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ABSTRACT

The paper deals with infinite horizon optimization problems. The existence
of optimal solutions is obtained as a consequence of an asymptotic growth
condition. We also exhibit finite horizon approximates that yield upper and
lower bounds for the optimal values and whose optimal solutions converge to

the long-term optimal trajectories.
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INTRODUCTION

Various economic planning problems, in particular in the areas of resource
management and capital theory, are inherently infinite time horizon problems

of the type P :

find x = (xt) :_21 with x, ¢ Rn+ , and such that

t

T t-l (1.1)

W= %}m sup L =] @ f t(xt-l' xt) is minimized;
-»00 N

where X, € Rr:_ the initial state is given, a € (0, 1) is a discount factor, and

for all t=1,....

2

f:R" >R u{+ o}

t

is a lower semicontinuous function; the effective domain of f t
domft={(y. 2)|ft(y. Z) (oo}

is determined by the constraints imposed on the trajectory (x at

t)t=l

time t (in addition to the nonnegativity constraints).

The open-endedness of the future is justified by concerns beyond any finite
period, and this feature cannot be conveniently ignored without impairing the
validity of the model; this point has been stressed by several economists, see
for example [1], {2] and [3]. The conseptual and mathematical elegance of
infinite horizon models however is impractical from a computational
viewpoint. To actually solve such problems we must usually content
ourselves with finite horizon approximates by including some terminal

criterion, i.e. we replace P by:



. T . n
find (Xt) t=1 with % € R+. and such that

T-1 _t-1l (1.2)

w=1L a ft (xt-l . xt) + vT(xT__l . xT) is minimized,

- Tt=l
for some finite T ; the function vyt R2n -+ R u { + =} having hopefully almost
the same effect on the choice of an optimal trajectory, at least up to time

. U R |
T, as the tail of the series : Et:l a f(xt_1 . xt).

This paper expands on Grinold's study [4] of the convergence of infimal values
and optimal solutions of finite horizon approximates to infinite horizon
problems. We extend and strenghten his results in a variety of directions
motivated by the following considerations. First we allow for nonlinear
dynamics, as well as for nonlinear transition costs ; in Grinold's model [4]
nonlinearity appears only in the cost functional in each state-decision
variable Xy separately. The results are now applicable to econcmic models
with nonlinear technologies .. in particular, with decreasing returns to scale ..
as well as to problems that can be cast in the format of discrete time Bolza
type problems, cf. Section 2. Second, we generate both lower and upper
bounds that enable us to obtain error bounds for the suggested solution,
Grinold [4] is only concerned with lower bounds. Third, we relax the

assumptions that the single-period cost function is convex and time

stationary.

As part of our development we derive an exsistence result by imposing an
asymptotic growth condition, called here Grinold's growth condition, that
eliminates from the set of potentia'lly optimal solutions those trajectories
whose "average growth" exceeds on equal a-l, the inverse of the discount
factor. Ekeland and Scheinkman [5] consider a special version of P and also

establish existence but with a growth condition that appears to be much more




restrictive than that used here; see also Magill [3] for a related result for a
model with linear dynamics and continuous time, and [6, p.93] where Ekeland

analyses the one-sector economic growth model of Ramsey.

In Section 2, we give a brief overview of the class of problems that fit the
general model (2.1) and in particular bring to the fore a version of P that
stresse; its dynamical features : the discrete time Bolza type problem; in
Section 7 we record our reults in terms of this Bolza model. The basic
assumptions that are needed to obtain existence and convergence results are
formulated and discussed in Section 3. Section 4 introduces the finite horizon
approximates that furnish upper and lower bounds for the optimal value of

the infinite horizon optimization problem P.

The main purpose of the remainder of the the paper is to validate the
assertion that the finite time horizon problems introduced in Section 4 yield
approximate optimal solutions of P. In Section 5 it is shown that with
Grinold’s growth condition we may naturally limit the decision space to Q.T(a.).
i.e. those trajectories that have finite "present value®. On this Q.T(a)—space
the (essential) objective function of P is inf-compact which, in turn,
guarantees the existence of optimal solutions. The convergence of the
optimal solutions of the finite time horizon problems to the optimal solutions
of the long-term problem is finally obtained in Section é by recasting these
problems in the Q.T(a.)—decision space and then making appeal to the theory of

epi-convergence.



a)

SOME EXAMPLES

The (abstract) optimization model P, see (1.1), encompasses a wide variety of
prablems that have been studied in the literature. By way of motivation we
begin with a few examples, they should also help us to assess the limitations

introduced by the assumptions that we shall impose on P later on.

Infinite horizon mathematical programs

Here
fot(xt—l' xt) if fit (xt-l' xt) €0,i=1, ..., mt
ft(xt-l'xt) = (xt_l,xt)cst (2.1)
+ oo otherwise
where for i=0, ...., mt. the functions fit are finite-valued lower

semicontinuous on R2n and St C R2n is closed.

An important special case arises when the single-period cost function does
not dependon t, i.e. for all t

m =m,S5, =S,and f., =f. fori=0,...., m.
t t i i

t

A further specialization is the model studied by Grinold [4] :

fo(xt) if a; X, |+ bi xtgﬁ.l , i=1, vee. , M,
n
ft(xt—l'xt)= xtcCCR , (2.2)

+ o otherwise

e

Here the dynamics is linearly constrained (a.l and bi are n-vectors), C is a

closed convex set with fo a convex function; there is no provision for



b)

transition costs from X1 to Xy - Grinold and others [4, Section 8 and
References] worked ealier on the infinite horizon linear programming version

of this model, i.e. when fo (xt) = ¢cx, and C is a polyhedral set, for eiample

t
c=R".
+

Another important special versioh of (1.1) is when the criterion function only
depends on "consumption” such as in the model considered by Ekeland and

Scheinkman [5]):

ft (xt_l.xt)=-maxct [ut (Ct)l(xt—l'xt+ct)cst] (2.3)

2n

where Y4 is the utility function at time t and S t CR“’, the "production

set® is closed.

Bolza type problems

Here with Ax, = x, - x, ., we have

t
ft (xt—l' xt) = Lt (xt-l' Axt) (2.4)

2n

where the function Lt : R » R u {+ =} is lower semicontinuous.

Finite horizon models of this type were introduced in [7], with extension to
infinite horizon studied in [8]. Economic growth models, for example, are
most naturally cast in this format [9]. Quite often (2.4) can be restated in
the form (2.1) yet Bolza type problems are dealt with more thoroughly ... in
Section 7 we transliterate our main results in terms of this model ... and this

because of two particular reasons. First, this discrete time version of the



classical problem of the Calculus of Variations provides us with the natural
bridge to optimal control problems, cf. (2.5) below and more generally the
Introduction of [10] where Rockafellar points out the pivotal role played by
this class of problems in optimization theory (for dynamical systems).

