation of SO2 or XI:, then a new model structure may be required with new 

variables and parameters. This implies that  forecasting and diagnostic 

uncertainty due to model s t ruc tu re  will be  different. 

For the  EMEP model, uncertainty due to model structure (diagnostic 

case) includes; but i s  hot l imi ted to: 

(1) Simplification of air chemistry - including, the  question of l inearity. 

(2) Assumption of single vert ical  Layer. 

(3) Simplification of d ry  S deposition process. 

(4) Simplification of wet S deposition process. 

(5) Assumed immediate complete mixing of emissions into mixing layer. 

(6) Omission of horizontal diffusion. 



(7 )  Omission of vertical advection and related phenomena (e.g. frontal 

movements and deep convection). 

(8) Omission of exchange between boundary layer and free atmosphere. 

(9) Omission of shallow convection. 

(10) Omission of orographic effects. 

Model parameter uncertainty should also be the  same for  both diagnos- 

t ic and forecasting cases unless the system changes. As an example of how 

the "system could change", let us assume that the SO2 wet deposition rate, 

k,, is currently oxidant-limited. In this case w e  should expect the uncer- 

tainty of k, to change in the future if the background level of oxidant 

increases, i.e. such that kk, is no longer oxidant-limited. For the EMEP 

model, uncertainty wi l l  arise f r o m  the parameters listed in Table 2.1. 

In comparison to parameter uncertainty, t hem is a clear difference 

between diagnostic and forecasting uncertainty f o r  jbrcing jbncfions. In 

the diagnostic case uncertainty arises f r o m  our interpretat ion of the 

actual forcing functions, l.e. either data is incomplete o r  w e  must transform 

i t  to make i t  compatible with the model. W e  can il lustrate this point by con- 

sidering the use of precipitation data as a forcing function of the EKEP 

model. The density of precipitation stations from which these data are 

derived is very crude compared to EMEP's spatial coverage. Consequently, 

these data must be interpolated before they can serve as input to the EMEP 

model .  This "interpretation" is an example of diagnostic error due to the 

model 's forcing functions. Other e r r o r  of this nature arises from estimation 

of S emission and wind velooity fields. 



On the o ther  hand, the forecasting aspect of forcing function uncer- 

tainty r e f e r s  to our  inability to accurately forecast  future forcing func- 

tions. In o the r  words, w e  can only estimate the  magnitude of future precipi- 

tation, S emissions and wind velocity. Interannual meteorologic variability 

and fu ture climate change are p a r t  of th is category of uncertainty. The 

sources of forcing function uncertainty in the  EMEP model are summarized 

in Table 4.1. 

There is also a difference between diagnostic and forecasting uncer- 

tainties related to i n i t i d  state uncertainty.  As with the forcing functions, 

uncertainty arises in the  diagnostic case because we are unable to accu- 

ra te ly  translate actual boundary and initial conditions into our model. I.%, 

we cannot input t he  exact SO2 and S3: boundary and initial concentrations 

into our model. The sources of poesible initial state uncertainty are sum- 

marized in Table 4.2. 

For the forecasting case, uncertainty arises because w e  are unable to 

exactly estimate the  initial states at the  beginning of the  forecasting 

period. 

Uncertainty due to the  final category of uncertainty in the  EMEP 

model, model operation includes: (1) input-output processing, (2) t ra jec- 

tory computations, and (3) solution of EMEP equations. One type of input- 

output processing e r r o r  is the  interpolation of input emissions' data. As an 



Table 4.1. Forcing functions in the EMEP long-range transport model. 

Symbol 

Q 

Explanation Unit 

Sulfur emissions kt yr 

Components of the  m s 1  
t m s p o r t  wind 
vector 

Precipitation 

Table 4.2. Initial State Uncertainties in EMEP Model. 

Horizontal boundary conditions 

Vertical boundary conditions 

Initial conditions 

example, emissions' input data are illustrated in Figure 4.4. During tsaJec- 

tory calculations, however, emissions' data are interpolated as in E'igure 4.5 

which causes s o m e  error in the input to equations (3.10) and (3.11)*. 

Uncertainty in the  trajectory calculations arises from the so-called 

h t t e r s s m  method described in Section 3.2. 

Uncertainty due to solution of EMEP equations refers to the technique 

for solving equations (3.10) and (3.11). 

Finally, w e  summarize the  above uncertainties of the  EMEP model in 

Table 4.3. 

.1n th i s  example we call the transformation of actual sulfur emissions t o  the input data in 
Figure 4.4 jbrcing finction uncertainty, and the interpolation of t h e m  input data by the  
model from Figure 4.4 t o  Figure 4.5 a s  model operation uncertainty. W e  term it operation 
unartointy b.craw it roferr Lo an intrrnd opermtlon of a .p.dnc IPDd.L 
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Figure 4.6. Interpolation of emission data from Figure 4.5 for model 
computations. 



Table 4.3. A summary of some EMEP model uncertainties. 

DIAGNOSTIC 
UNCERTAINTY 

1. MODEL STRUCTURE A s  listed in section 4.2 

2. PARAMETERS Estimation er rors  of 
parameters in 
Table 3.1 

3. FORCING FUNCTIONS Estimate of current 
magnitude and spatial 
distribution of sulfur 
emissions 

'Smoothing" er rors  
and measurement 
er rors  of 
of precipitation 

'Smoothing" er rors  
and measurement 
er rors  of wind 
velocities 

3. INITIAL STATE Estimation and 
approximation er rors  : 

- boundary conditions 
- initial conditions 

4. MODEL OPERATION Input/output 
processing 

FORECASTING 
UNCERTAINTY 

Changes in co-pollutant 
concentrations 

Changes in co-pollutant 
concentrations 

Forecasted sulfur 
emissions 

Interannual meteorological 
variability (precipitation 
and wind patterns) 

Long term cllmate 
change 

Future boundaryand 
and initial conditions 

Forecasting uncertainties 
same as Diagnostic 
uncertain ties 

Trajectory calculations 
for processing 
wind velocity data 



5. SCREENING AND RANKING OF UNCERTAINTY 

The goal of th is screening exercise is to limit the number of uncertain- 

t ies which must be  quantitatively evaluated in the next s tep of the  uncer- 

tainty analysis. To do  s o  w e  d r a w  on sensitivity analyses conducted by EMEP 

and o ther  investigators (cf. Eliassen and Saltbones, 1983 and Anon, 1983). 

as w e l l  as additional calculations, reviewed in a separate paper  (Bartnicki 

and Alcamo, forthcoming). 

A s  pointed out in Section 1.2, t he re  are difficulties in translating 

resul ts  of sensitivity analysis to conclusions about uncertainty since sensi- 

tivity analysis and uncertainty analysis (as defined in th is paper)  have dif- 

fe ren t  goals. W e  therefore take a pragmatic approach, and r a t h e r  than 

eliminate any uncertaint ies from fu r ther  consideration, we assign them to 

categories of f i rst  and second pr io r i t y .  W e  will be  conservative and assign 

to the second pr ior i ty only those uncertainties where the re  is strong evi- 

dence tha t  they are less important than o ther  uncertainties. Remaining 

uncertaint ies are considered t o  have f i rs t  priority. As  will be  seen, most 

uncertaint ies are placed in the  f i r s t  priori ty category, though fu r ther  sen- 

sitivity analyses may permit us in the future to increase the  number of 

"second priori ty" uncertainties. 

