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PREFACE

Rapid changes in today's environment emphasize the need for

modelsand methodscapableof dealingwith the uncertaintyinherentin

virtually all systemsrelated to economics,meteorology, demography,

ecology, etc. Systemsinvolving interactionsbetweenman, nature and

technologyare subject to disturbanceswhich may be unlike anything

which hasbeenexperiencedin the past. In particular, the technological

revolution increasesu.ncertaintyas each new stage perturbs existing

knowledgeof structures,limitations andconstraints.At the sametime,

manysystemsare often too complexto allow for precisemeasurementof

the parametersor the stateof the system.Uncertainty,nonstationarity,

disequilibrium are pervasivecharacteristicsof mostmodernsystems.

In order to manage such situations (or to survive in such an

environment)we must developsystemswhich can facilitate our response

to uncertaintyand changingconditions. In our individual behaviorwe
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often follow guidelinesthat are conditionedby the needto be prepared

for all (likely) eventualities: insurance, wearing seat-belts, savings

versus investments, annual medical check-ups, even keeping an

umbrellaat the office, etc. One can identify two major typesof mechan-

isms: the short term ada.ptive adjustments(defensivedriving, market-

ing, inventory control, etc.) that are made after making some observa-

tions of the system'sparameters,andthe long term anticipativeactions

(engineeringdesign, policy setting, allocation of resources,investment

strategies.etc.) The main challengeto the systemanalystis to develop

a modelingapproachthatcombinesboth mechanisms(adaptiveandanti-

cipative) in the presenceof a large numberof uncertainties,andthis in

sucha way that it is computationallytractable.

The techniquemost commonlyused,scenarioa:na.lysis, to deal with

long term planning under uncertaintyis seriously flawed. Although it

can identify "optimal" solutions for eachscenario(that specifiessome

values for the unknown parameters),it doesnot provide any clue as to

how these"optimal" solutionsshouldbe combinedto producemerely a

reasonabledecision.

As uncertaintyis a broadconcept,it is possible- andoften useful --

to approachit in many different ways. One rather general approach,

which has beensuccessfullyapplied to a wide variety of problems,is to

assignexplicitly or implicitly. a probabilistic measure-- which can also

be interpretedas a measureof confidence,possiblyof subjectivenature

-- to the various unknown parameters.This leads us to a class of sto-

chasticoptimizationproblems.conceivablywith only partially known dis-

tribution functions (and incomplete observations of the unknown
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paramelers),called stochastic programming problem.s. They can be

viewedas exlensionsof lhe linear andnonlinearprogrammingmodelslo

decisionproblemslhal involve randomparamelers.

Slochasticprogrammingmodels were firsl inlroduced in lhe mid

50's by Danlzig. Beale, Tinlner, and Charnesand Cooper for linear pro-

gramswilh random coefficienls for decisionmaking under uncerlainly;

Danlzig even used lhe name "linear programmingunder uncerlainly".

Nowadays.lhe lerm "slochasticprogramming"refers lo lhe whole field -

models, lheoretical underpinnings. and in particular, solution pro-

cedures-- lhal dealswilh optimizationproblemsinvolving randomquan-

lities (Le., wilh slochastic optimization problems), lhe accenl being

placedon lhe compulationalaspecls;in lhe USSR lhe lerm "slochastic

programming"has beenusedlo designalenol only various lypes of slo-

chaslic optimization problemsbul also slochasticprocedureslhal can

be used lo solve delerminislic nonlinear programming problems bul

which playaparlicularly imporlanl role as solulion proceduresfor slo-

chasticoptimizationproblems.

Allhough slochasticprogrammingmodels were firsl formulaled in

lhe mid 50's, ralher general formulations of slochastic optimization

problems appearedmuch earlier in lhe lileralure of malhematical

slatistics, in particular in lhe lheory of sequentialanalysisand in sla-

tistical decision lheory. All slatistical problems such as eslimation,

prediction, filtering, regression analysis, lesling of slatistical

hypolheses, elc., conlain elemenls of slochastic optimization: even

Bayesian slalistical proceduresinvolve loss functions lhal musl be

minimized. Neverlheless, lhere are differences belween lhe lypical
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formulation of the optimization problemsthat come from statisticsand

thosefrom decisionmakingunderuncertainty.

Stochasticprogrammingmodelsare mostly motivatedby problems

arising in so-called"here-and-now"situations,when decisionsmust be

madeon the basisof. existingor assumed,a priori informationaboutthe

random (relevant) quantities, without making additional observations.

This situationis typical for problemsof long term planningthat arise in

operationsresearchandsystemsanalysis. In mathematicalstatisticswe

are mostly dealingwith "wait-and-see"situationswhen we are allowed to

make additional observations"during" the decision making process. In

addition, the accentis often on closedform solutions,or on ad hoc pro-

ceduresthat can be appliedwhen thereare only a few decisionvariables

(statistical parametersthat needto be estimated). In stochasticpro-

gramming.which aroseas an extensionof linear programming,with its

sophisticatedcomputationaltechniques,the accentis on solving prob-

lems involving a large numberof decisionvariablesandrandomparame-

ters, andconsequentlya much largerplaceis occupiedby the searchfor
I

efficient solutionsprocedures.

Unfortunately, stochasticoptimizationproblemscanvery rarely be

solvedby using the standardalgorithmicproceduresdevelopedfor deter-

ministic optimization problems. To apply these directly would presup-

pose the availability of efficient subroutinesfor evaluatingthe multiple

integrals of rather involved (nondifferentiable)integrandsthat charac-

terize the systemas functions of the decision variables(objective and

constraint functions), and such subroutinesare neither available nor

will they become available short of a small upheaval in (numerical)
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mathematics.And that is why there is presentlynot software available

which is capableof handling generalstochasticoptimization problems,

very much for the samereasonthat there is no universal packagefor

solving partial differential equationswhere one is also confrontedby

multidimensionalintegrations. A numberof computercodeshave been

written to solve certain specific applications,but it is only now that we

can reasonablyhope to developgenerallyapplicablesoftware;generally

applicable that is within well-defined classesof stochasticoptimization

problems. This meansthat we shouldbe able to passfrom the artisanal

to the production level. There are two basic reasonsfor this. First

maybe, the available technology (computer technology. numerically

stablesubroutines)hasonly recentlyreacheda point wherethe comput-

ing capabilitiesmatch the size of the numericalproblemsfaced in this

area. Second,the underlyingmathematicaltheory neededto justify the

computationalshortcutsmaking the solution of such problemsfeasible

hasonly recentlybeendevelopedto an implementablelevel.

The purposeof this paperis to discussthe way to deal with uncer-

tainties in a stochastic optimization framework and to develop this

themein a generaldiscussionof modelingalternativesandsolutionstra-

tegies. We shall be concernedwith motivation and generalconceptual

questionsratherthan by technicaldetails. Most everythingis supposed

to happen in finite dimensional Euclidean space (decision variables,

values of the random elements)and we shall assumethat all probabili-

ties andexpectations,possiblyin an extendedreal-valuedsense,are well

defined.
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NUMERICAL TECHNIQUES FOR m-OCHASTIC OPTIMIZATION PROBLEMS

Yuri Ermoliev andRogerJ-B Wets

1. OPTI:MIZATION UNDER UNCERTAINTY

Many practical problems can be formulated as optimization prob-

lems or can be reduceto them. Mathematicalmodeling is concerned

with a description of different type of relations betweenthe quantities

involved in a given situation. Sometimesthis leadsto a unique solution,

but more generally it identifies a set of possible states,a further cri-

terion being used to choose among them a more, or most, desirable

state. For examplethe "states"couldbe all possiblestructuraloutlays

of a physicalsystem.andthe preferredstatebeing the one that guaran-

teesthe highestlevel of reliability, or an "extremal"statethat is chosen

in terms of certain desiredphysical property: dielectric conductivity,

sonic resonance,etc. Applications in operationsresearch.engineering,

economicshave focussedattention on situationswhere the systemcan
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be affectedor controlledby outsidedecisionsthat shouldbe selectedin

the best possible manner. To this end, the notion of an optimization

problemhas provedvery useful. We think of it in termsof a set S whose

elements,called the feasible solutions. representthe alternativesopen

to a decisionmaker. The aim is to optimize, which we takehereto be to

minimize. over S a certain function 90' the objective function. The

exact definition of S in a particular case depends on various cir-

cumstances,but it typically involves a number of functional relation-

shipsamongthe variablesidentifying the possible"states". As prototype

for the setS we take the following description

where X is a given subsetof Rn (usually of rathersimple character,say

R'; or possiblyRn itself). andfor i=l• ... ,m. 9i is a real-valuedfunction

on It"'. The optimizationproblemis then formulatedas:

find % E: X C ｾ suchthat

9i (%) ｾ 0, i=1, ... ,m,

and z =90(%) is minimized.