Secondly, we wish to emphasize the fact that L, may itself be the output of

t
some optimization problem. For example, let

Dy = (X, xR Nilx,_;» Ax) | Juy, € U, s.t. Ax, = A

¢ t t +B,u

g1 * By ud

t-1’

to1’ Ut are closed sets that correspond to constraints on the

state-variables x, , and controls u,, A, and B

dimensions. Further let

where X

¢ are matrices of approriate

e

mfutc U, [Ce (¢ ) W) 1 BX = Ay x,_;+ By ]

Lt (xt—l' Axt) = if (xt—-l' Axt) € Dt 2.5)

+ oo otherwise

where = (x t-1° ut) is the single-period performance criterion with =

lower semicontinuous.

Again an important special case of (2.4) is when cost and constraints are time
independent, i.e. Lt = L for all t. Further specialization gives us the convex

case, the separable case, the linear case, and so on.



ASSUMPTIONS

Three basic assumptions enter into play in the derivation of the results :

- problem P is proper : Assumptions 3.1
- QGrinold's growth condition : Assumption 3.2

- substainability of tail-stationary trajectories : Assumption 3.3.

The first one can be interpreted as a feasibility condition and will always be
viewed as part of the definition of problem P. The second one is the key
ingredient in the existence proofs whereas the last assumption is only required

to obtain convergence of the finite time approximates (from abave).

To formulate our conditions we rely on the following construction. For

T=1, ..., let
foT (y, 2): = 1anT ft (y, 2) (3.1)
and, define

hr:=clcof (3.2)

to be the lower semicontinuous reqularization of the convexification of f'T. In
terms of epigraphs we have
. - ] .
epi hT =cl co (Ut=T epi f’t) (3.3)

with cl denoting closure and co convex hull, and epi g = { (v, a) | @ > g(v) } is the

epigraph of the function q. Of course the functions h, are convex and lower

T
semicontinuous. Moreover, for all T



3.1

he ¢ f forallt ) T, (3.4)

and with h : = hl'

Shylhe ) Lo (3.5)

ASSUMPTION
Problem P is proper. This means
i. the function h ) -oo

ii. there exists X = (;t) to:l with ;t € R: such that

. T t-l ~ ~
hmsupttzla ft(xt-l'xt)<°°

T »>00

and

fl (xl, X l) (=

Without loss os generality, we assume that x = 0. (Otherwise just substitute

f(o+ i‘t_ Pt x~t) for f, in the formulation of P).

The essential obiective function of P is given by

limsup L
[T 200

T t-1 . n
t=1 a ft(xt—l’ xt) if for all t, X, € F{+

F(x) =

+ o otherwise.

Assumption 3.1. ii requires that F(x) < + = in addition to f l& 1,32 l) { oo,
which means that there exists some feasible trajectory X with (7( \ ';l )

feasible in time period 1. Withx = 0, we can think of this condition as



“idleness is feasible” if P if concerned with activity analysis, or alternative-
ly as "depletion if acceptable” if P is related to resource management. In

terms of model (2.1) this condition becomes

o t-l

fol (xo. o) + Zt:Z a

fot (0,0) ¢ + oo
and fort = 2, ....
(0,0) e S, fi¢ (0,0) <0 fori=l, ...., m¢.

(xo, 0) e Sl' fil (xo, o) £ Ofori=l, ...., m,

For example, in the quadratic case, i.e. with S = R2n and

1‘it (¥, 2) = (v, 2) (Q;; (v, 2)) + Py (s 2) - Blt

2n

with the Qit square matrices, Pt € R™" and E’it ¢ R, this boils down to

(xo, 0) (GLll (xo, Q) + p“(xo, U)SBil , i=1, oo, m 1

Bit >0, fori=l, ...., m_ and t=2, ....

t
and

. 1/t -1
hmsuplBotI <Ca .

T

In terms of h, the condition f l(; I’ x l) ¢ = -~ when satisfied at x = 0 or
after translation of x to 0 -- means that h(0,0) < fl {0,0) C eo. Also F(0) ¢ =
implies that h(xo » 0) € fl (xo , 0) is finite. These‘conditions , together with
the convexity of h, imply that for all © ¢ [0, 1], h( (1-8) X 0) is finite, and

thus in particular that
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h((l-a) X g 0) is finite (3.6)

and it is precisely to abtain this condition that the extra assumption

fl (;l' ;l) ¢ = is needed, see for example the proof of lemma 5.3.

Since for all t, h ¢ f,, we have that for x = (x) ,— With %, ¢ R],

. T _t-1
FO) 2limsup Z,_ ) @™ " hix_p» %)

T 500
from which follows that

l-a’ T l-a

t-1
hE, .
t=l T

t-1 T l-a
a xt-l'£t=l_l_Ta X¢)

F(x) > lim sup
T >0 l-a
by the convexity of h. This, with Assumption 3.1. i does not quite give us

F > -oo, but it implies that

F(x) > - for every x with zt:l a.txt { oo,

since the above would imply that

F(x) > (1-a) ! inf gy (V) [ Tul CL-a) v, W C-a) !ty

with v Z':lat Ixtl and le| denoting here the % L. norm in R".

The last term on the right being finite since h is lower semicontinuous,
proper and h(0, 0) ¢ =, and the variables (u, v) are restricted to a bounded
set. We shall see in Section 5 that Assumption 3.2 leads us naturally to re-
strict the decision space precisely to the trajectories with Zto:l cxtxt { oo,

and thus on that space we have that F is proper whenever P is proper.
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The Assumption 3.1.i. is trivially satisfied when the cost structure is mono-
tone nondecreasing with respect to time, i.e. if the sequence {1't (y, z),
2n

, and f, is convex

t=1, .... } is monotone nondecreasing for every (y, z) e R ¢

for every t. Then for all T,

h.l.:f.l.

Thus we certainly have not excluded two important special cases that

appear to cover nearly all potential applications, namely when the ft are

time independent, i.e. when for all t=1], ....
fi . 2) =f (. 2),

or, when the goal of the program is to reach certain states at minimum

cost, for example

f(y,2)=f(y,2) + q, (y, 2)

where

q, O, z) = inf [dist ((u, v), (¥, 2)) | (u, V)th].

2n 2n

dist is the distance function on R“ 'x R“"'and {D, , t=1, .... } is a decreas-

ing sequence of subsets of R2n , ar if q, is the indicator function of the set Dt:

0 if (y-Z)CD

qt(y.z) =
+ oo otherwise

t

or still

f2) = nf v+ 5 disf (U, V) (v, 2)]
u,v

which gives us a sequence of functions (known as Moreau - Yosida approxi-

mates of f of parameter t'l) converding to f from below .



3.2
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ASSUMPTION

Grinold's growth condition. For every a' ¢ [0, a]land z ¢ R ':with z#0,

(rch)(a'z,2)>0. 3.7

with h = hl as defined above, see (3.2).

Recall that if CC RMis a nonempty closed convex set, then there exists a
largest closed convex cone K such that for all x in C, x + K C C. This cone is

called the recession cone and is usually denoted by rc C. The recession

function of a proper lower semicontinuous convex function g : RMs R Ui+ oo}

is denoted by rc g and defined by the relation
epi (rc g) = rc (epi g).