Model St ructure - The following uncertainties described in Section 4.2 

are assigned to a lower priori ty: (1) Assumption of immediate complete mix- 

ing of emissions into mixing layer, (2) Omission of horizontal diffusion, and 

(3) Omission of shallow convection, 

(1) There are physical reasons why the  ussumption of immediate 

complete m i t i ng  of emissions i n f o  the miz ing l a y e r  would not add large 



uncertainty to  the  EMEP calculations. During the  day, especially with con- 

vective conditions, pollutants a r e  mixed relatively quickly a f t e r  emission. 

The character is t ic  time in which a parcel  of pollutants r ises to the  top of 

mixing layer is less than one hour (Lamb, 1984). which is less than the  com- 

putational time step. Therefore, the  assumption of complete initial mixing 

of pollutants can b e  justified fo r  daytime transport .  During the  night, 

although stable conditions usually inhibit vert ical  mixing, lateral mixing 

stil l occurs because of the  different heights of emissions. Even if t he  above 

arguments are not strong enough to put this uncertainty into a lower prior- 

ity, in pract ice this phenomenon is parameterized by coefficient a in equa- 

tion (3.10), t he  local deposition coefficient. Consequently we take this model 

s t ruc tu re  uncertainty into account by investigating the  parameter uncer- 

tainty of a. 

(2) The omission of hor izontal  d m s i o n  is  considered less important 

than o ther  uncertaint ies because of t he  smaller scale effects of this diffu- 

sion compared to t he  scales t reated by the  EMEP model. Considering the 

large initial size assumed fo r  a parcel  of a i r  pollutant in t he  EMEP model 

(150 x 150 x 1 km) w e  do not expect horizontal diffusion to affect the  mixing 

of pollutants during the lifetime of a typical 96 hour t rajectory.  In support 

of th is conclusion, Prahm and Christensen (1977), using an Eulerian one- 

layer  model similar to the  EMEP model, found small changes in computed SO2 

and SO; air concentrations (around 3X) when they compared models with 

and without horizontal diffusion. 

(3) Shallow convection intensifies pollutant mixing within the mixing 

layer  and also chemical transformation of pollutants. The f i rs t  effect would 

influence the  value of a in equation (3.10) and the  second effect, kt in t he  



same equation. W e  can take this uncertainty into account, therefore, by 

investigating the  parameter uncertainty of a and kt. 

The remaining model s t ructure uncertainties listed in section 4.2 a r e  

placed in the f i rs t  pr ior i ty category. 

Model Arrameters and Forcing ALnctions - All of these uncertainties 

are current ly considered very important. 

In i t ia l  State - Of the  uncertainties of this type listed in Table 4.3, w e  

may consider the uncertainty due to the vert ical boundary condit ion to be 

contained in the the  uncertainty of parameter b in equation (3.13). We can 

therefore t rans fer  this type of initicrl state uncertainty to parameter 

uncertainty. Consequently "vertical boundary condition" as a separate 

uncertainty has been placed in a lower priority category. 

Model m e r a t i o n  - Bartnicki e t  al. (forthcoming) present evidence that  

uncertainty due t o  the trcy'ectory ccrlcdation method is relatively unim- 

portant. They examined analytical versus numerical t rajector ies f o r  an 

art i f icial rotational wind and found that  a f te r  96 hours of travel, t rajectory 

positions differed by less than 15 km. 

The sources of uncertainty current ly assigned 'Second Priority" a r e  

presented in Table 5.1. By default all o ther  uncertainties have a higher 

priority. 
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Table 5.1. "Second Priority" Model Uncertainties 

MODEL STRUCTURE 

Assumption of immediate complete mixing of 
emissions into mixing layer. 

Omission of horizontal diffusion. 

Omission of shallow convection. 

2. MODEL PARAMETERS - none 

3. MODEL FORCING FUNCTIONS - none 

4. INITIAL STATE 

Vertical boundary condition. 

5. MODEL OPERATION 

Trajectory calculation method. 



6. METHODS TO EVALUATE DIAGNOSTIC UNCERTAINTY 

In this section w e  concentrate on the evaluation of diagnostic uncer- 

tainties assigned "first priority" af ter  screening and ranking of Section 5. 

Unfortunately, a discussion of all important diagnostic uncertainties is out- 

side the scope of this paper, though w e  t r y  and highlight some of the more 

important sources. 

6.1. Model Ca l ib ra t ionNer i f i ca t ion  

In Section 1.2 w e  reviewed the drawbacks to model 

calibration/verification in assessing model uncertainty. W e  also pointed out 

that  model calibration/verification is necessary and useful though insuffi- 

cient fo r  this task. I t  is necessary, as noted earl ier,  because without data 

comparisons w e  have no standard with which to compare model output with 

reality. I t  is u s m l  because the departure of model output from observa- 

tions is a measure of the magnitude of model diagnostic uncertainty. The 

goodness of this measure naturally depends upon the amount of data and 

range of environmental conditions that the model is tested against. Since 

diagnostic uncertainty varies with environmental conditions as noted in Sec- 

tion 4.1, the  more environmental conditions, i.e. data sets, the model is 

tested against, the closer w e  come to the "expected value" of diagnostic 

uncertainty. Using the EMEP model as an example, a single comparison of 

annual average model output with observations provides only one value of 

model uncertainty under specific environmental conditions. This com- 

parison does, however, give us an idea of the possible maximum diagnostic 

uncertainty. 



6.1.1. Interpretation of Hodel Calibration/Verification 

There is no straightforward way to translate the results of model cali- 

bration and verification into estimates of E ,  model uncertainty. In Figure 6.1 

we il lustrate th ree possible ways in which model calibration and verification 

can be combined in modeling practice. In Case I, model parameters are 

adjusted so  that model output agrees with Data Set A ("calibration"). Using 

these calibrated parameters and new forcing functions, model output is com- 

pared to Data Set  B ("verification"). W e  denote the departure of model out- 

put from observations as clo and Elbl respectively. In Case 11, the model 

parameters are again adjusted so  that model output agrees with Data Set A. 

This exercise is repeated with new forcing functions so  that model output 

also agrees with Dah Set B. W e  have therefore "calibrated" the model 

separately to two independent data sets and obtain two independent parame- 

ter sets. In Case 111, w e  are interested in finding the single parameter set 

which f i ts both Data Sets A and B simultaneously. In other  words, this pr* 

cess yields a single parameter set for the two data sets. 

In general, given an identical model and an identical calibration pr* 

cedure fo r  all cases, w e  expect 

E l a  = '20 '2b < &3a E3b < E lb  (6.1) 

Each epsilon is an estimate of diagnostic uncertainty since we assume 

our  forcing functions and initial states a r e  input to the model. Individually 

they are not necessarily good estimates of average diagnostic uncertainty. 

Even though E~~ and E~~ from Case I1 are smaller than E~~ and E3b f r o m  

Case 111, uncertainty w a s  "conserved", i.e. "apparent" diagnostic uncer- 

tainty has decreased but we have increased forecasting uncertainty 



Figure 6.1. Three ways of combining model calibration and verification. 
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because we do not know which of the  two parameter sets  in Case 11 to use fo r  

forecasting. 

In conclusion, caution must be used in interpreting comparisons of 

model output with observations. 

