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PREFACE

Several descent methods have recently been proposed for
minimizing smooth compositions of max-type functions. The
methods generate many search directions at each iteration.
It is shown here that a random choice of only two search
directions at each iteration suffices to retain convergence
to inf-stationary points with probability 1. Use of this
technique may significantly decrease the effort involved in
quadratic programming and line searches, thus allowing effi-
cient implementations of the methods.

This paper is a contribution to research on non-smooth
optimization currently underway in the System and Decision
Sciences Program.

A.B. Rurzhanskii

Chairman

System and Decision
Sciences Program
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1. Introduction

We are concerned with methods for minimizing a nondifferen-

tiable and nonconvex function £ :RN—-R of the form

f(x)==g(x,‘max hjl(x),...,_max th(x)), 4 (1.1)
]e.Jl :|EJBd

where the functions g :RN~ RM-pR and hji :RN-+R are continu-

ously differentiable, and I:={1,...,M} and Ji’ ieI, are non-

empty finite sets of indices. Such functions abound in applica-

tions (e.g. minimax problems, 1, and l_ approximation problems,

exact penalty methods) and havelbeen studied in several papers;
see, for instance, Auslender (1981), Ben-Tal and Zowe (1982),
Bertsekas (1977), Fletcher (1981), Papavassilopoulos (1981).
Most of the past works assumed that the function g(x,yl,
...,yM) is nondecreasing with respect to each Yy ieI. In

this case the derivative

£'(x;d) =1lim [f(x+td) - £(x)]/t
t+0

of £f at x in a direction de RN . is a convex function of 4,
and this facilitates the development of both necessary optima-
lity conditions (Ben-Tal and Zowe (1982)) and descent methods
(Auslender (1981), Kiwiel (1984a), Fletcher (1981)). The appro-
ach of Bertsekas (1977) and Papavassilopoulos (1981}, which is
based on augmented Lagrangians, requires some other assumptions
which may be difficult to verify a priori.

When g(x,+} fails to preserve order, f£'(x;d) can be ex-
pressed as a difference.of two convex functions of 4 (Demyanov
and Rubinov (1983)}), and hence f£f(x+d)}-f(x) cannot be approxi-
mated by just one simple convex function of d. Therefore the
descent methods of Demyanov et al. (1983) and Kiwiel (1984b)
construct at each iteration several convex models of f(x+e)-
f(x) for finding several search directions. Then line searches
along all the directions produce the next approximation to a
solution.

Of course, calculating many search directions through qua-
dratic programming may require much work. Also performing seve-
ral one-dimensional minimizations (Demyanov et al. (1983)) re-

quires many function evaluations, even though this effort can be



decreased if Armijo-type contractions are used (Kiwiel, 1984b).

This paper shows that a random choice of only two search
direction finding subproblems among the candidate subproblems
at each iteration suffices for retaining with probability 1
(Wwep. 1) convergence of descent methods to inf-stationary points
of £, i.e. points x satisfying the necessary condition of mini-
mality

£/(X;d) 20 for all de RN,

Clearly, employing only two search directions at each iteration
may decrease significantly the work invoived in quadratic pro-
gramming and line searches of the methods in Demyanov et al.
(1983) and Kiwiel (1984b), thus enabling their efficient imple-
mentations.

It is worth observing that the ideas of this paper may be
readily incorporated in the methods of Demyanov et al.(1983)
and Kiwiel (1984 c} for solving constrained minimization prob-
lems with functions of the form (1.1), or with pointwise maxi-
ma of such functions. We hope, therefore, that the technique of
randomization introduced here will prove useful in implementing
many other algorithms for quasidifferentiable optimization. We
intend to pursue this subject, including numerical experiments,
in the near future.

The paper is organized as follows. In Section 2 we modify
the algorithm of Kiwiel (1984 b). Its convergence w.p.l is es-
tablished in Section 3. Section 4 describes randomized curvi-
linear searches. Finally, we have a conclusion section

RN denotes the N-dimensional Euclidean space with the usu-
al inner product <+,+> and the associated norm |[+|. Super-
scripts are used to denote different vectars, e.qg. xl and x2,

All vectors are row vectors.

