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PREFACE

In this paper, the authors discuss the theory of star-
shaped sets and its uses in studying some important classes
of nondifferentiable functions. This theory seems to provide
tools capable of dealing with many important problems in non-
smooth analysis.

This paper is a contribution to research on nondif-
ferentiable optimization currently underway within the System
and Decision Sciences Program.

ANDRZEJ WIERZBICKI
Chairman
System and Decision Sciences
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THE SPACE OF STAR-SHAPED SETS AND ITS
APPLICATIONS IN NONSMOOTH OPTIMIZATION

A.M. RUBINOV AND A.A. YAGUBOV

Institute for Social and Economic Problems, USSR Academy
of Setences, ul. Voinova 50-a, Leningrad 198015, USSR
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The study of quasidifferentiable functions is based
on the properties of the space of convex sets. One very
important concept in convex analysis is that of the gauge
of a set. However, the definition of a gauge does not
require convexity, and therefore the notion of a gauge
can be extended beyond convex sets to a much wider class
of sets. In this paper the authors develop a theory of
gauge functions and study some properties of star-shaped
sets. The results are then used to study nonsmooth ex-
tremal problems (of which problems involving quasidif-

ferentiable functions represent a special class).

Key words: Gauge, Star-Shaped Sets, Positively Homo-
geneous Functions, Directional Derivatives, Nonsmooth
Optimization, Quasidifferentiable Functions, Necessary

Conditions.

1. Introduction

One very important concept in subdifferential calculus is
that of Minkowski duality, through which every convex compact
set is associated with a specific support funetion. The study of
quasidifferentiable functions (see [1-3]) is essentially based on
the properties of the space of convex sets. Making use of this
space, the sum of a convex function and a concave function can be

associated with every class of equivalent pairs of convex com-

pact sets.



The concept of a gauge (a guage function of a convex set
containing the origin [7]) is very important in convex analysis.
However, the definition of a guage does not require the corres-
ponding set to be convex but only to have a "star shape" with
respect to its "zero" (origin). For this reason the idea of a
gauge is not limited to convex sets, but can be applied to a much
wider class of sets altogether (correspondence between gauges
and these sets has long been recognized in the geometry of num-
bers [8]). When doing this it is convenient to consider only
those sets which are star-shaped with respect to their zero and
which have a continuous gauge. In the present paper, these sets
will be called star-shaped. It is possible to introduce al-
gebraic operations (called here inverse addition and inverse
multiplication by a nonnegative number) within this family of
sets in such a way that the natural correspondence between gauges
and star-shaped sets becomes an algebraic isomorphism. This
allows us to use the standard algebraic technique normally used
to construct the space of convex sets to build the space of
star-shaped sets. The duality between gauge functions and sup-
port functions (which holds in the convex case) allows us to
consider the polar operator as a linear mapping from the space
of star-shaped sets into the space of convex sets. It is then
possible to look at some problems previously studied using the
space of convex sets from a different, in some respects more
general, standpoint. This is particularly useful in quasidif-
ferential calculus.

In the first part of this paper we study star-shaped sets

and their gauges and the family of all star-shaped sets. Algebraic



operations and an order relation are introduced, and their pro-
perties are discussed. The properties of the mapping which
associates every star-shaped set with its gauge are also con-
sidered. We then define the space of star-shaped sets and study
its properties.

The second part of the paper is concerned with applica-
tions. Of particular importance is a geometrical interpretation
of the directional derivative and its application to quasidif-
ferentiable functions, and a definition of quasidifferentiable
mappings. We also discuss the asymptotic behavior of trajectories

which are generated by mappings with star-shaped images.

2. Star-shaped sets and gauges

Definition. A closed subset U of the n-dimensional space En
is called a star-shaped set if it contains the origin as an

interior point and every ray

L ={x [ 2 20} (x#0)
does not intersect the boundary of U more than once.

To justify the definition we shall show that a star-shaped
set U is star-shaped with respect to its zero, i.e., for all
pointsx € U the set U contains the interval [0,x] = {xx | x€[0,"1}.

Let us consider the set
u =unt ,
X X

where x # 0 . This set is closed since it is a subset of the



ray £x and the endpoints of the intervals adjoining it are the
boundaries of U. The fact that U is star-shaped implies either
that there is no adjoining interval (i.e., U, = £x) or that an

adjoining interval is unique and of the form
{vx | v € (v',+) ]} ,
where v' > 0. In this case UX = [0,v'x] .

The star-shape of U with respect to its zero follows im-
mediately from the above, and is equivalent to either of the
two relations

AUCU VA €[0,1] ;

AU D U Vi 21 .

Recall that a finite function f defined on E is called positively

homogeneous if

f(Ax) = Af(x) YA 20 .
Let Q be a set in En' 0 € int Q@ . The function
| x| = | x |Q = inf {A > 0 |x € AQ} (1)

is called the gauge of set Q (or the Minkowski gauge function).
If Q@ is convex then the gauge coincides with the gauge function
familiar from convex analysis; if Q is a ball then the gauge is

a norm corresponding to this ball.




Theorem 1. Let s be a functional defined on E . The following
propositions are then equtvalent:

(a) the funetional s is positively homogeneous, nonnegative
and continuous;

(b) s coincides with the gauge of a star-shaped set §, where

Q= {x | s(x) <1} .

Proof. (a) Let s be a positively homogeneous, nonnegative,
continuous functional and @ = {x | s(x) £ 1} . Then
| x |g = dinf (X >0 | s(x) <} = s(x) .

It is easy to check that the set Q is star-shaped.
(b) Let s coincide with the gauge of a star-shaped set Q.

Since Q is star-shaped the set

0 ={ix | x € Aq}
X

is a ray with vertex |x|x (where |- ) . This point

Q
belongs to Q and is a boundary point of Q if |x|#0 . Since
Q is closed then Q = {x | |x| < 1} .

It is clear that the gauge is both positively homogeneous
and nonnegative. Let us now show that the gauge is continuous.
Since the gauge is positively homogeneous it is enough to check
that the set B, = {x | | x| € 1} is closed and that the set

B, = {x | |x| < 1}-is open. However, B, must be closed since
it coincides with 2. Suppose now that B2 is not open, that
x € B, and that there exists a sequence {x,} such that

X, = X, |xk| > 1. Without loss of generality we can assume



i = - ¢ | =
that lim | xkl v 21 . Take y, xk/'}‘k| . Then ,ykl 1
and therefore Yy is a boundary point of Q@ . Since Y = x/v
then the point x/v is also a boundary point of Q@ . If x#0 it

follows that the ray £x intersects the boundary of Q at at least
two different points x/| x| and x/v , which is impossible.

