On the Solution of a Computable General Equilibrium Model

Sivak, J., Tihanyi, A. and Zalai, E.

IIASA Collaborative Paper
June 1984

Sivak, J., Tihanyi, A. and Zalai, E. (1984) On the Solution of a Computable General Equilibrium Model. IIASA Collaborative Paper. Copyright © June 1984 by the author(s). http://pure.iiasa.ac.at/2554/ All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

ON THE SOLUTION OF A COMPUTABLE GENERAL EQUILIBRIUM MODEL

Jozsef Sivak
Ambrus Tihanyi
Ernö Zalai

June 1984
CP-84-23

Drs. Sivak and Tihanyi are from the Hungarian
Planning Office, Budapest.
Professor Zalai is currently at the International Institute for Applied Systems Analysis.

Collaborative Papers report work which has not been performed solely at the International Institute for Applied Systems Analysis and which has received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria

PREFACE

Many of today's most significant socioeconomic problems, such as slower economic growth, the decline of some established industries, and shifts in patterns of foreign trade, are international or transnational in nature. But these problems manifest themselves in a variety of ways; both the intensities and the perceptions of the problems differ from one country to another, so that intercountry comparative analyses of recent historical developments are necessary. Through these analyses we attempt to identify the underlying processes of economic structural change and formulate useful hypotheses concerning future developments. The understanding of these processes and future prospects provides the focus for IIASA's project on Comparative Analysis of Economic Structure and Growth.

Our research concentrates primarily on the empirical analysis of interregional and intertemporal economic structural change, on the sources of and constraints on economic growth, on problems of adaptation to sudden changes, and especially on problems arising from changing patterns of international trade, resource availability, and technology. The project relies on IIASA's accumulated expertise in related fields and, in particular, on the data bases and systems of models that have been developed in the recent past.

This paper is concerned with the solution algorithm of a nonlinear multisectoral model. The model has been developed at IIASA and falls into the class of so called computable general equilibrium models. The economic theoretical properties of the model, as well as some results of simulations based on it, have been reported elsewhere.

Anatoli Smyshlyaev
Project Leader
Comparative Analysis of Economic Structure and Growth

CONTENTS

1. Introduction 1
2. Mathematical Characterization of the Model to be Solved 3
2.1 The Equation System 3
2.2 The System of Constraints 6
3. The Solution Algorithm 9
References 23
Appendix I: Formal Statement of the Model 25
Appendix II: Mathematical Transformation of the Production Relations 31

ON THE SOLUTION OF A COMPUTABLE GENERAL EQUILIBRIUM MODEL

Jozsef Sivak, Ambrus Tihanyí and Ernō Zalai

1. INTRODUCTION

The 1960s and 1970 s were characterized by relatively rapid economic growth and growth itself became a major concern for economic policy makers. Also during this period, national economic planning in the socialist and developing countries became an increasingly sophisticated resource allocation exercise. Planners, interested in various alternatives for allocating resources and in the resulting efficiency gains, were soon able to call upon large-scale linear models of the input-output and programming types. ${ }^{1}$

In these planning exercises, price and relative cost considerations were left outside of the models themselves and a single decision-making unit (and often a single criterion) was generally assumed. These obvious weaknesses and the often exaggerated but close relationship between the principles of mathematical programming and Walrasian general equilibrium theory led to

[^0]the emergence of computable general equilibrium models in the field of economic policy analysis and planning.

The growing number of publications in this field clearly demonstrates that we are witnessing a shift in the methodology concerned with the repercussive processes in a national economy. Apart from Johansen's (1959) pioneering study, it suffices to mention here just a few representative examples, such as Bergman and Por (1980), Dervis et al. (1982), Dixon et al. (1982), and Kelly et al. (1983). Scarf's (1973) algorithm designed for computing fixed points (equilibria) gave tremendous impetus to the development of later more efficient solution algorithms.

In this paper we are concerned with one specific model developed by Zalai (1980) and, in particular, with its solution technique. This model was designed for planning purposes and particular emphasis was laid on some of the conceptual aspects of adopting such models for central planning. These, however, are not the subject of the present paper.

There is no single prototype model in the field of applied general equibrium analysis and there are no global algorithms among the solution techniques. Although Scarf's algorithm for finding a fixed point has enabled users to solve general equilibrium models, it is known that fixed-point algorithms can only be used for solving rather small models. Thus larger models must be solved using various heuristic methods.

Our experience with a solution technique based on Newton's iteration method is presented later in the paper. Another, rather common technique is to solve the model in question using a series of linear programming problems. ${ }^{2}$ It is frequently useful to analyze the mathematical structure of each problem so as to discover the most appropriate and efficient solution techniques. We followed essentially this approach when solving the tentative model developed for the Hungarian economy.

[^1]
2. MATHEMATICAL CHARACTERIZATION OF THE MODEL TO BE SOLVED

2.1. The Equation System

As mentioned in the Introduction, we analyzed the solution possibilities of the model outlined in Zalai (1980). The original description of the model, including the list of variables and parameters, can be found in Appendix I. The model is a nonlinear equation system and throughout our discussion we will refer to the equations by the numbers given in Appendix l. Thus, for example, eqn. (20) refers to $Z_{i}=Z_{i r}+Z_{i d}$. Some of the functional forms were not specific in this version, notably the production capacity functions. Therefore eqns. (8), (11), and (12) had to be made concrete by adopting Cobb-Douglas-type production functions. Instead of the original relations we employed eqns. (F6), (F7), and (F8), whose derivation is documented in Appendix II. Before presenting the solution algorithm adopted we will briefly characterize the mathematical structure of the model.

First of all, we call attention to the fact that the model is linearly homogeneous in a set of variables. More precisely, there is a group of variables x such that if (x_{0}, y_{0}) is a feasible solution of the model, then ($\lambda x_{0}, y_{0}$) is also a feasible solution for any positive λ. Therefore, the usual problem of numeraire or normalization appears in this model too. There are several alternative ways to handle this problem. The logic of the solution algorithm we adopted suggested fixing total consumption expenditure (E) at some arbitrary level, which we did as follows:

$$
E=\sum_{i=1}^{h}\left(b_{i}+\bar{b}_{i}\right)
$$

This could thus be added as an additional constraint to the model described in Appendix I; alternatively (as we did), E can be treated as a constant parameter rather than a variable.

The resulting equation system specifying the relationships between the variables of the model is presented in Table 1. From now on, this system of equations is considered to be the mathematical basis of the model, and any mention of "the model" refers to this system.

Table 1. The equation system.

Table 1. The equation system (continued).

2.2. The System of Constraints

Let E denote the system of equalities in the model and let $e \in E$ denote an equality of the system. E is the union of its finitely-many disjoint subsets $E_{k} \subseteq E, k \in K \triangleq\{1,2, \ldots, 33\}$, and E is specified by specifying $E_{k}, k \in K$. Note that the "serial number" $k \in K$ in $e \in E_{k}$ means that e belongs to the class of equations E_{k} and, in turn, the classification $E=\bigcup_{k \in K} E_{k}$ shows that we will handle the equalities in $E_{k}(k \in K)$ in the same way. We will speak, somewhat imprecisely, about the " k th equality" when referring to the $\left|E_{k}\right|$ equalities in E_{k}, purely for the sake of simplicity.

Using the notation $K_{1} \triangleq\{2,4,5,6,7,25,26,27,30\}$ and $K_{2} \triangleq K \backslash K_{1}$ yields:

$$
\begin{align*}
& k \in K_{1} \Rightarrow\left|E_{k}\right|=1 ; k \in K_{2} \Rightarrow\left|E_{k}\right|=n \tag{2.1}\\
& n=19 ;\left|K_{1}\right|=9 ;\left|K_{2}\right|=24 ;|E|=465
\end{align*}
$$

We now discuss the mathematical relations specified by the equalities $\varepsilon \in E$ in more detail. Let Q denote the set of mathernatical objects in which the mathematical relations between some groups of elements are set up in the model specification. Let $q \in Q$ denote an element in Q. Partition set Q into two disjoint subsets $Q \triangleq U \cup V$; then for every $q \in U$ we say that q is a "parameter" or an "exogenous variable" (these are essentially synonyms), and for every $q \in V$ we say that q is an "endogenous variable."