(1.1)

When dealing with conventional deterministic optimization prob-

lems (linear or nonlinearprograms),it is assumedthat one hasprecise

information about the objective function 90 and the constraints9i' In

otherwords. oneknows aU the relevantquantitiesthat are necessaryfor

having well-defined functions 9i' i=1 • ... ,m. For example, if this is a

productionmodel. enoughinformation is availableaboutfuture demands

andprices,availableinputs and the coefficientsof the input-outputrela-

tionships, in order to define the cost function 90 as well as give a
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sufficiently accuratedescriptionof the balanceequations,Le., the func-

tions gi' i=l, ... ,m.. In practice,however,for manyoptimizationprob-

lems the functionsgi' i =0, ... m. are not known very accuratelyand in

those cases,it is fruitful to think of the functions gi as dependingon a

pair of variables (x ,w) with w as vector that takes its values in a set

o c Rq. We may think of wasthe environment-determiningvariablethat

conditions the system under investigation. A decision x results in

different outcomes

dependingon the uncontrollablefactors. Le. the environment(state of

nature,parameters,exogenousfactors, etc.). In this setting,we face the

following "optimization" problem:

find x EO: X c 1t'" suchthat

gi(x,r.» ｾ 0, i=l, ... ,m,

and z(r.» = 9 0(% ,r.» is minimized.

(1.2)

This may suggesta parametricstudy of the optimal solution as a func-

tion of the environmentr.> and this may actually be may be useful in

somecases,but whatwe really seekis somex that is "feasible" and that

minimizes the objective for all or for nearlyall possiblevaluesof r.> in 0,

or is someother sensethat needsto be specified. Any fixed x EO: X, may

be feasible for some r.>' EO: 0, i.e. satisfy the constraintsgi(x.r.>') ｾ 0 for

i =1.... ,m, but infeasiblefor someotherw EO: O. The notion of feasibility

needsto be made precise. and dependsvery much on the problem at

hand, in particular whetheror not we are able to obtain someinforma-

lion aboutthe environment,the value of r.>, beforechoosingthe decision



- 4 -

%. Similarly, what must be understoodby optimality dependson the

uncertaintiesinvolved as well as on the view one may have of the overall

objective(s).e.g. avoid a disastroussituation, do well in nearly all cases,

etc. We cannot"solve" (1.2) by finding the optimal solution for everypos-

sible value of c.> in 0, i.e. for everypossibleenvironment,aidedpossiblyin

this by parametricanalysis. This is the approachpreconizedby scenario

a.nalysis. If the problemis not insensitiveto its environment.thenknow-

ing that %1 = % .(c.>1) is the best decision in environment c.>1 and

%2 = % ·(c.>2) is the bestdecisionin environmentc.>2 doesnot really tell us

how to choosesome% that will be a reasonablygood decisionwhatever

be the environmentc.>1 or c.>2; taking a (convex)combinationof xl and%2

may lead to an infeasible decision for both possibilities: problem (1.2)

with c.> = c.>1 or c.> = c.>2.

In the simplestcaseof completeinformation. Le. when the environ-

ment c.> will be completelyknown beforewe have to choose%, we should,

of course,simply selectthe optimal solution of (1.2) by assigningto the

variables c.> the known valuesof theseparameters.However. there may

be some additional restrictionson this choice of x in certainpractical

situations. For example,if the problemis highly nonlinearor/andquite

large, the searchfor an optimal solution may be impractical (too expen-

sive. for example) or even physically impossible in the available time.

the required response-timebeing too short. Then, even in this case,

therearises-- in addition to all the usualquestionsof optimality, design

of solutionsprocedures,convergence,etc. -- the questionof implementa-

bility. Namely, how to design a practical (implementable)decision rule

(function)
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which is viable. Le. x(t..» is feasible for (1.2) for all t..> E: O. and that is

"optimal" in some sense.ideally such that for all t..> E: O. x(t..» minimizes

go(-.t..» on the correspondingset of feasible solutions. However. since

such an ideal decision rule is only rarely simple enoughto be imple-

mentable. the notion of optimality must be redefinedso as to make the

searchfor sucha decisionrule meaningful.

A more typical caseis when eachobservation(information gather-

ing) will only yield a partial descriptionof the environment t..> : it only

identifies a particularcollection of possibleenvironments.or a particu-

lar probability distribution on O. In suchsituations.when the value of t..>

is not known in advance.for any choice of x the valuesassumedby the

functions gi(x,-), i=l, ... ,m, cannotbe known with certainty. Return-

ing to the productionmodel mentionedearlier. as long as thereis uncer-

tainty about the demandfor the coming month, then for any fixed pro-

duction level x. therewill be uncertaintyaboutthe cost(or profit). Sup-

pose.we have the very simple relationbetweenx (productionlevel) and

t..> (demand):

if Co> ｾ x
if x ｾ t..> (1.3)

where ex. is the unit surplus-cost (holding cost) and (3 is the unit

shortage-cost.The problemwould be to find an x that is "optimal" for all

foreseeabledemands t..> in (} rather than a function Co> 1-4 x(t..» which

would t.ell us what the optimal productionlevel shouldhavebeenonce r.>

is actuallyobserved.
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When no information is available about the environmentCJ, except

that CJ E: 0 (or to somesubsetof 0), it is possibleto analyzeproblem(1.2)

in termsof the valuesassumedby the vector

as CJ varies in O. Let us considerthe casewhen the functions9 I' ... ,9m

do not dependon CJ. Then we could view (1.2) as a multiple objective

optimizationproblem. Indeed,we couldformulate (1.2) as follows:

find % E: X c Rn suchthat (1.4)

i=l, ... ,m

andfor each CJ E: 0, Zw = 90(%'CJ) is minimized.

At leastif 0 is a finite set, we may hopethat this approachwould provide

us with the appropriateconceptsof feasibility andoptimality. But, in fact

sucha reformulationdoesnot help much. The mostcommonlyaccepted

point of view of optimality in multiple objective optimization is that of

Pareto-optimality, i. e. the solutionis suchthatanychangewould meana

strictly less desirablestate in terms of at least one of the objectives,

here for some CJ in O. Typically, of course, there will be many Pareto-

optimal points with no equivalencebetweenany such solutions. There

still remainsthe question of how to choosea (unique) decision among

the Pareto-optimalpoints. For instance, in the case of the objective

function defined by (1.3), with 0 = ｛ｾＮｃｊ｝ C (0,,,,,) and ex> 0, p> 0, each

% =CJ is Pareto-optimal,seeFigure 1,

90(%'CJ) =go(CJ,CJ)= 0

90(CJ,CJ')> 0 for all CJ';t CJ •
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Figure 1. Pareto-optimality

One popularapproachto selectingamongthe Pareto-optimalsolutionsis

to proceedby "worst-caseanalysis". For a given x, one calculatesthe

worst that could happen-- in terms of all the objectives - and then

choose a solution that minimizes the value of the worst-case loss;

scenarioanalysis also relies on a similar approach. This shouldsingle

out somepoint that is optimal in a pessimisticminimax sense. In the

caseof the example(1.3), it yields x·=rJ which suggestsa production

level sufficiently high to meetevery foreseeabledemand. This may turn

out to be a quite expensivesolutionin the long run!

2. ｾ ｃ ｈ ａ ｓ ｔ ｉ ｃ OPTIMIZATION: ANTICIPATIVE :MODELS

The formulation of problem (1.2) as a stochasticoptimizationprob-

lem presupposethat in addition to the knowledgeof O. one can rank the

future alternative environmentsr..> according to their comparativefre-
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quencyof occurrence. In other words, it correspondsto the casewhen

weights -- an a priori probability measure,objectiveor subjective-- can

be assignedto all possible '" E n. and this is done in a way that is con-

sistentwith the calculusrules for probabilities. Every possibleenviron-

ment '" becomesan elementof a probability space.and the meaningto

assignto feasibility and optimality in (1.2) can be arrived at by reason-

ings or statementsof a probabilistic nature. Let us considerthe here-

and-nowsituation.when a solution mustbe chosenthat doesnot depend

on future observationsof the environment. In termsof problem(1.2) it

may be somex E X that satisfiesthe constraints

i=l• ... ,m.,gi(X,,,,) ｾ 0,

with a certainlevel of reliability:

prob. ｾ Ｂ Ｌ ｬ ｧ ｩ Ｈ ｘ Ｌ Ｌ Ｌ Ｌ Ｉ ｾ O. i=l.··· .m.) ｾ ex

(1.2)

(2.1)

whereex E (0.1). not excludingthe possibility ex = 1, or in the average:

i=l ....m.. (2.2)

There are many other possible probabilistic definitions of feasibility

involving not only the meanbut also the varianceof the randomvariable

gi (x,-).

suchas

(2.3)

for fJ somepositive constant,or evenhighermomentsor othernonlinear

functions of the gi(x,-) may be involved.. The samepossibilitiesare avail-
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able in definiting optimality. Optimality could be expressedin terms of

the (feasible)x that minimizes

(2.4)

for a prescribedlevel aO' or the expectedvalueof future cost

(2.5)

andso on.