If |x| = 0 then the ray Lx lies entirely in © and (from the
definition of "star-shaped") does not contain any boundary points
of . Thus the gauge of a star-shaped set must also be con-
tinuous and the theorem is proved.

Remark. Since the gauge is continuous and int Q coincides with
the set {x | |x| < 1} , Q must be regular, i.e., it coincides
with the closure of its interior.

Let us denote by S the set of all star-shaped subsets of
the space En’ and by K the family of all nonnegative, continuous,
positively homogeneous functions defined on En .

The following proposition may then be deduced:

Proposition 1. A mapping ¢ : S = K which associates a guage

with every star-shaped set is a bijection.
The set K is a cone in the space Co(En) of all continuous,
positively homogeneous functions defined on E. - Since every

function from C (En) is completely defined by its trace on the

0
unit sphere S, = {x € E | Ixl = 1} , where Ixl is the
euclidean normof x , the space C0 (En) can be identified with the
space C(S) of all functions which are continuous on S and the cone
K coincides with the cone of functions which are nonnegativeon S .

Assume that C(S) (and hence the cone K) are ordered in some natural

way: 3‘31 2 f2 A f1(x) 2 fz(x) Vx .



Let us introduce the following order relation (by anti-

inclusion) within the family S of all star-shaped sets:

Q if Q, CQ

o)
v

It follows immediately from the definition of a gauge
that the bijection Y which associates a gauge with every star-
shaped set is an isomorphism of ordered sets S and K . 1In other
words, relations @, C 2, and |x!1 > |xi2 Vx are eguivalent
i is the gauge of set Qi).

(where

The cone K is a lattice , i.e., if f1""’fm € K then functions

f and f defined by

f(x) = min fi(x), f(x) = max fi(x)
i i
also belong to K . Let fi be the gauge of a star-shaped set
0; - Then f is the gauge of the union & = U h and f is the
i
gauge of the intersection Q = N Qi . This follows from the
i
relations
{A >0|2€2Q}=U{) >0]x € A} (2)
i
{x >0]x €20}=n{} >0]|x € N (3)
i

which can be verified quite easily.
Thus, the union and intersection of a finite number of star-

shaped sets are themselves star-shaped sets. Furthermore, the union
coincides with the infimum and the intersection with the sup-

remum of these sets in lattice S .



Proposition 2. Let A be a set of indices and v, be a star-

shaped set with gauge |- If the funetion |x| = igi |x|a
is continuous, then it is the gauge of the set cl U Sa . If
the funetion |x| = Sép |x|a is finite and continuozs, then it
18 the gauge of theas?t N u, -

a

We shall prove only the first part of the proposition.
Since the function |x| = inf |x|a is continuous it follows from
a€A
Theorem 1 that this function is the gauge of some star-shaped

set @ . It is now not difficult to check that

Indeed, the continuity of functions |.| and

N implies that

int @ = {x | x| < 1} = {x | inf |x|a <1} = U int U,
) o

Therefore, taking into account the regularity of star-shaved

sets we get

f =cl int @ = cl U int U, =cl vy .
a a

This proves the first part of the proposition.

3. Addition and multiplication

The algebraic operations of addition and multiplication
by a nonnegative number have been introduced within the family
K of gauges of star-shaped sets in a natural way. We shall now

introduce corresponding operations within the family$S with the

help of isomorphism ¢ .



Let R €S8, X 2 0 . We shall describe the set A ® Q with

= i]. , where |. is the gauge of Q , as the

gauge |. 9 g
inverse product of set Q@ and number X .

which satisfies the relation

The set 91 53] Qz with gauge

where I.[i is the gauge of set 2, , is called the inverse sum
of the star-shaped sets 91 and Qz .

It follows from the definition that if A > 0 then
A0 0 =+~ @
x .

If A=0 then the set A © Q@ coincides with the entire space En .
We shall now describe inverse summation. To do this we

require the following elementary proposition.

Proposition 3. Let ayre--0dy be nonnegative numbers. Then

. 1
a, + ... +a = min max — a. (4)
. o, i
aiZO i i

Za.=1
i

(where it is assumed that 0/0 = 0).
If ai=0 Vi then (4) is trivial. Otherwise, for any set

{ai} such that o, 2 0, 2 a; = 1 there exists an index j such

that



m
and therefore max — a; 2 z a, - At the same time
i i k=1
m
max —— a; = z ay and this proves the proposition.
i ay k=1

Now let us consider star-shaped sets 91 and Qz with gauges

be the gauge of their

. respectively, and let |.

and |.
1 &P

inverse sum Q1 &b 92 . Then the following equality holds for every

Q

X :
x| = |x|g + x|, = min max J—|x|Q , —T%E'IXIQ =
1 2 0<as<1 o 1
= min max { |x]| v X)L, min |x| _ ,

0<a<1 ol (1=a) &, 0<a<1
where |. o is the gauge of set aQ1 N (1—a)Q2 . (It is assumed
that 0-Q = N aQ .)

a>0

Since the function is continuous it follows from Pro-

position 2 that

Q, ®9, =cl U [laQ N (1-a)2,] .
12 0<as1 1 2

Note that the role of zero (a neutral element) with respect
to summation in a "semilinear space" S is played by the space
En (since the gauge of En coincides with the identity zero). At
the same time, En is the smallest element of the ordered set S .

We shall now give some computational examples.
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Example 1. Consider the following rectangles in E; :

U=[-1r1] X [-212] ’
vy, = [=2X,2X] x [=Xx,A] .
Their inverse sum coincides with an octagon which is sym-

metric with respect to the coordinate axes. The intersection

of this octagon with the first quadrant has the vertices:

2A 2) A A 2 2
(0,00 (WO) ( T+2% -1+2>\) ’ (m ‘ m) ‘ (Osz)

Rectangles U and V., and their inverse sum are shown in Fig. 1.

1

The set U & V is shown in Fig. 2.