2. Derivation of the method

In order to make the paper more self-contained, we shall
now review the method of Kiwiel (1984b).

The heart of the method is the model of f£(x+td)-f(x) for
predicting the effect of moving from a point x:eRN to the next



N

point x+td along a direction d &R with a stepsize t >0,

We start, therefore, by recalling the properties of f£’'(x;d)
(see, e.g. Demyanov and Rubinov (1983) for details). We shall

use the following notaticn

h.(x)= max h..(x) for 1ieI, (2.1)

i . Jji
Je Ji

h(x) = (hl(x).: ---lh-M(x)):

f(x)=g(x,h{x}).

For z=(x,y) € RN-t RM we denote by 9vg(x,y) the N-vector

(H—(z),..., (z)), while —g—(x y) denotes i9—z), ieI.
1 az Yl azJ.+N

a, (x) —%—(x,h(x)) for al X ERN, ierI,

b(x) =vg(x,h(x)) for all x.
Then from Taylor’s expansion

f'(x;d) =< b(x),d>+ : a,(x)h!(x;d)=
. i i
ieTI

=< b(x),d>+ I a; (xlmax < Vh, l(x),d:,
iel jEJ (x) 3

so that
f'(x;d) = <b(x),d>+ ¢ max <a,; (x)vh..(x),d >+
ieI (x) jed; (x) * Ji
+ = min < a, x)Vh.i x),d>,
ieI_(x) jed,(x) ]
where
Jl(x)={JEJi:hji(x)=hi(x)}' ierI,

x)={1ie1I: ai(x) >0},
I (x)={ieI: ai(x), <0}

and the summation over an empty index set yields zero. There-
fore
f'(x;d)= max<v,d»+ min<w,d >,
veA(x) w e B(x)

where



A(x)={v:v=b(x)}+ ¢ ai(x)vh.i(x) for some jeJ,(x)},
ieI+(x) ] 1
B(x)={w:w= a.(x)vh.i(x)_ for some jeJ.(x)}. (2.2)
ieI_(x)l ] +

Observe that, in general, f’(.,d) is discontinuous because
A(e) and B(°) may change abruptly if so do Ji(-). Changes in
I+(-) and I_(+) do not introduce discontinuities in £'(.;d},
since each i may enter or leave I+(-) or I_(¢) only with
ai(-)=0, whereas b(-}, ai(-) and thi(-) are continuous.

Let us now analyze algorithmic implications of the discon-
tinuity of f£’(e;d). Suppose that our algorithm has arrived at
some point x close to a non-stationary point x satisfying

f(x;d} <0 for some d. (2.3)

In order for the algorithm not to jam up around x, it should be
able to find a direction d ("close" to d, say) and a stepsize

t >0 such that it can move away from x to the next point x+td
with a significantly lower objective value. To this end, since
(2.3) is equivalent to

max <v,d>+<w,d> <0 for some EERN, w €B(X), (2.4)

v € A(x)
the algorithm needs at x some model for approximating the value
of

max <v,d>+<w,d> for weB(x) (2.5)

v e A(x)
as a function of d.eRN. Clearly, f’(x;+) can hardly serve as
such a model, since it depends only on A(x) and B(x), which
may represent only part of A(x) and B(x) even when x is
close to X. ‘

For these reasons, the algorithm of Kiwiel (1984b) approxi-
mates (2.5) with the family of functions

%(d;x,w,5)=~<b(x),d.>+- T a.(x)max h..(x)-h. (x) +
ie I+(x)l jeJi(x,g)Jl +

+ <vhji(x),d >]+<w,d> for all 4
parametrized by w in

B(x,8) ={w:w= g% a.(x)vh.

