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ABSTRACT 

The paper deals with infinite horizon optimization pmblems. The existence 

of optimal solutions is obtained as a consequence of an asymptotic gmwth 

condition. W e  also exhibit finite horizon approximates that yield upper and 

lower bounds for the optimal values and whose optimal solutions converge to 

the long-term optimal trajectories. 





1. INTRODUCTION 

Various economic planning problems, in part icular in t h e  a r e a s  of resource 

management and capi ta l  theory, a r e  inherently inf ini te t ime  horizon pmblems 

of the  type P : 

OD 

f ind x = (xg  t- with x t c  R"+, and such t h a t  - 1 

T t-1 w = l im sup C t= l  a f ~ ( x L - ~ ,  5 )  is  minimized; 
T- 

where xO c R y h e  ini t ial  s t a t e  is  given, a c (0, 1) is  a discount fac tor .  and 

f o r  al l  t = l ,  .... 

i s  a lower semicontinuous function; t h e  e f fec t ive  domain of f 

is determined by t h e  constra ints imposed on t h e  t ra jectory (X t )  El at 

t i m e  t (in addition t o  t h e  nonnegativity constraints). 

The open-endedness of t h e  fu ture  is justified by concerns beyond any f in i te 

period, and th is  fea tu re  cannot  b e  conveniently ignored without impairing t h e  

validity of t h e  model; th is  point has been stressed by several economists, see 

f o r  example El], [2] and [3]. The conseptual and mathemat ical  e legance of 

inf ini te horizon models however is impract ical  f m m  a computat ional  

viewpoint. To actual ly  solve such pmblems w e  must  usually content  

ourselves with f in i te  horizon approximates by including some terminal  

cr i ter ion, i.e. w e  replace P by: 



T find (2) t=l with + c R> and such that 

T-1 t - 1  (1.2) 
W = f t  (xt-l, ~ t )  t vT(xT-l, x T ) is minimized, 

for some finite T : the function vT: R2" 4 R u { + -1 having hopefully almost 

the same effect on the choice of an optimal trajectory, at least up to time 

00 t - 1  
T, as the tai l  of the series : Tt=l a f ( ~ ~ - ~ ,  xt) 

This paper expands on Grinold's study [4] of the convergence of infimal values 

and optimal solutions of finite horizon approximates to infinite horizon 

problems. We extend and strenghten his results in a variety of directions 

motivated by the following considerations. First we allow for nonlinear 

dynamics, as well as for nonlinear transition costs ; in Grinold's model [4] 

nonlinearity appears only in  the cost functional in each state-decision 

variable xt separately. The results are now applicable to economic models 

with nonlinear technologies .. in  particular, with decreasing returns to scale .. 
as well as to problems that can be cast in the format of discrete time Bolza 

type problems, cf. Section 2. Second, we generate both lower and upper 

bounds that enable us to obtain error bounds for the suggested solution, 

Grinold [4] is only concerned with lower bounds. Third, we relax the 

assumptions that the single-period cost function is convex and time 

stationary. 

As part of our development we derive an exsistence result by imposing an 

asymptotic growth condition, called here Grino1.d'~ growth condition, that 

eliminates from the set of potentially optimal solutions those trajectories 

whose "average growth" exceeds on equal a-l, the inverse of the discount 

factor. Ekeland and Scheinkman [5] consider a special version of P and also 

establish existence but with a growth condition that appears to be much more 



restrictive than that used here; see also Magill. [3] for a related result for a 

model with linear dynamics and continuous time, and [6, p.931 where Ekeland 

analyses the one-sector economic growth model of Ramsey. 

In Section 2, we give a brief overview of the class of problems that fit the 

general model (2.1) and in particular bring to the fore a version of P that 

stresses its dynamical features : the discrete time Bolza type problem: in  

Section 7 we record our reults in  terms of this Bolza model. The basic 

assumptions that are needed to obtain existence and convergence results are 

formulated and discussed in  Section 3. Section 4 introduces the finite horizon 

approximates that furnish upper and lower bounds for the optimal value of 

the infinite horizon optimization problem P. 

The main purpose of the remainder of the the paper is to validate the 

assertion that the finite time horizon problems introduced in  Section 4 yield 

approximate optimal solutions of P. In Section 5 it is shown that with 

Grinold's growth condition we may naturally l imit  the decision space to &;(a), 

n 
i.e. those trajectories that have finite "present value". On this 2 l(a)-space 

the (essential) objective function of P is inf-compact which, in turn, 

guarantees the existence of optimal solutions. The convergence of the 

optimal solutions of the finite time horizon problems to the optimal solutions 

of the long-term problem is finally obtained in Section 6 by recasting these 

problems in  the &;(a)-decision space and then making appeal to the theory of 

epi-convergence. 



2. SOME EXAMPLES 

The (abstract) optimization model P, see (1.1). encompasses a wide variety of 

problems that have been studied in the literature. By way of motivation we 

begin with a few examples, they should also help us to assess the limitations 

introduced by the assumptions that we shall impose on P later on. 

a) Infinite horizon mathematical proqrams 

Here 

- otherwise 

where for i=O. .... , mt, the functions fit are finite-valued lower 

semicontinuous on R2" and St C R2" is closed. 

An important special case arises when the single-period cost function does 

not depend on t ,  i.e. for all t 

- - m - m. St = S, and fit = f i  for i=O. .... . m. t - 

A further specialization is the model studied by Crinold [4] : 

+ - otherwise L 
Here the dynamics is linearly constrained (ai and bi are n-vectors). C is a 

closed convex set with fo a convex function; there is no provision for 



transition costs from xt - to  xt. Crinold and others [4, Section 8 and 

References] worked ealier on the infinite horizon linear programming version 

of this model, i.e. when fo (xt) = cxt and C is a polyhedral set. for example 

Another important special version of (1.1) is when the  criterion function only 

depends on "consumption" such as in the model considered by Ekeland and 

Scheinkman [S]: 

where I+ is the utility function a t  t ime t and S t  C R'", the "production 

set" is closed. 

b) Bolza type problems 

H e r e w i t h A x t = x t - x  t-1' wehave  

where the function Lt : R*" 4 R u {+ -1 is lower semicontinuous. 

Finite horizon models of this type were introduced in [7], with extension t o  

infinite horizon studied in [8]. Economic growth models, for  example, a r e  

most naturally cast  in this format [9]. Quite often (2.4) can be restated in 

the form (2.1) yet  Bolza type problems a re  dealt with more thoroughly ... in 

Section 7 we transl i terate our main results in terms of this model ... and this 

because of two particular reasons. First, this discrete t ime version of the 



classical problem of the Calculus of Variations provides us with the natural 

bridge to optimal control problems, cf. (2.5) below and more generally the 

Introduction of [ lo] where Rockafellar points out the pivotal role played by 

this class of problems in optimization theory (for dynamical systems). 