10
Example 2. Let U = {(x,y) € E2|y5;1} and V = {(x,y) € E2|xs 1}
The set U @ V is depicted in Fig. 3.

Example 3. Sets U and V are presented in Figs. 4(a) and 4(b),

respectively; the set U ® V coincides with the intersection of

U and V (see Fig. 4(c)).

4. The cone of star-shaped sets

We shall now describe the vector space generated by the
"cone" of star-shaped sets S for which an order relation (with
respect to anti-inclusion) and inverse algebraic operations
have been defined.

Let s2 be the set of pairs (U1,U2) , where u; €S . Let us
introduce within S2 the operations of inverse addition @ and

inverse multiplication by a number ® , and a preordering
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relation 2 and an equivalence relation ~ . These are defined

as follows:

A@(U1,U2) =(>\©U1,>\902) if x=2o0,
AO(U1,UZ)=(|>\|©U2,|)\|®U1) if x <o,

(U1'Uz) > (V1,V2) °U1 @v2 > U ®v1 ,

(U1,U2) ~ (V1,V2) hd U1 @Vz U2 @V1 .

We shall now factorize the set 32 with respect to the
equivalence relation ~ . In other words, we shall consider
the family T of all classes of equivalent pairs. Since the
operators ® and ® produce equivalent pairs when applied to
equivalent pairs, the operations for inverse summation and
inverse multiplication by a number can be introduced within
T in quite a natural way.

The order relation within T is derived naturally from 32 .

An element of T which contains a given pair (U1,Uz) will be

denoted by [U1,U2] . We shall identify an element U of the set
S with the element [U,En] of the set T . The equality
(o,,0,1 =1[u,,E ] ®I[E ,0,] =[U;,E] ©[U,,E]

(where £ © n £ ® (-1) ® n) then implies that every element
of T can be represented as the difference of two elements of S,

i.e., T is the smallest vector-ordered space containing S.
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For this reason we shall call § the space of star-shaped sets
(compare with the space of convex sets).

We shall associate with every pair (U1,U2) € 32 a positively

homogeneous function f =

. -ly s where

1 i 1s the gauge

of Ui . It is clear that two pairs generate the same function

if and only if they are equivalent. Hence, the function

;- -1, € C,(E ) is associated with every element [u,.0,]
of the space T .

Conversely, by representing a continuous positively homo-
geneous function f in various forms f = f1 - f2 (where fi € K),
we conclude that every element of the space CO(En) is associated
with the class of equivalent pairs [U1,U2],wheretH=4x|fi(x)s1} .
Identifying, as above, a star-shaped set U with the element

[U’En] C T , we conclude that the mapping

is an extension of the bijection ¢ : T - K (which associates a
gauge with a star-shaped set) to the bijection T - CU(En) . We

shall use the same symbol | to denote this bijection and refer
to it as a natural isomorphism.

It is clear that ¢ preserves both the algebraic operations
and the order relation. It is also clear that T, CO(En) and
C(S1) can be viewed as different manifestations of the same
ordered vector space.

It is well-known that the space C(S1) is a vector lattice:

m
its elements f,,...,f include a point-wise supremum N f. and
m i=1
a point-wise infimum /\ fi . In addition, if fi=f i-fZi then

i=1 1
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m m m
VE =\/(f, + Zf ) - ZEf__,
i=1 t k21 TR g 2y 2

m m m
Af = A(f, + T £.)- TEf . .
i=1 b k=1 K ggp 2L o2

We may now conclude that the space T is also a vector lattice:

if QGyreeer €T, a, =1[U

i 117Up4] then

m m m

Va, = [ N(U,, & (Z &)U0,.) , (£ &)u,.1, (6)
i=1 1 k=1 'K izx 21 i=1 21

m m m

Na, = [ V(@w,, &« (Z &)Uu,,) , (Z &)u,.], (7)
i=1 1 k=1 ¥ gk 217 T e 21

where (2 ®) denotes the inverse sum of the corresponding terms.

From (6) and the relation

m m
/ANao, =- \V/ (-a;)
i i=1

1

’.-I
—

we conclude that

m
/“\ai = [ ( (U
i=1

1=

=

® (X @)u,)l. (8)

2k ik

Equation (8) is in some respects more convenient than (7).

Let o = [U ’UZ] be an element of the space of star-shaped

1

1

sets, and £ = |. .

2 be the corresponding positively homo-

geneous function.
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Let V = {x|f(x) £ 1} . The set V is star-shaped. It is not
difficult to check that the element o' = aV0 coincides with
[V’En]’ i.e., that V is the smallest (in the sense of the or-
dering within S , or the largest with respect to inclusion)

star-shaped set with the property U, 2 U2 PV .

1

We shall now introduce a norm |. || within the space CO(En) .

If £ € Co(En) then

| £(x) |
I£] = max ——
<5 x|
where ||.|| is the euclidean norm in E - The corresponding

norm in C(S,) is £l = max |f(2)] .

zGS1

In what follows we shall use the equality
I£] =inf (X 20 | =-X)||x]] £ £(x) < A||x]|| , Vx €E} .

Let B be the unit ball in En . The element e = (B,En) of

the space T corresponds to the function[

, and the element

-e = (E_,B) to the function -

Let us define the following norm in T :

ol =inf (>0 | -x@e<ac<iO@e},

where o € E_ .
n

If o = [U1,U2] then

s
A

-—

B; U, DU, @ — B} .

la|=inf{A>0|U1DU2@ 2 ] 3
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For a star-shaped set U we set juj] = | [U,Enll and therefore
fuoll = inf {x > 0|AU D B} = inf {}X > 0|U D A @ B} .

Let X be a star-shaped compact set in En , and ¥ be some

subset of the family S(X) of all star-shaped subsets of X .

Let U € £ , and

be the gauge of U . We shall consider the

U

sets

(the boundary of U) and

€
3, = {x|1 - € < !x]U <1+ ¢}

Proposition-4. Let a subset X of the space S(X) be closed in

the topology of the space of star—-shaped sets T. The set Z s
compact in this topology i1f and only if
(1) there exists a netghborhood B of zero such that BCU VU€EEX ;
(ii) for every e€>0 there exists a &>0 such that aU+Bd c af R
where By = {x} Ixth < &} .
Proof. Let us consider the set E|-| of all functions from C(S1)-—
this represents a contraction (on S1) of the gauges of sets from

2 . The fact that the set I is compact is equivalent to the set

z being compact. By the Arzeld-Ascoli theorem this property

of Z is equivalent to this set being bounded and equicontinuous.