6.1.2. Data Observations and Uncertainty Estimates 

Later in this section we describe how to obtain quantitative uncertainty 

estimates of the  EMEP model. The simplest check of these uncertainty esti- 

mates would be, of course simply to compare the observations with the  com- 

puted frequency distribution. In the hypothetical example in Figure 6.2a w e  

compare observed annual SOz air concentration with the frequency distri- 

bution of computed SO2. W e  expect, fo r  example, that  90% of the  time an 

observation such as this would fall within the  frequency distribution's 90% 

confidence interval. Though a single comparison of this nature proves lit- 

t le, a comparison of observations versus computed frequency distributions 

at f ive stations would serve as a check on our  procedure fo r  analyzing diag- 

nostic model uncertainty. (This of course also depends on the  accuracy of 

the  data.) In fact, the probability that  all five observations a r e  outside the  

90% confidence intervals of the frequency distributions is ( 0 . 1 ) ~  = 0.001 %. 

The probability of two o r  more being outside the  90% confidence interval is  

1%. This serves as a way to check our  procedure with data. 

6.2. Model Structure 

There is  only one satisfactory way t o  evaluate this uncertainty and tha t  

is of course to compare different model structures. If alternative models 

are available then these comparisons can be performed with identical input 
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Figure 6 . 2 ~ .  Hypothetical comparison of observation with computed fre- 
quency distribution of SO2 air concentration. 



data (cf. MOI, 1982). If a l ternat ive models are not available, then certain 

mathematical terms which ref lect  key questions about model s t ructure can 

be  changed and comparisons made between original and revised model equa- 

tions. A proposal f o r  such a revision regarding non-linearity is given in the 

following section. 

Recall, however, from Section 4.1 that  these model experiments will 

yield the difference between mean calculations of dif ferent model struc- 

tures.  Even if the  two model s t ructures have an  identical set of parameters 

and parameter values, initial states,  etc. i t  is likely tha t  the & of the output 

uncertainty will be  different f o r  the two model structures. This idea is 

i l lustrated in Figure 4.2. 

W e  should also note tha t  uncertainty of model s t ruc tu re  is sometimes 

expressed as uncertainty of parameters. For example, since kt is known to 

be  a "lumped parameter" related to complex atmospheric sulfur chemistry, 

i t  is  not "observable" and w e  are therefore unsure of i ts  values. In more 

complicated models there  is a more detailed description of this chemistry 

and hence there  will be  a bet te r  chance tha t  the  new model's oxidation 

parameters will be  observable, and therefore,  be t te r  known. 

6.2.1. The Linearity Qnestion 

The cur ren t  configuration of variables in the  EMEP model (equations 

3.10 and 3.11) resul ts in a proport ional or ' l inear" relationship between 

sulfur deposition and air concentration and sulfur emissions. However the  

parameters in these equations are admittedly simplifications of much more 

complicated processes which occur  in the  atmosphere. The key 'linearity" 

question is not whether these processes are non-linear, since to a certain 



8 
extent they are. Instead it  is whether they resul t  in a sign+J%cant depar- 

t u re  from the implicit proport ional relationship between a sulfur source 

and i ts  deposition at another location. There are two reasons why this is a 

cr i t ical  question f o r  those interested in using the  EMEP m o d e l  f o r  assess- 

ment of control scenarios. First, t he  linearity assumption permits us to  

superimpose the  contributions from different sources together which allows 

us t o  examine the  expected benefits of reducing sulfur emissions in a par- 

t icular country independent of o the r  countries. Otherwise w e  would have to 

take all sources and co-pollutants simultaneously into account. Second, by 

assuming linearity w e  can fu r ther  assume that  if we reduce the  amount of 

sul fur emitted i t  will resul t  in a proportional reduction of sulfur dep~s i ted .  

This l inearity assumption w a s  expressed as a straight line in Figure 3.1. 

The l inearity question in t he  decision context introduced in Section 3 

of th is paper  is whether t he re  is a l inear relationship between source coun- 

try i and receptor  element j .  

In o rde r  to answer this question w e  recal l  that  the source receptor  

matrix between country i and receptor  j depends mainly on: 

1. synoptic scale atmospheric t ranspor t  - i.e. wind velocity and 

deposition. 

2. micrometeorology and dry deposition processes. 

3. precipitation and w e t  deposition processes. 

4. atmospheric chemistry. 

I 
A description of relevant sulfur chemistry i s  outside the scope of this paper. The reader 

i s  referred Lo U.S. National Research Council (1983) for a good overview. 



Since non-linearities occur mainly in numbers 3 and 4, our  task then is 

to evaluate the importance of non-linear chemical factors relat ive to these 

o ther  factors.  

OTA (1984) and the U.S. National Research Council (1983) approach 

this task by using non-linear chemical models which represent  some of t he  

complex non-linear chemical mechanisms. In these model experiments a 

hypothetical parce l  of a i r  is followed f o r  a period of days. Factors ( I ) ,  ( Z ) ,  

and (3) are included in the  calculations in only a rudimentary fashion. As 

the U.S. National Research Council pointed out, conclusions deduced from 

these models are very sensitive to the modeler's assumptions of chemical 

pathways. Nevertheless, 9s knowledge of atmospharic chemistry improves, 

these models wffl give increasingly valuable insight to the linearity ques- 

tion. 

EMEP investigators (Anon, 1983) added a non-linear term to the basic 

equations of the EMEP model to explore the ef fect  of non-linearity. 

Oppenheimer et al. (1985) and Granat (1978) reviewed the data from 

Western U.S. and Northern Europe, respectively. A drawback to  this da ta  

analysis is  that  I t  can only treat w e t  sulfur deposition, not total sulfur depo- 

sition, though most non-linearities are thought to occur in the w e t  phase 

r a t h e r  than the  dry phase. 

Unfortunately a review of th is previous work is outside the  scope of 

th is paper. 



6 -2.2. Non-l inear Coef f ic ients  

One way to approach the  linearity question is to non-Linear ize the  

coefficients in the  EMEP model which represent  possible non-linear atmos- 

pher ic processes, i.e. we would treat t he  w e t  deposition rate (k,), the SO2 

transformation ra te  (k t )  and the  SO: removal rate (c)  as non-linear param- 

e te rs  r a t h e r  than as constants. As an example, w e  could assign k, the  non- 

l inear relation to SO2 air concentration il lustrated in Figure 6.2b. The basis 

of this relationship would b e  exper t  opinion. W e  would then investigate how 

much the  o v e r d l  relationship between sulfur emissions in country i and 

deposition o r  a i r  concentration in receptor  j depar ts  from linearity due to 

these non-linear parameters. Since the  relationship in Figure 6.2b is non- 

l inear w e  would have to assign "background" SO2 and SO; air concentra- 

tions along the  t ra jectory  paths from country i to receptor  j .  This is a 

disadvantage of the  method. Advantages include: (1) The linearity question 

would be investigated in t he  same time and space scales as presented in Sec- 

tion 3. This means that  w e  could compare in a consistent fashion the  uncer- 

tainty of non-linearity with o the r  uncertainties, such as the  parameter and 

forcing function uncertaint ies discussed in t he  next section of th is paper;  

(2) Exper ts  could prescr ibe any number of dif ferent non-linear relation- 

ships of the type il lustrated in Figure 6.2b. Therefore, this method provides 

a convenient opportunity to compare the  views of dif ferent exper ts  regard- 

ing non-linearity; (3) The method is relatively easy to perform. 

The procedure would b e  as follows: 

(i) Assign non-linear relationships to k, , k t ,  and c. 