Despite the wide variety of concrete formulations of stochastic

optimization problems, generatedby problems of the type (1.2) all of

them may finally be reducedto the following rather general version

given below, and for conceptualand theoreticalpurposesit is useful to

studystochasticoptimization problemsin thosegeneralterms: Given a

probability space (O,A,P), that gives us a description of the possible

environments0 with associatedprobability measureP,- a stochasticpro-

grammtng problem is:

find x E: X c Rn suchthat

Fj(x) = EUi(x,c.>H = J Ii (x.c.» P(dCJ) ｾ 0, for i=l, ... ,m,

and z = Fo(x) = EUo(x,c.>H = J lo(x,c.» P(dc.» is minimized.

whereX is a (usuallyclosed)fixed subsetof en, andthe functions

(2.6)

i=l,··· ,m,

and

10: en X 0 -. R:= R U ｾＭ｡ｯＬ +aoJ,

are such that, at least for everyx in X, the expectationsthat appearin

(2.6) arewell-defined.
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For example, the constraints(2.1) that are called probabilistic or

chanceconstrcrints.will be of the abovetype if we set:

r
lex

- 1 if 9dx,r.» ｾ 0 for l=1 •...•m.
fi(x.r.» = ex otherwise (2.7)

The variance, which appears in (2.3) and other moments. are also

mathematicalexpectationsof somenonlinearfunctionsof the 9i (x ,.).

How one actually passesfrom (1.2) to (2.6) dependsvery much on

the concretesituation at hand. For example,the criterion (2.4) and the

constraints (2.1) areobtainedif one classifiesthe possibleoutcomes

as r.> varies on O. into "bad" and "good" (or acceptableand nonaccept-

able). To minimize (2.4) is equivalentto minimizing the probability of a

"bad" event. The choiceof the level ex as it appearsin (2.1). is a problem

in itself. unlesssuch a constraintis introducedto satisfy contractually

specified reliability levels. The natural tendencyis to choosethe relia-

bility level ex as high as possible.but this may result in a rapid increase

in the overall cost. Figure 2 illustratesa typical situationwhereincreas-

ing the reliability level beyonda certainlevel a may result in enormous

additionalcosts.

To analyzehow high one shouldgo in the settingof reliability levels. one

should. ideally. introduce the loss that would be incurred if the con-

straintswere violated, to be balancedagainstthe value of the objective

fu.nction. Supposethe objectivefunction is of type (2.5). andin the sim-

pIe case when violating the constraint9i (x ,r.» ｾ O. it generatesa cost
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Reliability
level

a

Costs

Figure 2. Reliability versuscost.

proportional to the amountby which we violate the constraint. we are

led to the objectivefunction:

(2.8)

for the stochasticoptimizationproblem(2.6). For the production(inven-

tory) model with cost function given by (1.3). it would be natural to

minimize the expectedloss function

which we can alsowrite as
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FO(%) = E [max[a(%-c.»,P(c.>-%)]j. (2.9)

A more general class of problems of this latter type comeswith the

objectivefunction:

(2.10)

where Y c RP • Such a problem can be viewed as a model for decision

making underuncertainty,where the % are the decisionvariablesthem-

selves,the c.> variablescorrespondto the statesof naturewith given pro-

bability measureP, and the y variablesare there to take into account

the worst case.

3. ABOUT SOLUTION PROCEDURES

In the design of solution proceduresfor stochasticoptimization

problemsof type (2.6), onemustcometo grips with two major difficulties

that are usually brushedaside in the design of solution proceduresfor

the more conventionalnonlinear optimization problems (1.1): in gen-

eral, the exact evaluationof the functions Fi, i=l, ... ,m, (or of their

gradients,etc.) is out of question, and moreover, these functions are

quite often nonditIerentiable. In principle, any nonlinearprogramming

techniquedevelopedfor solving problems of type (1.1) could used for

solving stochasticoptimization problems. Problems of type (2.6) are

after all just specialcaseof (1.1), andthis doesalsowork well in practice

if it is possible to obtain explicit expressions for the functions

Fi. i=l, ... ,m, through the analytical evaluationof the corresponding

integrals
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it(%) = EUi(%,rJ)J = !fi(%.rJ) P(drJ).

Unfortunately. the exact evaluationof these integrals. either analyti-

cally or numerically by relying on existing software for quadratures.is

only possiblein exceptionalcases.for every special types of probability

measuresP and integrandsfi(%'-)' For example.to calculatethe values

of the constraintfunction (2.1) evenfor m =1. and

(3.1)

with randomparametersh(-) and t j (-). it is necessaryto find the proba-

bility of the event

as a function of % = (% I' ... '%n)' Finding an analytical expressionfor

this function is only possiblein a few rare cases,the distribution of the

randomvariable

rJ f-+ h(rJ) - ｾｪ］Ｑ tj(rJ)%j

may dependdramaticallyon %; compare% =(0.... 0) and% =(1•...•1).

Of course.the exact evaluationof the functions it is certainly not

possibleif only partial information is availableaboutP. or if information

will only becomeavailablewhile the problem is being solved, as is the

case in optimization systems in which the values of the outputs

U i (% ,c.», i =0, ...•m J are obtained through actual measurementsor

Monte Carlo simulations.

In order to bypasssome of the numerical difficulties encountered

with multiples integrals in the stochasticoptimization problem (2.6).
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one may be temptedto solve a substituteproblemobtainedfrom (1.2) by

replacing the parametersby their expectedvalues, i.e. in (2.6) we

replace

wherec;> = Ef CJJ. This is relatively often done in practice.sometimesthe

optimal solution might only be slightly affectedby sucha crudeapproxi-

mation. but unfortunately.this supposedlyharmlesssimplification. may

suggestdecisionsthat not only arefar from being optimal. but may even

"validate" a courseof action that is contraryto the bestinterestsof the

decisionmaker. As a simple exampleof the errorsthat may derive from

sucha substitutionlet us consider:

then

Not having accessto preciseevaluationof the function values. or

the gradientsof the Fi. i=O• ...•m.. is the main obstacleto be over-

comein the designof algorithmic proceduresfor stochasticoptimization

problems. Another peculiarity of this type of problemsis that the func-

tions

x ｉｾ Fi (x ), i =0, ...•m.,

are quite often nondifferentiable-- see for example (2.1). (2.3), (2.4),

(2.9) an (2.10) -- they may evenbe discontinuousas indicatedby the sim-

ple examplein Figure3.
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Figure 3. FO(x) =ｐｾＧＢ I",x ｾ lj. p[", =+1] =p[", =-1] = *.
The stochasticversion of even the simplestlinear problem may lead to

nondifJerentialproblem as vividly demonstratedby Figure 3. It is now

easyto imaginehow complicatedsimilar functions definedby linear ine-

qualities in R'" might become. As anotherexampleof this type, let us

consider a constraintof the type (1.2). i.e. a probabilistic constraint,

where the gi (-,,,,) are linear. andinvolve only one l-dimensionalrandom

variableh(-). The setS of feasiblesolutionsare thosex that satisfy

whereh(-) is equalto 0.2. or 4 ea.chwith probability 1/3. Then

s = [-1,0] U [1.2]

is disconnected.
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The situationis not always that hopeless.in fact for well-formulated

stochasticoptimizationproblem.we may expecta lot of regularity. such

as convexity of the feasibility region. convexity and/orLipschitz proper-

ties of the objective function. and so on. This is well documentedin the

literature.

In the next two sections.we introduce some of the most important

formulations of stochasticprogrammingproblemsand show that for the

developmentof conceptualalgorithms. problem (2.6) may serve as a

guide. in that the difficulties to be encounteredin solving very specific

problemsare of the samenatureas thoseone would have when dealing

with thequite generalmodel (2.6).

4. STOCHASTIC OPTIMIZATION: ADAPTIVE MODELS

In the stochasticoptimizationmodel (2.6). the decisionx h'as to be

chosenby using an a priori probabilisticmeasureP without having the

opportunityof making additionalobservations.As discussedalreadyear-

lier. this correspondsto the idea of an optimization model as a tool for

planningfor possiblefuture environments.that is why we usedthe term:

anticipative optimization. Consider now the situation when we are

allowed to makean observationbefore choosingx. this now corresponds

to the ideaof optimizationin a learningenvironment.let us call it adap-

tws optimization.