It is clear that condition (i) is satisfied if and only if 2‘_| is
i
bounded.
We shall now show that condition (ii) is equivalent to El y being

equicontinuous, assuming that (i) holds. Letcondition (ii) be

satisfied and U € £ ,
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1 and |lx-y || < 8§ , then y € 66 , 1.e.,

H

Hh
%

I

or, equivalently,

! |Y 'U = IX|U| < £ .
Set
%' = X Ly = _y .
Ixl Tyl

Since X is compact there exists a number R such that Mxl < R

Vx € X . Condition (i) implies that thereexistsan r such that

Ixl > r (from the relation |x|U =1 for U € ).

We shall now evaluate the difference x'-y' :

Ix'-y'| = \ X _ y ' - } xlyl-ylxl ‘
Ix| ™ Ixl - lyl
; xMyl-ylyl+ylyl-ylxl \= Iyl (x-y) + y(iyl-Hxl)
Il -yl Bxf- Nyl
byl shxeyl s+ dyb | Uxh = dybl 20wyl 25,

Il -lyl Ixl r

This means that functions from X are equicontinuous.

Assume that the functions from X are equicontinuous as

proposed above, i.e., for every e€'>0 there exists a §'>0 such

that
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x|, = ly'l,| <t Vuesz,

where Ix'l=1, ly'l=1, and Ix'-y'l<s"

Let R and r be the numbers defined above. Fix € > 0 and
let €' < ¢/R . For €' let us find §' , the existence of which
has already been established. Choose § > 0 such that

§ < (e-Re')r and — 8 < 8 .

v/r (r—cS)

From this inequality and from the identity

Iyl | —2— - —— % = Ix-yN2 - (Bxl-lyl)?
i1 Iyl

it follows that the relation lx-yl < § implies the inequality

I 2. SR 4 | <8 .
Il Nyl
Let U € T and x €3, , i.e., |x|U=1 and y € x + B, . Take
X' = X [ A
Il Iyl

Now
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‘|x'|U-ﬂx|| - |y'lU-|y| =

%
a
;
<
a
N

}|x"3U.Hx|| i LA PR A NN I I

<

IA

el st - 1 [ -
||x||‘!lx 1Y |U‘ o ly |U|nxu Iyl

IA

RE'+%—"x-y" < e .

Here we have used the inequality |y' ‘U < 1/r , i.e.,
\ﬂy"U - 1| <e,

or, equivalently, y € a; . This completes the proof.

Remark. Let X be the family of all convex compact sets belonging

to X for which condition (i) of Proposition i is satisfied. Then
it is not difficult to show that set E| | is equicontinuous

and therefore ¥ is compact.

5. The space of convex sets

In conjunction with the space of star-shaped sets T , we
shall consider the space of convex sets M (see [5, chapter I]. Recall
that this space consists of classes of equivalent pairs [U,V],
where U and V are convex compact sets in En and the equivalence

relation is defined by

-vV,=U, -V

(U1,V1) v (U2'V2) e U, 2 2

1



-21-

The algebraic operations in M are defined as follows:

[U1,V1] + [U2,V2] = [U1+02,V1+V2] ,
[ A, B] if X 20 ,
x[aA,B] =
[ AB,> A ] if A <0

The order relation = is given by

¥ i - D) - .
[U,,v,) 2 [Uz,Vzl if U,-V, 2 U,-V,
Let L be the subspace of the space CO(En) which consists of
functions which can be represented by the sum of a convex
function and a concave function. The mapping ® : M - L defined

by

¢(lu,v])(x) = max (u,x) + min (v,Xx) : (9)
u€u vEV

is an algebraic and ordering isomorphism (it is, of course,
assumed that L is provided with natural algebraic operations
and an order relation).

The inverse mapping ¢-1 associates an element [3p,d8q] from
M with a function p + g € L (here 3p is the subdifferential
of the sublinear functional p and dq is the superdifferential

of the superlinear functional q).
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Let us consider a subset U of the space En . Let U° denote
its polar:

° = {x|(u,x) <1 Vu€Eu}.

Here (and in (9)) (y,x) is the scalar product of y and x .
Let us recall the main properties of the polar:

(1) The set U° is convex and closed; 0 € u° .

(ii) If U is convex and closed and 0 € U , then =y .

(iii) U is compact if and only if 0 € int UO .

(iv) Let U be a convex closed set, with 0 € U . Then the
gauge function of U coincides with the support function of the
polar u® and the support function of U coincides with the gauge
function of the polar.

(v) Let U1 and U2 be convex and closed and let 0 € U1, 0 € U2 .

Then the relations U1 D U2 ' U? c Ug are equivalent and

o

o _ .0

(AU)O=%UO if A >0 .

Now let us consider star-shaped convexsetsIJ1andt%,. Since

0 € int Ui , the polar Ug is compact. Since the gauge i

of the set Ui coincides with the support function of the polar

U? , the following relation holds:
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,X|1 - |X|2 = maxo (1,x) - max (1,x) =
1€U 1€U
1 2
= max_ (1l,x) + min (1l,x) . (10)
1€, 167 -09)]

Let ¢ and ¢ be mappings defined by formulas (5) and (9)
respectively, o be an element of the space T containing the
pair (U1,U2) , and B be an element of the space M containing

)

. o _
the pair (U1, U2

From (10) it follows that
ya = ¢8

and hence
8 = (471y) (a)

The operator n=®-1w defines the operation of taking the polar
(r is the polar operator). It is defined on the subspace Tc
of the space T which consists of elements a such that there
exists a pair (U,V) € o , where U and V are convex sets.

It is clear that Tc is a linear space (this follows from the
equivalence of the convexity of a star-shaped set and that of

its gauge).
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The set of values of the operator m coincides with the

space of convex sets. Indeed, for 8 € M it is always

possible to find a pair (U,V) € 8 such that 0 € U, 0 €V
Then U = (U®)° , v = (v°)° so that B=ma , where a=[U°,V°] € T,
From the properties of the polar it follows that the operator

m is linear and order-preserving .