Using different symbols for each endogenous variable $q \in V$ implies the partition of set V into disjoint classes $V \triangleq \bigcup_{l \in L} V_{l}$ such that the classes are identified by the following $|L|=33$ symbols:
$E E, \hat{C}, X, X_{n+1}, M_{r}, M_{d}, C, Z_{r}, Z_{d}, K, I, \bar{M}, \bar{C}, L, \bar{M}_{d}, \hat{W}, R, P_{n+1}, \bar{M}_{r}, \frac{\partial F}{\partial L}, W$, $Q, \frac{\partial F}{\partial K}, S, \alpha, V_{r}, V_{d}, m_{r}, P, m_{d}, Z, P^{D}, P^{D I}$.

Using the notation $L_{1} \triangleq\left\{X_{n+1}, I, V_{r}, V_{d}, E E, \hat{C}, \hat{W}, R_{1} P_{n+1}\right\}$ and $L_{2} \triangleq L \backslash L_{1}$, we obtain

$$
l \in L_{1} \Rightarrow\left|V_{l}\right|=1 ; l \in L_{2} \Rightarrow\left|V_{l}\right|=n
$$

$$
\begin{equation*}
n=19,\left|L_{1}\right|=9,\left|L_{2}\right|=24,|V|=465 \tag{2.2}
\end{equation*}
$$

Distinction between any two elements in class $V_{l}, l \in L_{2}$ is obtained by a set of indices Ind $\{1,2, \ldots, n\}$ in the mathematical specification such that x_{i} denotes the i th element of the subset $X \subseteq V,|X|=n$, where $|\cdot|$ denotes the cardinality function.

As for the class U of objects $q \in Q$, the specification implies a classification $U \triangleq \cup U_{j}$ such that the classes are identified by the following $|\Gamma|=33$ symbols:
$\alpha_{1} \alpha_{n+1}, \bar{m}, m_{n+1}, s, \hat{K}, \hat{L}, Z_{d}, \lambda, P_{d}^{W E}, P_{d}^{W I}, P_{T}^{W E}, P_{r}^{W I}, b, \bar{b}, \bar{P}_{d}^{W I}, \bar{P}_{T}^{W I}, \zeta, \xi, \bar{\Theta}_{d}$, $\Theta_{r}, \Theta_{d}, \bar{\Theta}_{r}, m_{r}^{0}, m_{d}^{0}, \varphi_{r}, \varphi_{d}, c, \bar{c}, \sigma, w, \delta, E$.

Using the notation $\Gamma_{1} \triangleq\{\alpha, \bar{m}\}, \Gamma_{2} \triangleq\{\bar{K}, \bar{L}, \sigma, E\}$, and $\Gamma_{3} \triangleq \Gamma\left(\Gamma_{1} \cup \Gamma_{2}\right)$ we obtain

$$
\begin{align*}
& \gamma \in \Gamma_{1} \Rightarrow\left|U_{7}\right|=n^{2} \tag{2.3}\\
& \gamma \in \Gamma_{2} \Rightarrow\left|U_{7}\right|=1 ; \\
& \gamma \in \Gamma_{3} \Rightarrow\left|U_{7}\right|=n ; \\
& n=19 ;\left|\Gamma_{1}\right|=2,\left|\Gamma_{2}\right|=4,\left|\Gamma_{3}\right|=27,|U|=1239 .
\end{align*}
$$

Relations (2.1)-(2.3) mean that the mathematical specification is a formalization of the $|E|=465$ relations that hold in the set of the $|U|+|V|=1704$ mathematical objects associated with economic concepts in the model.

Next, we add the following remarks to the relations (2.1)-(2.3), coupled with the specification in Appendix II:

- Assume that an appropriate set $H_{U} \subseteq R^{U}$ of "feasible inputs" is given for the computable values of objects in class U.
- The computable values of the objects in V can be obtained by solving the system of equalities E in the model specification. The economic interpretation of the object in $V-$ in accordance with the relations formalized in E-- assumes the existence of a set $H_{V} \subseteq R^{|V|}$, referred to as an "acceptance region."

Thus the mathematical meaning of the relations in E is as follows. A group of equalities indexed by $k \in K_{1}$ can be considered as the formal definition of a real-valued mapping, and the group of equations indexed by $k \in K_{2}$ can be considered as a formal definition of a mapping f_{k} with range $\operatorname{lm} f_{k} \varsigma R^{n}$. Therefore the system of equations E can be considered as a definition of a mapping

$$
\begin{equation*}
F: H_{U} \times H_{V} \rightarrow R^{|E|} \quad \text { where Dom } F \subseteq R^{1704}, \operatorname{Im} F \subseteq R^{465} \tag{2.4}
\end{equation*}
$$

Thus, the mathematical specification of the model has the following concise form:

$$
\begin{equation*}
F(u, v)=\Theta \quad u \in H_{U}, \quad v \in H_{V} \tag{2.5}
\end{equation*}
$$

where Θ denotes the "zero element" in the space in question. The details of this specification are shown in Table 1. The left-hand column of the table presents the definitions of the mappings f_{k} according to the equalities $E_{k} \subseteq E$ in Appendix I. The order of presentation of the endogenous variables V_{l} is determined by the order of appearance of the groups of variables in the definitions of mappings f_{k}, enumerated in the normal way, $k=1,2, \ldots, 33$.

Returning to the actual mathematical specification of (2.5) shown in Table 1, note that it is impossible to obtain a "closed" form of the implicit function $v: H_{U} \rightarrow R^{|E|}$ satisfying equality $F(u, v)=\Theta$, even if an input set H_{V} that is, in principle, consistent is given. Thus the characterization of the set H_{U} or the investigation of the consistency of the model must be based on various tentative computations using various inputs of $u \in R^{1239}$. The aim of each such computation is to obtain a solution to the equation $F\left(u_{0}, v\right)=$ © \odot with a fixed value of u_{0}. Such an investigation needs an effective algorithm for obtaining the solutions to equality $F\left(u_{0}, v\right)=\Theta$ for any input of $u \in H_{U}$ that is "in principle consistent."

Since our system of equations is too large, common ${ }^{3}$ computational techniques cannot be used for its solution. However, the special structure of the system of equations specified enabled us to develop a special decomposition

[^2]method; using this method, we can reduce the solution of the complete system of nonlinear equations to the solution of several smaller systems of nonlinear -and in some cases even linear - equations.

Before discussing the details of the computational method, we stress that the meaning of the specification in Table 1 is independent of both the order of the indices in the table and the order of the endogenous variables in the head of the table. Thus, one can freely permute both the indices of the equations and the variables. Regarding the special structure of the system of equations, we can obtain the arrangement in Table 2 by permuting both the equations and the endogenous variables appropriately. The well-structured "diagram of variable appearance" shows clearly the block diagonal structure of the system of equations studied. It is this special kind of structure that enables us to solve the system using a decomposition method.

3. THE SOLUTION ALGORITHM

The first goal of the tentative computation was to investigate the consistency of the model. More precisely, we allowed a rather large degree of freedom in the choice of the values of the objects in $V \subseteq Q$ (endogenous variables), i.e., we assumed only those restrictions that follow directly from the mathematical specification (in Table 2) for the set H_{V}. For example, the object $E E \in V$ in the model can be interpreted as the level of the household excess expenditure, and thus $E E \geqq 0$ should hold.