Typically. observationswill only give a partial description of the

environment (,J. SupposeB containsall the relevant information that

couldbecomeavailable after making an observation;we think of B as a

subsetof A. The decision x must be determinedon the basis of the
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information available in B, Le. it must be a function of c.> that is "B-

measurable".The statementof the correspondingoptimization is simi-

lar to (2.6), exceptthat now we allow a larger classof solutions-- the B-

measurablefunctions-- insteadof just points in H'" (which in this setting

would just correspondto the constantfunctions on 0). The problemis to

find a B-measurablefunction

that satisfies: x (c.» E: X for all c.>,

and

Z = E !'o(x(c.»,c.») is minimized. (4.1)

where ｅ ｾ Ｎ ｉ BJ denotesthe conditional expectationgiven B. Sincex is to

be a B-measurablefunction, the search for the optimal x, can be

reducedto finding for eachc.> E: 0 the solutionof

find x E: X c Rn suchthat

EUi(x,.) IBJ{c.» ｾ O. i=l, ... ,m

and zr.l =EUo(x,.) IBJ (c.» is minimized.

(4.2)

Eachproblemof this type hasexactlythesamefeaturesas problem(2.6)

except that expectationhas been replacedby conditional expectation;

note thatproblem(4.1) will be the samefor all c.> thatbelong to the same

elementaryevent of B. In the casewhen c.> becomescompletelyknown,

Le. when B =A, then the optimal c.> 1-4 x(c.» is obtainedby solving for all
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c.>. the optimizationproblem:

find x E: X c Rn suchthat

fi(x,c.» ｾ O. i=l, ... ,m,

and z(,l = lo(x,c.» is minimized.

(4.3)

Le. we needto make a parametricanalysisof the optimal solution as a

function of c.>.

If the optimal decision rule c.> ｾ x .(c.» obtainedby solving (4.1), is

implementablein a real-life setting it may be importantto know the dis-

tribution function of the optimalvalue

This is kno'wn as the distribution problemfor randommathematicalpro-

gramswhich hasreceiveda lot of attentionin the literature. in particu-

lady in the case when the functions Ii' i=O• ...•m. are linear and

B =A.

Unfortunatelyin general,the decisionrule x .(.) obtainedby solving

(4..2). and in particular (4.3), is much too complicatefor practical use.

For example. in our production model with uncertain demand. the

resulting output may lead to highly irregular transportationrequire-

ments. etc. In inventory control. one has recourseto "simple". (5,8)-

policies in order to avoid the possiblechaoticbehaviorof more "optimal"

procedures;an (5 ,8)-policy is one in which an order is placedas soonas

the stockfalls below a buffer level s andthe quantityorderedwill restore

to a level 8 the stock available. In this case. we are restrictedto a

specific family of decision rules, defined by two parameters5 and 8

which haveto be definedbeforeany observationis made.



- 19-

More generally,we very often require the decisionrules CJ 1-+ x (CJ) to

belong to prescribedfamily

of decisionrulesparametrizedby a vectorA, andit is this A that mustbe

chosenhere-and-nowbefore any observationsare made. Assuming that

the membersof this family are B-measurable.and substitutingx (X,e) in

(4.1). we are led to the following optimizationproblem

find X E: A suchthat

X{A.CJ) E: X for all CJ E: 0

Hi{A) = E (fi{X{X,CJ),CJ) ) ｾ 0, i=1.···.m

and HO{A) =E (to{X{A,CJ).CJ) ) is minimized.

(4.4)

This again is a problemof type (2.6), exceptthat now the minimization is

with respectto A. Therefore,by introducingthe family of decisionrules

fx{X,e), A E: AJ we havereducedthe problemof adaptiveoptimizationto a

problem of anticipatoryoptimization, no observationsare made before

fixing the valuesof the parametersA.

It should be noticed that the family fx{A,e). A E: AJ may be given

implicitly. To illustrate this let us considera problemstudiedby Tintner.

We startwith the linear programmingproblem(4.5), a versionof (1.2):

find x E: R; suchthat

ｾ ｪ ］ ｬ C1.;.j{CJ)Xj ｾ bi{CJ), i=1.···.m

and z = ｾ［］Ｑ Cj{CJ) Xj is minimized,

(4.5)

where the ｾ ｪ Ｈ ･ Ｉ Ｎ ｢ ｩ ｻ ･ Ｉ and Cj{e) are positive randomvariables. Consider

the family of decisionrules: let ｾ ｪ be the portion of the i-th resourceto
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be assignedto activity j, thus

ｾ ｪ ］ ｬ ｾ ｪ = 1, ｾ ｪ ｾ 0 fo i=l,··· ,m; j=l, ... ,n, (4.6)

andfor j=l, ... n,

Le.

This decision rule is only as good as the ｾ ｪ that determine it. The

optimal A's are foundby minimizing

(4.7)

subjectto (4.6), againa problemof type (2.6).

5. ANTICIPATION AND ADAPTATION: RECOURSE MODELS

The (two-stage) recourseproblem can be viewed as an attempt to

incorporateboth fundamentalmechanismsof anticipation and adapta-

tion within a single mathematicalmodel. In other words, this model

reflects a trade-ot! betweenlong-term anticipatory strategiesand the

associatedshort-termadaptive adjustments.For example, there might

be a trade-off between a road investment'sprogram and the running

costsfor the transportationfleet, investmentsin facilities location and

the profit from its day-ta-day operation. The linear version of the
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recourseproblemis formulatedas follows:

find x E: m suchthat

Fj(x) = bi - A.tx 5: 0 , i=l,'" ,m ,

and Fo(x) = c x + ｅｾｑＨｸＬｲＮ＾ｈ is minimized

where

(5.1)

someor all of the coefficientsof matricesandvectorsq (-), W(-), h (a) and

T(-) may be randomvariables. In this problem,the long-termdecision is

made before any observationof r.> "" [q (r.», W(r.», h(r.», T(r.»). Mter the

true environmentis observed,the discrepanciesthat may exist between

h(r.» and T(r.»x (for fixed x andobservedh(r.» and T(r.>)) are correctedby

choosinga. recourseactiony, so that

W(r.»y = h(r.» - T(r.»x, y ｾ 0 ,

thatminimizesthe loss

q (r.»y .

(5.3)

Therefore.an optimal decisionx shouldminimize the total costof carry-

ing out the overall plan: direct costsas well as the costsgeneratedby

the needof taking correct(adaptive)action.

A moregeneralmodel is formulatedasfollows. A long-termdecision

x mustbe madebefore the observationof r.> is available. For given x E: X

andobservedr.>, the recourse(feedback)action y(x ,r.» is chosenso as to

solve the problem

find y E: Y c]{'l: suchthat

f2i(x,y,r.»5:0. i=l,··· ,m',

and z2 =ho(x,y,r.» is minimized,

(5.4)
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assumingthat for eachx E X and r.> EO the set of feasible solutions of

this problemis nonempty(in technicalterms, this is known as relatively

completerecourse).Then to find the optimal x, onewould solve a prob-

lem of the type:

find x E X c Rn , suchthat

Fo(x) = E ｾｨｯＨｸＬｹＨｸＬｲＮﾻＬｲＮﾻｊ is minimized.

(5.5)

If the stateof the environmentr.> remainsunknownor partially unknown

afterobservation,then

r.> f-+ y(x ,r.»

is defined as the solution of an adaptivemodel of the type discussedin

Section4. Give B the field of possible observations,the problem to be

solvedfor finding y(x,c.» becomes:for eachr.> EO

find y EYe Rn' suchthat

E ｾｨｩＨｸＬｹＬＮＩ IBHr.» ｾ 0, i=l, ... ,m'

and z2Co1 = E ｾｨｯＨｸＬｹＬＮＩ IB! (r.» is minimized

(5.6)

If r.> 1-+ y (x ,r.» yields the optimal solution of this collection of problems,

then to find an optimal x we againhaveto solve a problemof type (5.5).

Let us notice that if

ho(x,y,r.» = ex + q(r.»y

andfor i=l, ... ,m',

_rl1-a if Ti(r.»x + Wi(r.»y - ｾＨ｣Ｎﾻ ｾ 0,
f2i (x ,y,r.» - a otherwise

then (5.5), with the second stage problem as defined by (5.6),

correspondsto the statementof the recourseproblemin termsof condi-

lional probabilistic(chance)constraints.
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There are many variants of the basic recoursemodels (5.1) and

(5.5). There may be in addition to the deterministic constraintson x

someexpectationconstraintssuchas (2.3). or the recoursedecisionrule

may be subject to various restrictionssuch as discussedin Section 4,

etc. In any caseas is clear from the formulation. theseproblemsare of

the generaltype (2.6), albeit with a rathercomplicatedfunction lo(x .CJ).