Secondly, we wish to emphasize the fact that Lt may itself be the output of 

some optimization problem. For example, let 

where Xt  - ,, Ut are closed sets that correspond to constraints on the 

state-variables xt - and controls ut, A t  and Bt are matrices of appmriate 

dimensions. Further let 

I + - otherwise 

u ) is the single-period performance criterion with % where%(xt- ,*  t 

lower semicontinuous. 

Again an important special case of (2.4) is when cost and constraints are time 

independent, i.e. L L for all t. Further specialization gives us the convex t 
case, the separable case, the linear case, and so on. 



3. ASSUMPTIONS 

Three basic assumptions enter into play in the derivation of the results : 

- pmblem P is proper : Assumptions 3.1 

- Crinold's growth condition : Assumption 3.2 

- substainability of tail-stationary trajectories : Assumption 3.3. 

The first one can be interpreted as a feasibility condition and will always be 

viewed as part of the definition of pmblem P. The second one is the key 

ingredient in the existence proofs whereas the last assumption is only required 

to obtain convergence of the finite time approximates (from above). 

To formulate our conditions we rely on the following construction. For 

~ = l ,  ... , let 

f e T  (Y, z): = inft)T f t  (y, z) - 

and, define 

to be the lower semicontinuous regularization of the convexification of fqT. In 

terms of epigraphs we have 

0 
epi hT = cl co (Ut-T - epi fet) 

with cl denoting closure and co convex hull, and epi g = ( (v, a )  1 a ) g(v) 1 is the 

epigraph of the function g. Of course the functions hT are convex and lower 

semicontinuous. Moreover, for all T 



and with h : = hl' 

for all t 1 T, 

Problem P is proper. This means 

i. the function h > -00 

Q3 

ii. there exists ;= (:t) t=l with;t c R: such that 

l im sup x:~ at-' tt(;t-l, X;) ( - 
T + -  

and - 

Without loss os qenerality, we assume that = 0. (Otherwise just substitute 
a., 

f t (  f Xt-l. + X;) fOT ft i n  the formulation of P). 

The essential objective function of P is given by 

T t-1 
ft(xt-l. xt) i f  for al l  t. xt c R: 

+ - otherwise. 

Assumption 3.1. ii requires that F(<) ( + - in  addition to f .; l) ( -, 
- 

which means that there exists some feasible trajectory with (t; 
l S X 1 )  

feasible in time period 1. with: = 0, we can think of this condition as 



"idleness is feasible" if P if concerned with activity analysis. or alternative- 

ly as "depletion if acceptable" if P is related to resource management. In 

terms of model (2.1) this condition becomes 

and for t = 2, .... 

(0, 0) E St, f i t  (0, 0) ( 0  for i= l ,  .... , 

(xo, 0) E S1,  f i l  (x0, O) ( 0 for i= l ,  .... , ml 

2n For example, in the quadratic case, i.e. with S = R and 

fit (Y. z) = (Y. z) (Qit(Y. z)) + P. lt (Y. z) - B lt 

with the Yt square matrices, pit c R~~ and bit E R. this boils down to 

(x0. 0) (Qil (x0. 0)) + pil(xO. O)(Bil . i l l ,  .... , m 1 

p. 2 0 ,  f o r k 1  ,...., m and t=2 ,.... 
1 t t 

and 

l / t  ( a-l lim sup I Dot I 
T + -  

In terms of h, the condition f (; ; ( - -- when satisfied a t  ; = 0 or 

af ter  translation of; to  0 -- means that h(O.0) ( f l  (0.0) ( -. Also F(0) ( - 
implies that h(xo . 0) ( f l  (xo , 0) is finite. These conditions . together with 

the convexity of h, imply that for all 9 r [O. I], h( (1-8) xO. 0) is finite, and 

thus in particular that 



h ((1-a) xo, 0) is finite 

and it is precisely to obtain this condition that the extra assumption 
rn rn 

fl (xl, xl) ( - is needed, see for example the proof of lemma 5.3. 

OD n 
Since for al l  t, h L ft, we have that for x = (\) t=l with \ c R+, 

T at-l F(x) ) l im sup ZtZl  
T + =  

h(\-l* \I' 

from which follows that 

T 1 -a T 1-a t-1 T 1-a t-1 F(x) ) l im sup - - T a x t-1, %1 T a xt )  
T + w  1-a 1 -a 1 4  

by the convexity of h. This, with Assumption 3.1. i does not quite give us 

F ) --, but it implies that 

w t F(x) ) -- for every x with C a x < -, t = l  t 

since the above would imply that 

F(x) 2 (1-a)-' inf 
(US V) [h (u, v) I IUI (I-a) y , IVI L (1-a)a-I y] 

t n 
with y ) C t,la lx 1 and 1.1 denoting here the P - norm in R . 
The last term on the right being finite since h is lower semicontinuous, 

pmper and h(0, 0) ( w, and the variables (u, v) are restricted to a bounded 

set. We shall see in  Section 5 that Assumption 3.2 leads us naturally to re- 

t 
strict the decision space precisely to the trajectories with a \ ( -, 

and thus on that space we have that F is proper whenever P is pmper. 



The Assumption 3.1.i. is trivially satisfied when the cost structure is mono- 

tone nondecreasing with respect to time, i.e. if the sequence {f (y, z), t 

t=l. .... } is monotone nondecreasing for every (y, z) c RZn, and ft is convex 

for every t. Then for al l  T, 

Thus we certainly have not excluded two important special cases that 

appear to cover nearly al l  potential applications, namely when the ft are 

time independent, i.e. when for al l  t= l ,  .... 

or, when the goal of the program is to reach certain states at minimum 

cost, for example 

where 

q (Y, z) = inf [dirt ((us v). (Y, z) I (us v) c D Is 

dirt is the distance function on RZn x RZnand {Dt , t=l. .... } is a decreas- 

ing sequence of subsets of R2", or if qt is the indicator function of the set Dc  

k= otherwise 

or st i l l  

t 
ft(ysz) = inf [ f (us v) + disf ((us v). (y. z)) ] 

USV 

which gives us a sequence of functions (known as Moreau - Yosida appmxi- 

mates of f of parameter t - l )  converging to f from below . 



3.2 ASSUMPTION 

Grinold's growth condition. For every a*  c [On a] z c R :with z # 0, 

(rc h) (a* z, z) > 0. (3.7) 

with h = hl as defined above. see (3.2). 