Observe that the restrictions, such as $0 \leqq \xi \leqq 1, \bar{K} \geqq 0, Z_{i d}^{0} \geqq 0$, etc., on the values of the parameters and the endogenous variables indexed by $k \in K$ do not ensure that, for any vector $v \in R^{465}$ satisfying equality $F\left(u_{0}, v\right)=\Theta$ with a vector $u_{0} \in R^{1239}$ fulfilling the mathematical restrictions, component $E E$ of vector v satisfies the inequality $E E \geqq 0$. Therefore we tried to use inputs $u_{0} \in R^{1238}$ such that the solution $v \in H_{V}$ to the equation $F\left(u_{0}, v\right)=\Theta$ was appropriate (as regards "rather general" sets H_{V}). To achieve this, we utilized various consistent data bases obtained by previous model cornputations. ${ }^{4}$

[^3]| Max | EcE | | \bullet_{1} | Pr | 0 | 0 | $\frac{81}{81}$ | $\frac{071}{1 K}$ | \& | m_{4} | m_{4} | \boldsymbol{P} | P_{1} | $P_{\text {n+1 }}$ | E | En | 5 | ET | 9 | c_{1} | t | 1 | \pm | man | N_{1} | 4 | $\underline{501}$ | 4 | 5 | 4 | 20 | \cdots | \square | v_{0} | V_{1} |
| :---: |
| 15. | $\bullet_{1}=$ | 1 | 1 |
| 31. | | | | V | | | | | | | 1 | 1 | 1 |
| 20. | P-11 | | | | 1 | 11 | | | |
| 8. | - $=10$ | $\mathrm{F}_{\mathrm{m}+1}$ | | | | , | 1 | | |
| 4. | $\frac{\theta F_{1}}{I_{1}}=$ | $\left(\frac{1-4}{6}\right)^{-4}$ | | | N | | 1 | |
| 0. | $\frac{6 R_{1}}{B K_{4}}=$ | $(1-6) \frac{4}{1-6}$ | | | 1 | \geqslant | | 1 | |
| 12. | $s_{1}-\theta$ | $\frac{6 \pi}{d \pi}$ | | | | V | | V | |
| 16. | m | $\left\|\frac{n_{1}}{e_{0} r n}\right\|$ | 1 | |
| 17. | 9 | $\left.\left\lvert\, \frac{n}{e_{n} n^{n}}\right.\right)^{n}$ | | | | | | | | | 1 | 1 |
| 32. | | | | | | | | | | | 1 | 1 | 1 | 1 |
| 32. | $\begin{aligned} & p_{1}-18 \\ & \frac{m_{v}}{1} \cdot 8 \end{aligned}$ | | | 朋 | |
| 30. | | (9.a.4 * | | | | | | | | | | | | \bullet | |
| 81. | | $\frac{r_{1}}{v_{r}+}$ | | | | | | | | | | | 1 | 1 | |
| 2. | | $\frac{n}{w^{2}+r^{2}}{ }^{4}$ | | | | | | | | | | | 1 | 1 |
| 80. | 4-2. | |
| 3. | | $\sum_{1}^{N}\left(r_{1}+P_{1}\right)$ | | - | | | | | | | | \square | | | | | | - | | | | | | | | | | | | | | | | | |

T'able 2. The structure of the system of equations.

$\stackrel{+}{*}$													1				
$\stackrel{ }{*}$													1				
＊													1				
\bullet													1				
${ }^{2}$													17			1	
${ }^{1}$												7					
$\underline{\square}$			1								7	7	7				
5										\sim							
$\dot{\bar{i}}$		！						－	－		－						
4							7	洅		7	\＃\＃10						
\underline{L}							人1										
2						1		\checkmark								1	
\pm					7			\checkmark									1
－				－					\bullet								
\sim			－	－													
E^{-}		7	1								\checkmark						
0	2							\checkmark									
5		\square															
\checkmark						2											
${ }^{3}$								\checkmark									
\checkmark								R									1
\％																	
c																	
z	7																
$?$						－											
1					\square												
4																	
58							\sim										
55										7							
－																	
－																	
8		7															
$-$																	
曷	$\begin{gathered} \text { of } \\ \dot{0} \\ \dot{8} \end{gathered}$	$\begin{gathered} \text { E } \\ \text { ETL } \\ \vdots \\ \text { it } \end{gathered}$	$\begin{gathered} 5 \\ \dot{5} \\ \vdots \\ \vdots \\ i \end{gathered}$	！	\％	$\begin{gathered} 5 \\ 5 \\ 4 \\ 3 \\ 3 \end{gathered}$						＋	$\begin{array}{r} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 51 \\ 1 \\ 1 \\ 1 \\ 21 \end{array}$				
E	i	$\dot{\text { ¢ }}$	－	\dot{C}	－	－	$\dot{\square}$	－	＊	$\stackrel{\square}{-}$	\cdots	\pm	－1	－	\bullet	－	$\stackrel{\circ}{\circ}$

Table 2．The structure of the system of equations（continued）．

The computation can be performed as follows. Given a vector $u_{0} \in R^{1239}$ and the mapping

$$
\begin{equation*}
\bar{F}: H_{V} \Rightarrow R^{|E|} \tag{3.1}
\end{equation*}
$$

defined by equality $\bar{F}(v) \triangleq F\left(u_{0}, v\right)$. find a vector $v \in H_{V}$ such that $\bar{F}(v)=\Theta$.
As mentioned in Section 2, problem (3.1) can be solved by a decomposition technique. This is due to the special structure of the domain $H_{V} \subseteq R^{|v|}$ of the mapping \bar{F} and its range $\operatorname{lm}(\bar{F}) \subseteq R^{|E|}$. Using the notation

$$
\begin{aligned}
& v^{(1)} \triangleq\left(\alpha, \bar{P}^{D I}, W, Q \cdot \frac{\partial F}{\partial L}, \frac{\partial F}{\partial K}, S, m_{r}, m_{d}, P^{D}, P, P_{n+1}\right) \in H_{V}^{(1)} \triangleq H_{V} \cap R^{11 n+1} ; \\
& v^{(2)} \triangleq\left(Z, Z_{d}, Z, E E, C, \bar{C}, \hat{C}, I, M_{r}, M_{d}, K, X, X_{n+1}, L, M, \bar{M}_{r}, \bar{M}_{d}\right) \in H_{V}^{(2)} \triangleq H_{V} \cap R^{13 n+8} ; \\
& v^{(3)} \triangleq\left(W, R, V_{r}, V_{d} \in H_{V}^{(3)} \triangleq H_{V} \cap R^{4},\right.
\end{aligned}
$$

according to Table $2, \bar{F}: H_{v} \rightarrow R^{|E|}$ can be defined as follows:

$$
\begin{align*}
& F^{(1)}: H_{V}^{(1)} \times H_{V}^{(3)} \rightarrow R^{\left|K^{(1)}\right|} ; \\
& F^{(2)}: H_{V}^{(1)} \times H_{V}^{(2)} \times H_{V}^{(3)} \rightarrow R^{\left|K^{(2)}\right|} ; \tag{3.2}\\
& F^{(3)}: H_{V}^{(1)} \times H_{V}^{(2)} \rightarrow R^{\left|K^{(3)}\right|}
\end{align*}
$$

where

$$
\begin{aligned}
& K^{(1)} \triangleq\{(13),(31),(28),(29),(8),(9),(12),(16),(17),(33),(32),(30)\} ; \\
& K^{(2)} \triangleq\{(21),(22),(20),(25),(23),(24),(26),(27),(18),(19),(11),(1),(2),(10),(3),(14),(15)\} ; \\
& K^{(3)} \triangleq\{(4),(5),(6),(7)\} .
\end{aligned}
$$

If the element $v \in H_{V}$ is a solution to the system of equations $\bar{F}(v)=\Theta$, then, using the notation $v \triangleq\left(v^{(1)}, v^{(2)}, v^{(3)}\right) \in H_{V}^{(1)} \times H_{V}^{(2)} \times H_{V}^{(3)}$, we require

$$
\begin{align*}
& F^{(1)}\left(v^{(1)}, v^{(3)}\right)=\Theta \\
& F^{(2)}\left(v^{(1)}, v^{(2)}, v^{(3)}\right)=\Theta ; \tag{3.3}
\end{align*}
$$

$$
F^{(3)}\left(v^{(1)}, v^{(2)}\right)=\Theta
$$

Thus Table 3 can be considered to be the scheme of the decomposition method for solving problem (3.1). Technically, this method is an iterative process, which, given any "error parameter" $\varepsilon^{*}>0$ and an initial value $v^{(3)} \triangleq v \delta^{(3)} \in H_{V}^{(3)}$, successively yields finitely-many ($n=0,1, \ldots, N$) members of the series

$$
\begin{aligned}
& \rho^{(1)} \triangleq\left\{v_{n}^{(1)} \in H_{V}^{(1)}: n=0,1,2, \ldots\right\} \\
& \rho^{(2)} \triangleq\left\{v_{n}^{(2)} \in H_{V}^{(2)}: n=0,1,2, \ldots\right\} \\
& \rho^{(3)} \triangleq\left\{v_{n}^{(3)} \in H_{V}^{(3)}: n=0,1,2, \ldots\right\}
\end{aligned}
$$