6. DYNAMlC ASPECTS: MULTISTAGE RECOURSE PROBLEMS

It should be emphasizedthat the "stages"of a two-stagerecourse

problemdo not necessarilyrefer to time units. They correspondto steps

in the decisionprocess,x may be a here-and-nowdecisionwhereasthe y

correspondto all future actions to be taken in different time period in

responseto the environmentcreatedby the chosenx andthe observedCJ

in that specific time period. In anotherinstance.the x.y solutionsmay

representsequencesof control actionsover a given time horizon,

x = (x(O), x(l) , x(T».

y = (y(O). y(l), , y(T»,

the y-decisionsbeing usedto correct for the basic trend set by the x-

control variables. As a specialcasewe have

x = (x(O), x(l) • .. " x(s»,

y = (y(s+l), .. " y(T»,

that correspondsto a mid-coursemaneuverat time s when someobser-

vations have becomeavailable to the controller. We speakof two-stage

dynamic models. In what follows, we discussin more detail the possible

statementsof suchproblems.
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In the caseof dynamicalsystems,in addition to the x ,y solutionsof

problems(5.5)-(5.4), theremay alsobe an additionalgroup of variables

z = [z(O), z(1), . ", Z(T»)

that recordthe stateoj the systemat times 0,1, ... ,T. Usually, the vari-

abIesx ,y ,z ,e.> are connectedthrougha (differential) systemof equations

of the type:

6 z(t) = h[t,Z(t), x(t), y(t),e.», t=O, ... ,T-1, (6.1)

where

6z(t) = z(t+1)-z(t), z(O)=zo'

or theyare relatedby an implicit function of the type:

h [t,Z(t+1), z(t), x(t), y(t), e.» =0, t=O,"', T-l. (6.2)

The latter one of these is the typical form one finds in operations

researchmodels, economicsand systemanalysis, the first one (6.1) is

the conventionalone in the theory of optimal control and its applica-

tions in engineering.inventory control, etc. In the formulation (6.1) an

additional computationalproblem arisesfrom the fact that it is neces-

saryto solve a large systemof linear or nonlinearequations,in order to

obtaina descriptionof the evolutionof the system.

The objectiveandconstraintsfunctions of stochasticdynamicprob-

lems are generallyexpressedin terms of mathematicalexpectationsof

functions that"We take to be:

gi [z(O), x(O). y(O), ... ,z(T),x(T), y(T>). i=O,l, ...,m. (6.3)

If no observationsare allowed, then equations(6.1), or (6.2), and(6.3) do
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not dependon y. andwe havethe following one-stageproblem

find x = [x (0). x(l)•...• X(T») suchthat (6.4)

x (t) e:X(t) c Rn • t =0•...• T.

6. z(t) = h [t.z(t). x(t), CJ)' t=O• ... ,T-l,

E [9i(Z(O). x(O) • .. '. z(T). x(T). ｃ ｊ Ｉ ｾ O. i=l.···.m

and v =E ｾｧｯ (z(O). x(O) • ...• z(T), x(T).CJ)J is minimized

or with the dynamicsgiven by (6.2). Since in (6.1) or (6.2). the variables

z (t) are functionsof (x .CJ). the functionsgi arealso implicit functionsof

(x.CJ). Le. we can rewrite problem(6.4) in termsof functions

the stochasticdynamic problem (6.4) is then reducedto a stochastic

optimization problem of type (2.6). The implicit form of the objective

and the constraints of this problem requires a special calculus for

evaluatingthesefunctionsandtheir derivatives.but it doesnot alter the

generalsolutionstrategiesfor stochasticprogrammingproblems.

The two-stagerecoursemodel allows for a recoursedecisiony that

is basedon (the first stagedecisionx and) the result of observations.

The following simple exampleshouldbe useful in the developmentof a

dynamical version of that model. Supposewe are interestedin the

designof an optimal trajectoryto be followed. in the future. by a number

of systems that have a variety of (dynamical) characteristics. For

instance.we are interestedin building a road betweentwo fixed points

(seeFigure 4) at minimum total cost taking into account.however.cer-

tain safety requirements. To compute the total cost we take into

accountnot just the constructioncosts.but also the costof running the
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vehicleson this road.

z(O)

o t =1

Road

, zIT)
I
I
I
I
I
I
I
I
I
I

T

Figure 4.. Roaddesignproblem.

For a fixed feasibletrajectory

z = [z .(0). z(l)..... Z(T»).

and a (dynamical) system whose characteristicsare identified by a

parameter CJ E: O. the dynamics are given by the equations. for

t=o..... T-l. ｡ ｮ ､ ｾ z(t) = z(t+l) -z(t).

ｾ ｺ Ｈ ｴ Ｉ = h[t.z(t).y(t).CJ).

and

z (0) = zo. z (T) = zT .

The variables

y = [yeo). y(l) .....yeT»)

(6.5)
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are the control variables at times t=O.1. .....T. The choice of the z-

trajectory is subject to certain restrictions. that include safety con-

siderations.suchas

Le. the first two derivativescannotexceedcertainprescribedlevels.

For a specific system CJ E: 0, and a fixed trajectory z. the optimal

control actions{recourse}

y{z.CJ} = [Y{O,z'CJ}. y{l,z,CJ).·". y{T.z.CJ)]

is determinedby minimizing the loss function

go [z{O). y{O)• ...• z (T-l), y{T-l), z{T).CJ]

subjectto the system'sequations(6.5) andpossiblysomeconstraintson

y. If P is the a. priori distribution of the systemsparameters.the prob-

lem is to find a trajectory(roaddesign)z thatminimizes in the average

the loss function. Le.

FO{z) = E 19o[z(O), y{O.z .CJ)• ...• z (T-l). y (T-1.z.CJ). z (T).CJ]!{6.7)

SUbjectto someconstraintsof the type (6.6).

In this problem the observationtakes place in one step only. We

have amalgamatedall future observationsthat will actually occur at

different time periods in a single collection of possible environments

(events). Thereare problemswhereCJ hasthe structure

CJ = [CJ{O). CJ{l) • ...• CJ{T)]

andthe observationstake place in T steps. As an important exampleof

such a class, let us consider the following problem: the long term
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decision x = [x (0). x(l), ... ,x(T)] and the corrective recourseactions

y = (y(O), y(l), ...• X(T)] mustsatisfy the linear systemof equations:

AOO x(O) + Bo y(O)

AIO x(O) + All x(l) + BI y(l)

ｾ h(O)

ｾ h(l)

ATO x(O) + ATI x(l) + ... + ATT x(T) + BT y(T) ｾ h(T).

x(O) ｾ O•... , x(T) ｾ 0; y(O) ｾ O•...• y(T) ｾ 0

where the matricesAtk' Bt and the vectorsh(t) are random.Le. depend

on e.>. The sequencex = [x(O) • ...• x(T») must be chosen before any

information aboutthe valuesof the randomcoefficientscan be collected.

At time t =0•... ,T, the actualvaluesof the matrices,andvectors,

Atk' k=O.··· ,t; Bt , h(t), d(t)

are revealed,andwe adaptto the existingsituationby choosinga correc-

tive actiony (Lx .e.» suchthat

y (Lx ,e.» E: argmin [d(t)y IBty ｾ h (t) - ｾＬ］ｏ Atk x (k). Y ｾ 0].

The problemis to find x = [x(O), ...• X(T») thatminimizes

Fo(x) = ｾｬ］ｯ [c(t)x(t) + ｅｾ､ＨｴＩｹＨｴＬｸＬ･Ｎ＾ｂ｝

subjectto x(O) ｾ O•.... x(T) ｾ O.

(6.9)

In the functional (6.9). or (6.7), the dependenceof y(t.x,e.» on x is

nonlinear. thus thesefunctions do not possessthe separabilityproper-

ties necessaryto allow direct use of the conventionalrecursive equa-

tions of dynamic programming. For problem (6.4), theseequationscan

be derived, provided the functionsgi I i =0, ... ,m, have certain specific

properties. There are, however, two major obstaclesto the use of such
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recursiveequationsin the stochasticcase: the tremendousincreaseof

the dimensionality,andagain, the more seriousproblem createdby the

needof computingmathematicalexpectations.