(ii) Select country i , receptor  j . 

(iii) Assign background SO2 and SO f air concentrations. 

(iv) Solve EMEP equations fo r  one year  and fo r  a unit sulfur emissions 

from country i to receptor  j . 

(v) Repeat (iv) for different levels of background SO2 and SO; air 

concentrations. 

Prom this analysis w e  obtain an estimate of uncertainty of computed 

sulfur deposition (or air concentration) at receptor j which accounts f o r  a 

unit sulfur emissions f r o m  country i , non-linear relationships from (i), and 

a range of background SO2 and SO: levels specified in (v). 

9 AIR  CONCENlRATI(XI 

Figure 6.2b. Hypothetical relationship between k, and SO2 air c o n c e n h -  
tion. 



6.3 Monte C u l o  Andm of Compate UPCCrt.LIPtj 
(Puamdar.  F- Fundion. Initiel State) 

Monte Carlo Analysis provides a general and flexible approach to exa- 

mining the combined uncertainties due to parameters, forcing functions and 

initial state errors.  To il lustrate how w e  apply this method recall the gen- 

eral model presented in Section 1: 

Y =  &x) 

For the EMEP model: 

cl,c2.&, .dd ,dt = E W  state variables: 

SO2 air concentration, SO; air 

concentration, w e t  deposition, dry deposition 

total deposition. 

8, = parameters defined in Table 3.1 

Vl(zlt) ~ ~ ~ ( z s t )  = forcing functions: sulfur emissions, 

wind velocities, and precipitation 

Using random numbers v1..., , h..., E [0,1] w e  sample f r o m  the curnula- 

tive frequency distributions F(B) and F(p) and obtain a 8' and qi such that 

l?(pi) = vi and F(#) = 9. In this analysis w e  have neglected all initial 

state uncertainties for the time being except for the vertical boundary con- 

dition which is represented by b. in equation (3.13). In this analysis w e  

treat this boundary condition as a parameter. 



Each pi and is used to  compute Y = (c1,c2, ...) by equations (3.10) 

through (3.14). An individual computation of Y is called a "realization" of 

Y. W e  repeat  this sampling and computation N times, until a statistically sig- 

nificant sample of v and p is drawn. W e  then compute the frequency distri- 

bution j (Y)from the set of realizations of Y. The frequency distribution f(Y) 

indicates the uncertainty of the  state variables due to uncertainty reflected 

in F(B1), ..., F(B,) and F ( Q ~ ) ,  .... F(Pn). 

6.3.2. Frequency Distribution of Forcing Functions 

The forcing functions ( ~ ( z  , t ) )  of the EMEP model include winds, pre- 

cipitation and sulfur emissions. In this section w e  present a method for 

assigning frequency distributions for  wind velocity inputs to the model. 

First w e  take the general form of the velocity vector =(ui ,vf ) and 

transform i t  into a magnitude IFi I and directional angle a(. 

Second w e  divide winds into 10 "transport wind" classes such that: 

and 

ai =ao + Zi, i = 1, ..., 10 

where 

17. / = magnitude of transformed wind 

i = number of "transport wind" class 

/ Fo 1 = magnitude of original wind 

a, = angle of original wind 

ai = angle of transformed wind 

2* = angle changed by Z0 increments. 



Using the  Peterssen method described in Section 3.2.1, w e  compute the  

t ra jector ies between the  source and receptor  of interest according to the  

ten classes of 1 6 1 and a(. This yields ten sets of t ra jector ies Ti j. 

Finally w e  construct  f {Ti j by assigning probabilit ies t o  the  occurrence 

of each of t he  10 t ra jectory  sets (Figure 6.3). 

FREQUENCY 

OF 

OCCLlRRENCE 

TRAJECTORY CLASSES 

Figure 6.3. Hypothetical frequency distribution of t ra jectory  classes. 

6.3.3. Frequency Distribution of Parametem 

A cr i t ical  exercise in using Monte Carlo Analysis is t o  intelligently 

select the  frequency distribution of parameters. Interpretation of these 

frequency distributions becomes a key issue because through the i r  selec- 

tion w e  express  our  a priori uncertainty about these variables. An impor- 

tant  question is, what is the least biased way fo r  an analyst to express 



his/her uncertainty in a parameter frequency distribution? First, w e  recall 

that  the  EMEP model parameters (Table 3.1) are mostly 'lumped" parame- 

te rs ,  i.e. they ref lect  a conglomeration of processes occurring in nature 

and averaged broadly in time and space. The part icular parameter values 

used in the model are very unlikely to be  observed at any single time o r  

location in Europe, though i t  may in fact  be an  excellent average f o r  all of 

Europe over  an ent i re  year .  For example, i t  is w e l l  known that  kt varies 

according to sunlight intensity, temperature, amount of co-pollutants, humi- 

dity and other  factors and therefore fluctuates according to time of day, 

season, etc. I t  is  r a t h e r  unlikely that  any single l i terature value of kt will 

coincide with the European lumped average. Also i t  is unlikely tha t  the 

exact shape of the  frequency distribution fo r  any of the parameters listed 

in Table 3.1 wi l l  be known. Under these circumstances, w e  assume tha t  the  

parameter frequency distribution i s  a triangular distribution with a median 

equal to  the EMEP parameter value and extremes from the  l i terature o r  

experts.  

Another possible start ing assumption is  that  parameters have a rec- 

tangular o r  uniform frequency distribution. However this makes t h e  unlikely 

assumption that all values between the extremes are as equally likely t o  

occur. As explained above, this is not necessarily a good assumption. How- 

eve r  i t  does give the  analyst an idea of what effect a conservative estimate 

of parameter uncertainty will have on model output. 

6.3.4. An Algorithm for  Composite Uncertainty 

In pract ice the  Monte Carlo analysis of combined uncertainty would be  

conducted in the  following steps: 



(i) Sample f IT{, i.e. using a random number, select a set of t ra jec- 

tor ies from the  frequency distribution f [Tj. 

(ii) Sample f (B), f (p(z ,t 1) 

(iii) Compute Y(.) by equations (3.10) through (3.15) and store. 

(iv) Repeat (i) -, (iii) N times, i.e. until a statistically significant sam- 

ple of IT j, e and p(x,t) are drawn. 

(v) Compute frequency distribution f (Y). 

6.3.5. An Example 

In o rde r  to illustrate the  above method w e  have made some a priori 

assumptions about frequency distributions of four of t he  parameters in the  

EMEP model. First,  w e  have assumed that  they represent  t he  frequency of 

occurrence of par t icu lar  annual and European average values. Second, w e  

have assumed tha t  they are triangular-shaped with EMEP parameter values 

as the  median, and extremes based on the  l i terature and expe r t  opinion. As 

a resul t  we have selected the  distributions in Figure 6.4. 

W e  examine how EMEP state variables are affected by t he  assumed f re-  

quency distributions of t he  four parameters in a case study of U.K. sulfur 

emissions and Southern Sweden sulfur deposition. This is only the  f i r s t  of 

five case studies. The source-receptor combinations which have not ye t  

been analyzed a re :  Netherlands - Northern Denmark, Czechoslovakia - 
Northern GDR, FRG - Southern Poland, Poland - Central Hungary. These 

combinations were selected to cover a wide range of geographic and 

meteorologic conditions. In th is analysis w e  use 1980 meteorological inputs 

and are interested in a n  annual time scale. 