If g(0) if finite, then

0

(e =limr h(N]' y") (3.8)

Voo
where XDL 0 and yu »y[ll, Section 8].
In the special, but important case when the function y > h(y, z) is

monotonically nonincreasing -- resource management problems would be of

that type, for example -- Grinolds's growth condition can be relaxed.
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3.3 ASSUMPTION
Strict version of Grinold's growth condition. For every z ¢ RT with 2 # 0
(rch)(az,2)>0 (3.9)
To verify. this condition, we could solve the convex program

find z ¢ R: with z il 1 such that

w = (rc h) (az, 2) is minimized (3.10)

To verify Assumption 3.2 we would need to solve a similar convex program
with a replaced by a' and make a parametric analysis as a' varies between 0
and a. For example, when in model (2.2) the cost function is quadratic

convex, viz,

foy,2)=(y,2)(Q (Y, 2)) +p (¥, 2) -Y

with Q positive semidefinite, p ¢ R2N and Y a scalar. Then

(p(a'z,2) if Qa'z,z) = O

3% +byx¢ LBy =l m,

(rc h) (a'z, 2) = n
Xy € CCR’,

| + o otherwise,

and (3.10) is a linear programming probiem, assuming that C is polyhedral,
parameterized by a'.
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Grinold's growth condition, imposes a restriction on the asymptotic rate of growth
of the sequences (xt)::l but apparently only in some very restricted directions.
We shall see later on that this assumption actually limits the set of feasible
solutions to those (xt)::l whose rate of growth is eventually less than a'l, i.e. no
sustainable growth rate will suffice to compensate for the dampening effect of
discounting. In terms of economics, with a = 1/(1+r) where the interest rater > 0
reflects the opportunity cost of capital, Assumption 3.2 quarantees that at very
high stock levels the rate of return on additional savings is less that r, i.e. the
(endogenous) 1ntémst rate of the stock is asymptotically inferior to the best

(exogenous) alternative.

To formulate our next assumptions, we need the counterparts of the lower

bounding functions h.. For T=], ...., let

T
9y P =Sup Tft (3.11)
where (supt > T ft) (x) = SUPy y T ft (x), in terms of epigraphs we have that

. o .
epi g, = nt:T epi ft' (3.12)

The construction here being similar to that of the function hT' see (3.2). The
lower semicontinuity of the functions ft implies the lower semicontinuity of
9y epi 9r is the intersection of closed epigraphs.

Moreover
9 20y 2 s 297 20y, 2ewee s (3.13)
and for all T,

hy < fr £y (3.14)
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ASSUMPTION

Sustainability of tail-stationary trajectaries. If F(x) < +o, then

limsup @' ' g (x7_j.xp_) €0 (3.15)

T oo

with gy as defined by (3.11).

Observe that (3.15) is satisfied if

. oo t-]
lim sup 2t=T a

T oo

gt(xr_l.xT_l)go. (3.16)

whenever F(x) ( . If the f_ are time independent, so are the 9y i.e. 9, =9

t

for all t, and then the two conditions (3.16) and (3.15) are equivalent.

There are really two components to this last assumption which are useful to
isolate in order to understands its implications. First, suppose x is feasible,
then another feasible solution can be created by following the same

trajectory up to time T-1 and staying in state xy_| from then on. And
t(T-1

second, for any such modified trajectory (x-t) : 1 with X, = X

t »
and X = Xp_p t > T, the tail of the series

oo t_]_‘ — -
Liar @0 R (e xy)

becomes less than any pasitive number, for T sufficiently large.



-16 -

FINITE HORIZON APPROXIMATES

We do not really expect to be able to build finite horizon approximates (1.2)
of P whose solutions up to some time T, actually match those of P itself, at
least not without first solving P (1.1). At best we may be able to find
terminal criteria that yield upper and lower bounds and which would allow us

to bracket in this way the optimal value of P.

We begin with approximates from below. We can motivate our construction

as follows. Let hT be as defined in (3.2), i.e. the largest lower
semicontinuous function majorized by the f; for allt > T. Suppose for the
time being that for any feasible trajectory x = (xt )t_l , the convex

combination

z:=(l-a) z‘:’:Tat‘T X, 4.1)

of the tail (x.l.. XT 4] oo ) is well defined; in Section 5 we shall see that

Grinold's growth condition actually gquarantees the existence of Z,- Since

(1-a) Z:__Tat_T (xt—l , xt) = ((1-a) Xp_| t Xz, ZT)' 4.2)

L t-T
(l1-a) Zt=.|. a =1,

the convexity and the lower semicontinuity of hT imply that

aT-l

. T _t-l
, by (1-a) x;_;+azq, 29 & h.m sup Iy _ra fL(x_. %) (4.3)
-a IMEX ]

This suggests choosing the term on the left in (4.3) as terminal criterion in
(1.2) to obtain a lower bound for P. We are led to the (finite dimensional)

optimization problem PT:



-17 -

. T . n
find (xt)tzl with X, € R+ such that

T-1
a

=1 @ Fy e X9t hp (=) +xpaxg) (4.4)

l-a

and w is minimized.

In view of (4.3) we should not identify the variable Xq that appears in PT with
the T-th state variable but to a discounted version of all future decisions, see
(4.1). Roughly speaking we can think of PT as obtained by averaging
constraints and variables from time T on. Of course, we suppose that all

quantities that appear here are as in P and that they satisfy the same

assumptions. Let
V(xo): = infx F(x) = infP (4.5)
VT (xo) :=inf PT (4.6)

denote the infimal values of P and PT respectively; in the framework of
dynamic programming V and VT are the so-called value functions of P and
PT' Rephrasing the observations that led us to the formulation of the finite

horizon praoblems {PT. T=1, .... } in terms of infimal values yields:
PROPOSITION

Suppose F(x) ¢ =, i.e. x is a feasible solution of P, and

z;=(1-a) rto:T Ml X ¢+, Then



4.2
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is feasible for ? . Moreover

T-1 _t-1 ot}
=] & ft (xt-l , xt) + : h.l.((l—a) Xq_1* @2y Z’T) < F(x), (8.7)

L

and hence for all T=l.i....

VT (x o) < V(xc).

The construction of the problems PT is akin to the lower approximates
obtained for stochastic optimization problems by substituting for the given
measure a discrete probability measure generated by taking conditional

expectations and making use of Jensen's inequality, cf [12, Proposition 4.1]

- for example. Indeed we can view

(1-a)at!

with t=1, ....
as a probability mass function on the natural numbers. The averaging of the
tail corresponds to taking conditional expectation given [1, T-1]. Proposition

4.1 reflects the fact that this gives a lower bound when we substitute h for

T
the functions ft' t > T. This interpretation also suggests that the lower bound
will be tighter if we refine the partitioning with respect to which we take
conditional expectations. That is the content of the next proposition whose

proof is straightforward.

PROPOSITION

Suppose the (finite) sequence

Xl, X2, ceee g XT, XT+1
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is a feasible solution of pT+l' Then, with

x'T = (l-o.)xT A Xy

the sequence

xl

Xl. Xz, e X

is a feasible solution of PT' since

hT((l-c,)xT_l +ax'L, x T) £ (1-a) fT(xt-l' xT) + ahT+l(xT' xT+l) (4.8)

From which it also follows that

Vix)) £ Vg, (X)) £Vx) (4.9)

Thus, as expected, the sequence {VT(xo). T=1, ...} is monotone nondecreasing
and bounded above by V(x o)‘ That we actually have convergence, when the
Assumptions of Section 3 are satisfied, is demonstrated in Section 6. In the
process we shall obtain much more, namely the componentwise (i.e. for all t)

convergence of the optimal solutions of problems to an optimal solution of P.