Recall that i f  C C R is a nonempty closed convex set, then there exists a 

largest closed convex cone K such that for all x in C, x + K C C. This cone is 

called the recession cone and is usually denoted by rc C. The recession 

function of a proper lower semicontinuous convex function g : Rm+ R Uf+ m) 

is denoted by rc g and defined by the relation 

epi (rc g) = rc (epi g). 

I f  g(0) i f  finite, then 

In the special, but important case when the function y I-+ h(y, z) is 

monotonically nonincreasing -- resource management problems would be of 

that type, for example -- Grinolds's growth condition can be relaxed. 



3.3 ASSUMPTION 

Strict version of Grinold's growth condition. For every z c R: with z # 0 

(rc h) (az, z) ) 0 (3.9) 

To verify this condition, we could solve the convex program 

n find z c R+ with z l +  --- + zn= 1 such that 

w = (rc h) (az, z) is minimized 

To verify Assumption 3.2 we would need to  solve a similar convex program 

with a replaced by a' and make a parametric analysis as a' varies between 0 

and a. For example, when in model (2.2) the cost function is quadratic 

convex, viz, 

with Q positive semidefinite, p c R2" and y a scalar. Then 

p (a'z, z) if Q (a'z, z) = 0 r 
(rc h) (a'z, z) = 

otherwise. 

and (3.10) is a linear programming problem, assuming that C is polyhedral. 

parameterized by a'. 



Grinold's gmwth condition, imposes a restriction on the asymptotic rate of growth 

00 
of the sequences ( x ~ ) ~ ,  but apparently only in some very restricted directions. 

We shall see later on that this assumption actually limits the set of feasible 

solutions to those (xt)El whose rate of growth is eventually less than a-l, i.e. no 

sustainable gmwth rate wi l l  suffice to compensate for the dampening effect of 

discounting. In terms of economics, with a = l /( l+r) where the interest rate r ) 0 

reflects the opportunity cost of capital, Assumption 3.2 quarantees that at very 

high stock levels the rate of return on additional savings is less that r, i.e. the 

(endogenous) interest rate of the stock is asymptotically inferior to the best 

(exogenous) a1 temative. 

To formulate our next assumptions, we need the counterparts of the lower 

bounding functions hT. For T=l, .... , let 

f (x), in  terms of epigraphs we have that where ) T ft) (x) = ) T t - - 

The construction here being similar to that of the function hT, see (3.2). The 

lower semicontinuity of the functions ft implies the lower semicontinuity of 

gT ; epi gT is the intersection of closed epigraphs. 

Moreover 

g1 ,g2,....,g ) g ) .... , T - T+1- 

and for al l  T, 



3.4 ASSUMPTION 

Sustainability of tail-stationary trajectories. If F(x) ( +OD, then 

with qT as defined by (3.1 1). 

Observe that (3.15) is satisfied i f  

whenever F(x) ( m. If the f are time independent, so are the gt. i.e. gt = g t 

for a l l  t, and then the two conditions (3.16) and (3.15) are equivalent. 

There are really two components to this last assumption which are useful to 

isolate i n  order to understands i ts implications. First, suppose x is feasible, 

then another feasible solution can be created by following the same 

trajectory up to time T- 1 and staying in  state XT-  1 from then on. And 
m 

second, for any such modified trajectory ($ t=l wi th 5 = x t I T-1 
t '  

and 5 = ~ y - ~ ,  t 1 T, the ta i l  of the series 

becomes less than any positive number, for T sufficiently large. 



4. FINITE HORIZON APPROXIMATES 

We do not really expect to be able to build finite horizon approximates (1.2) 

of P whose solutions up to some time T, actually match those of P itself, at 

least not without first solving P (1.1). At best we may be able to find 

terminal criteria that yield upper and lower bounds and which would allow us 

to bracket in this way the optimal value of P. 

We begin with approximates from below. We can motivate our construction 

as follows. Let hT be as defined in (3.2). i.e. the largest lower 

semicontinuous function majorized by the f t  for all t ) T. Suppose for the 

time being that for any feasible trajectory x = ( 5  the convex - 
combination 

of the tai l  ( x y ,  x ~ + ~ ,  .... ) is well defined; in Section 5 we shall see that 

Grinold's growth condition actually guarantees the existence of zT. Since 

the convexity and the lower semicontinuity of h,. imply that 

This suggests choosing the term on the le f t  in (4.3) as terminal criterion i n  

(1.2) to obtain a lower bound for P. We are led to the (finite dimensional) 

optimization problem PT: 



find (x~):=~ with xt c R: such that 

and w is minimized. 

In view of (4.3) we should not identify the variable xT that appears in PT with 

the T-th state variable but to a discounted version of al l  future decisions, see 

(4.1). Roughly speaking we can think of PT as obtained by averaging 

constraints and variables fmm time T on. Of course. we suppose that al l  

quantities that appear here are as in P and that they satisfy the same 

assumptions. Let 

V(xo): = infx F(x) = inf P 

V (x ) : = inf PT T 0 

denote the infimal values of P and PT respectively: in the framework of 

dynamic programming V and VT are the so-called value functions of P and 

P ~ '  Rephrasing the observations that led us to the formulation of the finite 

horizon problems {PT, T= 1. .... } in  terms .of infimal values yields: 

4.1 PROPOSITION 

Suppose F(x) < -, & x is a feasible solution of P, and 

- t-T 
~ ~ = ( l - a ) $ - ~  - a \ < + - .  Then 



is feasible for 7 . Moreover 

and hence for al l  T=l, .... 

The construction of the problems PT is akin to the lower approximates 

obtained for stochastic optimization problems by substituting fo r  the given 

measure a discrete probability measure generated by taking conditional 

expectations and making use of Jensen's inequality, c f  112, Proposition 4.11 

- for  example. Indeed we can view 

(I-a)at-I wi th t= l .  .... 

as a probability mass function on the natural numbers. The averaging of the 

ta i l  corresponds to taking conditional expectation given [l, T-11. Proposition 

4.1 reflects the fact that this gives a lower bound when we substitute hT for 

the functions ft. t 1 T. This interpretation also suggests that the lower bound 

wi l l  be tighter if we refine the partitioning wi th respect to which we take 

conditional expectations. That is the content of the next proposition whose 

proof is straightforward. 

4.2 PROPOSITION 

Suppose the (finite) sequence 

Xl' X2' "" ' 
X ~ '  X~+ l  



is a feasible solution of PTt l. Then, with 

xoT = (1 -a)xT t a xT+ 

the sequence 

is a feasible solution of PT, since 

hT((l-a)xT-l t ax' T' x ' ~ )  i (1-a) fT(~t-l, xT) + ahTt1(xTs xTtl) (4.8) 

From which it also follows that 

Thus, as expected, the sequence {VT(x0), T=l, ...I is monotone nondecreasing 

and bounded above by V(xo). That we actually have convergence, when the 

Assumptions of Section 3 are satisfied, is demonstrated in Section 6. In the 

process we shall obtain much more, namely the componentwise (i.e. for al l  t )  

convergence of the optimal solutions of problems to an optimal solution of P. 