Figures 6.5 through 6.9 presents the  resulting frequency distributions of 

SO2 (air), SO; (air),  dry sulfur deposition, w e t  sulfur deposition, and total 

sulfur deposition. For example, Figure 6.5 ref lects t he  uncertainty in com- 

puted annual average SO2 a i r  concentration in an EMEP grid element in 

Southern Sweden (resulting from U.K. emissions) due t o  uncertainty of 

vd ,A  ,kt, and k,. The coefficient of variation (c.v. = u / g  where u  = stan- 

dard deviation and g  = mean) of these distributions are reported in Table 

6.1. Note tha t  the  largest C.V. occurs fo r  SO2 a i r  concentration (0.27) and 

the  smallest f o r  dry and total sulfur deposition (0.09). This ref lects the  

integrative nature of sulfur deposition in t he  EMEP model. For all forms of 

deposition the  C.V. i s  r a t h e r  small (around 0.1 o r  10%) suggesting tha t  the  

uncertainty in computed deposition due to uncertainty of these four param- 

eters is r a t h e r  small. But this conclusion depends on the  a priori accep- 

tance of t he  model s t ructure and confidence that  t he  uncertainty of these 

parameters is truly ref lected in t he  frequency distributions of Figure 6.4. 

Also this method has s o  f a r  been applied only t o  the  U.K. - Southern Sweden 

case. 

Table 6.2 presents t he  C.V. f o r  SO2 a i r  concentration and total sulfur 

deposition as i t  is  affected by the uncertainty of each of the  four parame- 

ters individually. Note that  vd has the  largest ef fect  on uncertainty of SO2 

a i r  concentration (c.v. = 0.23) yet a small ef fect  on total sulfur deposition 

(c.v. = 0.02). An examination of t he  EMEP equations can explain this com- 

pensation, though the question remains whether nature behaves in the  same 

manner. 



Figure 6.5. Computed frequency distribution of SOz (air) 
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Figure 6.8. Computed frequency distribution w e t  sulfur deposition. 

CCIKP. F R E Q U E N C Y  DISTRIBUTION 
V F I R - 2  i 

t 

5 0 .  

re. 

2- 
L) 
2 30. 

LJ 
3 
3 
d 
N 
-L 

I 
A 28 .  

18.8 

0 .  i 

- 
i 
i 
s 
t 
1 

! 
-. ! 

i 

- -  

- -  i i 

1 
-* 

I 
8. 8. ld 8.20 8.38 

WET DEP. C G / M % W / Y R  1 

SIG: 0.017 
4?k : 8 ;  8 5 3 ! 2 8 i s  MEQN 8 0.149 - 



Figure 6.9. Computed frequency distribution tom sulfur deposition. 
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Table 6.1. Influence of Simultaneous Uncertainty of 4 Parameters 
(vd ,h ,kt ,kw ) on EMEP State Variables 

State 
Variables 

Coefficient 
of Variation 

SO 2(air) 0.27 

SO; (air) 0.14 

Dry Sulfur Deposition 0.09 

Wet Sulfur Deposition 0.11 

Total Sulfur Deposition 0.09 

Table 6.2. Influence of ~ndhidual Parameter Uncertainty on EMEP 
State Variables 

Parameter 
Varied 

Coefficient 
of Variation 

SO, (air) Total Sulfur Deposition 

tl d 0.23 0.02 

h 0.09 0.04 

k t  0.04 0.06 

kw 0.04 0.02 

Vd A ,kt A,, 0.27 0.09 



6.4. Future Work 

Section 6 presents some preliminary work in evaluating EMEP diagnos- 

t ic model uncertainty. Future tasks concerning composite uncertainty will 

include: 

(i) Refinement of probability encoding techniques t o  systematically 

translate expert  opinion into parameter and forcing function fre- 

quency distributions. 

(ii) Analysis of combined parameter, forcing function and initial state 

uncertainties by using the Monte Carlo algorithm presented in this 

section. 

(iii) Application of composite uncertainty analysis to at least five 

source-receptor combinations in Europe. 

(iv) Development of algorithms to take into account co-variance 

between different parameters and forcing functions. 

(v) Experimentation with a wide variety of different forms of f re- 

quency distributions (e-g. triangular, rectangular, etc.) fo r  

parameter and forcing function frequency distributions. 

(vi) Comparison of observations with uncertainty estimates of SO2 and 

SO; a i r  concentrations and w e t  sulfur deposition. 

Future tasks concerning model structure will involve: 

(i) Model experiments concerning linearity described in this section. 

(ii) Comparison of results f r o m  different European long-range tran- 

sport models. 

(iii) M h e r  analysis of model structure uncertaintiem identified in 

Section 4.2. 



7. METHODS TO EVALUATE FORECASTING UNCERTAINTY 

In this section, as in the last section, we emphasize those uncertainties 

which a r e  considered of higher priority after the screening and ranking 

exercise of Section 5. Full consideration of these uncertainties, is however, 

outside of this paper's scope. 

7.1. Yodel Stractarc: The Linearity Question 

In Section 6.2 we formulated the so-called 'linearity question" in terms 

of the decision making context of the E m P  model. Even though data 

analysis o r  model experiments indicate that there is cursanfly a linear 

relationship between sulf'ur emissions and deposition it is still possible that 

their relationship will not be linear under future atmospheric conditions. 

Put in another way, under current levels of sulf'ur co-pollutants, e.g. NO,, 

H202. 03, w e  might expect that SO2 oxidizes to SO; a t  such a ra te  that the 

relationship between sulfur emissions to deposition is apparently linear. 

However, the question remains whether this relationship will continue to be 

linear if the molar ratio of SO2 and its co-pollutants significantly changes in 

the future. It is possible that this molar ratio can change if, say, power 

plant emissions are controlled but not vehicular emissions. W e  conclude, 

therefore, that the linearity question has a "forecasting" as we l l  as a "diag- 

nostic" component. 

One way to approach this problem would be to assume wider ranges for  

the non-linear function of wet deposition rate (k,) presented in Figure 

6.2b. In addition w e  may wish to assume the SO2 transformation rate (kt) 

also has a larger unoertainty due to the effect of co-pollutants. 



7.2. Forcing Functions: lntermmnal Meteorological Variability 

This uncertainty ar ises from our inability to anticipate future sulfur 

emissions and meteorological variables such as wind velocities and precipi- 

tation. If w e  assume that  the EMEP model will be used to forecast the results 

of changing sulfur emissions then w e  may also assume that these sulfur emis- 

sions will be given. Consequently, in this paper w e  do not address sulfur 

emissions' uncertainty. Meteorological variability cannot be  so easily 

neglected. W e  can make t w o  alternative assumptions to analyze this uncer- 

tainty: 

(1) That future interannual meteorological variability w i l l  be affected 

by global climate change brought on by, say, increasing tropos- 

pheric concentrations of C02 and other  trace gases; the  "Climate 

Change" approach; 

(2) That future interannual meteorological variability will resemble 

past variability; the ''Fbst Variability" approach. 

7.2.1. "Climate Change" Approach 

Analysis of interannual met6omlogical variability could involve use of 

global general circulation models (GCM) from which we could derive new 

precipitation and wind patterns for Europe consistent with scenarios of glo- 

bal climate change. These patterns could then be used in the EMEP model to 

generate new source-receptor relationships. To we GCMs for  this purpose 

w e  must first determine: 

(1) W i l l  the temporal and spatial resolution of the  GCM be appropriate 

for running the EMEP model? 