Let us also record now that Grinold's growth condition, Assumption 3.3 more

exactly is sufficient to gquarantee the existence of optimal solutions for PT.



4.3
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PROPOSITION

Suppose P is proper and satisfies the strict version of Grinold's growth

condition (Assumptions 3.1 and 3.3). Then for all T=1, .... and all B ¢ R, the

set

T-1
a

20, ., x; 201 EtT____ll at! f Og_pr %)+ hi{(l-a)x; | +

l-a

ax.l..xr)iﬁ}. (4.10)

is compact, i.e. the essential objective function of PT is inf-compact. Hence

PT has an optimal solution.

PROOF. Clearly for all B, the set given by relation (4.10) is closed and

contdined in

T-1 _t-l !
HT,B: = {xlgo. seee s Xp 201 zt:l a h(xt-l' xt) + a h((l—c:.)xT_1 +
axon xl.) < B}
since h = h1 (4 hT < fT for all T, see (3.3). It is thus sufficient to establish

that HT 8 is bounded to complete the proof, since it would yield the desired
compactness from which the existence follows directly; we can then view
PT as minimizing a proper lower semicontinuous function on a compact set.

The set H is closed and convex --- by construction h is lower semi-

T.8
continuous and convex --- to show that is bounded we prove that its

recession cone
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rc HT.B = {0}

whenever HT 8 is nonempty. So suppose B > F(0), by Assumption 3.1 F is

finite at 0, and O # (yt)t=Tl ercH Then for all \ ) Q,

TB8°

T-1

T-1 t-l a
WO M+ T M- Ay v adypdyy)

B zh(xo. Xyl) + thz a
which implies

B (1-a) " h((l-a)xy + Na¥) Ay)) (4.11)
where )71 is defined recursively by

Yr=Yr

Y= (1-a) Ye+ @Yy for t=T-1, ..., I.

The second inequality resulting from the convexity of h. Dividing both sides of
(4.11) by \, letting \ go to +e and relying on (3.6), we obtain the following

contradiction to Assumption 3.3
0 (rch)(ay,.y))

Hence y must be 0, and this completes the proof. 0.

We now turn to approximates from above, here we rely on the upper bounding

function {g:r. T=1, ...}, cf. (3.11). Suppose x = (x is tail-stationary from

Le <]
t’.)t=l
time T-1 on. Then
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T-1

NG -1 X3 * “Tog 97 Oy %) (4-12)

FOO LT |

1a
1

as follows from (3.11). Motivated by this inequality we introduce the (finite

dimensional) optimizaton problem PT:

find (xt)I;ll with x, ¢ RZ such that
T-1

= t-1 a o
w=L oo fx %)+ o Xy Xp_y) Is minimized; (4.13)

parameters and functions are as in P. We may think of PT as the search for the

best trajectory which is stationary from time T-1 on. With

vT(xO): =infP"

and straightforward application of (3.14) and (3.13), we obtain:

PROPOSITION. Forall T=1, ...,
T+1 T
Vixg) £V (xg) £V (%) (4.14)

The sequence {VT(xo). T=1, ...} is monotone nonincreasing and bounded below by
V(xo). We prove convergence in Section 6 as part of a general result which also
gives us the componentwise convergence of optimal solutions. As one could easily
guess, Assumption 3.4 about the sustainability of tail-stationary trajectories plays

a key role in that proof.

The existence of optimal solutions for PT (4.13) is again guaranteed by Grinold's

growth condition, the proof is similar to that of Propasition 4.3.
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PROPQOSITION

Suppose P is proper and satisfies Grinold's growth condition (Assumptions 3.1 and

3.3). Then for all T=1, ... and B ¢ R, the set

yolzri Vabtte x .. x +£l (x ) ¢ Bl (4.15)
t=1 g Xy ¥ ¥ Tog O Kqopr X)) LBHE

{xl 20, ..., X7-12

in compact, i.e. the essential objective function of PT is inf-compact. Hence

PT has an optimal solution.

PROOF. For every B the set given by relation (4.15) is closed and contained in

T-1
a

t-1
hix_p %) + 7o h Oy X B

T T-1
I-% = {xl. e Xy _) | zt:l a

as follows from (3.14) and (3.5). The proof will be complete if we show that Hg
is bounded since it would imply the compactness of the level sets (4.15) of the
essential objective of F’T from which the existence of optimal solution follows
directly. The function h being lower semicontinuous and convex it follows that
set Hg is closed and convex. Moreaver, it is nonempty if we choase B > F(Q) as
follows from assumption 3.1. ii and h £ ft for all t. The set Hg is then bounded

if and only if rc Hg = {0}

Suppose to the contrary that 0 # (y)th'll erc HF;. Then for all \ > O,
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T-1
T-2 t-1 a
B2hxg hyp+ Iy jar Ay p My g+ g M g Yy p o)

and using the convexity, this yields

B2 (1-a) ™" h((l-axy + gy, 7)), (4.16)
where )71 is defined recursively through

Y=Y =Yt

y = (l-a)yt+ qy t+l fort =T7-2, .., 1.

Dividing both sides of the inequality (4.16) by '\, appealing to (3.6) and letting

\ go to +w, we contradict (3.9) since we obtain

0X(ch)(ay;.y, )

Hence y must be 0. D.
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EXISTENCE AND INF-COMPACTNESS

We now study the properties of F, the essential objective of P, and in
particular we analyze the implications of Grinold's growth condition,
Assumption 3.2 (or 3.3). We first show that all trajectories x = (xt):':'=1 of
interest for P are bounded in a certain normed space and then show that
restricted to that space the function F is weakly inf-compact from which the

existence of optimal solutions follows immediately.

Note that if for all t, ft = f and the constraints implied

or if we added a constraint of that type, with K C R" compact and f bounded
on K X K, then existence and related results could be obtained via the
standard method of successive approximations which also gives good error
estimates [13, Chapter 6], [14, Chapter 4]. In this paper we do not introduce

such artificial (uniform) boundedness conditions on the trajectories (xt):o:l. A

- -]

fortiori, we shall not require that optimization takes place in the space 9’n of
bounded sequences in R". The appropriate space turns out to be
ol (@=fx =) T xl:=2 ax, [ <o) 5.1)
@ ={x=0)_, TIxll:=Z_ a x| (5.

as confirmed by the results below; here | ¢ | denotes the ll-norm in Rn. i.e.

.=2n

EREEDANEE
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The arguments rely on the asymptotic behavior of "averaged” trajectories.