(x), J€J,(x,8)}, (2.6)
iEIjxf' J+ *



where the use of
Ji(x,a) = {3 €J; : hji(x) ghi(x)--é}

with a fixed "anticipation" tolerance § >0 may predict changes
of Ji(-) around x. Indeed, by contil;luity, we have Ji(i)ch(x,a)
if x is close to x. Note that each f(d;x,w,s) with weB(x)
approximates f’(x;d) from above. Also the models %(d;x,w,c)
yield correct approximations to (2.5) when x is close to x
and ]d[ is small, since for such d the terms involving
j EJi(.;)‘ \ Ji(x,S) may be neglected.

In order to "anticipate" (2.4), the algorithm finds for

each weB(x,8§) a direction d(w) to

nminimize E(d;x,w, )-+%|d|2 over all 4d eRN, (2.7)
where the term [d[2/2 ensures that d(w) stays in the region
where %(-;x,w,d) may be close to f(x++)-f(x). Indeed, |d(w)]|
cannot be very large, since

d(w) ==[b(x)+ = a.(x) = A (w)vh. . (x) (2.8a)
[ ier ()7 jed,(x,s) )t 0 17 :
for some
Aji(w)ao for jeJi(x,d), b A..(w)=1, for iEI+(x)

jed,(x,6)3"
(2.8b)

(see, e.g. Kiwiel (1984a)]).
Note that each d(w) with weB(x) 1is a descent direction
for £ at x if d(w)#0, since

E(a(w)sx,w,8) +la(w) | < £(05x,w,6) +3]0[%=0,

so that f’'(x;d(w)) < %(d(w);x,w,c) < 0. Of course, for

weB(x,§) ~B(x) we may have f(x+td(w)) > f(x) for all small

t> 0. However, for larger t it may happen that f(x+td(w)) < f(x)
when w becomes close to B(x+td(w)). Therefore, the method of
Kiwiel (1984b) searches for a stepsize t by computing f£(x+td(w))
for all weB(x,§). We shall now describe a modification which

uses only two search directions.

Algorithm 2.1.

Step 0 (Initialization). Select a starting point xle RN, an anti-




cipation tolerance § >0 and a line search parameter m>0.

Set k=l1.

Step 1 (Descent direction finding)}. For each w'eB(xk), find
d(w) from the solution (d(w);ui(w), i.eI+(xk)) to the qua-
dratic programming subproblem with x=x

min $|d|%+ <b(x),d>+ 3 a, (x)u,+ <w,d >,
d,u, iel (x)l * '
i + (2.9)

s.t. hji(x)-hi(x)+-<vh.

Ji(x),d > &uy for je.Ji(x,s),

cieI (x).

Step 2 (Stopping criterion). If d(w)=0 for all vreB(xk),

terminate. Otherwise, set Bk={w} for some w such that d(w)#0,

and continue.

Step 3 (Additional direction finding). Draw w at random from

B(xk,s) \Bk according to a uniform distribution. Find d(w) by
solving (2.9). Augment Bk with w and set

{zzweBk}. (2.10)

u¥ = -max( [d(w)

Step 4 (Stepsize selection). (i} Set t=1.
k

(ii) Find w in B that yields the smallest value of f(xk-+
td(w)).
(iii) 1f

f(xk+td(w)~) < f(xk)+m(t)2uk,

set tk=t, xk+l=xk+td(w) and go to Step 5; otherwise, replace

t by t/2 and go to Step 4(ii).

Step 5. Increase k by 1 and go to Step 1.

The algorithm cannot cycle infinitely at Step 4, since Step
4 is always entered with W eB(xk) such that f’(xk;d(ﬁ)) <0.
Hence t+0 would lead to

£/(x*;d(%)) » lim inf[min £(x®+td(w))-£(x*)]/t » 1im mtu®=o0,
t+0 WEB t+0
a contradiction.
If we computed d(w) for all W'eB(xk,dl and replaced B

by B(xk,a) in the algorithm, we would obtain the method of

k



Kiwiel (1984b). Since

B(x,8)= 1 [34(x,8)]
ieI_(x

can be large even when each [Ji(x,d)IA is small, using only two
search directions may decrease the computational effort by a lar-

ge factor. .
In order to better understand the algorithm, consider the

example

f(x)=(x)3-ma.x{0,-x} for x eR

with xl=0.l, d=t» and m=0.1l. If the algorithm used only Bk={0}
for all k (as it would if & were zero), then we would have d(0)=
k,2
-3(x)
wever, even one occurance of Bk={0,l} produces d(1)=-=(1+