(2) Does the scientific community have sufficient confidence in partic- 

ular GCMs to a l l o w  their  use in this kind of analysis? 

(3) What scenarios of climate change should be investigated? 

(4) How can interannual variability be derived f r o m  these scenarios 

of climate change? 

An alternative approach is being used within the IIASA Acid Rain P r e  

ject by Pitovranov (forthcoming). This involves: 

(I) Correlating historical hemispheric temperatures with long term 

precipitation data at several European stations. 

(ii) Using (i) to estimate future precipitation changes at these stations 

for various scenarios of future hemispheric temperature changes. 

(These future temperature scenarios can be taken, fo r  example, 

from current  work on assessing the impact of increased C02 and 

trace gas concentrations in the atmosphere.) 

(iii) Using revised precipitation values from (ii) as new input forcing 

functions for the EMEP model and recomputing sulfur deposition. 

7.2.2. "Past Variability" Approach 

The simplest version of the "Past Variability" approach is utilize 

results f r o m  multi-year runs of the EMEP model.  Since the only inputs which 

were varied from year to year were meteorological inputs, differences 

between computed sulfur deposition should reflect interannual meteorologi- 

cal variability. The following summarizes a statistical analysis conducted on 

4 source-receptor matrices covering the annual periods in Table 7.1. 
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Table 7.1. Time periods for EMEP source-receptor matrices. 

e 

October 1978 - September 1979 

October 1979 - September 1980 

October 1980 - September 1981 

October 1981 - September 1982 

(i) Since the effect of interannual meteorological variability will 

depend on the geographic patterm of sulfur emissions, w e  selected 

3 scenarios computed by the IIASA RAINS model (see f o r  example, 

Hordijk, 1985 and Alcamo et al., 1985). These scenarios were 

selected because of their  large spatial variability and are noted 

in Table 7.2. 

(11) Each of the four unit-source-receptor matrices is multiplied by 

each of the three sulfur emission scenarios. This yields four sul- 

fu r  deposition matrices fo r  each sulfur emission scenario. 

(iii) The four deposition matrices produced by each sulfur emission 

scenario are compared on a grid element by grid element basis 

with the 4-year mean deposition matrix. The following statistics 

were used fo r  this comparison: 



root mean square (nns ) 1 = -dx ( h n  - bmn )' N 

absolute deviation (ad ) = J a n  - bmn 1 
1 mean absolute deviation(mad) = T;x I hn - b,,,,, I 

relative deviation ( rd  ) 1 ~ m n  - bmn I = I I 
I Qnzn I 

1 h n  - bmn I mean relative deviation (mrd ) = i x  1- I 
a, 

where 

hn = grid element of the 4-year mean deposition matrix 
(October 1978 - September 1982) 

b,, = grid element of the comparison matrix 
(from periods IiAed in Table 6.1) 

N = # grid elements 

Table 7.3 summarizes the computed root mean square e r r o r  (nns ) f o r  

the four annual deposition matrices compared to the four-year mean. In this 

case the nns indicates which computed deposition matrix has the largest 

variability from the four-year mean on an aggregated basis, i.e. which 

matrix year has the ' largest" interannual meteorologic variability. Note 

that the rms depends on the sulfur emission scenario, not only the meteoro- 

logic input data. This suggests that in order  to choose the "most meteoro -  

logically variable" year  w e  must also be able to estimate the sulfur emission 

pattern. 



Table 7.2. Sulfur Emission Scenarios. 

Country 1980 2010 2010 
Ref. Scenario. Major Poll Controls 

k t / r  kt /yr 

Albania 
Austria 
Belgium 
Bulgaria 
Czechoslovakia 
Denmark 
Finland 
k a n c e  
FRG 
GDR 
GB 
H w ? a r y  
Ireland 
I ~ Y  
Luxembourg 
Netherlands 
Norway 
Poland 
Portugal 
Romania 
Spain 
Sweden 
Switzerland 
Turkey 
UK 
USSR 
Y ugoslavia 

Total 

The computed mean absolute deviation (mad) is summarized in Table 7.4 

which presents mad fo r  the grid elements of three countries and all 

Europe. (The countries shown a r e  the last three in an alphabetical order of 

the 27 largest European countries in Europe.) Results for  two of the three 

sulfur emission scenarios are shown. The absolute deviation, of course. 

strongly depends on the amount of sulfur emitted. The difference in absolute 
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Table 7.3. Summary of computed root mean square error. 

Root Mean quare Error 
(g m-3 rr-1) 

Scenario European Matrix: 
Emissions 7879 7980 8081 
&t/yr) 

Y r  2010 25842 .I83 .I70 .I57 
Reference 

Y r  2010 9390 .077 .080 .072 
Major Poll 
Controls 

deviation between the two sulfur emission scenarios shown h this table (a 

factor of 2 to 3) reflects the difference in total sulfur emissions of the two 

scenarios. 

The mean relative deviation (mrd) is summarized h Table 7.4. As 

expected, the mean relative deviation is relatively independent on the g e c ~  

qraphic pattern of sulfur emissions. The mean relative deviation for all grid 

elements h Europe is approximately 132 and is relatively constant from 

year to year. 

The question arises: do these similar deposition patterns correspond to 

invariable meteorologic patterns in the years 1978-82? Insight to this ques- 

tion is provided by den Tonkelaar (1985) who has analyzed meteorologic 

differences between these years by analyzing the frequency of occurrence 

of Grossruetterlaqen. (G WL) i.e. synoptic-scale circulation patterns. Since 

these Grosswetterlagen are related to precipitation and wind patterns, 

their frequency of occurrence within a year provides a usefd indirect 





basis for comparing the gross climate patterns of different years. Den 

Tonkelaar (1985) used 13 categories of Grosswetterlagen in his analysis, 

and noted the number of days in which each ~ r o s s w e t t e r l a ~ e  occurred. He 

analyzed each of the four  annual periods of the EMEP sourcereceptor  

matrices (Table 7.5). He then compared the frequency of occurrence of 

Grosswetterlage for each of these years with their  long term (1949-80) 

annual occurrence. He also compared the four-year (October 1978- 

September 1982) average annual occurrence with the long term annual 

occurrence. An example of his results is presented in Table 7.5. Prel im- 

inary conclusions of den Tonkelaar's analysis are: 

1. The four year annual average (October 197Meptember 1982) was 

climatologically similar to the long term (1949-1980) annual aver- 

age. 

2. The climate patterns of the individual years (Table 7.1) departed 

significantly from one another and from the long term average. 

In short, GWL records suggest that the intemmnual meteorologic varia- 

bility which occurred within the period of October 1978 to September 1982 

w a s  significant from a meteorologic point of view. However, as w e  have 

seen, this variability does not create a large difference in forecasted pat- 

terns of total sulfur deposition when these patterns are averaged over all 

of Europe and an entire year. 

There are a number of possible reasons for this: 



Table 7.5. Occurrence of Grosswetterlage fo r  October 1978- 
September 1979 and Annual Average 1949-80. 