Fix any n¢ (0, a ]. Now to each x = (x we associate

o
t)t=l

T l-n _t-1

(uT_l.vT):=ZIt=l l_—nTn (xt—l'xt) (5.2)
S t _ T t
BT.-zt=0n|xt|-Ix0I+£t=lnIxtl (5'3)
and
l-n' -1
()’T_l. ZT):=—l?ﬂ-—BT (uT_l- VT) (5'4)
Note that Uy and vy are convex combinations of (xo. ..... . xT) and (xl. ..... .

xT) respectively, and that Yt and z are just scaled versions of these

vectors. We have that

-1 T _t-1
zy = BT thl L (5.5)

while

T+l _t-1

-1 -1 T _t-l
YrePry B X PEByy (gl

X9

-l -1
=Bry1 %t By Brzg (5.6)
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Now observe that

-1 -1 Tt -1 -1
lz =87 07t gl il = n7 BT By - IxgD
=t =B Ixyl (5.7)
3 T 0 .
Also
-l Tl tel -l

which means by (5.6) that
yo =87 x +mlylz (5.9)
T "T+1 "0 T °T '

If || x || = + oo, the case which will be of interest, then the BT converge

monotonically to + . This means that
lim |z =n""
T 00

the convergence being from below. Also, and this only depends on having BT
> O for T sufficiently large, every cluster point of the sequence { | Y1 |, T=1,
..... } belongs to [0, 1]. This means that

{zp, T=l, oo }CRznn“l B (5.10)

and
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{yqs T=ls e }CR:F\B (5.11)

where B is the unit ball in Rn, and hence each one of these sequences admits

cluster points.

LEMMA. Suppose P is proper and satisfies Grinold's growth condition

(Assumptions 3.1 and 3.2), and x = (xt):;l is such that ||x|| = + o and either
that
lim sup Ixt Il/t (o (5.12)
t-oo
or there exists n ¢ (0, a] such that
lim z; =2 (5.13)

T 00

exists with the z_. as defined above (5.5). Then F(x) = +oo,

T

PROOF. The argument follows the same pattern as the proofs of [3, Theorem
4.1], [15, Theorem 1]. We begin by showing that with (5.12) and (5.13), the
sequence { (yT_ 1’ zT). T=l, ..... } admits a cluster point (y, z) withy = 'z, z#0
and ' ¢ [0, a]. Suppose first that (5.12) holds. Using (5.5), (5.9) and (5.8) we

see that
-1 T
Yro1 =By Xg*nzZy-m o xp /By

From (5.10) we know that some subsequence of the sequence { Z5, T=1, ..... }

-1

convergas to some z with |z = *. Since B}l goes to 0, it would follow that
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lim y =Nz
T00 T-1

provided that

. T T
lim n |x.|.|/('n |x.|.|+ ..... +n|xl\+|x0|)=0,

T 300

and to guarantee this we choose n = min [p'l , a] where p ¢ lim sup |xt|l/t.

tooo
see [15, Lemma 1] for the details. Now suppose that (5.13) is satisfied. Then

some subsequence of { |y.|._l | T=1, ..... } will converge to a © ¢ [0, 1].

Restricting ourselves to this subsequence of {\y.l._ll. T=1, ceeue } it follows

by (5.9) that it converges to : n (lim | 2 l| )lim 2z T-1 =M 0z=n'z
T-s00 - 1 T-00

where n'c [0, a]Jand z = lim 2z, with [z] =0 .

T 00

For the rest of the proof we assume that actually

lim (yp_)»27)=(n'2,2)
T

with n'e [0, a]; there is no loss of generality in doing so since all assertions
remain valid if we work only with a converging subsequence. For the sake of

the argument, let us assume that

limsup L I:l n t-1

To0o

ft(xt—l'xt)<Y<+°°

Since for all t, ft dhand h = hl' as defined by (3.2), is convex, from (5.2) we

obtain
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l-n T _t-1 l-n
h(uT-l'VT)iwztﬂn ft("t-l"‘t)iw*

for T sufficiently large. Reexpressing this in terms of (yT-l’ xT) and dividing

both sides by A1 = (1-1) (1-n")~! B vields
lho Ay 22) < B2
T TYT-1P M 23Ry Y

Since BT and )‘T tend to +% with T, from (3.8) and the limiting properties of

o0 .
the sequence (yT_ 1’ ZT)T=1 we obtain
(rch)(n'z,2) <0,
which contradicts Grinold's growth condition (3.7). Hence

t

. T -1
lim sup Zt:ln ft(x t—l'xt)'+°°'

T00

But now recall that n€ a, therefore we also have

lim sup Z;r_l at!

T30

ft (xt_l.xt)=F(x)=+oo.

(the positive part of the sum already dominates the negative part with the

parameter n less than a), and this completes the proof. 0

The cpnditions (5.12) and (5.13) cover all cases that seem to be of interest.
However, it is possible to generate trajectories, with more than exponential
growth and for which the "averaged" trajectories { Z5, T=1, ..... } do not

converge. Such trajectories must have very wild tails! And for these,
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Grinold's growth condition would not be sufficient to guarantee that they
correspond to F(x) = +, we would need to impase much more constringent

growth conditions to handle such exotic cases.

By Lemma 5.1 we may safely restrict optimization to those sequences
(xt):o= 1 in 9.:1 (a) whose natural pairing is with 2:. This plays a significant
role in the convergence results of the next section but it also has some
bearing on the question of the existence of optimal solutions. Weak
convergence in Q.rl‘(a) is characterized by having "componentwise”
convergence, thus a (filtered) collection of points { x° = (x:)‘:___ Ve N}

weakly converges to x if and only if

lim x : = x for all t, (5.14)

velN t

which would also be sufficient for strong convergence if { x>, veN }isa
sequence. This set-up will provide us with the topological framework for the
study of the properties of P. Henceforth, we will think of P as being defined

on er‘ (a) with the essential objective function now given by:

. T ot-l .
lim sup 5_) @' f0q_ 1 x) if x € 2 @),
Foo = | 1 1

: with 8} (@), = tx e 21 (@) 1% 20, t=1, ...} (5.15)

+ oo otherwise
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PROPQSITION. Suppose P is proper (Assumption 3.1). Then F is a proper, weakly

lower semicontinuous function.

PROQOF. Properness of F on Q.rl‘ (a) has been argued in Section 3 in connection
with Assumption 3.1. Lower semicontinuity is obtained as a consequence of a

version of Fatou's Lemma. By Assumption 3.1. i, the function h ({ f , for all t) is

t
proper and convex, so let a be an affine function majorized by h. Then for all t,

qtzft—-azo.

Now consider a collection {x“ € Q.rl‘ (a), v € N} converging weakly to x. Forall v ¢

N and T, we set

ol t-1 v v
Ko7 = Bea1 & X e %)

Since the quantities involved are nonnegative, we have that for all v, the x,T are

monotonically nondecreasing with T and thus

Koo = lim ks (5.16)

is well defined, possibly with value +o. Hence for all T

lim inf r“'.l.

ve N xeN

<liminfx_,
\Y

then taking lim sup with respect to T on both sides (which of course does not

affect the right-hand side) and using (5.16), we obtain
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lim sup lim inf KoT < lim inf lim sup « T (5.17)
tsoo vl "7 veN  Taee

Now, note that
lim sup k_ = F(x%) - AY) (5.18)

T 00

where A is the affine functional on 9.[11(0.)_'_ generated by replacing ft by ain

(5.15). Also, since f, is lower semicontinuous so is qy and thus

t

L .. T t-1 v v T t-1
Iiminf g p=liminfl, ,a” " g0q . x)2 L ;& "g (x_;.x)

veN

Taking lim sup with respect to T, and combining this with (5.17) and (5.18), yields

lim inf F(xD - A > F(x) - A(x).
veN

Since A is an affine functional and the x" converge weakly, this inequality gives

us the weak lower semicontinuity of F since it implies that

lim inf F(x%) > F(x). O
veN

The existence of optimal solutions could now very well be settled by requiring
that dom F, the effective domain is contained in a weakly compact set; the level
sets of F being weakly closed it would give us the weak inf-compactness of F.