$k \in K$	$\bar{F}: H_{V} \rightarrow R^{\|E\|}$	$v^{(1)}$	$v^{(2)}$
$K^{(1)}$	$F^{(1)}\left(v^{(1)}, v^{(3)}\right)=0$		
$K^{(2)}$	$F^{(2)}\left(v^{(1)}, v^{(2)}, v^{(3)}\right)=0$		
$K^{(3)}$	$F^{(3)}\left(v^{(1)}, v^{(2)}\right)=0$		

Table 3.
respect to the j th component of variable $v_{n}^{(3)} \in V_{n}^{(3)}$. Approximating it, compute the value of the quotient

$$
\begin{equation*}
\frac{\partial \Delta_{n}^{(i)}}{\partial v_{n, j}^{(3)}} \approx \frac{\Delta_{n}\left(v_{n}^{(3)}+\rho^{*} e_{j}\right)-\Delta_{n}\left(v_{n}^{(3)}\right)}{\rho} \tag{3.7}
\end{equation*}
$$

where ε_{j} is the j th unit vector in space R^{4}. The values of $\Delta_{n}\left(v_{n}^{(3)}+\rho^{*} e_{j}\right)$ for $j=1,2,3,4$ can be obtained using (3.4)-(3.6).

Step 5: Since we now have a technique for obtaining both the value $\Delta_{n}\left(v_{n}^{(3)}\right)$ of mapping $\Delta_{n}: V_{n}^{(3)} \rightarrow R^{4}$ and its Jacobian matrix $J_{n}\left(v_{n}^{(3)}\right): R^{4} \rightarrow R^{4}$, we can use Newton's iteration method:
$v_{n+1}^{(3)} \triangleq v_{n}^{(3)}-J_{n}^{-1}\left(v_{n}^{(3)}\right) \Delta_{n}\left(v_{n}^{(3)}\right)$

Actually, this completes the description of the method for solving problem (3.1), since element $v^{(3)} \triangleq v_{n+1}^{(3)} \in \rho^{(3)}$ can be an input to Step 1 in the iteration.
Step 6: The fact that the process terminates after performing finitelymany steps is guaranteed by checking whether inequality $\left\|\Delta_{n}\right\|<\varepsilon$ (holds (see Step 3), i.e., whether the inequalities

$$
\begin{equation*}
\left\|v_{n+1}^{(3)}\right\|<\left\|v_{n}^{(3)}\right\| \text { and }\left\|v_{n+1}^{(3)}\right\| /\left\|v_{n}^{(3)}\right\|>\left(1-\varepsilon^{* *}\right) \tag{3.9}
\end{equation*}
$$

hold, where ε "* is the so-called "parameter of convergence" of the process.

It is obvious that the method described above is only one possible technique for solving problem (3.1) (or more precisely, for solving the system of equations). And of course, as mentioned earlier, we have no method for deciding whether the system of equations (3.1) has any solution or not. This question can be answered by performing the procedure above. The ideas outlined can also be utilized in the solution of other systems of equations that have a decomposable structure.

Having obtained an element $v_{n}^{(3)} E \rho^{(3)}$, the method works as follows:
Step 1: Obtain the element $v_{n}^{(1)} E \rho^{(1)}$, which is the value of the implicit function $v^{(1)}: H_{V}^{(3)} \Rightarrow H_{V}^{(1)}$ defined by

$$
\begin{equation*}
F^{(1)}\left(v^{(1)}, v^{(3)}\right)=\Theta \tag{3.4}
\end{equation*}
$$

at argument $v^{(3)} \triangleq v_{n}^{(3)} ;$ and denote $v_{n}^{(1)} \triangleq v^{(1)}\left(v_{n}^{(3)}\right)$.
Step 2. On obtaining elements $v_{n}^{(3)}$ and $v_{n}^{(1)}$, obtain the element $v_{n}^{(2)} E p^{(2)}$, which is the value of the implicit function $v^{(2):} H_{V}^{(3)} \times H_{V}^{(1)} \Rightarrow H_{V}^{(2)}$ defined by

$$
\begin{equation*}
F^{(2)}\left(v^{(1)}, v^{(2)}, v^{(3)}\right)=\Theta \tag{3.5}
\end{equation*}
$$

at argument $\left(v^{(3)}, v^{(1)}\right) \triangleq\left(v_{n}^{(3)}, v_{n}^{(1)}\right)$; and denote:
$v_{n}^{2} \triangleq v^{(2)}\left(v_{n}^{(3)}, v_{n}^{(1)}\right)$.

Step 3: Equalities (3.6) hold by definition for elements $v_{n}^{(3)} \in H_{V}^{(9)}, v_{n}^{(1)} \in H_{V}^{(1)}, v_{n}^{(2)} \in H_{V}^{(2)}$, where
$F^{(1)}\left(v_{n}^{(1)}, v_{n}^{(3)}\right)=\Theta ;$
$F^{(2)}\left(v_{n}^{(1)}, v_{n}^{(2)}, v_{n}^{(3)}\right)=\theta_{;}$
$F^{(3)}\left(v_{n}^{(1)}, v_{n}^{(2)}\right) \triangleq \Delta_{n}\left(v_{n}^{(3)}\right)$.

The process terminates if $\left\|\Delta_{n}\right\|<\varepsilon^{*}$ holds. The $N\left(\varepsilon^{*}\right) \triangleq n$ iterations done yield a so-called ε^{*}-approximating solution $v \triangleq\left\langle v_{n}^{(1)}, v_{n}^{(2)}, v_{n}^{(3)}\right)$ satisfying inequality $\|\bar{F}(v)\|<\varepsilon$ for the system of equations $\bar{F}(v)=@$ (cf. (3.3) above).

Step 4: Calculate the computational approximation of the Jacobian matrix of the mapping $\Delta_{n}: V_{n}^{(3)} \Rightarrow R^{4}$ defined in an appropriately small (e.g., with radius $2 \rho^{*}$) vicinity $V_{n}^{(3)} \subseteq H_{\nabla}^{(3)} \subseteq R^{4}$ of point $v_{n}^{(3)} \in H_{\nabla}^{(3)}$ at $v_{n}^{(3)}$. The (i, j)th entry of the 4×4 Jacobian matrix J_{n} is the first partial derivative of the i th component of mapping Δ_{n} with

When actually solving the problem, we first studied the actual structure of the model and then modified and rationalized the steps of the general algorithm so that the computation became easier. ${ }^{5}$ Now we present details of these modifications.

The first significantly special feature of the model is that the subproblem (3.4). which is to be solved in Step 1, is in principle analogous to the original problem (3.1). Observe that (3.1) requires that we find an element $\nu \in R^{465}$, which can be obtained by solving the system of equations $F\left(u_{0}, v\right)=0$ with a given element $u \triangleq u_{0} \in R^{1239}$; and (3.4) requires that we find an element $v_{n}^{(1)} \in R^{20}$, which can be obtained by solving the system of nonlinear equations $F^{(1)}\left(v^{(1)}, v_{n}^{(3)}\right)=$ © with a given element $v^{(3)} \triangleq v_{n}^{(3)} \in R^{4}$. From this it follows directly that, bearing in mind the structure of the system of equations, we need an appropriate decomposition method for solving subproblem (3.4). Using the notation $\bar{F}^{(1)}\left(v^{(1)}\right) \triangleq F^{(1)}\left(v^{(1)}, v_{n}^{(3)}\right)$ and $v^{(1)} \triangleq\left(v^{(1,1)}, v^{(1,2)}, v^{(1,3)}, v^{(1,4)}\right)$, we need to solve the equation $\bar{F}^{(1)}\left(v^{(1)}\right)=\Theta$ (this problem is shown in Table 4). To solve it we must, for example, obtain the components of solution $v^{(1)}$:

$$
\begin{gathered}
v^{(1,1)} \triangleq\left(\alpha, \bar{P}^{D I}\right) \in R^{2 n ;} \\
v^{(1,2)} \triangleq\left(Q, \frac{\partial F}{\partial L}, \frac{\partial F}{\partial K}, S\right) \in R^{4 n ;} \\
v^{(1,3)} \triangleq\left(m_{r}, m_{d}, P^{D}\right) \in R^{3 n ;} \\
v^{(1,4)} \triangleq\left(P, P_{n+1}\right) \in R^{n+1}
\end{gathered}
$$

This method is an iterative algorithm whose "scheme" is shown in Table 5.