3(xk)2), which enables the algorithm to "jump" over X=0 to
k+1
x

with ;J‘ converging to x=0, which is nonstationary. Ho-

<0, and then continue with xk-+—m.

3. Convergence

In this section we shall establish global convergence of
the algeorithm w.p.l. In the absence of convexity, we will con-
tent ourselves with finding an inf-stationary point for £.

We start by recalling from Kiwiel (1984b) the properties of
search directions generated around nonstationary points.

Lemma 3.1. Suppose that §eRN, we B(x) and J erY are such
that £(d;%,w,0) <0. Then there exist ¢ >0 and neighborhoods
S(x) and S(w) of X and w, respectively, such that

£/ (x;d(x,w)) ¢<-¢ for all xeS(x), wesS(w), (3.1)
|d(x,w)[ 2€ for all x eS(x), weS(w), (3.2)
where d(x,w) denotes the solution of (2.7).

In particular, since £’(Xx;d) < £(d;x,w,0) for weB(X),
the above lemma shows that the algorithm finds at least one des-
cent direction for £ at xk if and only if .xk is nonstationary.

Hence we have
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Lemma 3.2. Algorithm 2.1 terminates at the k-th iteration if

and only if xk is inf-stationary for f.
Our main result is

Theorem 3.3. Every accumulation point of an infinite sequence

{xk} generated by Algorithm 2.1 is inf-stationary for f w.p.l.

Proof. Strictly speaking, each sequence {xk} generated by the
algorithm should be considered as a realization (trajectory) of a
random process with discrete time defined on a suitable probabi-
lity space. For brevity, we shall, however, supress the depend-
ence of {xk} on elementary events.

Suppose that there exist %X eRY and an infinite set
Kec{l1,2,...} such that xk X X. For contradiction purposes, assu-
me that X is nonstationary. By Lemma 3.1, there exist W €B(Xx)
and ©>0 such that (3.1) and (3.2) hold for some S(x) and
S(w). Since xk X X and §>0 is fixed, an elementary con-

tinuity argument based on (2.6) implies that

B(xk,d)nS(W);éO for all large k eK,

so there exist wktaB(xk,G) and dk=d(xk,wk) such that
£7(%;d%) < = for all large k€K, (3.3)
|a¥] > T for all large ke&K. (3.4)

Let np be such that ([B(x%,8)|<ny for all x. Since ng is

k X X, (2.8) implies the existence of u<0 such
that for all k €K one has Eg-[d(xk,w)jzs 0 for all w:B(xk,a).
is

Then 'ﬁgukso for all keK from (2.10). Moreover, {dk}keK
bounded, so one may use Taylor’s expansion as in Demyanov et al.
(1983) to show that

finite and x

£(% +td") < £(X) +t£7(%;35) +o(t,k),

where o(t,k)/t+0 as t+0 uniformly with respect to k €eK.
Hence, by (3.3), for any fixed %te (0,e) there is t(g) >0
such that

f(§+tdk) < f(X)-et for all te [0,1:(2)1 and large k &K.
(3.5)



Next, since xk X X, {dk}keJ( is bounded and f is conti-

nuous, for any ¢ >0 we have

k

£(x* + td )—f(xk)sf(§+tdk)-f(§)+e (3.6)

for all t a[O,t(E)I and large k e€K. Let us choose £ such that
the interval [t(e), E(e)] of solutions to the inequality

e -2t <m(t)?a (3.7)

contains l/2i for some 1i>0. This is possible, since [E(s),
E(e)}~ [0,-e/mu] as +0. Then t=1/%* satisfies, by (3.5)-
(3.7) and the fact that u<u® for kek,

