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FOREWORD 

One of the goals of the Science and Technology Program at the International Insti­
tute for Applied Systems Analysis is to develop theoretical modeling frameworks suitable 
for characterizing processes in business and industry. Two of many possible modeling 
frameworks derive from the cybernetic theory of information processing systems and the 
theory of linear control systems. In this paper, John Casti demonstrates that the main 
theoretical foundations of Ashby's theory of cybernetic processes, the so-called law of 
requisite variety and the fundamental theorem of linear realization theory , are equivalent. 
This result enables a bridge to be made between the general laws of cybernetic processes 
and the specific results pertaining to linear systems. 

BORIS SEGERST AHL 
Leader 

Science and Technology Program 
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Canonical Models and the Law 
of Requisite Variety1 

J . L. CASTI2 

Dedicated to G. Leitmann 

Abstract. The law of requisite variety from cybernetics is shown to be 
related to the reachability and observability properties of a dynamical 
control system. In particular, it is established that the transmission of 
all input variety to the system output is possible if and or\Jy if the system 
is canonical, i.e., completely reachable and completely observable. 

Key Words. Requisite variety, canonical systems, reachability, observa­
bility. 

1. Cybernetics and the Law of Requisite Variety 

In the thoery of cybernetic control, as described for instance in the 
classical work of Ashby (Ref. 1), a central role is played by the concept of 
the variety of a regulator R. Roughly speaking, the variety of R is the 
number of distinct inputs that the regulator can apply to the system during 
the course of its operation (in cybernetics, it is usually taken as the logarithm 
of this number) . Ashby showed that the ability of any regulator to control 
a given system is severely constrained by a control-theoretic version of the 
second law of thermodynamics, the so-called law of requisite variety. 

There are many equivalent statements of this pivotal result, the one 
most appropriate for our purposes being: "the capacity of R as a regulator 
cannot exceed R's capacity as a channel of communication". 

In control terms, the above law of requisite variety means that, in order 
for all of the variety present in R to be transmitted to the system, the 
communication channel linking R to the system must be capable of transmit­
ting the full variety of R. When stated in such terms, the law seems obvious 
and trivial; the objective of this note is to show that it is not. 

1 This work was partially supported by the National Science Foundation under Grants Nos. 
CEE-81-00491 and CEE-81-10778. 
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To classical engineering-oriented control theorists, there is something 
annoyingly elusive about the law of requisite variety, at least in its above 
form. On the one hand, it is clearly a statement about the regulation of a 
dynamical system, the bread-and-butter of a control theorist's daily life. In 
fact, it is an extremely broad statement making no distinction about the 
nature of the regulator R, the system, or the channel linking them. On the 
other hand, it seems less than straightforward to see how to fit this general 
principle into the usual x = f(x, u) framework that is the mathematical 
starting point for most control theoretic investigations. The only work in 
this direction that we are aware of is a paper by Porter (Ref. 2), which 
basically just points out that there are many important control problems 
that are not easily accommodated by the standard framework, and that a 
more thorough examination of Ashby's ideas would likely bear fruit in this 
regard. 

This paper represents a first step in bridging the gap between control 
theory and cybernetics by showing the relationship between the law of 
requisite variety and the idea of a canonical dynamical system, i.e., a system 
that is completely reachable and completely observable (Refs. 3-5). For 
illustrative purposes and to conserve space, we prove the following result 
for single-input/ single-output linear systems. 

Theorem 1.1. The variety in a system's input equals the variety in its 
output if and only if the system is canonical. 

In view of the generality of Ashby's results, together with recent 
developments in nonlinear system theory (Refs. 6-8), there is little reason 
to doubt that our main theorem extends to more general situations. We 
shall examine some aspects of this extension at the end of the paper. 

2. Linear Systems and Variety 

Consider the discrete-time, single-input/ single-output, constant linear 
system I., 

x,+ 1 = Fx, + gu,, x0 =0, 

y,=h'x,. 

To avoid unnecessary technical complications, assume that x E kn, where k 
is a finite field. Thus, F is an n x n matrix over k, while g, h E kn. 

Standard results from linear system theory show that I is: 

(A) completely reachable if. and only if the vectors 
{ g, Fg, F 2g, . .. , pn- 1g} are linearly independent; 
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(B) completely observable if and only if the vectors {h', h'F', 
h'(F')2, .. . , h'(F')" - 1

} are linearly independent. 