Category of 
Grosswetterlage b 

Number of Days 
October 1978- Annual average 
September 1979 1949-1980 

%ource: den Tonkelaar (1985). 

b ~ o r  an explanation of these categories see den Tonkelaar (1985). 
- 

(i) The EhiEP model is not sensit ive to in terannual  meteorologic 

changes. For example, the EMEP model version upon which this 

paper is based, assumes a constant mixing height throughout the 

8 
year and from year to year. A s  a result the EMEP model may 

"smooth out" differences between computed sulfur deposition 

which would occur f r o m  year to year due to changes in average 

mixing height. On the other hand, the interannual variation of mix- 

ing heights is not known, nor is it known whether this would affect 

interannual sulfur deposition variability. 

  ewer versions of the EMEP model are expected to include varlable mirdng helghts. 



(ii) ?Re actual meteorology d id  not v a r y  much in the years W?8 to 

2982. This would imply that the frequency of GrosswetterLcrgen 

a r e  not reliable indicators of interannual meteorological variabil- 

ity. One way to check this would be to examine the correlation 

between wind and precipitation data at several stations and the 

occurrence of GrossuretterLagen. 

(iii) Deposition is compensated by  suwr  m i s s i o n  sources and/or  

w ind and precipitation. Assuming the EMEP model does ade- 

quately incorporate the main effects of interannual meteorologi- 

cal variability on sulfur deposition, and assuming this variability 

w a s  significant between 1978-82, then the relatively low variabfl- 

ity of sulfur deposition may be due to compensation between sulfur 

emission sources, i.e. if prevailing winds transport  sulfur f r o m  

source 'A' to receptor  'B' in one year, then in the next year pre- 

vailing winds from a different direction bring the same amount of 

sulfur to receptor  'B', but from a different source, 'C'. Using 

Southern Sweden as a receptor example, perhaps the principal 

source of sulfur in one year wil l  be U.K. and the next year Poland. 

but the net difference in deposition wi l l  be small. 

Another type of compensation could result from meteorological fac- 

tors. For example, if precipitation at receptor 'B' is much lower than usual 

during a particular year, the reduction in w e t  deposition may be compen- 

sated by longer range transport of sulfur to this receptor  location f r o m  

more distant sulfur sources. I t  is also possible that (i) through (iii) occur in 

some combination. 



Using the same data base as  above we can also compare how the magni- 

tude of interannual variability affects sulfur deposition on different t i m e  

and space scales. Figure 7.1 summarizes these results for  the case of U.K. 

sulfur emissions and deposition into a single EbEP grid element in Southern 

Sweden (R6rvik). Results from this analysis (Figure 7.1) show that there is a 

great difference in mean relative deviation for  the combination of monthly 

country emissions and monthly grid deposition versus annual country emls- 

sions and annual grid deposition (mrd = 64.1X vs 8.5%). However this exam- 

ple is useful for only il lustrative purposes since i t  w a s  based on only four 

data points from the four simulation years. 

Conclusions of Matrix Analysis 

(i) The nns of the computed sulfur deposition matrices depend on the 

prescribed sulfur emission scenario. Therefore, to identify the 

matrix with "highest" interannual meteorological variability, w e  

must also estimate the geographic pattern of sulfur emissions. 

(ii) The absolute deviation from year-to-year of sulfur deposition in a 

grid element depends, of course, on the magnitude of sulfur emis- 

sions. The absolute deviation in any single grid element spatially 

-2 -1 varied from about .06 to .25 g m yr for  the lowest sulfur ernis- 

sion scenario and from about 1.0 to 6.0 g m-' fo r  the highest 

scenario. 

(iii) The relative deviation of sulfur deposition in any single grid ele- 

ment varied spatially by about 5 to 20%. 

(iv) The average grid element in Europe had a relative deviation of 

about 13%. This Europeanaverage was fairly consistent from 

7-Y- fa the four ysars examined. 





Comparison of Uncertainty due to Interannual Meteorological 
Variability with Uncertainty due to Pameterr 

In Section 6.5 w e  present some  preliminary resu lb  of uncertainty in 

computed total sulfur deposition due to uncertainty of parameters vd. h. kt, 

and kw as expressed in frequency distributions in Figure 6.3b. In that exam- 

ple w e  looked at the combination of U.K. emissions and Southern Sweden 

(R6rvik) deposltion for  1960 environmental and sulfur emission conditions. 

W e  can compare this panmeter  uncertainty with the uncertainty due to 

interannual meteorological variability by using the data base quoted above 

and computing the mean deposition from the four unit source-receptor 

matrices (216) and a standard deviation (.025) which yields a coefficient of 

variation of .12. W e  compare parameter and meteorologic uncertainties for  

this source-receptor combination and 1980 environmental conditions and 

find: 

coefficient of varfation 
(interannual meteorologic 
uncertainty) 

coefficient of variation 
(parameter uncertainty) 

In this case they are of the same order of magnitude. However, as 

noted above, the estimate of interannual meteorologic variability w a s  based 

on very little data and should therefore only be used for illustration. Simi- 

lar computations for several other stations would add more statistical vali- 

dity to the comparison of meteorological variability uncertainty with other 

types of uncertainty. 



7.3. Future Work 

Section 7 only outlines the analysis of forecasting uncertainty of the 

EMEP model. The analysis of model s t ructure uncertainty wi l l  include exper- 

imentation with different functional forms of the sulfur long range transport 

equations. The investigation of interannual meteorological variability will 

include, fo r  example, the analysis of historical climatic data as outlined in 

Sectior! 7.2.1. This investigation wil l  also be extended to include: 

(1) A study of the correlation between grosswetterLagen and observa- 

tions of wind velocities and precipitation. 

(ii) Statistical comparison of annual frequency of occurrence of 

gtosswettetlagen in the  1978-82 period and their long term 

annual frequency of occurrence. 

(iii) Statistical analysis of results from SO2 and SO; air concentration 

matrices from EMEP. 

(iv) Comparison of results from "climatic" standard source-receptor 

matrix with other  matrices. 



8. APPLICATION TO DECISION IilAKKNG 

Once w e  have assembled quantitative estimates of uncertainty of long 

range air pollutant transport models, w e  must still translate this informa- 

tion into a form suitable for  decision making. Specifically, w e  would like to 

incorporate uncertainty information in computer tools used by policy 

analysts. There are a variety of ways to accomplish this. 

8.1. Parallel Hodel. 

An obvfous way to include uncertainty information in decision making is 

to provide policy analysts with a convenient way to use alternative models 

for analysis of control strategies. If w e  can accept the assumption of linear- 

ity between sulfur emissions and deposition, then infoxmation from LRTAP 

m o d e l s  can be concisely summarized in so-called source-receptor or 

tranSfer matrices. These matrices describe the relationship between sulfur 

deposition* at a particular location due to the sulfur emissions at another 

location. Spatlal and temporal scales of this matrix depend on its applica- 

tion. For example the matrix used for analysis of control strategies in the 

IIASA RAINS model (see, e.g. Alcamo et al 1985, and HordiJk, 1985) has 

country emissions, grid element deposition and an annual time scale. 

I t  is feasible to assemble source-receptor matrices f r o m  a number of 

models and make them available f o r  interactive policy analysis. This 

approach is being included in the RAINS model. As noted in Section 6.2, com- 

parison of output f r o m  different models wi l l  yleld information about model 

s t ructure uncertainty but will say little about parameter and other  uncer- 

tainty. 

'or. in principle, any of the other model &ate variable6 nch  a8 502 d r  concentration. 