For example,considerthe dynamic systemdescribedby the system

of equations(6.1). Let us ignore all constraintsexcept% (t) E: X(t), for

t =0,1, ... ,T. Supposealso that

where ",(t) only depends on the past, Le. is independent of

",(t +1), ... ,"'( T). Sincethe minimization of

FO(%) = ｅｾｧｯＨｺＨｏＩＬ %(0), . " ,z(T),%(T).",H

with respectto % can then be written as:

min min ... min ｅ ｾ ｧ oJ
:(0) :(1) :(T)

andif go is separable,i.e. canbe expressedas

go: = rJ:"rl gOt ｛ｾｺＨｴＩＬ %(t), ",(t») + gOT [z(t), ",(T»)

then

min: Fo(%) =min ｅ ｛ ｧ ｯ ｯ ｛ ｾ z(O), %(0),,,,(0»))+ min ｅ Ａ Ｙ Ｐ Ｑ ｛ ｾ z(l), %(1), "'(1»))
:(0) :(1)

+ '" + min ｅ ｬ ｧ ｏ ｔ ｟ Ｑ ｛ ｾ ｺ Ｈ ｔ Ｍ ｬ Ｉ Ｌ Ｅ Ｈ ｔ Ｍ ｬ Ｉ Ｌ Ｂ Ｇ Ｈ ｔ Ｍ ｬ ﾻ Ｉ Ｉ Ｋ
:(T-1) ,

+ E IgOT [z(t), ",(T»))

Recall that here, notwithstandingits sequentialstructure,the vector '"

is to be revealedin one global observation. Rewriting this in backward

recursiveform yields the Bellmanequations:

(6.10)
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for t =0, ... , T-1, and

(6.11)

whereVt is lhe value function (optimal loss-lo-go) from time t on, given

slale Zt altime t, lhal in lurn dependson x(O), x(1). ....x(t-1).

To be able lo ulilize lhis recursion,reducingultimalely lhe problem

lo:

find x e: X(O) eRn suchlhal va is minimized,where

va = E[goo[h(O,ZQ.X,CJ(O».x,CJ(O»)+ v 1[zQ + h(O,ZQ'X,CJ(O»)),

we muslbe able lo compulelhe malhematicalexpeclalions

as a funclion of lhe inlermedialesolutionsx(O), ... , x(t -1), lhal deler-

mine ｾ Z (t), and lhis is only possiblein specialcases. The main goal in

lhe developmenl of solution proceduresfor slochastic programming

problems is lhe developmenlof appropriale compulational lools lhal

preciselyovercomesuchdifficulties.

A much more difficull siluation may occur in lhe (full) mullislage

versionof lhe recoursemodelwhereobservationof someof lhe environ-

menl lakes place al each slage of lhe decision process,al which time

(laking inlo accounl lhe new information collecled) a new recourse

action is laken. The whole processlooks like a sequenceof allernating:

decision-observation-... -observation-decision.
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Let x be the decisionat stagek == 0, which may itself be split into a

sequencex (0), ...• x (N), eachx (k) correspondingto that componentof

x that entersinto play at stagek. similar to the dynamical version of

the two-stagemodel introducedearlier. Considernow a sequence

y = [y(O). y(l). 00' • Y(N»)

of recoursedecisions(adaptiveactions, corrections),y (k) being associ-

atedspecifically to stagek 0 Let

Bit;: == informationsetat stagek ,

consistingof pastmeasurementsandobservations.thusBit; C BIt;Ho

The multistagerecourseproblemis

find x e: X c Rn suchthat

foi(x) ｾ O. i==l.· ...m o.

EU Ii (x. y(l),r.» IBll ｾ 0, i=l • .. 0 .m l'

(6.12)

E UNi (x. Y (1)•... , y(N),r.» I ｂｎｾ ｾ 0, i==l.·· . •mN'

y(k)e:Y(k), k==l.···.N.

and Fo(x) is minimized

where

FO(x) == FfJo{min E BI
{. .. min E BN

- l U (x,y{l), 00 • • y(N),r.>H.11
]1(1) ]I (N-I)

If the decisionx affects only the initial stagek = 0, we canobtainrecur-

sive equationssimilar to (6.10) - (6.11) exceptthat expectationE must

be replaced by the conditional expectationsEB,. which in no way

simplifies the numericalproblemof finding a solution. In the more gen-

eral casewhen x =[x (0). x(l) • ... ,X(N)]. onecanstill write down recur-

sion formulas but of such(numerical)complexitythatall hopeof solving
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this classof problemsby meansof theseformulas mustquickly be aban-

doned.

7. SOLVING THE DETERMINISTIC EQUNALENT PROBLEM

All of the precedingdiscussionhassuggestedthat the problem:

find :c E: en suchthat

Pi{:c) =J fi{:C'c.» p{d.c.» ｾ 0, i=1,'" ,m,

and z = Fo{:C) = J fo{:C'c.» p{d.c.» is minimized,

(7.1)

exhibits all the peculiaritiesof stochasticprograms,andthat for explor-

ing computationalschemes,at least at the conceptuallevel, it can be

usedasthe canonicalproblem.

Sometimesit is possibleto find explicit analyticalexpressionsfor an

acceptableapproximationof the Pi. The randomnessin problem (7.1)

disappearsand we can rely on conventionaldeterministicoptimization

methodsfor solving (7.1). Of course,such casesare highly cherished,

and can be dealt with by relying on standardnonlinear programming

techniques.

One extremecaseis when C3 =Efc.>J is a certainty equivalentfor the

stochasticoptimization problem, i. e. the solution to (7.1) can be found

by solving:

find :c E: X c Rn suchthat

fi{x,C3) ｾ 0, i=l, ... ,m,

and z = fo{:C,C3) is minimized,

(7.2)

this would be the caseif the f i are linear functions of c.>. In general,as

alreadymentionedin Section 3, the solution of (7.2) may have little in
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common with the initial problem (7.1). But if the Ii are convex func-

tions. then accordingto Jensen'sinequality

i=L··· ,m,

This meansthat the set of feasible solutions in (7.2) is larger than in

(7.1) andhencethe solution of (7.2) could provide a lower boundfor the

solution of the original problem.

Another caseis a stochasticoptimization problemwith simple pro-

babilistic constraints. Supposethe constraintsof (7.1) are of the type

1.=1.···.m.

with deterministic coefficients tii and random right-hand sides ｾ (-).

Thentheseconstraintsare equivalentto the linear system

1.=1.···.m.
where

If all the parameterstij and hi in (7.3) are jointly normally distributed

(and ｾ ｾ .5), thenthe constraints

Xo =1

ｾｪ］ｯ 4j xi + {3 [L;.i=o ｾｲ］ｯ 'Tijle xi Xkr ｾ 0

can be substitutedfor (7.3), where

tiO(-) = -hi (-)

ｾ ｪ Ｚ = ｅｾｴｩｪＨｲＮ＾ｈＮ j =0.L ... •n.

Tijle: = cov [t ij (-), tik (-») , ;=0.···,n; k=O,··· ,n,

and {3 is a coefficient that identifies the a-fractile of the normalized
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normaldistribution.

Another importantclassare thoseproblemsclassifiedas stochastic

programs with simple recourse,or more generally recourseproblems

where the random coefficientshave a discretedistribution with a rela-

tively small number of density points (support points). For the linear

model (5.1) introducedin Section5, where

wherefor k=l, ... ,N, the point (qk.Wk,hk,rk) is assignedprobabilityPk'

onecan find the solution of (5.1) by solving:

find % E ｾＬ [yk E ｒｾﾷＮ k =1•...•1\1
Ax

r l % + Wlyl

-r% + W2y 2

suchthat (7.4)

rN%

e% + P I q I y I + P 2q 2y 2

and z is minimized

= z,

This problemhas a (dual) block-angularstructure. It shouldbe noticed

that the numberN could be astronomicallylarge, if only the vectorh is

randomandeachcomponentof thevector

hastwo independentoutcomes.then N =2m'. A direct attemptat solving

(7.4) by conventionallinear programmingtechniqueswill only yield at

eachiterationvery small progressin the termsof the% variables.There-

fore, a special large scale optimization techniqueis neededfor solving
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eventhis relatively simplestochasticprogrammingproblem.

B. APPROXlllATION SCHEMES

If a problem is too difficult to solve one may have to learn to live

with approximatesolutions. The questionhowever.is to be ableto recog-

nize an approximatesolution if one is around. and also to be able to

assesshow far away from an optimal solution one still might be. For this

one needsa convergencetheory complementedby (easily computable)

error bounds,improvementschemes.etc. This is an areaof very active

researchin stochasticoptimization. both at the theoretical and the

software-implementationlevel. Here we only want to highlight some of

the questionsthat needto be raisedandthe main strategiesavailablein

the designof approximationschemes.

For purposesof discussionit will be useful to considera simplified

versionof (7.1):

find z e: X c Rn that minimizes

Fo(z) = J /o(z .CJ) P(dCJ).

(8.1)

we supposethat the other constraintshave been incorporatedin the

definition of the setX. We deal with a probleminvolving one expectation

functional. Whateverapplies to this casealso appliesto the more gen-

eral situation (7.1), making the appropriateadjustmentsto take into

accountthe fact that the functions

i=1.··· .m.

determineconstraints.
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Given a problem of type (8.1) that does not fall in one of the nice

categoriesmentioned in Section 7, one solution strategy may be to

replaceit by an approximation..... There are two possibilities to simplify

the integration that appearsin the objective function. replace10 by an

integrandlov or replaceP by an approximationPv ' and of course.one

could approximateboth quantitiesat once.