6. OQuasidifferentiabilityand ageometrical interpretation of
directional derivatives ’

The space of star-shaped sets can be used to provide a
geometrical interpretation of directional derivatives. Let £
be a function defined on an open set Q C En and suppose that at

a point x € En we can construct the directional derivative of f:

_§§151.= f;(g) = 1lim i%[f(x+ag) - £(x)]
g a=+0

where the function f;(g) is continuous in g .

Since the functional f; is positively homogeneous, an
element of the space T of star-shaped sets is associated with
f; . In other words, a pair of star-shaped sets (U,V) exists

such that
£:(9) = min {} > 0[g € AU} - min {A > Ofg € AV}
or, equivalently,

£1(g) = min {} > 0lg € AU} + max {}» < 0|g € (-\)v}. (11)



Note (from equation (11)) that the pairs (U,V) and (U1,V1)
represent the derivative of f if and only if they are equivalent.
Let us denote the set U in (11) by df (x) and the set V by af (x) .
Invoking the properties of the space T of star-shaped sets, it
is possible to state rules for algebraic operations over func-

tions and the corresponding pairs:

d(£,+£,) (x) = df. (x) @ df,(x) ,

d(f1+f2)(x) df1(x) e dfz(x) ’

£,(x) @ df,(x) @ £,(x) O df, (x) ,

a(f1'f2)(x) = f,(x) o] Efz(x) @ £, (x) @ 3f1(x)

Using formulas (6) and (7) and the rules for differentiability

of the maximum function it is easy to find

d(max £, (x)) , d(max £;(x)) , d(min £,(x)) , d(min £ (x)) .
i i i i
It is clear that a function f is quasidifferentiable at
x if and only if there exist convex sets df(x) and df(x) . 1In

this case
df(x) = [3£(x)1° , 3f(x) = [-3E(x)1° ,

where 9f(x) and 5f(x) are a subdifferential and a superdif-
ferential , respectively, of f at x .

We shall now present a geometrical interpretation of neces-
sary conditions for a minimum. It is based on the following

lemma.
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Lemma 1. Let a functional £ be directionally differentiable

at x € E_ . the derivative f;(g) be continuous in g and K be

a cone 1in En . Then

(1) The relation

min £'(g) = 0
gek ¥

is satisfied if and only if df(x) N K C df (x)

(ii) The relation

max £/ (g) =0
g&ek

1s satisfied ©f and only if df(x) NK C af (x)

Proof. Let us write f;(g) in the form

where l.!1 is the gauge of the set df (x) and {.|2 is the gauge
of the set af(x) . Assume that

min £'(g) = 0 and g € df(x) " K .
gek *

Then |g!1 < 1 and }gl.I - lg,1 2 0, so that |g|2 < 1, which
is equivalent to the inclusion g € df(x) . Thus, we have

df (x) N K C df (x) .
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Arguing from the other direction, suppose that this last

inclusion holds. For a g € K such that |g|1 > 0 let us find

a A > 0 such that |>\g|1 =1 . Then Ag € df(x) . But since
Ag € df (x) we have the inequality |>\g|2 < 1 . This means that
|g|1 - lgl, = fi(g) 2 0 . Thus, if |g|1 = 0 then |g|2 =0

(since |g|2 < |gl1) .

Part (ii) of the lemma can be proved in the same way.

Let x € @ C En . By Y, we shall denote the cone of feasible
directions of the set @ at the point x , i.e., g € Yy if

X +0g €EQ Vo € (O,ao], where o, is some positive number (which

0
depends on x and g ).
Let Tk denote the cone of feasible (in a broad sense)

directions of O at x

g € E{if for any €>0 there exists an

element 9. € Be(g) {q{"q—g“ < ¢} and a number aE € (0,¢)
such that x + a g, € Q .
A functional f defined on an open set Q C En is said to be

uniformly directionally differentiable at x € @ if for any

g € En and €>0 there exist numbers 6>0 and a0>0 such that

| £ (x+aq) - £(x) - af;(q)| < ae Vg € Bs(9) Va € (0,04] -
It is shown in [5, chapter I] that a directionally differentiable,
locally Lipschitzian function is also uniformly directionally
differentiable.

Theorem 2. Let x € Q be a minimum point of £ on Q . If f is
directionally differentiable at x* and £',(g) s continuous in

pls
g then

af(x™) Ny _ Caf(x") . (12)
X
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If £ is uniformly differentiablecd:x* then
* - *
df(x )NT _  Cdf(x) . (13)
= X

Corollary. If f attains its minimal value at an intertor point
of the set Q, then df(x') C @f(x)

Remark. If f is quasidifferentiable and the sets gf(x*) and
af(x*) are convex then the relation gf(x*) - af(x*) is equi-

valent to the inclusion

~ag(x™) Cag(x’) ,

which is familiar from quasidifferential calculus.

Analogous necessary conditions for a constrained extremum
of a quasidifferentiable function can be obtained from (12)
and (13).

The values a = min f;(g) r b = max f;(g) are called
"Hgl=1 Tgli=1

the rates of steepest descent and steepest ascent, respectively,

of fonE .
n

Proposition 5. The following relations hold:
a = inf {» > 0| df(x) D df(x) ® » ® B} , (14)
b = inf {} > 0| df(x) D df(x) ® A ® B} . (15)

Proof. Note that

a =- min f'(g) = max (-f!(g)) = inf {X>0!—f;(q)sxﬂg"} ,
Igh=1 * Igl=1
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b = max £f'(g) = inf {A > 0|f'(g) < Algl} .
Igi=1 * X

. is the gauge of the set

Since f:(g) = |g|.I - |g|2 , where 1

df (x) and |. is the gauge of the set df(x) , we immediately

2
arrive at (14) and (15).

Note that

max {a,b} = If:(g)l = Haf(x) , dfe)ll .

7. Differentiability of star-shaped-set-valued mappings

We shall now use the space of star-shaped sets to derive a

definition of differentiability for star-shaped-set-valued mappings.

Let a : - S be a mapping, where Q is an open set in En and S

is the family of all star-shaped subsets of the space Em .
Identifying S with the cone of elements of space T with the

form [U’En] , we can assume that a operates into the Banach

space T . The mapping a is said to be strongly star-shaped direc-
tionally differentiable at x € Q@ if there exists a mapping

aé : En - T such that for every g € En and sufficiently small

o > 0 the following relation holds:

[a(x + ag) , a(x)] = a © a;(g) & o(a) , (16)
where o (a) 0 . Here the convergence is in the metric of
a-+0
space T .
Let

al(g) =l[aj(g) , a (@] , o(a) =lo*(x) , o (u)] .
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Then (16) can be reformulated as follows:
[a(x+ag) , a(x)] = [0 ® aj(g) ® 0" (x) , a ®a_(g) @0 (a)] .