W e  can, however, examine the possible effect of interannual meteoro- 

logical variability by c o m p a r w  results from different source-receptor 

matrices based on the same model but with different meteorological input, 

Recall that in Section 7 w e  used 4 annual source-receptor matrices to 

investigate uncertainty which may be attributed* to interannual meteorolog- 

ical variability. These four annual matrices have also been implemented f o r  

routine use in the RAINS model and are used to calculate deposition. Figure 

8.1. compares the sulfur deposition calculated by using the four different 

matrices f o r  a particular sulfur emission scenario. 

A variation of this approach would be to use a "climatologically stan- 

dard"** source receptor  matrix for routine calculations which accounts fo r  

interannual meteorological fluctuations. Results from this "standard" 

matrix could be compared, fo r  example, to results from the four annual 

matrices mentioned above, in order  to estimate the possible effect of 

interannual meteorological variability. This approach has been developed 

by den Tonkelaar (1985). 

Another simple approach to the  problem of incorporating uncertainty 

information in decision making is to assign uncertainty ranges ( r  in this 

paper) to elements of a source-receptor matrix. This uncertainty range 

could be a confidence interval. a standard deviation, or other  statistical 

measure of the frequency distributions of sulfur deposition, concentration, 

*1n Section 7 we noted that i t  i s  not certdn whether the interanno01 variability of sulfor 
deposition as computed in model experiments i s  poultlvely due to meteorological factom, 
though i t  i s  mqmcted to be. 

I8 
This mtrlx i s  "climatologically standard" in that i t  reflects sourctrbceptor re1atiol)- 

ships which result from long-term averages of meteorological varlables. 



etc., presented throughout this paper. The question of which statistic is 

most appropriate as a standard of model unoerhinty is very important but 

is outside the scope of this paper. 

As an example of this approach w e  present Figures 8.2 and 8.3 which 

show the effect of a s L 3 Z  uncertainty range on computed sulfur deposition. 

The effects of this uncertainty range vary greatly spatially (Figure 8.2) and 

temporally (Figure 8.3). This is probably due to the complex relationship 

between deposition and the geographic patterns of sulfur emissions, back- 

ground deposition, and other  factors. Figures 8.2 and 8.3 translate uncer- 

tainty into a form relevant to policy analysis. For example, Figure 8.2 indi- 

cates by how many kilometers a particular deposition computation could 

vary (based on a s L 3 Z  uncertainty range). Figure 8.3 portrays the shift in 

the  percentage of European area where total sulfur deposition is above a 

specified level; also fo r  s L 3 Z  uncertainty range. 

By comparing Figures 8 . b  and 8.2b and 8.3a and 8.3b, one can also see 

how much the effect of a a 3 Z  uncertainty depends on the deposition level 

and location of interest. W e  can also deduce that the effect of this uncer- 

tainty depends on sulfur emission levels, since It is only sulfur emission lev- 

els which change with time in Figures 8.3a and b. The change in the width of 

these lines with time (i.e. thei r  uncertainty) must therefore be due only to 

changing sulfur emissions. 

x 
The -3% uncertainty range i s  based on the European-mwan relative deviation of annual 

sulfur deposition computed in Section 7 and thought to  be due to  interannual meteorologi- 
cal variability. 
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Flgure 8.1. Computed area of deposltlon > 2.0 g m -2 yr -l uslng f lve 
source-reoeptor matrloes based on different meteorologlo Ln- 
pats. 
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Figure 8.2a. Computed 2 g m -2 yr -l deposition isoline with uncertainty 
due to i 13% model uncertainty. 
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Figure 8.2b. Same as Figure 8.2a except for 0.5 and 5.0 g m -2 yr deposi- 
tion isoline. 
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Figure 8.3a. Computed area of deposition > 2.0 g m -* yr  with uncertain- 
ty due to i 13% model uncertainty. 
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Figure 8.3b. Same as Figure 8.3a except for 5.0 g m -2 yr -I. 



9. CONCLUSIONS 

In this paper w e  have assembled ideas relevant to assessing the uncer- 

tainty of a long range a i r  pollutant transport model. We have also taken the 

f i rst  steps in organizing these ideas into a comprehensive fmmework fo r  

model uncertainty analysis and have applied this fmmework to EMEP model 

uncertainty. Since this research is in its early stages, w e  have described 

plans fo r  future work in Sections 6.4 and 7.3. 

The following are conclusions w e  have reached to this point: 

(i) There is a distinction between uncertainty analysis, sensitivity 

analysis and calibmtion/verlfication. However, sensitivity 

analysis and calibration/verifiaation have a role in uncertainty 

analysis, apart f r o m  their importance in model development (Sec- 

tion 1.2). 

(ii) Sensitivity analysis can be used f o r  "screening and ranking" 

uncertainty sources, i.e. to limit the number of uncertainty 

sources which must be quantitatively evaluated (Section 1.2). 

(iii) Information f r o m  model calibration/verif ication (i .e. comparing 

model output with observations) cannot be directly used to quan- 

tify model uncertainty. However, observations can be used to 

indirectly check the uncertainty analysis procedure (Sections 2.1, 

6.1). 

(iv) The taxonomy of model uncertainty presented in this paper w a s  

useful fo r  organizing uncertainties of the EMEP model (Section 

4-21, 



(v) A method w a s  presented to analyze "composite" uncertainty 

(parameters, forcing functions and initial state) which uses Monte 

Carlo simulation. In preliminary applications, w e  found this method 

to be a general and flexible way of examining this composite 

uncertainty (Section 6.3). 

(vi) Using the above Monte Carlo method, w e  investigated the  compe 

site effect of uncertainty of the dry deposition rate ( vd ) ,  mixing 

height ( A ) ,  SO2 transformation rate (kt) and SO2 w e t  deposition 

rate (k,). This model experiment was conducted for the United 

Kingdom as a sulfur source and Southern Sweden as a sulfur 

receptor. Meteorologic data f r o m  1980 were used as input and 

results with an annual time scale w e r e  analyzed. The ' largest" 

uncertainty (as defined by the largest coefficient of variation) 

was observed for computed SO2 air concentration, the smallest for 

computed dry deposition. The smaller uncertainty of computed dry 

deposition can be explained by the way in which the EMEP mode l  

computes dry deposition. This may or may not be a good reflection 

of nature. Of the  four parameters tested, kt created the largest 

uncertainty (i.e. coefficient of variation) in total annual sulfur 

deposition. This result depends on the frequency distributions 

assigned to the parameters. Since mode l  uncertainty estimates 

are very dependent on these assigned frequency distributions. a 

large effort will be devoted to improving their  estimation (Section 

6.3). 



(vii) The possible effect of interannual meteorological variability on 

uncertainty of EMEP calculations was investigated by statistical 

analysis of results from EMEP source-receptor matrices. W e  found 

that the effect of interannual meteorological variability strongly 

depends on the geographic pattern and magnitude of sulfur emis- 

sions. W e  also found that the mean relative deviation of sulfur 

deposition in all European grid elements, in a four-year period 

between 1978-82, w a s  approximately 13Z. As discussed in the text, 

these results are possibly, but not positively, related to interan- 

nual meteorological variability (Section 7.2). 

(viii)An uncertainty which is expressed in constant percentage terms, 

e.g. "the uncertainty range of each grid element is * 13Z of the 

mean computed deposition", can have a widely-varylng spatial and 

temporal effect on computed sulfur deposition patterns in Europe. 

The effect depends on the location, deposition level, and sulfur 

emission pattern (Section 8). 
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