The possibility of finding an acceptableapproximate of 10 that

rendersthe calculationof

J lo" (x.CJ) P(dCJ) =: Fo"(x).

sufficiently simple so that it can be carriedout analytically or numeri-

cally at low-cost. is very muchproblemdependent.Typically one should

searchfor a separablefunction of the type

lo"(z.CJ) = ｾＡ］Ｑ rpj(x.CJj)'

recall that0 c Rq. so that

where the Pi are the marginal measuresassociatedto the j -th com-

ponentof CJ. The multiple integral is then approximatedby the sum of

I-dimensionalintegrals for which a well-developedcalculusis available,

(as well as excellentquadraturesubroutines).Let us observethat we do

not necessarilyhave to find approximatesthat lead to 1-dimensional

integrals. it would be acceptableto end up with 2-dimensionalintegrals,

even in some cases-- when P is of certain specific types - with 3-

dimensionalintegrals. In any case. this would meanthat the structure

• Anotherapproachwill be discussedin Section9.
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of 10 is suchthat the interactionsbetweenthe various componentsof r.>

play only a very limited role in determiningthe cost associatedto a pair

(x ,w). Otherwisean approximationof this type could very well throw us

very far oft' base. We shall not pursuethis question any further since

they are besthandledon a problem by problem basis. If UO
Y ' v=l • ... ｾ

is a sequenceof such functions converging, in some sense,to 1, we

wouldwant to know if the solutionsof

v=l, ...

convergeto the optimal solution of (B.l)· and if so. at what rate. These

questionswould be handledvery much in the sameway as when approxi-

mating the probability measureaswell be discussednext.

Finding valid approximatesfor 10 is only possible in a limited

numberof caseswhile approximatingP is always possiblein the follow-

ing sense.·SupposeP y is a probability measure(that approximatesP),

then

(B.2)

Thus if 10 has Lipschitz properties. for example, then by choosing Py

sufficiently close to P we can guaranteea maximal error bound when

replacing(B.l) by:

find x EXCRn that minimizesFd"(x) = J 10(x,w)Py(dc.;). (B.3)

Since it is the multidimensionalintegrationwith respectto P that was

the sourceof the main difficulties, the naturalchoice-- althoughin a few

concretecasesthere are otherpossibilities-- for Py is a discretedistri-

bution that assignsto a finite numberof points
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the probabilities

Problem(B.3) thenbecomes:

find x e: X eRn that minimizesFO'(x) = l:zL=l pz fo(x .c}) (B.4)

At first glanceit may now appearthat the optimization problem can be

solvedby any standardnonlinearprogramming.the sum l:f=l involving

only a "finite" number of terms, the only questionbeing how "approxi-

mate" is the solution of (B.4). However, if inequality (B.2) is used to

designthis approximation.to obtain a relatively sharpboundfrom (B.2),

the numberL of discretepoints requiredmay be so large that problem

(B.4) is in no way any easierthan our original problem (B.1). To fix the

ideas, if 0 c RIO. and P is a continuousdistribution, a good approxima-

tion - as guaranteedby (B.2) - may requirehaving 1010 ｾ L ｾ lOll! This is

jumping from the stoveinto the frying pan.

This clearly indicatesthe needfor more sophisticatedapproxima-

tion schemes. As background, we have the following convergence

results. Suppose !Py • v=l • ... ｾ is a sequenceof probability measures

that convergein distribution to P. and supposethat for all x e: X. the

function fo(x,CJ) is uniformly integrablewith respectto all Py • and sup-

posethereexistsa boundedsetD suchthat

for almostall II. then

infX Fo = lim (infX FO')
y .....
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and

if Xli E: argminxFO'. x = lim XliI:
k ..DD

then

X E: argminX Fo.

The convergenceresult indicatesthat we aregiven a wide latitude in the

choice of the approximating measures,the only real concern is to

guaranteethe convergencein distribution of the P II to P, the uniform

integrability condition being from a practicalviewpoint a pure technical-

ity.

However, such a result does not provide us with error bounds.but

since we can choosethe P II in such a wide variety of ways, we could for

examplehavePII suchthat

andP11+1 suchthat

infX FO' ｾ infX Fo

. fl;" f 1;'11+1in X .co ｾ in X '0

(8.5)

(8.6)

providing us with upper and lower bounds for the infimum and conse-

quentlyerrorboundsfor the approximatesolutions:

Xli E: argminxFo,andX Il+ 1 E: argminxFO+ 1•

This, combinedwith a sequentialprocedurefor redesigningthe approxi-

mationsP II so as to improve the error bounds,is very attractivefrom a

computationalviewpoint since we may be able to get away with discrete

measuresthat involve only a relatively small numberof points (andthis

seemsto be confirmedby computationalexperience).
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The only questionnow is how to find thesemeasuresthat guarantee

(a.5) and (B.6). There are basically two approaches:the first one that

exploits the propertiesof the function e.> ｾ fo(x ,e.» so as to obtain ine-

qualities when taking expectations.and the secondone that choosesP v

in a classof probability measuresthat have characteristicssimilar to P

but so that P v dominatesor is dominatedby P and consequentlyyields

the desiredinequality (a.5) or (a.6). A typical exampleof this latter case

is to chooseP v so that it majorizesor is majorizedby P. anotherone is

to choosePv so that for at leastfor somex E: X:

(a.7)

where P is a class of probability measureson n that contains P. for

example

Then

FO'(x) ｾ Fo(x) ｾ infX Fo

yields an upperbound. If insteadof Pv in the argmaxwe take P v in the

argminwe obtain a lower bound

If e.> 1-+ fo(x ,e.» is convex(concave)or at leastlocally convex(locally

concave)in the areaof interestwe may be able to use Jensen'sinequal-

ity to constructprobability measuresthat yield lower (upper) approxi-

matesfor Fo and probability measuresconcentratedon extremepoints

to obtain upper (lower) approximatesof Fo. We have alreadyseensuch

an example in Section 7 in connectionwith problem (7.2) where P is
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replacedby Pv that concentrateall the probabilitymasson c;) = ｅｾ｣Ｎ＾ｾＮ

Once an approximatemeasurePv has been found. we also needa

scheme to refine it so that we can improve. if necessary.the error

bounds. One cannothope to have a universalschemesinceso much will

dependon the problem at handas well as the discretizationsthat have

been usedto build the upper and lower bounding problems. There is,

however, one generalrule that seemsto work well, in fact surprisingly

well, in practice: choosethe regionof refinementof the discretizationin

such a way as to captureas much of the nonlinearityof lo{x,.) as possi-

ble.

It is. of course,not necessaryto wait until the optimal solution of an

approximateproblemhasbeenreachedto refine the discretizationof the

probability measure.Conceivably,andideally. the iterationsof the solu-

tions procedureshouldbe intermixedwith the sequentialprocedurefor

refining the approximations. Common sense dictates that as we

approach the optimal solution we should seek better and better esti-

mates of the function values and its gradients. How many iterations

should one perform before a refinementof the approximationis intro-

duced, or which tell-tale sign should trigger a further refinement.are

questions that have only been scantily investigated,but are ripe for

studyat leastfor certainspecific classesof stochasticoptimizationprob-

lems.

As to the rate of convergencethis is a totally openquestion,in gen-

eral andin particular.excepton an experimentalbasiswherethe results

have been much better than what could be expectedfrom the theory.
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One open challengeis to develop the theory that validates the conver-

gencebehaviorobservedin practice.

9. STOCHASTIC PROCEDURES

Let us again consider the general formulation (2.6) for stochastic

programs:

find % E X c Rn suchthat

Fi(%) = J li(%,GJ) p(d.GJ) ｾ O. i=l • ... ,m,

and Fo(%) = J lo(%,GJ) p(d.GJ) is minimized.

(9.1)

We alreadyknow from the discussionin Sections3 and 7 that the exact

evaluationof the integralsis only possiblein exceptionalcases.for spe-

cial typesof probability measuresP andintegrandsIi' The rule in prac-

tice is that it is only possibleto calculaterandomobservationsli(%,GJ) of

Fi (%). Therefore in the design of universal solution procedureswe

should rely on no more than the random observationsIi (% ,GJ). Under

thesepremises,finding the solution of (9.1) is a difficult problemat the

border between mathematicalstatistics and optimization theory. For

instance,even the calculationof the valuesFi(%). i=O•... ,m. for a fixed %

requiresstatisticalestimationprocedures: on the basisof the observa-

tions

onehasto estimatethe meanvalue

The answer to the simplest question,whetheror not a given % E X is

feasible.requiresverifying the statisticalhypothesisthat
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EUi(x,CJH ｾ 0, for i=l.··· ,m.