The following growth condition would suffice: for some sequence of nonnegative

numbers )‘t' t=1, ... with
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o t

Zt:__ 1 ¢ )"t (o

we have for all x e dom F that |xt| < )‘t for all t. Then every trajectory in dom F
is uniformly summable and weak compactness then follows, see [16, p. 20] for
example. In particular this argument shows that we may allow feasible

trajectories to grow exponentially at a rate less than a"l. When this is translated

in the language of capital theory, the condition

I, | £ X, with lim sup ('A.t)l/t <ol

t-o0

is nothing else than the requirement that the rate of impatience, as defined by
Fisher [17] exceeds the rate of capital growth. Otherwise we would embark on a
path of capital accumulation [3]. We shall see however, that we do not need to
introduce weak compactness artificially, in fact it is already there in some way,
as a consequence of the assumptions we have been working with so far. We begin
with a lemma involving the function

e

. T t-1 . 1
lim sup £t=l a h(xt-l . xt) ifxe n(c:x)+ (5.19)

)

H(x): =

L+oo otherwise
Since h € ft for all t, cf (3,4) and (3.5), we have that
|
H<F on Qn(a).

If P is proper, we have that H is proper and weakly lower semicontinuous, as

follows from Proposition 5.2 (replacing in the definition of F every f_ with h).

t
Moreover, H is convex (convexity of h) and H(D) is finite.
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LEMMA., Suppose P is proper and satisfies the strict version of Grinold's growth

condition (Assumptions 3.1 and 3.3). Then H is weakly if-compact, i.e. for all

BeR

levBH = {x | H(x) < B}

is weakly compact.

PROOF. Of course it suffices to consider the case when levBF is nonempty, since
H(0) is finite (Assumption 3.1. ii) let us assume that B > H(0). This means that O ¢
levBH. Since levBH is weakly closed (Proposition 5.2), to prove weak compactness
we only need to show that levBH is weak sequentially compact (Eberlein-Smulian
Theorem) and in er,l(a) this actually turns out to be the same as strong

precompactness.

We first intend to show that levBH is locally weak sequentially compact at 0. To

see this, consider the continuous linear functional

x-><e.x>=).‘.°°

t=la e X

t°t
where for all t, 8, = (1,1, ..., 1). Note that <e, x> = lixll whenever x ¢ dom H. Now

let

Ve = lev[3 HNi{x] <e, x>{ 1}

This is a closed weak neighborhood of O relative to lev,H. Pick any sequence

)
{x“,v:l, ...} C V; we must exhibit a convergent subsequence characterized by
(5.14). If some subsequence converges in norm to 0, there is nothing

to prove, so we suppose that for some y > 0
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T O =<e, x°> < 1

for all v. Passing to a subsequence, if necessary, we may assume that
lim 1x Nl = y e [v, 1.
V-0

Observe that for all v and all t:

L, v
a |xt|
¢ [0, 1]

v
N

Therefore by a standard diagonal procedure we can extract a subsequence

{x‘: v € N'} such that

a t:X v Cl+ X
lim t. t fort=1,.....
lix §1 Y

implying the (weak) convergence of the {x“, veNl}tox: = (xt):l.

Next we prove that the set levBH is norm-bounded. Suppose to the contrary that

there exists a sequence {x“ € levBH, v=l, ...} such that lim lIxMl = +o0. Define
Voo

y“: =x"/ tix® 1l

assuming that lIx° Il > O for all v. Since lly"ll =1,

y“ eV forall v
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and, passing to a subsequence if necessary, there exists y = lim y“as follows
v-00

from the weak sequential compactness of V. Since the y“ converge weakly toy,

in particular we have

1 = 1lim Ix°1l = lim <e, y“) = <e, y> =llyll,
voo v-oo

Since lev,H is convex our construction would imply that 0 # y ¢ rc lev_H (with

B
yt > 0 for allt). Then

B

. T t-1
B > lim sup [h(xo. ‘A.yl) +L =2 &

T00

hOh | Yy_pe MY

for all \ > O, using the fact that 0 ¢ lev[3 H. The convexity of h now yields

-’ | l-a t-1 t

B > lim sup —— h(
T00 l-a l-a

T-1 T -1
T (x0 +\a £t=l a Y ANE =% yt)) (5.22)

As T goes to +, a.T goes to 0 and

. o™ t-1

is well defined since llyll < oo, with z # 0 since y # 0. Dividing both sides of (5.22)

by N\ and letting N\ go to =, we obtain

0=1im '8 2 lim X! (1-a) h(l-axg + haz, A2,

‘N300 )
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which with formula (3.8) and condition (3.6), a consequence of Assumption 3.1,
implies

0 ) rc h(az,2z)
contradicting (3.9). Hence y must be 0, and thus levBH is bounded.

To complete the proof it suffices to observe that local weak sequentially

compactness and boundedness yield weak sequential compactness. O

THEOREM. Existence. Suppose P is proper and satisfies the strict version of

Grinold's growth condition (Assumptions 3.1 and 3.3). Then the essential objective

function F of P is weakly inf-compact, and hence there exists optimal solutions of

P.

PROOF. Since H ¢ F (5.20), F is weakly lower semicontinuous, it follows that for
allB e R, levBF is a weakly closed subset of the weakly compact set lev_H

B

(Lemma 5.3) and thus levBF is also weakly compact.

Since F is proper, the inf-compactness implies the existence of optimal

solutions. O

The preceeding theorem suggests that we could restrict ourselves to trajectories
that satisfy some uniform summability condition, but at the outset we do not
know the pertinent parameters and it would be inappropriate to introduce them
artificially. Let us stress here the fact that these last results very much depend
on having a < 1, with @ = | we are in another ballpark and the rules of the game

are then quite different.
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CONVERGENCE OF FINITE HORIZON APPROXIMATES

We embed each finite horizon into an equivalent infinite dimensional problem (in

Q.rl‘(a). and then rely on the convergence results for the infima of epi-convergent

functions, cf. [18, Section 2] for a review of its highlights. This technique was

used by Back [9] in a related context, in his work on infinite horizon economies

under uncertainty.