[^4]| $F^{(1)}: H_{\nabla}^{(1)} \times H_{\nabla^{(8)}}^{(1)} \rightarrow \theta \in R^{11 n+1}$ | a | $\bar{P}^{D J}$ | F | Q | $\frac{\partial F}{\partial L}$ | $\frac{\partial \bar{F}}{\partial K}$ | S | m_{T} | m_{d} | P^{D} | P | P_{n+1} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f{ }^{(1)}(\alpha)=0$ | | | | | | | | | | | | |
| $f^{(1)}\left(\alpha, \bar{P}^{\text {D }}\right)=0$ | | | | | | 8 | | | 0 | | 2 | |
| $f f^{(1)}(W)=0$ | | | | | | | | | | | | |
| $f{ }^{(1)}\left(Q, P_{n+1}\right)=0$ | | | | | | | | | | | | 1 |
| $f \delta^{(1)}\left(W, Q, \frac{\partial F}{\partial L}\right)=0$ | | | | | 1 | | | | 8 | | | |
| $f_{\delta^{(1)}}\left(W, Q, \frac{\partial F}{\partial K}\right)=0$ | | | \rangle | | | | | | | | | |
| $f^{(1)}\left(Q, \frac{\partial F}{\partial K^{\prime}} S\right)=0$ | | | | | | 8 | | | | | | |
| $f f^{(1)}\left(m_{r}, P\right)=0$ | | | | | | | | | | | | |
| $f f^{(1)}\left(m_{d}, P\right)=0$ | | 8 | | | 8 | | | | | | | |
| $f(f)\left(P^{D}, P, m_{7}, m_{d}\right)=8$ | | | | | | | | | $\$$ | | | |
| $f\left(\frac{1}{}{ }^{\prime}\left(P^{D}, P, P^{D I}, S\right)=0\right.$ | | δ | | | , | | | | | | | |
| $f\left(\mathbb{E}\left(P_{n+1}, P^{D}, P^{D I}\right)=0\right.$ | | \longrightarrow | | | | | | | | \sim | | - |

Table 4.

$k \in K^{(1)}$	$\bar{F}^{(1)}: H_{\eta^{(1)} \rightarrow R^{11 n+1}}$	$v^{(1,1)}$	$v^{(1,2)}$	$v^{(1,3)}$
$K^{(1,1)}$	$F^{(1,1)}\left(v^{(1,1)}\right)=\Theta$			
$K^{(1,2)}$	$F^{(1,2)}\left(v^{(1,1)}, v^{(1,2)}, v^{(1,4)}\right)=\theta$			
$K^{(1,5)}$	$F^{(1,3)}\left(v^{(1,3)}, v^{(1,4)}\right)=\theta$			
$K^{(1,4)}$	$F^{(1,4)}\left(v^{(1,1)}, v^{(1,2)}, v^{(1,3)}, v^{(1,4)}\right)=\theta$			

Table 5.

Given an initial value $v^{(1,4)} \triangleq v \delta^{(1,4)}$ and an error parameter ε_{1}^{*}, the method involves the following steps:
Step 1.1: Obtain a solution $v^{(1,1)}=v_{m}^{(1,1)}$ to the equation $F^{(1,1)}\left(v^{(1,1)}\right)=\Theta$
Step 1.2. On obtaining $v_{m}^{(1,4)}$ and $v_{m}^{(1,1)}$, obtain a solution $v^{(1,2)} \triangleq v_{m}^{(1,2)}$ to the equation $F^{(1,3)}\left(v_{m}^{(1,1)}, v^{(1,2)}, v_{m}^{(1,4)}\right)=0$.

Step 1.3. Obtain a solution $v^{(1,3)} \triangleq v_{m}^{(1,3)}$ to the equation $F^{(1,3)}\left(v^{(1,3)}, v_{m}^{(1,4)}\right)=\Theta$.
Step 1.4: Obtain a value $\Delta_{m}^{(1)} \triangleq F^{(1,4)}\left(v_{m}^{(1,1)}, v_{m}^{(1,2)}, v_{m}^{(1,3)}, v_{m}^{(1,4)}\right) \in R^{11 n+1}$. If $\left\|\Delta_{m}^{(1)}\right\| \leqq \varepsilon_{(1)}^{*}$, then the process terminates; and, having performed $M\left(\varepsilon^{*}\right) \triangleq m$ iterations, it yields an $\varepsilon_{(1)}^{*}$-approximating solution $v^{(1)} \triangleq\left(v_{m}^{(1,1)}, v_{m}^{(1,2)} \cdot v_{m}^{(1,3)}, v_{m}^{(1,4)}\right)$ to the equation $F^{(1)}\left(v^{(1)}\right)=0$. If
$\left\|\Delta_{m}^{(1)}\right\|>\varepsilon_{(1)}^{*}$, then obtain a value $v_{m+1}^{(1,4)} \in R^{20}$ and continue to the steps below.

Step 1.5: Obtain the Jacobian matrix J_{m} of the mapping $\Delta^{(1)}: R^{20} \rightarrow R^{20}$ at the point $v_{m}^{(1,4)}$. (Use Steps 1.1-1.4.)
Step 1.6: Obtain a value $v_{m}^{(1,4)}$ by the formula $v_{m+1}^{(1,4)} \triangleq v_{m}^{(1,4)}-J_{m}^{-1} \Delta_{m}^{(1)}$ according to Newton's iteration process. In order that the process should terminate in finitely-many steps, besides checking the inequality $\left\|\Delta_{m}^{(1)}\right\|<\varepsilon_{(1)}^{*}$ in Step 1.4 , check whether or not the following inequalities hold:

$$
\left\|\Delta_{m+1}^{(1)}\right\| \leqq\left\|\Delta_{m}^{(1)}\right\|
$$

and

$$
\left\|\Delta_{m}^{(1)}+1\right\| /\left\|\Delta_{m}^{(1)}\right\| \geqq\left(1-\varepsilon_{(1)}^{* *}\right) .
$$

However, as is frequently the case, there is still "a fly in the ointment":
-- First, at each iteration ($m \leqq M\left(\varepsilon^{*}\right)$) the system of nonlinear equalities $F^{(1,3)}\left(v^{(1,3)}, v_{m}^{(1,4)}\right)=\Theta$ must be solved. Since this system is fairly large, consisting of $3 n=57$ nonlinear equalities in unknown $v^{(1,3)} \in R^{57}$, it might seem doubtful whether it is possible to find an effective solution technique.
-- Second, though this is not so important, to perform Step 1.5, i.e., to obtain a matrix approximating the Jacobian matrix J_{m}, we must perform the computation in Steps 1.1-1.4 for $n+1=20$ initial values at each ($m=0,1, \ldots, M$) iteration. And this means that, to solve subproblem $F^{(1)}\left(v^{(1)}\right)=0$, we must solve the system of equations in 57 un knowns at least $(n+2) M\left(\varepsilon_{(1)}^{*}\right)$ times. Considering that this algorithm is a "subroutine" of the original problem (3.1), we must therefore solve the system of equations in 57 unknowns at least $5 \cdot N\left(\varepsilon^{*}\right)(n+2) M\left(\varepsilon_{(1)}^{*}\right)$ times during the tentative computation, causing a considerable increase in the run time required for the solution.

These two observations forced us to examine the question of how to find an "efficient" computational algorithm for performing Step 1. (We do not propose to discuss the details of this mathematical investigation here.)