Sincewe canonly rely on randomobservations,it seemsquite naturalto

think of stochasticsolutionproceduresthat do not makeuseof the exact

values of the 1'i(x). i=O.··· ,m. Of course, we cannot guaranteein

such a situation a monotonic decrease(or increase)of the objective

value aswe move from one iterateto the next. thus thesemethodsmust,

by the natureof things,be non-monotonic.

Deterministic processesare special casesof stochasticprocesses,

thus stochasticoptimizationgives us an opportunityto build more flexi-

ble and effective solution methodsfor problemsthat cannotbe solved

within the standardframework of deterministic optimization techni-

quest. Stochasticquasi-gradientmethodsis a classof proceduresof that

type. Let us only sketch out their major features. We consider two

examplesin orderto get a bettergraspof the main ideasinvolved.

Example 1: Optimization by simulation. Let us imagine that the

problem is so complicatedthat a computerbasedsimulationmodel has

beendesignedin order to indicatehow the future might unfold in time

for each choice of a decision x. Supposethat the stochasticelements

have been incorporatedin the simulation so that for a single choice x

repeatedsimulation runs results in different outputs. We always can

identify a simulationrun as the observationof an event(environment)CJ

from a samplespacen. To simplify matters,let us assumethat only a

singlequantity
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summarizesthe output of the simulationrun CJ for given x. The problem

is to

find x e: Rn thatminimizesFo{x) = Etfo{x .CJH. (9.2)

Let us also assumethat Fo is differentiable. Since we do not know with

any level of accuracythe valuesor the gradientsof Fo at x. we cannot

apply the standardgradientmethod.that generatesiteratesthroughthe

recursion:

s "n
X - Ps l.Jj=1

FO{x s +6.s e i ) -FO{xS
)

6..s
(9.3)

where Ps is the step-size. 6.s determines the mesh for the finite

difference approximationto the gradient. and e j is the unit vector on

the j -th axis. A well-known procedureto deal with the minimization of

functions in this settingis the so-calledstochastica.pproxima.tionmethod

that can be viewed as a recursiveMonte-Carlooptimizationmethod. The

iteratesaredeterminedas follows:

(9.4)

where CJS 0, CJS I, ...• CJsn are observations. not necessarily mutually

independentone possibility is CJso = CJS 1 = = CJsn. The sequence

txS
• s =O.l.... ｾ generatedby the recursion(9.4) convergeswith probabil-

ity 1 to the optimal solution provided, roughly speaking.that the scalars

tps ' 6.s; s =1, ... Jarechosenso asto satisfy

CPs = 6.s = 1/ s are suchsequences).the function Fo hasboundedsecond
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derivativesandfor all x E: Rn •

(9.5)

This last condition is quite restrictive. it excludespolynomial functions

lo(-'CJ) of ordergreaterthan3. Therefore.the methodsthatwe shall con-

sidernextwill avoidmakingsucha requirement.at leaston all of Rn .

Example 2: Optimization by random search. Let us consider the

minimization of a convex function Fo with boundedsecondderivatives

andn a relatively large numberof variables. Then the calculationof the

exactgradientV Fo at x requirescalling up a large numberof times the

subroutinesfor computingall the partial derivativesand this might be

quite expensive. The finite difference approximationof the gradient in

(9.3) require(n +1) function-evaluationsper iteration andthis alsomight

be time-consumingif function-evaluationsare difficult. Let us consider

that following randomsearchmethod: at eachiteration s =0,1...• choose

a directionh S at random.seeFigure 5.

If Fo is differentiable.this direction h S or its opposite-hs leadsinto the

region

of lower values for Fo• unless X S is already the point at which Fo is

minimized. This simple idea is at the basis of the following random

searchprocedure:

(9.6)

which requires only two function-evaluationsper iteration. Numerical
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Figure 5. Randomsearchdirections±h5
•

experimentationshows that the numberof function-evaluationsneeded

to reach a good approximationof the optimal solution is substantially

lower if we use (9.6) in place of (9.3). The vectors h O, h 1, ... , h 1, ...

often are taken to be independentsamplesof vectors h(e) whose com-

ponents are independentrandom variables uniformly distributed on

[-1, +1]'

Convergenceconditionsfor the randomsearchmethod(9.6) are the

same, up to some details, as those for the stochasticapproximation

method (9.4). They both have the following feature: the direction of

movementfrom each :z;S,5 =0.1. . .. are statisticestimatesof the gra-

dient V Fo(:Z;S). If we rewrite the expressions(9.4) and(9.6) as:

:z;s+1: =:z;s -Ps r. 5=0,1, ...

wherer is the direction of movement.thenin both cases

(9.7)

(9.B)
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A general schemeof type (9.7) that would satisfy (9.B) combines the

ideasof both methods. There may. of course,be manyotherprocedures

that fit into this generalscheme. For example consider the following

iterative method:

which requiresonly two observationsper iteration. in contrastto (9.4)

that requires(n +1) observations.The vector

r = ｾ 10(xs+!J.shs.(.)Sl)-/o(xs,(.)$O) h S
2 !J.s

alsosatisfiesthe condition (9.B).

The convergenceof all theseparticularprocedures(9.4), (9.6), (9.9) fol-

low from the convergenceof the generalscheme(9.7) - (9.B). The vector

r satisfying(9.B) is calleda stochasticquasi-gradientof Foat x
S

' andthe

scheme(9.7) - (9.B) is an example of a stochasticquasi-gradientpro-

cedure.

Unfortunatelythis procedurecannotbe applied, as such, to finding

the solution of the stochasticoptimization problem (9.1) since we are

dealing with a constrainedoptimization problem. and the functions

ii. i=O, ... ,m, are in general nondifierentiable. So, let us considera
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simple generalization of this procedure for solving the constrained

optimizationproblemwith nondifferentiableobjective:

find x e: X c Rn thatminimzesFo{x) (9.l0)

whereX is closedconvexset andFo is a real-valued(continuous)convex

function. The new algorithm generatesa sequencexo.x1•... •x s • . .. of

points in X by the recursion:

X S +1 := prjx [X S - Ps r]

whereprjx meansprojectionon X. andr satisfies

with

(9.11)

(9.l2)

aFo{xS
): = the setof subgradientsof 10 at X

S
,

and eS is a vector. that may dependon (xO, ... •X S ). that goesto 0 (in a

certain sense)as s goesto "". The sequenceixs,s=O,l, ... J converges

with probability 1 to an optimal solution. when the following conditions

aresatisfiedwith probability 1:

Ps ｾ 0, L:s Ps = "", L:s E!ps II £s II + P;J < "" .

and

E! II r 11 2 1xO, ... •x s J is boundedwhenevedxo•... •x s Jis bounded.

Convergenceof this method.as well as its implementation.anddifferent

generalizationsare consideredin the literature.

To concludelet us suggesthow the methodcouldbe implementedto

solve the linear recourseproblem (5.1). From the duality theory for

linearprogramming,andthe definition (5.2) of Q, one canshowthat
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Thus an estimater of the gradientof Foat X S is given by

where c.>S is obtainedby randomsamplingfrom n(using the measureP),

and

The iteratescould thenbe obtainedby

where

x = tx E R'.;. IAx s b ｾＮ

It is not difficult to show that under very weak regularity conditions

(involving the dependenceof W(c.» on c.»,

1o. CONCLUSION

In guiseof conclusion,let us just raisethe following possibility. The

stochasticquasi-gradientmethodcan operateby obtainingits stochastic

quasi-gradientfrom 1 sampleof the subgradientsof fo(-,c.» at x S
, it could

equally well use'-- if this was viewed as advantageous-- obtain its sto-

chasticquasi-gradientr by taking a finite sampleof the subgradientsof

fo(-'c.» at X S
I sayL of them. We would thenset

(10.1)
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andc.>I, ... ,c.>L are randomsamples(using the measureP). The question

of the efficiency of the methodtaking just 1 sampleversusL ｾ 1 should,

andhasbeenraised,cf. the implementationof the methodsdescribedin

Chapter16. But this is not the questionwe have in mind. Returning to

SectionB, where we discussedapproximationschemes,we nearly always

endedup with an approximateproblem that involves a discretizationof

the probability measuresassigning probabilities P l' ... , PL to points

c.>1, ••• ,c.>L, and if a gradient-type procedurewas used to solve the

approximatingproblem, the gradient,or a subgradientof Fo at x 5 would

be obtainedas

(10.2)

The similarity betweenexpressions(10.1) and (10.2) suggestpossibly a

new classof algorithmsfor solving stochasticoptimizationproblems,one

that relies on an approximateprobability measure(to be refined as the

algorithmprogresses)to obtain its iterates,allowing for the possibilityof

a quasi-gradientat eachstepwithout losing someof the inherentadap-

tive possibilitiesof the quasi-gradientalgorithm.
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