To PT (4.4), the finite horizion problem giving lower estimate, we associate

= Q:‘(a) +R U {+o0}

that will play the role of the essential objective function of the corresponding

problem in Q:‘(a). Let

h

is motivated by the construction that led us to P

T

T-1
oy @ flxe e xQ + o hpUmadg ) v azp, z)

. 1 oo t-T
1fxc9.n(a)+and ZT=(1'°‘)zt=Ta % (6.1)

+00 otherwise,

b

being as usual the function defined in Section 3, see (3.2). The definition of F

T The optimization problem

find x ¢ Q.rl‘(a) such that FT(x) is minimized (6.2)

T
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can be viewed as an Q.rl\(a.)—version of P,. Indeed, if FT(x) { +o0, then (xl,

’ xT_ln

is a feasible

T
ZT) is a feasible solution of PT' and on the other hand if (xt)g-l
solution of PT' the sequence x = (xl, soor X _p0 X0 X ...} is feasible for (6.2) since

then 2 = Xqo In particular, we have that

VT(xD) = inf € an (@) FT(x)

with VT(xD) given by (4.6). Thus from (4.9) it follows that the infima of the FT

are monotonically nondecreasing with T and bounded above by

V(xg) =inf SL1n (@ FO)

with F as defined by (5.15). This is not too surprising since as an immediate

consequence of (3.5), we have that
<. SF. (6.5)

Thus {FT, T=1, ...} is a monotone nondecreasing sequence of functions bounded
above by Fand since F is weakly lower semicontinuous we can establish
epi-convergence by showing that the FT pointwise converge to F. Note that here,

epi-convergence is always to be understood in terms of the weak topology.

PROPOSITION. Suppose P is proper (Assumption 3.1). Then

{FT(x). T=1, ...} T F(x) (6.6)
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for all x ¢ 1'_1‘(«). which implies that

F = epi-lim F.

T o0

T (6.7)

PROOF. It suffices to show that if x erl‘9. (cx)+ then F(x) = lim.|F (x), and this
To00

convergence wil follow from the definitions of F_ and F if we show that

T

T-1
N 1
lim 1nfm- h.l.((l-cx)xT_l tazn, zT)zlJ
T o0
or that

. T-1
lim inf a h(zT—l' zT) >0

T 00

since h € hT for all T, and
Z3 = (l-a) Xy_y + 9Z7-

But observe that (cxt.'zt):"_0 is a monotone nonincreasing sequence in R: converging

to 0 since lIxil ¢ oo, Hence

T-1,, -T+l, T-1 T-1

. T-1 .
lim inf a h(zT-l' zT) =liminf a h(a (a Zr_ @ zT))

T30 T-o00

= (rc h)0,0) =0
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This gives us (6.6). Now, since F is weakly lower semicontinuous, epi-convergence
can be verified directly, such as in [18. Proposition 4.23, or more immediately by
observing that monotonicity implies (weak) equi-lower semicontinuity [19,
Definition 2.17] which yields epi-convergence as a consequence of pointwise

convergence [19 Corollary 2.19]. a

Assuming P is proper (Assumption 3.1), the functions FT are weakly lower

semicontinuous, the proof of Proposition 5.2 applies equally well, F and F

T

satisfying the same conditions. Moreover, since for allt,h{(h_ (f

t=t

H{F,.forall T (6.8)

T
with H as in Section 5, see (5.19). Hence, for all T, the FT are proper, weakly
inf-compact functions, whenever the strict version of Grinold growth condition is
satisfied (Assumption 3.3); we rely here on Lemma 5.3. This quarantees the

existence of points x ¢ Q.rl,‘(a.) that minimize F_.. All of this should not come as

T
much of a surpise since Assumptions 3.1 and 3.3 are exactly those we used to
obtain the existence of optimal solutions for the finite horizon problems PT.
consult Proposition 4.3. In fact, it is easy to verify that if

x = ( t') =] € argmin FT

where argmin G: = {x | G(x) £ inf G}, then

- - - T t-1
(xl. Xoo vees Xq_1 027 = (l-a) T =] &

is an optimal solution of PT. Similarly, if

(xl. Xgo vees xT)
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solves PT ,then

X = (xl P Xgs ey Xpo Xp o) =X Xp o = Xp ...) € argmin FT’

Thus, we can identify the optimal solution of PT with those of the optimization

problem (6.2) in ar"(q).

THEOREM. Consider problem P (1.1) and the finite horizon approximates {PT.

T=1, ...} (4.4). Suppose that P is proper, satisfies Grinold's growth condition, and

that this implies that the feasible solutions of P are in ﬁé(a). Then, the sequence

(6.9)

{VT(xD), T=1} converges from below to V(xo).

Moreover, P and all the problems PT admit optimal solutions, and given any

sequence {x.l., T=1, ...} of optimal solutions of PT' it admits at least one cluster

point x = (xt):__ 1 such that

Ttorall t, (6.10)

=limxt

X¢

T 00

and any such cluster point solves the long term problem P. Finally, if x solves P,_

then there exists a sequence of real numbers c.l.l 0 and x T = (321;)1;_ ] such that

%' is an e-optimal solution of P -- i.e. up to e, < T solves P; -- and

. =T
for all t, xt= lim x £

T 200
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PROOF. The assumptions allow us to identify P with minimizing F on 9.:‘(0.) and

the PT minimizing FT on Q.rl‘(a). Now, let us choose B such that B ) inf F and define

K: = levBH

Where H is as defined (5.19) in Section 5. We have

min F = mmKF = V(xo)

and for all T, see (6.8),

min FT = mmKFT = VT(xo)
We write min instead of inf since we know that the infima are actually attained.

Since K is compact (Lemma 5.3), and F = epi-lim F.r (Proposition 6.1), it follows
T 00

lim inf (mmKFT) > manF.

cf. [20, Proposition 2.1], [21]. Combining this with what precedes and (4.9) of

Proposition 4.2, we obtain (6.9).
Since epi-convergence implies

lim sup (argmin FT) C argmin F

T 200

and whenever inf F = lim (inf F
T 00

)



- 45 -

argmin F =N lim inf (e-argmin F

)
€50 Tooo T

see [21, Theorems 2 and 3] or the epi-convergent version of [17, Proposition 3.12],
we now obtain all the remaining assertions using (i) the fact that for all T, (argmin

FT) C K and (ii) that (6.10) characterizes weak convergence on Qi(a). a.