After due consideration, we chose a method different from the decomposition technique represented by Steps 1.1-1.6 and developed for solving subproblem (3.4). This alternative approach is due to Andras Por, who, having done some computation with models similar to the one we were actually studying, ${ }^{6}$ called our attention to some remarkable methods of reduction. Namely, using Banach-Tychonow's fixed-point theorem, one can see that the solution of the system of equations $F^{(1)}\left(v^{(1)}\right)=\Theta$ can be based on the contractive property of the mapping $\Delta^{(1)}: R^{n+1} \rightarrow R^{n+1}$ defined by implicit functions $v^{(1,2)}: R^{n+1} \rightarrow R^{4 n}, v^{(1,3)}: R^{n+1} \rightarrow R^{3 n}$ and the mapping $F^{(1,4)}: R^{11 \pi+1} \rightarrow R^{n+1}$. Thus we solve the problem in Step 1 using an iterative process with an initial value $v^{(1,4)}=v_{\delta}^{(1,4)}$ chosen appropriately. Using the values $v_{m}^{(1,1)}, v_{m}^{(1,2)}, v_{m}^{(1,3)}$ obtained in Steps 1.1-1.3 and using the element $v^{(1,4)} \triangleq v_{m}^{(1,4)} \in R^{n+1}$, the m th iteration obtains the element $v_{m}^{(1,4)} \triangleq 1 \triangleq F^{(1,4)}\left(v_{m}^{(1,1)}, v_{m}^{(1,2)}, v_{m}^{(1,3)}, v_{m}^{(1,4)}\right)$.

The solution of the problem in Step 2 is not difficult since, using the notation $\bar{F}^{(2)}\left(v^{(2)}\right) \triangleq F^{(2)}\left(v_{\pi}^{(1)}, v^{(2)}, v^{(3)}\right)$, the system of equations has the form $\bar{F}^{(2)}\left(v^{(2)}\right)=\Theta$; and, being a system of linear equations, this system can be solved by inverting its coefficient matrix.

When implementing the tentative computation, we utilized the fact that the matrix representation of the linear mapping $\bar{F}^{(2)}: R \rightarrow R$, which is presented in Table 2 , contains a lot of empty cells with a special structure (a quasitriangular matrix). Using the Gaussian elimination method, we reduced the solution of the system of linear equations $\bar{F}^{(2)}\left(\nu^{(2)}\right)=0$ to inverting an $(n+1) \times(n+1)$ matrix.

We do not wish to describe here the more trivial steps of the computation. Note, however, that some reduction can be achieved in the method used for the tentative computation by modifying it further. ${ }^{7}$ We have not ourselves

[^5]implemented these modifications to date, since we do not think that the computation time needed to perform Step 2 is unduly long in comparison with the total computation time for the algorithm. But if others wish to develop or extend the model, or to develop a dynamic version of it, they should carefully consider the efficiency of the solution techniques used and then take into account the further reduction possibilities mentioned above.

The solution algorithm outlined above, as we have explained, exploits to a great extent the special mathematical features of the model. It is in general a rather difficult problem to check whether a large computable general equilibrium model has any solution, and if so, whether it is unique or not. There are no efficient global algorithms yet available, unlike the situation for linear programming models. The development of special solution algorithms for a particular class of models therefore seemed the most suitable approach.

Despite the model-specific feature of the solution algorithm discussed, it still allows for several modifications of the model specification. Some of these necessitate minor revisions of the algorithm. We will not discuss here the various alternative speifications that can be solved by the same algorithm, but we will illustrate the possible extension of the algorithm with just one example.

In some simulations based on the discussed model, the ruble trade flows ($Z_{i r}, M_{i r}$, and $\bar{M}_{i r}$) were held constant. This meant that these variables became constant parameters, and consequently some equations had to be dropped, while others assumed an altered meaning. The real problem, which made it impossible to use directly the algorithm described above, was caused by the change in the determination of the ruble import share variables ($m_{i r}$ and α_{i}). These were no longer relative price dependent variables; and therefore it was no longer possible to determine their values, simultaneously with those of the relative prices, in Step 1. But, fortunately, minor revision of the algorithm and the use of simple iteration techniques were enough to overcome this problem. Starting with some initial values for these share variables, we constantly updated them after each step of a full iteration and terminated the process with additional constraints that assured their convergence.

[^6]Thus, the above example shows that the simple algorithm developed can be modified even for some cases that basically alter the mathematical structure of the model. These possibilities are, however, limited. Therefore, there is still a great need for the development of more general, global, and at the same time efficient techniques.

RHFERENCES

Augusztinovics, M. (1981). National Economic Model Computation in the Development of the 6th Five-Year Plan. Srgma, 14 (4). (In Hungarian.)
Bergman, L. and A. Por (1980). A Quantitative General Equilibrium Model of the Swedish Economy. WP-80-4. International Institute for Applied Systems Analysis, Laxenburg, Austria.
Boda, Gy., I. Csekö, F. Hennel, L. Lászlo, and S. Povilaitis (1982). Input-Output System of a General Equilibrium Model. OT Tervgazdasági Intézet-SzK, Budapest. (In Hungarian: mimeo.)
Dervis, K., J. de Melo, and S. Robinson (1982). Planning Models and Development Policy. Cambridge University Press, London.
Dixon, P.B., B.R. Parmenter, J. Sutton, and D.P. Vincent (1982). ORANI, A Multisectoral Model of the Australian Economy. North-Holland, Amsterdam.
Ginsburgh, V. and J. Waelbroeck (1981). Activity Analysis and General Equilibrium Modeling. North-Holland, Amsterdam.
Johansen, L. (1959). A Multi-Sectoral Study of Economic Grouth. NorthHolland, Amsterdam. (2nd revised and enlarged edition, 1974.)
Kelley, A.C., W.C. Sanderson, and J.G. Williamson (Eds.) (1983). Kodeling Growing Economies in Equilibrium and Disequilibrium. Duke University Press, Durham, North Carolina.
Kornai, J. (1974). Mathematical Planning of Structural Decisions. NorthHolland, Amsterdam.
Manne, A.S. (1974). Multisector Models for Development Planning: A Survey. Journal of Development Economics, 1: 43-69.

Manne, A.S., H. Chao, and R. Wilson (1980). Computation of Competitive Equilibria by a Sequence of Linear Programs. Econometrica, November.
Ortega, J.M. and W.C. Rheinboldt (1970). Iterative Solutions of Nonlinear Equations in Several Variables. Academic Press, New York.
Pór, A., J. Sivák, and E. Zalai (1982). Application of Equilibrium Programming for Solving Economic Models. 12th Conference on Operations Research, Köszeg, Hungary. (ln Hungarian.)
Scarf, H. (with the collaboration of T. Hansen) (1973). The Computation of Economic Equilibria. Yale University Press, New Haven, Connecticut.
Taylor, L. (1975). Theoretical Foundations and Technical Implications. In C.R. Blitzer, P.C. Clark, and L. Taylor (Eds.), Economy-Wide Models and Development Planning. Oxford University Press, Oxford.
Zalai, E. (1980). A Nonlinear Multisectoral Model for Hungary: General Equilibrium Versus Optimum Planning Approach. WP-80-148. International Institute for Applied Systems Analysis, Laxenburg, Austria.

APPENDIX I: FORMAL STATEMENT OF THE MODEL

Endogenous Variables	
X_{j}	gross output in sector $j=1,2, \ldots, n$
$M_{i r}, M_{i d}$	competitive ruble and dollar import of commodity $i=1,2, \ldots, n$
$X_{i j}$	use of domestic-import composite commodity $i=1,2, \ldots, n$ in sector $j=1,2, \ldots n, n+1$
$Z_{i}, Z_{i r}, Z_{i d}$	total, ruble, and dollar export of commodity i
X_{n+1}	total gross investments
I	total net investments at base price level
$\bar{M}_{i}, \bar{M}_{i r}, \bar{M}_{i d}$	total, ruble, and dollar noncompetitive import of commodity $i=1,2, \ldots, n$
$\bar{M}_{i j}$	use of noncompetitive import commodity $i=1,2, \ldots, n$ in sector $j=1,2, \ldots, n, n+1$
\bar{C}_{i}	total private and public consumption of noncompetitive import commodity $i=1,2, \ldots, n$
K_{j}	capital used in sector $j=1,2, \ldots, n$
L_{j}	labor employed in sector $j=1,2, \ldots, n$
S_{j}	(optimal) user cost of labor and capital per unit of output in sector $j=1,2, \ldots, n$