Since the pairs of sets on both sides of this equality define

the same element of the space T , they are equivalent, i.e.,
a(x+ag) ® o © a_(g) ® o (a) = a(x) ® a © a;:(g) ®ot(a) . (17)

Thus, a mapping a is strongly star-shaped directionally
differentiable if and only if there exist mappings a; : En - S,

a_: E - S which satisfy (17).
X n

Remark. Several other definitions of the derivative of a mapping
have been proposed. These are based on the use of the space of
convex sets and the derivative of the support function of a

mapping (see, for example, [5, chapter II]).

Let us associate a gauge |.

- with each set a(x) . This

means that we define a mapping (an abstract function) x -~

X
with values in CO(En) . It follows from the definition that a

mapping a is strongly star-shaped differentiable if and only if
this abstract function is directionally differentiable (in the
topology of space Co(En))'
We shall now consider an»example.
Let f(x,y) be a function defined on Q x Em (where Q is an
open set in En). Assume that it is nonnegative, continuous and
continuously differentiable with respect to x in its domain.

Suppose also that f is positively homogeneous in y :
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f(x,\y) = M(x,y) VX =20 .

Set

{ylf(x,y) €1} .

a(x)

It is easy to check that the gauge |. < of the set a(x) co-
incides with the function f(x,-) . From the properties of £
it now follows that the mapping a is directionally differen-
tiable and that the function

If(x,y)

Y dx r 9

corresponds to a;(g) (through a natural isomorphism).
Note the following relations between strong differentiability
and algebraic operations:
1. Let a, : - S and a

differentiable mappings, and let a

o 3 @ = 8 be strongly directionally

1 & a, be their inverse sum:
(a.| 2] az)(x) = a1(x) @az(x) Vx € Q.

Then the mapping a, ® a, is directionally differentiable and

(a; @ a,)(9) = (a;)) () @ (a,)](q) -

2. Let a mapping a : Q - S and a function £ : Q - E1 be

directionally differentiable. Then the mapping b:x-f(x) @ a(x)

is directionally differentiable and



b;(g) = f;(g) © a(g) & f(x) © a;(g)

To prove these twd assertions it is necessary to view the
mappings Q@ - S as single-valued mappings @ - T and to make use
of the properties of directional derivatives of single-valued
operators. The following property can be proved in the same
way:

3. Let mappings F : £ - 2 and a : 2 - S be directionally
differentiable and a be Lipschitzian. Then the mapping b(x)=a(Fx
is also directionally differentiable and b;(g)=aéx(F;(g)) .

We say that a strongly directionally differentiable mapping
a is strictly quasidifferentiable if its derivative a;(g) belongs
to the subspace Tc of space T or, equivalently, if there exists
a representation a;(g) = [a;(g) , a;(g)] , where sets é;(g) and
a;(g) are convex.

The function u(x,y) = |y]x , where |.|x is the gauge of set
a(x) , is called the gauge function of the mapping a . If a is
strongly quasidifferentiable (in g), then the function yu is

directionally differentiable and the following ecquality holds:

1
b (x,y,9) = lyl_ - |y|, = max (1,y) + min (1,y) ,
lEAg lEBg

where |.|_ and |.[, are the gauges of the sets a;(g) and a;(g) ,
respectively, and Ag = [a;(g)]o , Bg = - [a;(g)]o . The element
[Ag’Bg] = ﬂ(a;(g)) of the space of convex sets (where m is the

polar operator) is called a quastdifferential of the mapping a

in direction g .
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Let a mapping a have convex images and the polar mapping

a® be defined by

a%(x) = [a(x)]1° .

Applying the polar operator 7 to the equality

[a(x+ag), En] [a(x), En] ®a o a;(g) ® o(a) ,

we obtain

[a®(x+ag), 0]

[a%(x), 0] + am(al(g)) +m - o(a)

This provides a proof of the following theorem.
Theorem 3. If a mapping a possesses the property of strong
(star-shaped) quasidifferentiability, this is equivalent to

saying that a strong (convex) derivative of mapping a® exists.

8. Weakly star-shaped directional differentiability

Let a mapping a : Q = S have gauge function p . We say
that a is weakly (star-shaped) differentiable in a direction
g if for any y € E the partial derivative u;(x,y,g) exists.
Note that the function y - u;(x,y,g) is not even required to
be continuous.

We shall now discuss in detail the conditions necessary for

E

the partial derivative u;(x,y,g) to exist. Let a : En - 2 m

be a mapping. Fix x € En , Yy € a{(x) , and g € En . Let
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Yy(x,y,9) = {v EEm|3a0 >0 : y + av € a(x+ag) Va€E (0,0.0]}. (18)

nx,y,qg) =cl v (x,y,9)

E
We say (see [4]) that the mapping a : E, = 2 ™ allows first-

order approximation at x € En in the direction g € En if for
any numerical sequence {ak} such that Oy = +0 and any conver-
gent sequence {yk} such that Yy € a(x+akg) ¢ Y Y the re-

presentation Y =Y + a + o(ak) holds, where

kVk
- €
VK € P(XIYIg) ’ O.ka o, Y a(x) .

Assume also that a is a continuous mapping and that the topology

of S is induced from the Banach space T . This is equivalent

to saying that the mapping x - = u(x,*) is continuous.

a(x)

Fix an element Yo € Em , and for x € Q take V(x) =[u(x,yo),#x)

We shall now describe the set Fv(x,-,g) (the closure of set

Yv(x,-,g) constructed from formula (18). Let A € V(x) . The
relation v € Yv(x,k,g) means that, for o sufficiently small,
we have

u(x+ag,yo) <A +av. (19)

If X > u(x,yo) then (19) is valid for every v (with a sufficiently

small). If X\ = u(x,yo) then (19) can be rewritten in the form

v 2 %;[U(X+ag,yo) - u(x,yo)].
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Now we have
(-0, +) ’ A D> U(XIYO)

TV(X:)\:g) =
[u}'((x,yo,g) ; ), A = u(x,yo)

where
. - 7o L _
Ex(x.yo,g) = iil-:-l(_)a[U(x+ag'yO) u(X:yo)l .