We now turn to {PT. T=1, ...}, the finite horizon approximates that yield-upper
bounds. We essentially proceed in the same manner as above, however, we shall
now need to introduce Assumption 3.4 on the sustainability of tail-stationary

trajectories to obtain convergence. To each problem PT. defined by (4.13), we

associate
[ T-1
T-1 _t-1 a
L1 & Fee e )+ T r o )
: 1 _
if x € S?.I_‘(a)+ and Xp = X7 for t=T, ..., (6.11)
Fl(x): =
+o0 otherwise

where 9r is as in (3.11), the pointwise supremum of the f_ witht > T. The

t

optimization problem
. 1 T, . ..
find x ¢ Q.n(a) such that F " (x) is minimized (6.12)

can thus be viewed as an Q:](a)—version of PT. As for PT and FT' we can identify
feasible solutions of PT and FT. In fact the correspondence here is one-to-one, so
that in particular we can identify optimal solutions of PT with elements x ¢ Qi(a)

that minimize FT, and vice-versa. We also have that
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vT(xO) =inf 11n @ FT(x),

where VT(xo) is the infimal value of PT and thus, as a consequence of
Proposition 4.4, we know that the infima {inf FT. T=I, ...} form a
nonincreasing sequence bounded below by V(xo) = inf F. To obtain

convergence we again rely on the following fact:

PROPOSITION. Suppose P is proper and tail-stationary trajectories are

sustainable (Assumptions 3.1 and 3.4). Then

F = epi-lim F | (6.13)

T 00

PROOF. This time we verify directly the definition of epi-convergence [18,

Section 2). We have to show that for any x ¢ Q.rl‘(a)

(i) for all {x‘)c ﬂ.r:(a). v=1, ...} converging weakly to x

lim inf F°(x®) > F(x) (6.14)

v - 0o
and

(ii) for some sequence {x" € 2:\ (a), v=1, ...} converging weakly to x,

lim sup F(x)° ¢ F(x). (6.15)

v & oo
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The first condition (6.14) follows from the weak lower semicontinuity of F

(Proposition 5.2) which implies

lim inf F(x) > F(x),

v > o0

and the fact that for any x ¢ 9.:‘(0.)
FY0) 2 F(x)

to see this observe that F“(x) = 400 if X is not tail-stationary for t > v-1 and if it

is tail-stationary then by definition of 9. in particular (3.13) and (3.14),

T‘l ] t_l

a . v
T« % (x\)-l' x\)-l) 2 lim sup z:tz\) a 1:t(x\)—l' x\)—l)
v > o0

To obtain {(6.15) for some sequence {x“. v=1, ...} converging weakly to x we

construct it as follows: set

xt:xt fort =0, ..., v-1
x‘{:x 1 fort = v,
Then
F“(x“):E““at“f( )+——°‘“-lg (x> WX )
t=1 -1 Y T oW ¥ -1 %o-1



6.4

- 48 -

and taking lim sup on both sides yields (6.15) since the second term in the sum
v-roo

is non-positive by the sustainablity of tail-stationary trajectories assumption

(3.15). a.

We can now produce the parallel version of Theorem 6.2 for finite time
approximates from above. Before we do so let us observe that the functions
{FT. T=1, ...} are also weakly inf-compact provided that P is proper and
satisfies the strict version of Grinold's growth condition. Indeed since FT >H
-- with H as defined by (5.19) in connection with Lemma 5.3 -- and H is weakly
inf-compact, it suffices to see that FT is the restriction to a closed linear

space (tail-stationarity for x, with t > T-1) of the function

t

T-1 _t-1 . T
t=] @ ft(xt' xt—l) + lim sup 2t=T a

T*300

L . 9y (xp %P

which is weakly lower semicontinuous by Proposition 5.2. Thus, for all T the

infimum is then attained, which we can also express by writing
T
argmin F ' # @.

All of this being derived with exactly the same assumptions that we used to

assert the existence of optimal solutions of PT. see Proposition 4.5.

THEOREM. Consider Problem P (1.1) and the finite horizon approximates {PT.

T=1, ...} (4.13). Suppose that P is proper, satisfies Grinold's growth condition,

that this implies that feasible solutions of P are in 9.rl1(a). and that

tail-stationary trajectories are sustainable. Then the sequence

{VT(xO): T=1, ...} converges from above to V(x (6.16)

o
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Moreover, P and all problems PT admit optimal solutions, and given any

seguence {xT. T=1, ...} of optimal solutions of PT. it admits at least one cluster

point
o0
X = (xt)t=l such that
. T
Xy = lim x ¢ for all t, (6.17)
T 00

and any such cluster point solves the long term problem P. Finally, if x solves P,

T_,-T,T-1
_(xt) t=lsuch

then there exist a sequence of real numbers CTJ' 0and x

that xT is an c.l.-gptimal solution of PT -- i.e.up to €1 X T solves PT -

and for all t, Xy = lim x_tT.

T %00

PROOF. The assumptions allow us to identify P with minimizing F on irl‘(a) and
the PTwith minimizing FTon Q.rl\(a). Since by Proposition (6.3)

F = epi-lim FT, it follows, see [20] or [2]] for example, that

T 900

lim sup (inf F' = VT(xD)) < V(x) = inf F.

T 300

which gives us (6.16), since we already know that {VT(xO). T=1, ...}isa

nonincreasing sequence (Proposition 4.4).

The remainder of the proof is identical to that of Theorem 6.2, except that in
order to claim that for all T, argmin FT is contained in a weakly compact set

we choose this time
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K: = lev,H
with 8> minFl. o

Let us conclude by observing that if the optimal solution of P was unique, for

example if the f, were strictly convex, then Theorems 6.2 and 6.4 would assert

t
that this optimal solution is the unique cluster point (componentwise) of the
optimal solutions of the {PT. T=1, ..} and {PT. T=1} provided naturally that P

satisfies the assumptions of Section 3.
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BOLZA TYPE PROBLEMS

The purpose here is to record the assumptions and the structure of the
approximating finite horizon problems when P is a problem of the Bolza type, to
which we already referred in Section 2. The infinite horizon problem, that we
designate by B, then reads

. _ % n
find x = (xt)t=l such that x, ¢ R+ and

t

. T . P
w = lim 2t=l Lt(xt-l' Axt) is minimized (7.1)

T-00

with Xq the initial state fixed, a ¢ (Q,1) a discount factor,

Bxp =% = Xg_p»

2n

and for all t, L, : R™ » R U {+9} is a lower semicontinuous function. Setting

t
Felrg_po Xp = L &%)

gives the connection with the formulation (1.1) of P.

Again, for T=1, ..., let

h.: = cl co (inf

T (7.2)

21t

with h: = hl and
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9y = supQTLt. (7.3)
ASSUMPTION 7.1 Problem B is proper. This means
6)) the function h > -oo
(ii) there exists X = (;t) °Z=l with x, ¢ er such that

. T t-1 ~ ~

lim sup Zt:l a Lt(xt-l , Axt) oo

Toe
and

Ll (x1 ,0) € oo,
ASSUMPTION 7.2 Grinold's growth condition. For every

a' ¢[0,aland z ¢ R: with z # 0,

a.l
rc h(l_—a_r 2,2)>0 (7.4)

ASSUMPTION 7.3. Sustainability of tail-stationary trajectories. If x = (xt)::l

is feasible, i.e. x, ¢ R: for all t, and

. T t-1
lim sup 2t=l a

T Le(poyr &%) ¢
—>00

then

limsup @' ™' gp(x7_ . 0) <0 (7.5)

T 00
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Approximates from below BT:

. T . n
find (xt)t=l with X, € R+.

T-1 t-1 T-1

w=E e L)y A%+ T he((l-adxy |+ axp, (1-a) Axp) (7.6)

and w is minimized.

Approximate from above BT:

find (xt)L-ll with x ¢ R" ,

T-1 t-1 al!
t=l [o 8 Lt(x t_l, Axt) + ﬁ' gT(XT_l. O)v (7'7)

and w is minimized

w=1L

All results of sections 4.5 and 6 can now be rephrased in a straightforward

manner.
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