W_{j}	user cost of labor in sector $j=1,2, \ldots, n$
W	net rate of return requirement (tax) on labor
Q_{j}	user cost of capital in sector $j=1,2, \ldots, n$
R	net rate of return requirement (tax) on capital
\bar{m}_{i}	share of ruble import in total noncompetitive import of commodity $i=1,2, \ldots, \pi$
$m_{i r}, m_{i d}$	proportions of competitive ruble and dollar imports of commodity $i=1,2, \ldots, n$
P_{j}	domestic seller price of commodity $j=1,2, \ldots, n$ produced
$P_{j d}^{E}$	dollar export price of commodity $j=1,2, \ldots, n$
V_{r}, V_{d}	exchange rate of rubles and dollars
$\bar{P}_{i}^{D I}$	average domestic price of noncompetitive import of commodity $i=1,2, \ldots, n$
$P_{i}{ }^{D}$	average price of domestic-import composite commodity $i=1,2, \ldots, n$
E	total consumption expenditure
$E E$	excess expenditure level
C	total consumption at base price level

Exogenous Variables and Parameters

s_{j}	capital replacement rate in sector $j=1,2, \ldots, n$
δ_{j}	depreciation rate in sector $j=1,2, \ldots, n$
K	total capital stock
L	total labor
$Z_{i d}^{o}, Z_{i r}^{o}$	parameters in the export functions
$\varepsilon_{i r}, \varepsilon_{i d}$	negative reciprocal of dollar export demand elasticities in λ_{i}
$P_{i d}^{W E}, P_{i r}^{W E}$,	wector $i=1,2, \ldots, n$ $P_{i d}^{W I}, P_{i r}^{W I}$,
$\bar{P}_{i d}^{W I}, \bar{P}_{i r}^{W I}$	(ruble-dollar, competitive-noncompetitive import)
D_{d}, D_{r}	target surplus or deficit on dollar and ruble foreign trade balance input coefficient of domestic-import composite commodity
$a_{i j}$	i $=1,2, \ldots, n$ in sector $j=1,2, \ldots, n, n+1$

$\bar{m}_{i}^{0}, \rho_{i}$
$m_{i r}^{0}, m_{i d}^{0}$
$\mu_{i r}, \mu_{i d}$
b_{i}, \bar{b}_{i}
c_{i}, \bar{c}_{i}
σ
w_{j}
parameters in the determination of the area composition of the noncompetitive import of commodity $i=1,2, \ldots, n$
parameters in the import functions, $i=1,2, \ldots, n$
$\mu_{i r}, \mu_{i d}$
fixed (base) amount of total consumption of commodity $i=1,2, \ldots, n$
fixed structure of excess consumption of commodity $i=1,2, \ldots, n$
real consumption net investment ratio
wage coefficient in sector $j=1,2, \ldots, n$

Balancing Equations

Intermediate Commodities

$$
\begin{align*}
& X_{i}+M_{i r}+M_{i d}=\sum_{j=1}^{n+1} X_{i j}+C_{i}+Z_{i r}+Z_{i d} \quad i=1,2, \ldots, n \tag{1}\\
& X_{n+1}=\sum_{j=1}^{n} s_{j} K_{j}+I \tag{2}
\end{align*}
$$

Noncompetitive Imports

$$
\begin{equation*}
\bar{M}_{i}=\sum_{j=1}^{n+1} \bar{M}_{i j}+\bar{C}_{i} \quad i=1,2, \ldots, n \tag{3}
\end{equation*}
$$

Primary Factors

$$
\begin{align*}
& K=\sum_{j=1}^{n} K_{j} \tag{4}\\
& L=\sum_{j=1}^{n} L_{j} \tag{5}
\end{align*}
$$

Trade Balances

$$
\begin{align*}
& \sum_{i=1}^{n}\left(\frac{Z_{i d}^{0}}{Z_{i d}}\right)^{M_{i}} P_{i d}^{M} Z_{i d}-\sum_{i=1}^{n} P_{i d}^{W I} M_{i d}-\sum_{i=1}^{n} \bar{P}_{i d}^{W I} \bar{M}_{i d}=D_{d} \tag{6}\\
& \sum_{i=1}^{n} P_{i r}^{W E_{Z_{i r}}}-\sum_{i=1}^{n} P_{i r}^{W I} M_{i r}-\sum_{i=1}^{n} \bar{P}_{i r}^{W I} \bar{M}_{i r}=D_{T} \tag{7}
\end{align*}
$$

Technological Choice

$$
\begin{align*}
& X_{j}=F_{j}\left(L_{j}, K_{j}\right)=\zeta_{j} L_{j}^{\xi_{1}} K_{j}^{1-\xi_{j}} \quad j=1,2, \ldots, n \tag{8}\\
& X_{i j}=\alpha_{i j} X_{j} \quad i=1,2, \ldots, n \quad j=1,2, \ldots, n, n+1 \tag{9}\\
& \bar{M}_{i j}=\bar{m}_{i j} X_{j} \quad i=1,2, \ldots, n \quad j=1,2, \ldots, n, n+1 \tag{10}
\end{align*}
$$

$$
\begin{array}{ll}
S_{j} \frac{\partial F_{j}}{\partial L_{j}}=W_{j} & j=1,2, \ldots, n \\
S_{j} \frac{\partial F_{j}}{\partial K_{j}}=Q_{j} & j=1,2, \ldots, n \tag{12}
\end{array}
$$

Import and Export Functions
Noncompetitive Imports

$$
\begin{align*}
& \bar{m}_{i}=\dot{\bar{m}}_{i}^{\circ}\left[\frac{V_{d} \bar{P}_{i d}^{W I}}{V_{\tau} \bar{P}_{i r}^{W I}}\right]^{\rho_{i}} \quad i=1,2, \ldots, n \tag{13}\\
& \bar{M}_{i r}=\bar{m}_{i} \bar{M}_{i} \quad i=1,2, \ldots, n \tag{14}\\
& \bar{M}_{i d}=\left(1-\bar{m}_{i}\right) \bar{M}_{i} \quad i=1,2, \ldots, n \tag{15}
\end{align*}
$$

Competitive Imports

$$
\begin{align*}
& m_{i r}=m_{i r}^{0}\left[\frac{P_{i}}{V_{T} P_{i r}^{W I}}\right)^{\mu_{i r}} \quad i=1,2, \ldots, n \tag{16}\\
& m_{i d}=m_{i d}^{0}\left(\frac{P_{i}}{V_{d} P_{i d}^{W I}}\right)^{\mu_{i d}} \quad i=1,2, \ldots, n \tag{17}\\
& M_{i r}=m_{i r}\left(X_{i}-Z_{i}\right) \quad i=1,2, \ldots, n \tag{18}\\
& M_{i d}=m_{i d}\left(X_{i}-Z_{i}\right) \quad i=1,2, \ldots, n \tag{19}
\end{align*}
$$

Exports

$$
\begin{align*}
& Z_{i}=Z_{i r}+Z_{i d} \quad i=1,2, \ldots, n \tag{20}\\
& Z_{i r}=Z_{i r}^{0}\left(\frac{P_{i}}{V_{r} P_{i r}^{W E}}\right)^{\varepsilon_{r}} \quad i=1,2, \ldots, n \tag{21}\\
& Z_{i d}=Z_{i d}^{0}\left(\frac{P_{i}}{V_{d} P_{i d}^{W E}}\right)^{\varepsilon_{l d}} \quad i=1,2, \ldots, n \tag{22}
\end{align*}
$$

Final Demand Equations

$$
\begin{align*}
& C_{i}=b_{i}+\frac{c_{i}}{\sum_{i=1}^{n} P_{i} c_{c_{i}}} E E \quad i=1,2, \ldots, n \tag{23}\\
& \bar{c}_{i}=\bar{b}_{i}+\frac{\bar{c}_{i}}{\sum_{i=1}^{n} \bar{P}_{i}^{D I} \bar{c}_{i}} E E \quad i=1,2, \ldots, n \tag{24}
\end{align*}
$$

$$
\begin{align*}
& E E=E-\sum_{j=1}^{n}\left(P_{j}^{D} b_{j}+\bar{P}_{j}^{D I} \bar{b}_{j}\right) \tag{25}\\
& C=\sum_{i=1}^{n} C_{i}+\sum_{i=1}^{n} \bar{C}_{i} \tag{26}\\
& C-\sigma \cdot I=0 \text { or } I=\bar{I} \tag{27}
\end{align*}
$$