Let us also record now that Grinold's growth condition, Assumption 3.3 more 

exactly is sufficient to guarantee the existence of optimal solutions for PT. 



4.3 PROPOSITION 

Suppose P is proper and satisfies the strict version of Crinold's qmwth 

condition (Assumptions 3.1 and 3.3). Then for all T=l ,  .... and all f3 c R, the 

set 

is compact, i.e. the essential objective function of PT is inf -compact. Hence 

P has an optimal solution. T 

PROOF. Clearly for all f3, the set given by relation (4.10) is closed and 

contained in 

since h = hl ( hT ( fT  for all T, see (3.3). I t  is thus sufficient to  establish 

that I-+ is bounded to complete the proof. since it would yield the desired 
B 

compactness from which the existence follows directly: we can then view 

PT as minimizing a proper lower semicontinuous function on a compact set. 

The set HTeB is closed and convex --- by construction h is lower semi- 

continuous and convex --- t o  show that is bounded we pmve that i ts 

recession cone 



whenever H is nonempty. So suppose 1 F(O), by Assumption 3.1 F is 
T ,B 

T 
finite at 0, and 0 # ( Y ~ + - ~  c rc H - T.0 ' Then for al l  A 10 ,  

which implies 

where ): is defined recursively by 

- - 
y = (1-a) yt + ayt+l for t=T-1, .... 1. 

The second inequality resulting from the convexity of h. Dividing both sides of 

(4.1 1) by A. letting A go to +- and relying on (3.6). we obtain the following 

contradiction to Assumption 3.3 

Hence y must be 0. and this completes the proof. a 

We now turn to approximates from above. here we rely on the upper bounding 

00 
function {gT. T=l. ...I. cf. (3.11). Suppose x = ( x ~ ) ~ , ~  is tail-stationary from 

time T- 1 on. Then 



as follows from (3.1 1). Motivated by this inequality we introduce the (finite 

dimensional) optimizaton problem pT: 

T-1  
find ( T ) ~ - ~  with 5 c R: such that - 

T-1 at-l 
I - I  

a 
W = f t(xt- ls ~ t )  t *(xT-l' is minimized; (4.13) 

parameters and functions are as in  P. We may think of PT as the search for the 

best trajectory which is stationary from time T-1 on. With 

T 
V (x0): = inf P 

T 

and straightforward application of (3.14) and (3.1 3). we obtain: 

4.4 PROPOSITION. For al l  T=l, ..., 

T 
The sequence {V (x0), T=l. ...I is monotone nonincreasing and bounded below by 

V(xo). We prove convergence in  Section 6 as part of a general result which also 

gives us the componentwise convergence of optimal solutions. As one could easily 

guess, Assumption 3.4 about the sustainability of tail-stationary trajectories plays 

a key role in that proof. 

T 
The existence of optimal solutions for P (4.1 3) is again guaranteed by Grinold's 

growth condition, the proof is similar to that of Proposition 4.3. 



4.5. PROPOSITION 

Suppose P is proper and satisfies Grinold's qrowth condition (Assumptions 3.1 and 

3.3). Then for al l  T=l, ... B c R, the set 

T 
in compact, i.e. the essential objective function of P is inf-compact. Hence 

T P has an optimal solution. 

PROOF. For every P the set given by relation (4.15) is closed and contained in  

as follows from (3.14) and (3.5). The pmof wi l l  be complete if we show that H 
T 
B 

is bounded since it would imply the compactness of the level sets (4.1 5) of the 

T 
essential objective of P fmm which the existence of optimal solution follows 

directly. The function h being lower semicontinuous and convex i t follows that 

T set H is closed and convex. Moreover, it is nonempty if we choose B 2 F(0) as P 
-r 

follows from assumption 3.1. ii and h i f t  for al l  t. The set H '  is then bounded 
-,- P 

i f  and only if rc H ' = (01. P 

Suppose to the contrary that 0 # (y):2 - c rc HZ. Then for al l  L 2 0. 



and using the  convexity, this yields 

l3 ~ ( l - a ) - '  h((1-a)%+ AaG1. GI). 

where ): is  defined recursively through 

- 
y t: 3 (1-a)yt t af fo r  t = T-2. .... 1. t t  1 

Dividing both sides of t he  inequality (4.16) by A. appealing t o  (3.6) and let t ing 

A go t o  t-, w e  contradict  (3.9) since w e  obtain 

Hence y must be 0. 0. 



5.  EXISTENCE AND INF-COMPACTNESS 

We now study the properties of F, the essential objective of P, and in 

particular we analyze the implications of Grinold's growth condition, 

Assumption 3.2 (or 3.3). W e  first show that all trajectories x = (xt)E1 of 

interest for P are bounded in a certain normed space and then show that 

restricted to that space the function F is weakly inf-compact from which the 

existence of optimal solutions follows immediately. 

Note that if for all t. f t  = f and the constraints implied 

x c K , t = I  ,....., t 

or if we added a constraint of that type, with K C Rn compact and f bounded 

on K X K ,  then existence and related results could be obtained via the 

standard method of successive approximations which also gives good error 

estimates [13, Chapter 61, [14. Chapter 41. In this paper we do not introduce 

such artificial (uniform) boundedness conditions on the trajectories (xt)E1. A 

fortiori, we shall not require that optimization takes place in the space 2: of 

bounded sequences in Rn. The appropriate space turns out to  be 

1 as confirmed by the results below; here I 1 denotes the II -norm in Rn, i.e. 



The arguments rely on the asymptotic behavior of "averaged" trajectories. 

Fix any 51 c (0. a 1. Now to  each x = (x )0° we associate t t = l  

and 

Note that u and vT are convex combinations of (x T 0, .... . , xT) and (x 1' """ 

xT) respectively. and that yT and zT are just scaled versions of these 

vectors. We have that 

while 



Now observe that 

Also 

which means by (5.6) that 

I f  1 1  x I( = + a, the case which wi l l  be of interest, then the BT converge 

monotonically to + 00. This means that 

- 1 l im Ifl = q 
T* 

the convergence being from below. Also, and this only depends on having BT 

> 0 for T sufficiently large, every cluster point of the sequence { 1 yT I, T=l, 

..... ) belongs to [0, 11. This means that 

and 



where B is the unit ball i n  Rn, and hence each one of these sequences admits 

cluster points. 