Proposition 6. 4 mapping a is weakly star-shaped directionally

differentiable at x if and only if the mapping V allows first-
order approximation in every direction for all Yo € E -
Proof. 1. Let V be such that first-order approximation is
allowed in a direction g , and o, - +0 . Then

k

u (X+akg,y0) - u(x,yo)
and therefore
u(x+akg,y0) = u(x,yo) + akvk + o(ak) '
-1
where Vi > ux(x,yo,g) . This leads to

. 1 —
1 — — -
ux(x,yo,g) lim ak[“(x"'o‘kg'yo) u(X.yO)l > u;:(x,yolg) .

2. Let a be directionally differentiable. Then the derivative

' .
ux(x,yo,g) exists for every Y, € a(x), g € En . Let Ak - A,

S
Ak V(x+Akg) . Then
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-_— [ ]
Ak > u(x+akg,y0) = u(x,yo) + akux(x,yo,g) + O(ak) .

If k:u(x,yo) , set v =aku;(x,y0,g) and we have a representation

k
which is used in the definition of the first-order approxima-
tion.

If » > u(x,yo) then this representation is obvious, and
the proposition is proved.

Remark. The gauge function can be viewed as a minimum function

with dependent constraints

u(x,yo) = min X ,
A€V (x)
and therefore its differentiability can be studied with the
help of a theorem by Demyanov [4]. However, this theorem is
proved under the assumption that V allows first-order approxima-
tion. Proposition 6 shows that this assumption is absolutely
essential in the case under consideration.

It is clear that the inverse sum of weakly differentiable
mappings is also weakly differentiable. If a is weakly dif-
ferentiable, f(x) 2 0 and f is a directionally differentiable
function, then the mapping b(x) = f(x) ® a(x) is also weakly
differentiable.

Let a; : 2 - S (i€1:N) be a weakly directionally differen-
tiable mapping. Then the union of these mappings a(x) = ' U a, (x)
and their intersection a(x) = _ N a,(x) are also weakly HEr
directionally differentiable.lelffNui is the gauge of the mapping

a; then the derivatives of the gauge functions ﬁ and u of the

mappings a and a are described by the following equations:



-37-

-ﬁ}'{(X,Y,g) = max U!(lelg) ’
i€R(x,y)

E;(x,y,g) = min ui(x,y,9) ,
i€Q(x,y)

where R(x,y)=={i€1:N|ﬁ(x,y)==ui(x,y)},Q(x,y)=={i€1:N|E(x,y)=ui(x,y)}.
We shall now consider some examples of weakly differentiable

mappings.

Example 4. Let 1 : En - Em be directionally differentiable and

set
a(x) = {y|(1(x),y) < 1}
It is clear that a(x) is a star-shaped set, with gauge
|

ly!, = u(x,y) = max {(1(x),y) , 0} .

The derivative of u(x,y) at x in direction g (where y is fixed)

exists and is given by
(1:(9),y) if (1(x),y) > 0,
He(xX,y,9) = 0 if (1(x),y) <0,
max {(lé(g),y) , 0} if (1(x),y) =0 .
Thus the mapping a is at least weakly differentiable. The

function y - u;(x,y,g) may be discontinuous, and in this case

the mapping a is not strongly differentiable.
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Example 5. Let a(x) = {y|(li(x),y) < 1 , i€1:k} , where the

li : En - Em are directionally differentiable mappings. Take

ai(x) = {y|(li(x),y) <1} . Since a(x) =N ai(x) we deduce that
i

the gauge u of mapping a is of the form

p(x,y) = max (li(X),y) '
i€0:k

= (=
where lo(x) 0 V x En

The function u is directionally differentiable for any fixed

y and
ve(X,¥,9) = max ((1.)'g,y) ,
X iER(X,y) 1 X

where R(x,y) = {i|u(x,y) = (li(x),y)} .

Example 6. Let lij : En - Em(i€1:k(j) ; J€1:p) be directionally

differentiable mappings

aj(x) = {y[(1,(x),y) 1 vi€lk()} ,

The gauge function u of mapping a is given by

p(x,y) = min max (li.(x),y) '
j€1:p i€0:k(j) 13
. = j€1:p ; € .
where le(x) 0 Vij€l:p ; V x En
The function p is directionally differentiable and hence the

mapping a is weakly differentiable.
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Example 7. Let

a(x) =

W Cx

i=1

where Ui , 1€1:k , are star-shaped sets in Em ; the g, are

functions defined in En , and the set

Q= {xlgi(x)>>0 V i€1:k}

is not empty. For x € Q the set a(x) is star-shaped with gauge

Iyl |
lyl = u(x,y) = min —(}l{)— ,
i 91
where |.|i is the gauge of set U, .

It is clear that the mapping a is weakly differentiable.

Analogously, the mapping

_ gi(x)Ui

a(x) = N
i=1:

k
is also weakly differentiable with gauge

ly [y

u(x,y) = max ﬁEZT;T

1

Example 8. Let F : En - Em be a directionally differentiable

mapping with coordinate functions fi , i1€1:m . Take

Q= {xlfi(x) >0 Viel:m}
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and assume that Q is not empty. Consider the mapping

_ _ ot

a(x) = {y €E_|ly S F(x)} = F(x) - E

defined on Q .

Since a(x) can be rewritten in the form
Yy
a(x) ={y—fi—(—x—)-$‘l} ,

it is clear that the gauge of the mapping a is

Yy
wix,y) = max _ETE;T .
1 1

It is possible to introduce the notion of guasidifferen-
tiability for weak derivatives as well as strong derivatives.
We say that a mapping a : Q - S is weakly quasidifferentiable
if for every y € En there exist convex compact sets Ay and B

such that

'
ux(X:Yrg) = max (llg) + min (1,9) ,
lEAy leBy

where py is the gauge of mapping a .

We shall now consider one application of weak quasidif-
ferentiability to extremal problems.