Prices and Costs

$$
\begin{align*}
& W_{j}=(1+W) w_{j} \quad j=1,2, \ldots, n \tag{28}\\
& Q_{j}=\left(\delta_{j}+R\right) P_{n+1} \quad j=1,2, \ldots, n \tag{29}\\
& P_{n+1}=\sum_{i=1}^{n} P_{i} D_{a_{i, n+1}}+\sum_{i=1}^{n} \bar{P}_{i} D I \bar{m}_{i, n+1} \tag{30}\\
& \bar{P}_{i}^{D I}= \bar{m}_{i} V_{r} \bar{P}_{i r}^{W I}+\left(1-\bar{m}_{i}\right) V_{d} \bar{P}_{i d}^{W I} \quad i=1,2, \ldots, n \tag{31}\\
& P_{j}= \sum_{i=1}^{n} P_{i} D_{a_{i j}}+\sum_{i=1}^{n} \bar{P}_{i}^{D I} \bar{m}_{i j}+s_{j} \quad j=1,2, \ldots, n \tag{32}\\
& P_{i}^{D}= \frac{1}{1+m_{i d}+m_{i r}} P_{i}+\frac{m_{i d}}{1+m_{i d}+m_{i r}} V_{d} P_{i d}^{W I} \tag{33}\\
&+\frac{m_{i r}}{1+m_{i d}+m_{i r}} V_{r} P_{i r}^{W I} \quad i=1,2, \ldots, n
\end{align*}
$$

APPEADIX I: MATHEMATICAL TRANSFORMATION OF THE PRODUCTION RELATIONS

Consider the economic interpretation of the equalities $X_{j}=F_{j}\left(L_{j}, K_{j}\right)$ ($j=1,2, \ldots, n$) (these equalities are denoted by (8) in the description of the model). The j th equality, which is called the production function, represents the relations between the output (X_{j}) of the j th "producer"--in this case, of the " j th coordination sector"--the labor (L_{j}) employed to obtain this output, and the capital (K_{j}) used in sector j. To study the consequences of the theoretical assumptions behind the production function, we need to discuss the mathematical specification of the mapping $F_{j}: R_{+}^{2} \rightarrow R_{+}$in (8).

To make the implementation of the model easier, we restrict our investigation to "production relations" that can be represented by first-order homogeneous functions, F_{j}, and we use Cobb-Douglas-type functions F_{j} in the first tentative computations. Thus we assume that (8) has the form

$$
\begin{align*}
& X_{j}=\zeta_{j} L_{j}^{\xi_{j}} K_{j}^{\left(1-\xi_{j}\right)} \\
& (j=1,2, \ldots, n) \tag{F.1}
\end{align*}
$$

where ζ_{j} and $\xi_{j}(j=1,2, \ldots, n)$ are real parameters such that $\zeta_{j}>0$ and $0 \leqq \xi_{j} \leqq 1$.

We now examine the "behavioral" rules of the j th producer. Symbols W_{j} and $Q_{j}(j=1,2, \ldots, n)$ denote the j th producer's costs per unit of output when it employs labor

$$
l_{j}=\frac{L_{j}}{X_{j}}(j=1,2, \ldots, n)
$$

and uses capital

$$
\begin{equation*}
k_{j}=\frac{K_{j}}{X_{j}}(j=1,2, \ldots, n) \tag{F.2}
\end{equation*}
$$

respectively. (Here we utilize the fact that the function specified by (F.1) is a first-order homogeneous function.) Therefore the j th producer's cost is $l_{j} W_{j}+k_{j} Q_{j}$ per unit of output. Producer j 's wish to minimize its cost, bearing in mind equalities (F.1) and (F.2), can thus be represented by the following problem:

$$
l_{j} W_{j}+k_{j} Q_{j} \rightarrow \min
$$

subject to

$$
\begin{equation*}
1=\zeta_{j} l_{j}^{\xi_{j}} k_{j}^{\left(1-\xi_{j}\right)} \tag{F.3}
\end{equation*}
$$

The behavior of producer j is said to be rational if it chooses the minimum expenditures L_{j}, K_{j} for producing its gross production X_{j}; i.e., if \underline{l}_{j} and \underline{k}_{j} denote the solution to problem (F.2), the equalities

$$
\begin{align*}
& L_{j}=\underline{l}_{j} X_{j} \quad(j=1,2, \ldots, n) \\
& K_{j}=\underline{k}_{j} X_{j} \quad(j=1,2, \ldots, n) \tag{F.4}
\end{align*}
$$

hold. The consequence of such behavior can be seen in the solution of problem (F.3).

Problem (F.3) can be solved by the Lagrange multiplier method. After simple computation, we obtain

$$
\begin{align*}
& \underline{L}_{j}=\left(\frac{W_{j}\left(1-\xi_{j}\right)}{Q_{j} \xi_{j}}\right)^{\xi_{j}} \quad(j=1,2, \ldots, n) \\
& \underline{k}_{j}=\left(\frac{W_{j}\left(1-\xi_{j}\right)}{Q_{j} \xi_{j}}\right)^{\left(1-\xi_{j}\right)} \quad(j=1,2, \ldots, n) \tag{F.5}
\end{align*}
$$

The partial differentiation of equalities (8) with respect to L_{j} and K_{j} yields

$$
\frac{\partial F_{j}}{\partial L_{j}}=\zeta_{j} \xi_{j}\left(\frac{1-\xi_{j}}{\xi_{j}}\right)^{\left(1-\xi_{j}\right)}\left[\frac{W_{j}}{Q_{j}}\right)^{\left(1-\xi_{j}\right)}
$$

and

$$
\begin{equation*}
\frac{\partial F_{j}}{\partial K_{j}}=\zeta_{j}\left(1-\xi_{j}\right)\left(\frac{\xi_{j}}{1-\xi_{j}}\right]^{\xi_{j}}\left(\frac{Q_{j}}{W_{j}}\right)^{\xi_{j}} \tag{F.6}
\end{equation*}
$$

respectively: moreover it yields the relations

$$
L_{j} \frac{\partial F_{j}}{\partial L_{j}}=\xi_{j} X_{j}
$$

and

$$
K_{j} \frac{\partial F_{j}}{\partial K_{j}}=\left(1-\xi_{j}\right) X_{j}
$$

From (F.6) and the two latter relations, we obtain

$$
\begin{align*}
& L_{j}=\xi_{j} X_{j} / \frac{\partial F_{j}}{\partial L_{j}}(j=1,2, \ldots, n) \tag{F.7}\\
& K_{j}=\left(1-\xi_{j}\right) X_{j} / \frac{\partial F_{j}}{\partial K_{j}}(j=1,2, \ldots, n)
\end{align*}
$$

It is known from the specification of the model that variable $S_{j}(j=1,2, \ldots, n)$, the user cost of labor and capital per unit of output in sector j, can be defined by equalities $S_{j}=W_{j} L_{j}+Q_{j} K_{j}(j=1,2, \ldots, n)$; and thus, assuming that the production functions $F_{j}(j=1,2, \ldots, n)$ are first-order homogeneous functions and therefore that equalities (11) and (12) hold, we need only the equalities

$$
\begin{equation*}
S_{j}=Q_{j} / \frac{\partial F_{j}}{\partial K_{j}}(j=1,2, \ldots, n) \tag{F.B}
\end{equation*}
$$

derived from (12). Thus, substituting the equalities (8), (11), and (12) in the original specification by the equalities (F.6), (F.7), and (F.B) obtained above, respectively, we obtain the system of equations on which our computation was based.

[^0]: ${ }^{1}$ See, for exarn ple, Kornai (1874), Manne (1874), and Taylor (1975) on the use of these models in planning.

[^1]: ${ }^{2}$ See, for example, Manne et al. (1980), Ginsburgh and Waelbroeck (1981), and Por at al. (1982).

[^2]: ${ }^{3}$ See for example Ortega and Rheinboldt (1970).

[^3]: ${ }^{4}$ See Augusztinovics (1881). Boda et al. (1982) give a detailed description of the inputs of the model.

[^4]: 5 The method was implemented on the computer of OTSzK (the Computing Center of the Hungarian National Central Planning Board) by several colleagues, including Lajos Laszlo, Sigitas Povilaitis, and Laszlo Zeöld.

[^5]: ${ }^{6}$ See Bergman and Por (1980).
 $\mathbf{T}_{\text {The modifications that either were applied or could be applied in the future were pointed out and }}$

[^6]: built into the computer program of the model by Lajos Laszlo and Sigitas Povilaitis.