5.1 LEMMA. Su~pose P is proper and satisfies Crinold's qrowth condition 

 assumptions 3.1 3.2), x = (xt); is such that IJx( l  = + - and either 

l im sup lxt 1 lit < - 
t-ra, 

or there exists II c (0, a] such that 

l im z T  = z  
T-ra, 

exists with the zT as defined above (5.5). Then F(x) = +-. 

PROOF. The argument follows the same pattern as the proofs of [3, Theorem 

4.1.1, [15, Theorem 11. We begin by showing that wi th (5.12) and (5.1 3), the 

sequence { (yTelS zT), T=l. ..... } admits a cluster point (y, z) with y = q'z, z+O 

and q' c [0, a]. Suppose first that (5.12) holds. Using (5.5), (5.9) and (5.8) we 

see that 

Fmm (5.10) we know that some subsequence of the sequence { zT. T=l. ..... } 
converges to  some z wi th lzl  = q'l. Since 8;' goes to  0. it would follow that 



lirn yT-l = q z 
T- 

provided that 

T T 
lirn q Ix T I / ( q  I x T I  +.....+ q I x  1 ( + 1 ~ 0 1 ) = 0 ,  
T- 

1 /t and to  guarantee this we chopse q = min [p-l, a] where p ( l irn sup Jx t  1 , 
t- 

see [15, Lemma 11 for the details. Now suppose that (5.13) is satisfied. Then 

some subsequence of { IyT-l I T=l, ..... ) wi l l  converge to a 0 r: [O, 11. 

Restricting ourselves to  this subsequence of {JyT- 1. T= 1, ..... } it follows 

by (5.9) that it converges to  : q ( l im I yT-lJ ) l im  z T-l = q 8 z = q'z, 
T- . T- 

where q'c [0, a] and z = l irn z with IzI = TI-'. 

T- 

For the rest of the proof we assume that actually 

lirn ( Y ~ - ~ .  z T  = ('I'Z. Z) 
T- 

with q'r: [0, a]; there is no loss of generality i n  doing so since a l l  assertions 

remain valid i f  we work only with a converging subsequence. For the sake of  

the argument, le t  us assume that 

l im  sup E q t-l f t ( ~ t - l ,  xt ) ( Y ( + - 
T- 

Since for al l  t, ft 2 h and h = hl, as defined by (3.2), is convex, from (5.2) we 

obtain 



for T sufficiently large. Reexpressing this in  terms of (yT - xT) and dividing 

T -1 
both sides by AT = (1 -11) (1-11 ) BT yields 

Since BT and AT tend to +- with T, from (3.8) and the limiting properties of 

the sequence (yT-l. ~ ~ ) y - ~  - we obtain 

which contradicts Grinold's growth condition (3.7). Hence 

l im sup c :=1 qt-l f t ( x  t-l , xt ) = +- . 
T- 

But now recall that T-& a. therefore we also have 

l im sup T t-1 
a ft ( ~ t - ~ .  Xt) = F (XI  = +-. 

T- 

(the positive part of the sum already dominates the negative part with the 

parameter 11 less than a), and this completes the proof. a 

The conditions (5.12) and (5.13) cover al l  cases that seem to be of interest. 

However, it is possible to generate trajectories, with more than exponential 

growth and for which the "averaged" trajectories { zT, T.1, ..... } do not 

converge. Such trajectories must have very wild tails! And for these, 



Grinold's growth condition would not be sufficient to guarantee that they 

correspond to F(x) = +oo. we would need to impose much more constringent 

growth conditions to handle such exotic cases. 

By Lemma 5.1 we may safely restrict optimization to those sequences 

00 1' 
(Xt)t=l in Pn (a) whose natural pairing is with 2:. This plays a significant 

role in the convergence results of the next section but it also has some 

bearing on the question of the existence of optimal solutions. Weak 

1 
convergence in  %,(a) is characterized by having "componentwise" 

U 00 
convergence. thus a (filtered) collection of points ( xY = (xt) t=l, U C N )  

weakly converges to x if and only i f  

U 
l im x = t for all t, 
UCN 

which would also be sufficient for strong convergence if ( xU, u c N ) is a 

sequence. This set-up wi l l  provide us with the topological framework for the 

study of the properties of P. Henceforth, we wi l l  think of P as being defined 

1 on Pn (a) with the essential objective function now given by: 

00 otherwise 

F(x) = 

T t-1 1 
l i m s u ~ $ - ~ a  - ft(%-l.%)ifxcPn(a)+ 
t- 1 1 

with In (a)+ = {X c P (a) I xt 2 0, t-1, ... 1 (5.15) 



5.2 PROPOSITION. Suppose P is proper (Assumption 3.1). Then F is a proper, weakly 

lower semicontinuous function. 

1 PROOF. Properness of F on Pn (a) has been argued in Section 3 in connection 

with Assumption 3.1. Lower semicontinuity is obtained as a consequence of a 

version of Fatou's Lemma. By Assumption 3.1. i, the function h ( i f  for all t) is 

proper and convex, so let a be an affine function mqjorized by h. Then for all t, 

1 
Now consider a collection (xu c Pn (a), u c N) converging weakly to x. For all u r 

N and T, we set 

Since the quantities involved are nonnegative, we have that for al l  u, the ruT are 

monotonically nondecreasing with T and thus 

1: : = l im r u (5.16) 
u,T 

T- 

is well defined, possibly with value too. Hence for all T 

l im inf l im inf r , 

u r N  r r N  

then taking l im sup with respect to T on both sides (which of course does not 

affect the right-hand side) and using (5.16), we obtain 



lirn sup lirn inf rVmT i lim inf lirn sup r 
t- v 4  vcN T- v,T 

Now, note that 

lim sup K ~ , ~ =  F(X? - A(X? 
T- 

1 where A is the affine functional on !&,(a)+ generated by replacing ft by a in 

(5.1 5). Also, since f t  is lower semicontinuous so is qt and thus 

T t-1 v v lirn inf K = lirn inf C t=l  T t-1 
v,T a g t ( \ - l * x t ) l z t = l a  g t ( x t - l s x$  vcN 

Taking lim sup with respect t o  T, and combining tnis with (5.17) and (5.18). yields 

lirn inf F(xU) - A(X? 1 F(x) - A(x). 
vcN 

Since A is an affine functional and the xv converge weakly, this inequality gives 

us the weak lower semicontinuity of F since i t  implies that 

lirn inf F(xU) 1 F(x). a 
vcN 

The existence of optimal solutions could now very well be settled by requiring 

that dom F, the effective domain is contained in a weakly compact set; the level 

sets of F being weakly closed i t  wou1.d give us the weak inf-compactness of F. 