In linear system theory, a reachable and observable system L is termed 
canonical. 

Consider an input sequence U = {u0, ui. ... , u"_ 1}. If, at each moment 
i, the input u; can assume any of M values from k, then we define the input 
variety to be M". By virtue of our assumption that k is a finite field, the 
input variety is also finite . Clearly, the input variety is equals the number of 
distinguishable input sequences U over an n-step time horizon. We define 
the state variety and output variety in a similar fashion to be the number 
of distinguishable state and output sequences, respectively. We can now 
state the following result. 

Theorem 2.1. The input variety of L equals the state variety if and 
only if L is completely reachable. 

Proof. At time t = i, the state of L is given by 

X; = I Fj- 1gu;-_;, 
j=l 

i = 1, 2, ... , n. 

Assume that I 1s completely reachable. Then, the elements 
{g, Fg, ... , F"- 1g} are linearly independent, which means that for each 
distinguishable input sequence U = {u0, ui. ... , u"_ 1}, there is a correspond­
ing distinguishable state sequence X ={xi. x2, ••• , x"}; i.e., the input variety 
equals the state variety. 

Now, let the input variety equal the state variety; i.e., no two input 
sequences give rise to the same state sequence. But, by the above representa­
tion for the state, each state is a triangular linear combination of the elements 
{ g, Fg, ... , F"- 1 g}. Thus, if each distinguishable input sequence gives rise 
to a different state sequence, the elements {g, Fg, .. . , F"- 1g} must be 
linearly independent, i.e., I is completely reachable. 0 

Corollary 2.1. The state variety of L equals its output variety if and 
only if I is completely observable. 

Proof. The proof is by means of duality, letting g-.. h', F-.. F'. 0 

Putting Theorem 2.1 together with Corollary 2.1, we obtain the main theorem 
stated earlier. 

The above result can be interpreted more in line with the cybernetic 
law of requisite variety, if we regard the state space of L as a channel by 
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which the system inputs influence the outputs. The main theorem then states 
that the variety present in the regulator can be completely used to regulate 
the system's behavioral output if and only if L is canonical. 

3. Discussion 

The law of requisite variety is a general statement about any control 
system; our main theorem is a very special result about a discrete-time, 
linear, single-input/ single-output system over a finite field . Let us consider 
how our special assumptions can be removed in order to close this gap. 

(i) Finite Field. The proof of Theorem 2.1 made no essential use of 
the fact that k is a finite field . We only require that the notion of linear 
independence be well defined; hence, k could be taken to be any integral 
domain, for instance. Thus, the finiteness assumption can be completely 
removed. 

(ii) Single-Input/Single-Output. If u E km, y E F, m, p > 1, there is 
also no problem, as we require only that the input and output varieties be 
no greater than that which the state is capable of displaying. Consequently, 
as long as we impose the bound m, p ~ n, the proof of Theorem 2.1 can be 
"souped-up" to accommodate multiple-input/multiple-output systems. 
Again, the essential factor is that different input sequences give rise to 
different state sequences which, in turn, generate different output sequences. 
This property is exactly what characterizes a canonical system. 

(iii) Discrete Time- All reachability/ observability results apply to 
continuous-time systems, as well as to discrete-time systems with minor 
modifications. The characterization of reachability/ observability that we 
have used, involving the linear independence of {g, Fg, .. . , F"- 1g}, is 
independent of the time set employed. 

(iv) Linearity. The underlying notion of complete reachability I ob­
servability as being characterized by distinguishable input/ output sequences 
giving rise to distinguishable state sequences has been employed to define 
canonical systems, even for nonlinear dynamics. However, the linear 
independence arguments and algebraic criteria used in our proof have been 
extended to the nonlinear case only to show some form of local reachabil­
ity I observability (Refs. 6-8). For special classes of nonlinearities (e.g., 
bilinear, polynomial) a global extension is possible, but, in general only 
local results are available. 
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In conclusion, we see that the Jaw of requisite variety is, in system­
theoretic terms, a statement about the way in which system states can be 
affected by inputs and how they can generate outputs. Just like its physics 
counterpart, the second Jaw of thermodynamics, the law of requisite variety 
imposes an upper bound on the information that can be transmitted from 
a sender (the input) to a receiver (the output), with the maximum transfer 
being achieved by a canonical system. Thus, in some sense, we can say that 
a completely reachable and observable system is analogous to a noiseless 
communication channel. 
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