Let Z be a set described by 2 = {x € Q|y € a(x)} , where
a is a mapping defined on an open set 0 C En and operating
into the set S of star-shaped subsets of En ; Y is a fixed

vector from E_ . 1In other words, 2 = a_1(y)- (A more general
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case is discussed in [9].) It is necessary to construct the
cone of feasible directions of Z at x € Z .
If u is the gauge function of mapping a then
z = {x' € Qu(x",y) < 1} .
If a is weakly quasidifferentiable we can consider the cones:
v, = {glul(x,y,9) <0}, vy, = {glut(x,y,9) <0} .
Let Yx denote the cone of feasible directions of 2 at z . Then

Yy, C Yo €Y, - From [5, chapter 1, proposition 2 § 10] , it

follows that if
Gx(-axU(X,Y)) f: Gx(éxU(xIY)) ’
where

Gx(V) = {p € V|u(x) = max v(x)}
VEY

and axu(x,y) and qu(x,y) are respectively a superdifferential

and a subdifferential of function u with respect to x , then
cl Y, = cl Yy = Yy -
Consider the following example. Let

a(x) = (v € Em|v < Fx} ,



-42-

where F is a quasidifferentiable mapping with coordinate func-

tions fi’ i€1:m y=T=(1,...,1) . Then (see Example 8 above)

-

1 1
u(x,y) = max - = - .
1 fi(x) min fi(x)

1

The inequality u(x,y) < 1 is equivalent to both

v
—

m%n fi(x)
i

and
max gi(x) <0,
i

where gi(x) = 1-fi(x) .

9. Trajectories of star-shaped mappings

Let us now discuss the asymptotic behavior of trajectories
generated by a star-shaped mapping. Problems of this type
commonly arise in mathematical economics, where they are studied
under additional convexity assumptions. The same problems
without the convexity assumptions have been discussed in [6].

Let X be a star-shaped compact set in En . A Hausdorff

continuous mapping a : X - HS (X) defined on X is called a

t
discrete dispersible dynamic system (D3-system). Here T, (X)
is the family of all star-shaped subsets of set X .

A sequence {xi|i€0,1,... }  of elements of X such that

X € a(xi) i€o,1,...

i+1
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is called a trajectory of the D3—system a
A nonempty subset Q of set X is called a semitnvariant set

of the D3—system a if a(Q) € Q@ . Take

P_(6) =cl Uat()
t=1

for £ € Hs (X) , where at+1(€) = a(at(E)) .

t
3
A point x € X is called a Poisson stable point of D —system
. c -
a if x € P_(x) Pa({x})

2 _ , 3
A set M € I_, (X) is called a turn-pike set of D -system a

t
if p(xt,ﬁ) - 0 for any trajectory {xt} of this system. Let M
denote the intersection of all turn-pike sets.

A functional h defined on X is said to be in equilibrium

if h is continuous, h(x) 2 0 ¥x € X , and
h(y) £ h(x) Vx € X , v € a(x) .
Let the functional h be in equilibrium. Take
(h o a)(x) = h(a(x)) = max {h(y)|y € a(x)}
for x € X and set
W, = {x € X|h(x) = (ho a)(x)} ,

W = W, .,

N
h h
where the intersection is taken over all functionals in eguilibrium.

It is shown in [ 6] that W O M .
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Let £ be a compact subset of the space Hs (X) in the

t
topology induced from the space of star-shaped sets T .

A mapping a : X - X is called quasthomogeneous if
a(ix) 2O la(x) YA € [0,1) .
In addition, a(ux) C upa(x) Vu > 1 for quasihomogeneous
mappings. Some examples of quasihomogeneous mappings are given
below.
1. Concave mappings (under the additional assumption 0 € a(0)) .
A mapping a defined on a convex compact set X is concave if

a(ax+By) D aca(x) + Bal(y) Va,B =20, a+B =1 .

2. Homogeneous mappings of degree § . A mapping a is homo-

geneous of degree § if it follows from x,2x € X that

a(ix) = Aéa(x) .

Proposition 7. If a mapping a : X+ T is quasihomogengous then

the function

18 in equilibrium, where & ts a star-shaped semi-invariant set.
Proof. If x €f then h(x) =1 . If y € a(x) theny € a(x) C ¢

since £ is semi-invariant, and hence h{(y) = 1
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Let x ¥ £ and y € a(x) . Then
h(x) = |x|E = inf {X > 0|x € Ag} > 1 .
If y € £ then h(y) = 1 < h(x) . Lety & £ . Then, using the
inequality h(x) = X > 1 , the quasihomogeneity of the mapping

a and the semi-invariance of § , we obtain

y € a(x) C a(Xg) C Xa(g) C Xg .

Therefore h(y) = |y| £ X = h(x) . This implies that h is in

equilibrium and proves the proposition.

Lemma 2. If C ©2s a compact star-shaped set, then for any n

there exists an € > 0 such that

C + B C (1+n)C .

Proof. Assume the converse to be true. Suppose that there exis:
sets {gk} , {vk} v 9y € B , Vi € C , Ve TV and a number n' > 0
such that vk+gk/k & (1+n')C . Taking the limit as k -+ % we
obtain v € (1+n')C , which contradicts the inclusion v € C and
thus proves the lemma.

Theorem 4. If a : X - Hst(X) 18 a quasihomogeneous mapping and
a(x) € Z for every x , then W= M = H where H is the family

of all Poisson stable points.
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Proof. It is necessary to check the inclusions H DO W , M DO H .

1. We shall first verify H ODOW . If x & H , then x ¥ Pa(x)
The set Pa(x) is star-shaped (since a(x) € £ and £ is compact)
and semi-invariant. Let h be the function defined in Proposition
7 with respect to set & = Pa(x) . Then h is in equilibrium and
since x & Pa(x) we have h(x) > 1 .

However, we also have a(x) € Pa(x) and therefore (h o a) (x)=1

Thus x & W_ and hence x Z W .

2. To verify M D H , we first let x € H , i.e., x € Pa(x) .
From Lemma 2 it is clear that for every e € (0,1) there exists

a number t such that
t
(1-e)x € a (x) . (20)

Consider a sequence of positive numbers {Ek} such that

T—T(1—ek) converges to some number v € (0,1) . Using (20) and
k=1
the quasihomogeneity of a we can construct a trajectory x = {xt}

J
starting from x and containing the subseguence {xt =r_7(1-ek)x} ;
3 k=1

This means that vx is a limit point of the trajectory x and
therefore vXx € M . Since V is an arbitrary number we conclude

that x € M . This completes the proof of the theorem.
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