The following growth condition would suffice: for some sequence of nonnegative 

numbers At, t= 1, ... with 



we have for al l  x c dom F that lxtl ( At for al l  t. Then every trajectory in  dom F 

is uniformly summable and weak compactness then follows. see (16, p. 201 for 

example. In particular this argument shows that we may allow feasible 

trajectories to grow exponentially at a rate less than a-l. When this is translated 

in the language of capital theory, the condition 

Ix I ( \ with l im sup (A3 l i t  ( a-l 

t- 

is nothing else than the requirement that the rate of impatience, as defined by 

Fisher (171 exceeds the rate of capital growth. Otherwise we would embark on a 

path of capital accumulation (31. We shall see however, that we do not need to 

introduce weak compactness artificially. in fact it is already there in  some way, 

as a consequence of the assumptions we have been working with so far. We begin 

with a lemma involving the function 

T t-1 1 
l im sup a h ( ~ ~ - ~ ,  xt) if x c P n(a)+ 1 T- 

- 

+- otherwise L 
Since h ( f t  for al l  t. c f  (3.4) and (3.5). we have that 

If P is proper. we have that H is proper and weakly lower semicontinuous. as 

follows from Proposition 5.2 (replacing in the definition of F every ft with h). 

Moreover, H is convex (convexity of h) and H(0) is finite. 



5.3 LEMMA. Suppose P is proper and satisfies the strict version of Grinold's qmwth 

condition (Assumptions 3.1 and 3.3). Then H is weakly if-compact, i.e. for al l  

13cR 

is weakly compact. 

PROOF. Of course it suffices to consider the case when lev F is nonempty, since P 
H(0) is finite (Assumption 3.1. ii) let us assume that P 1 H(0). This means that 0 c 

lev H. Since lev H is weakly closed (Proposition 5.2). to prove weak compactness 
13 P 

we only need to show that lev H is weak sequentially compact (Eberlein-Smulian B 
1 

Theorem) and in  Pn(a) this actually turns out to be the same as stmng 

precompactness. 

We first intend to show that lev H is locally weak sequentially compact at 0. To P 
see this, consider the continuous linear functional 

where for al l  t, et = (1.1. ..., 1). Note that te, x> = llxll whenever x c dom H. Now 

le t 

V: = lev H f l  {x 1 (e, x > i  1) P 

This is a closed weak neighborhood of 0 relative to lev H. Pick any sequence P 
V 

{x ,v= 1, ...I C V; we must exhibit a convergent subsequence characterized by 

(5.14). If some subsequence converges in  norm to 0, there is nothing 

to prove, so we suppose that for some > 0 



u u 
llx II = te, x > 1 

for al l  u. Passing to a subsequence, i f  necessary, we may assume that 

u 
l im Ilx Il = y E [< 11. 
u-wr, 

Observe that for al l  u and al l  t: 

Therefore by a standard diagonal pmcedure we can extract a subsequence 

{x: u c N*) such that 

t 
t u  a x a x 

t t l im - = : - for t=l,.. . . . 
llxYl Y 

ucN' 

u 00 
implying the (weak) convergence of the {x , v c N') to x: = ( x ~ ) ~ = ~ .  

Next we pmve that the set lev is norm-bounded. Suppose to the contrary that P 
there exists a sequence (xu E lev$(, u=l, ...) such that l im llxYl = +=. Define 

m 

u yu: = xu / Ilx II 

assuming that llxu II > 0 for al l  u. Since llyull = 1, 

yu c v for al l  u 



and, passing to a subsequence i f  necessary, there exists y = l im yUas follows 
V* 

from the weak sequential compactness of V. Since the yV converge weakly to y, 

in particular we have 

V V 1 = l im llx II = lirn (e, y > = (e, y> = Ilyll. 
lw- V* 

Since lev H is convex our construction would imply that 0 # y t rc  lev H (with B B 
yt 1 0  for al l  t). Then 

for al l  X 1 0, using the fact that 0 t lev H. The convexity of h now yields ti 

1-a' 1-a T-1 t-1 t-1 B 1 l im sup - h(--T (x0 + ka a yt. * 2 Y ~ ) )  (5.22) 
T* 1-a 1-a 

As T goes to +QD, aT goes to 0 and 

is well defined since llyll ( QD, with z # 0 since y # 0. Dividing both sides of (5.22) 

by X and letting X go to QD, we obtain 

0 = l im A-ID 1 l im A-I (I-=)-' h((l-a)xo + Xaz. Xz). 
A* A- 



which with formula (3.8) and condition (3.6). a consequence of Assumption 3.1, 

implies 

contradicting (3.9). Hence y must be 0, and thus lev H is bounded. P 

To complete the pmof it suffices to observe that local weak sequentially 

compactness and boundedness yield weak sequential compactness. o 

5.4 THEOREM. Existence. Suppose P is proper and satisfies the str ict version of 

Grinold's qrowth condition (Assumptions 3.1 and 3.3). Then the essential objective 

function F of P is weakly inf-compact, and hence there exists optimal solutions of 

P. 

PROOF. Since H ( F (5.20). F is weakly lower semicontinuous, it follows that for 

a l l  S c R, lev F is a weakly closed subset of the weakly compact set lev H S P 
(Lemma 5.3) and thus lev F is also weakly compact. P 

Since F is proper, the inf-compactness implies the existence of optimal 

solutions. a 

The preceeding theorem suggests that we could restrict ourselves to trajectories 

that satisfy some uniform summability condition, but a t  the outset we do not 

know the pertinent parameters and it would be inappropriate to introduce them 

artificially. Let  us stress here the fact that these last results very much depend 

on having a < 1, wi th a = 1 we are i n  another ballpark and the rules of the game 

are then quite different. 



6. CONVERGENCE OF FINITE HORIZON APPROXIMATES 

We embed each finite horizon into an equivalent infinite dimensional problem (in 

1 lln(a). and then rely on the convergence results for the infima of epi-convergent 

functions. cf. [la. Section 21 for a review of i ts highlights. This technique was 

used by Back [9] in a related context, in his work on infinite horizon economies 

under uncertainty. 

To PT (4.4). the finite horizion problem giving lower estimate. we associate 

that wi l l  play the role of the essential objective function of the corresponding 

1 
problem in Pn(a). Let 

1 - t-T 
if x c Pn(a)+ and zT  = ( l -a) Zt=T a (6.1) 

hT being as usual the function defined in  Section 3. see (3.2). The definition of F 
T 

is motivated by the construction that led us to PT. The optimization problem 

1 
find x c lln(a) such that FT(x) is minimized (6.2) 



1 can be viewed as an Iln(a)-version of PT. Indeed, if FT(x) ( t-. then (xis .... x ~ - ~ .  

zT) is a feasible solution of PT, and on the other hand if (x~):=~ is a feasible 

solution of PT, the sequence x = (X .... x ~ - ~ .  x T S  XT. ...) is feasible for (6.2) since 

then zT = xT. In particular, we have that 

VT(x o) = inf 1 F (XI x c !In (a) T 

with VT(xO) given by (4.6). Thus from (4.9) it follows that the infima of the FT 

are monotonically nondecreasing with T and bounded above by 

V(xO) = inf 1 F(x) 
x c tn(a) 

with F as defined by (5.15). This is not too surprising since as an immediate 

consequence of (3.5). we have that 

Thus {FT. T=l . ...) is a monotone nondecreasing sequence of functions bounded 

above by Fand since F is weakly lower semicontinuous we can establish 

epi-convergence by showing that the FT pointwise converge to F. Note that here. 

epi-converqence is always to be understood in terms of the weak topoloqy. 

6.1 PROPOSITION. Suppose P is proper (Assumption 3.1). Then 

{FT(x). T=l. ... ) T F(x) 



1 
for al l  x E %,(a), which implies that 

F = epi-lim FT 
T- 

1 
PROOF. It suffices to show that if x cn% (a)+ then F(x) = l imf (x), and this 

T- 
convergence wi l  follow from the definitions of FT and F if we show that 

a' a 

l im inf hT((l-a) X T - l  + a+ 5 )  1 0  
T- 

or that 

T-1 
l im inf a h(zT- 5 ) 1 0 
T- 

since h i hT for al l  T, and 

t 00 n 
But observe that (a z ~ ) ~ = ~  is a monotone nonincreasing sequence in R+ converging 

to 0 since llxll ( -. Hence 

T-1 T-1 h(a-T+l T-1 l im inf a h ( ~ ~ - ~ ,  5 )  = l im inf a (a *~-l' a T-14)) 
T- T- 



This gives us (6.6). Now, since F is weakly lower semicontinuous, epi-convergence 

can be verified directly. such as in [18. Proposition 4.23. or more immediately by 

observing that monotonicity implies (weak) equi-lower semicontinuity [19. 

Definition 2.171 which yields epi-convergence as a consequence of pointwise 

convergence [19 Corollary 2.191. a 

Assuming P is proper (Assumption 3.1). the functions FT are weakly lower 

semicontinuous. the proof of Proposition 5.2 applies equally well. F and FT 

satisfying the same conditions. Moreover, since for al l  t. h ( ht ( ft, 

H ( FT for al l  T (6.8) 

with H as i n  Section 5. see (5.19). Hence. for al l  T. the FT are proper, weakly 

inf-compact functions, whenever the strict version of Crinold growth conditiun is 

satisfied (Assumption 3.3); we rely here on Lemma 5.3. This guarantees the 

1 existence of points x s Pn(a) that minimize FT. Al l  of this should not come as 

much of a surpise since Assumptions 3.1 and 3.3 are exactly those we used to 

obtain the existence of optimal solutions for the finite horizon problems PT. 

consult Proposition 4.3. In fact. it is easy to verify that i f  

where argmin C: = {x 1 C(x) ( inf C). then 

- - T (X x2. .-.. x T-1' Z~ 
= a a !  it). 

is an optimal solution of PT. Similarly. i f  



solves PT ,then 

- - -  - - - - - 
x = (x1. X2. .... XT. X T t l  = xT' yt2 = 9. ...) c argmin FT. 

Thus. we can identify the optimal solution of PT with those of the optimization 

1 
problem (6.2) in  !$,(a). 

6.2 THEOREM. Consider problem P (1.1) and the finite horizon approximates {PT, 

T=1, ...) (4.4). Suppose that P is proper, satisfies Grinold's qrowth condition, and 

1 that this implies that the feasible solutions of P are in  %,(a). Then, the sequence 

{VT(xD), T-1) convemes from below to V(xo). (6.9) 

Moreover. P and al l  the problems PT admit optimal solutions, and qiven any 

sequence {x T=l, ...I of optimal solutions of PT, it admits at least one cluster T' 

point x = (x )- such that 
t t=l 

T 
xt  = l i m x t  for al l  t, 

T- 

and any such cluster point solves the lonq term problem P. Finally, if x solves P.- 

then there exists a sequence of real numbers 9 1  0 and xT = ( G ~ ) ~ , ~  such that 

-T - T 
x is an c -optimal solution of PT -- i.e. up to c x solves PT -- 

T T' 
- T 

for al l  t, xt = l im x t' 
T- 



1 PROOF. The assumptions allow us to identify P with minimizing F on %,(a) and 

1 
the PT minimizing FT on gn(a). Now, let us choose f3 such that f3 2 inf F and define 

where H is as defined (5.19) in  Section 5. We have 

min F = min F = V(xo) 
K 

and for al l  T, see (6.0). 

min FT = minKFT = V (x ) 
T 0 

We write min instead of inf since we know that the infima are actually attained. 

Since K is compact (Lemma 5.3). and F = epi-lim FT (Proposition 6.1). it follows 
T- 

l im inf (minKFT) 2 minKF. 

cf. [20, Proposition 2.11, [Zl.]. Combining this with what precedes and (4.9) of 

Proposition 4.2, we obtain (6.9). 

Since epi-convergence implies 

l im sup (argmin FT) C argmin F 
T- 

and whenever inf F = l im (inf FT) 
T- 



argmin F = fl l im inf  (r-argmin FT), 
&)O T* 

see [21, Theorems 2 and 31 or the epi-convergent version of [17, Proposition 3-12], 

we now obtain a l l  the remaininq assertions usinq (i) the fact that for a l l  T, (arqmin 

1 FT) C K and (ii) that (6.10) characterizes weak convergence on ILn(a). o. 

T 
We now turn to {P , T=l, ... 1, the finite horizon approximates that yield-upper 

bounds. We essentially proceed in  the same manner as above, however, we shall 

now need to introduce Assumption 3.4 on the sustainability of tail-stationary 

trajectories to obtain convergence. To each problem pT, defined by (4.13). we 

associate 

I 1 if x c %(a)+ and x t  = x ~ - ~  for t=T, .... 
T F (x): = 

where qT is as in  (3.1 1). the pointwise supremum of  the ft with t 1 T. The 

optimization problem 

1 T 
find x c ILn(a) such that F (x) is minimized 

1 can thus be viewed as an ILn(a)-version of pT. As for  PT and FT, we can identify 

T 
feasible solutions of P and F ~ .  In fact the correspondence here is one-to-one, so 

T 1 that in particular we can identify optimal solutions of P with elements x c Q,(a) 

that minimize F ~ ,  and vice-versa. We also have that 



T v (x0) = inf 1 ~ ~ ( x ) .  
x c fin ("1 

T T where V (x0) is the infimal value of P and thus, as a consequence of 

T 
Proposition 4.4, we know that the infima (inf F , T=l, ... } form a 

nonincreasing sequence bounded below by V(x ) = in f  F. To obtain 
0 

convergence we again rely on the following fact: 

6.3 PROPOSITION. Suppose P is proper and tail-stationary traiectories are 

sustainable (Assumptions 3.1 3.4). Then 

F = epi-lim F T 

T- 

PROOF. This t ime we verify directly the definition of epi-convergence [la, 
1 Section 21. We have to show that for any x c lln(a) 

v 1 
(i) for a l l  (X c %,,(a), v=l, ... 1 converging weakly to x 

V V l im  inf  F (x ) 2 F(x) 
v + -  

and 

v 1 
(ii) for some sequence [x c Pn (a), v=l, ...I converging weakly to x, 

v v 
l im  sup F (x) (F(x). 
v + -  



The first condition (6.14) follows from the weak lower semicontinuity of F 

(Proposition 5.2) which implies 

lim inf F(X? ) F(x), 
u + =  

1 and the fact that for any x c Iln(a) 

to see this observe that FV(x) = too if x is not tail-stationary for t 2 u-1 and if i t  

is tail-stationary then by definition of gu, in particular (3.13) and (3.14); 

u 
To obtain (6.1 5) for some sequence (x , u=l, ...I converging weakly to x we 

construct i t  as follows: set 

V 

Xt = X t  for t = 0, ..., u-1 

u for t = u, ... . Xt = X  u- 1 

Then 



and taking lim sup on both sides yields (6.15) since the second term in the sum 
u- 

is non-positive by the sustainablity of tail-stationary trajectories assumption 

We can now produce the parallel version of Theorem 6.2 for finite time 

approximates from above. Before we do so let us observe that the functions 

T 
{F , T=l, ...) are also weakly inf-compact provided that P is proper and 

T satisfies the strict version of Grinold's growth condition. Indeed since F 2 H 

-- with H as defined by (5.19) in  connection with Lemma 5.3 -- and H is weakly 

T inf-compact, it suffices to see that F is the restriction to a closed linear 

space (tail-stationarity for xt with t 1 T-1) of the function 

which is weakly lower semicontinuous by Proposition 5.2. Thus, for al l  T the 

infimum is then attained, which we can also express by writing 

T 
argmin F # 0. 

All  of this being derived with exactly the same assumptions that we used to 

assert the existence of optimal solutions of pT. see Proposition 4.5. 

T 6.4 THEOREM. Consider Problem P (1.1) and the finite horizon approximates {P , 

T= 1, ...) (4.13). Suppose that P is proper, satisfies Grinold's qrowth condition, 

1 that this implies that feasible solutions of P are in Pn(a), and that 

tail-stationary trajectories are sustainable. Then the sequence 

T {V ( x ~ ) ;  T= 1, ...I converses from above to V(x ). 
0 



T 
Moreover, P and al l  problems P admit optimal solutions, and qiven any 

T 
sequence {X . T=l. ...I of optimal solutions of pT, it admits at least one cluster 

point 

OD 

x = ( x ~ ) ~ = ~  such that 

for al l  t, 

and any such cluster point solves the lonq term problem P. Finally, i f  x solves P. 

then there exist a sequence of real numbers rT1 0 cT = (; T, T-l such t t = l  
T T - T 

x is an rT-optimal solution of P -- i.e. up to cT, x solves P -- 
-T 

and for al l  t. x t=  l im xt. 

T- 

1 
PROOF. The assumptions allow us to identify P with minimizing F on %,(a) and 

T T 1 the P with minimizing F on Pn(a). Since by Proposition (6.3) 

F = epi-lim F ~ ,  it follows. see [20] or [21,] for example. that 
T- 

l im sup (inf F '  = v1(x0)) ~ V ( Q  = inf F. 
T- 

T which gives us (6.16). since we already know that {V (x ), T=l. ...I is a 
0 

nonincreasing sequence (Proposition 4.4). 

The remainder of the proof is identical to that of Theorem 6.2. except that in 

T 
order to claim that for al l  T. argmin F is contained in  a weakly compact set 

we choose this time 



K: = levpH 

with 8, min F ~ .  a 

Le t  us conclude by observing tha t  if t he  optimal solution of P was unique, f o r  

example if t he  f t  were str ic t ly  convex. then Theorems 6.2 and 6.4 would assert  

t ha t  this optimal solution is t he  unique c luster  point (componentwise) of t h e  

T optimal solutions of t he  (PT. T= l ,  ...I and (P . T=l I  provided natural ly tha t  P 

sat isf ies the  assumptions of Section 3. 



7. BOLZA TYPE PROBLEMS 

The purpose here is to record the assumptions and the structure of the 

approximating finite horizon problems when P is a problem of the Bolza type, to 

which we already referred in  Section 2. The infinite horizon problem, that we 

designate by 8, then reads 

OD 
find x = ( x ~ ) ~ , ~  such that xt F R: and 

I 
w = l im Z t,l Lt(? - AX t )  is minimized 

with xo the initial state fixed. a c (0.1) a discount factor. 

A x t = X t - X  t-1' 

and for al l  t. Lt : R ~ "  -. R U {+-I is a lower semicontinuous function. Setting 

f t ( ~ t - l s ~ t ) : = L ( ~  t t -1 '  Axt) 

gives the connection with the formulation (1.1) of P. 

Again, for T=l, ..., let 

with h: = hl and 



gT = supt2TLt' 

ASSUMPTION 7.1 Problem B is proper. This means 

(i) the function h > -- 

- 00 n 
(ii) there exists ; (3)  t=l with 5 c R + such that 

I im sup at-' L (X;- . A<) < 
T- 

and 

ASSUMPTION 7.2 Grinold's growth condition. For every 

a* c [O.a] and z c R: wi th  z # 0. 

ASSUMPTION 7.3. Sustainability of tail-stationary trajectories. If x = (xt): 

is feasible. i.e. xt c R: for a l l  t. - 

l im sup ~ l = ~  at-I L t(xt-l. A?) < 00. 

T- 

then 

T-1 
l im sup a gT(x T- . O I L 0  
T- 



Approximates from below ElT: 

T find ( x ~ ) ~ = ~  with xt F R:. 

and w is minimized. 

Approximate from above ElT: 

find (\):I: - with \ c Rn+. 

and w is minimized 

All results of sections 4.5 and 6 can now be rephrased in a straightforward 

manner. 
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