£(x5+Ta%) < £(x*) +n(T)%u* for all large kek. (3.8)

Suppose that wkein for infinitely many k € K. For such

k, (3.4) and (2.10) yield

—u® 5 (a¥|2 5 T2, (3.9)
whereas (3.8) and the construction of tk:>E imply
£(x51) < £(xM4e5a%) ¢ £(M)4m(£5) 2K < £(xF)tm(E) 2k, (3.10)

Clearly, (3.9) and (3.10) cannot hold simultaneously for infini-
tely many k, since f(xk)+f(§) from the continuity of £ and
the fact that xk K X with f(xk+l)<f(xk) for all k.

Thus we need only consider the case when wkE.B(xk,a) N B

for all large k € K. But this event has probability 0, since

k

for each %k eK the probability that wk enters Bk at Step 3 is

not less than l/nB. Therefore, X is inf-stationary w.p.l.

4. Modifications

Step 1 of Algorithm 2.1 requires the solution of ]B(xk)[
quadratic programming subproblems in order to find just one des-
cent direction. Since ]B(xk)[ may be large, in general, we
shall now show how to reduce this effort. To this end, we need

the following result.

Lemma 4.1. Let XB={xeRN:[B(x)[=l}. Then XB is of full Lebes-
que measure in RN,
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Proof. General properties of functions of the form‘(2.l)(see,
e.g. Rockafellar,(1982)) imply that the set {thi(x):jeJi(xﬂ
is a singleton for almost all x, for each i€ I. Hence (2.2)

yields the desired conclusion.

We conclude from the above lemma that if {xk}C:XB then
[B(xk)]=l for all k. We proceed, therefore, to show how to en-
sure that {xk}CZXB w.p. 1.

For any x and d in RN, consider the family of arcs

a:{yeRN : y=x+td + (t)2é, te [Orl]}

-~

parametrized by auxiliary directions d in

D(r) ={aERN : [é[ <r},

where r > 0. Let a subset E of RN

Then it is not difficult to see that almost arcs Ca meet E in

have Lebesgue measure zero.

a set of zero one-dimensional measure. Applying this fact in the
case where E 1is the complement of XB’ we deduce that for almost
all d in D(r) we have lB(x+td+(t)2a)l=l for almost all t
in [0,1]. Hence we propose the following randomized modifica-

tion of Step 4, in which rk €(0,0.1) 1is a small pertubation

parameter.

Step 4’ (Randomized stepsize selection). (i) Find ak=(é§,...,é§)
by drawing each d? from [—rk,rkl according to a uniform dis-
tribution. Set t=1.

(ii) Draw t at random from [—rk,rk] according to a uniform
distribution. Replace t by t(1+t).

(iii) Find w in Bk that yields the smallest value of f(xk+td(w)+
(£)28%).

(iv) 1If f(xk+td(w)+(t)25k)-gf(xk)+m(t)2uk, set tk=t, dk=d(w),

xk+l=xk+tkak+(tlzak and go to Step 5; otherwise, replace t by
t/2 and go to Step 4'(ii).

In order to analyze Step 4’, we note that f is locally
Lipschitz continuous, since so are hi (see, e.g. Rackafellar
(1982)). Thus for each bounded neighborhood S(x) of a point

x:eRN there exists a Lipschitz constant L <« such that

[£(x")-£(x")| s L[x’'=x" for all x’,x" e€S(x).



_11_
Letting x=x*  and recalling that £’(x;d(w))< 0 £for some W e B
at Step 4, we see that the algorithm cannot cycle infinitely at
Step 4, since t+0 would give for d=d(w) and d=d4

f'(x;d}=1im[f(x+td)-f(x)]/t=
t+0

=lim[f(x+td+(t) 23)- f(x)}/t+1lm[f(x+td) £(x+td+(t) d )]/t =
t+0 t+0

>1lim mtu®+ lim Lt|d| =0,
£+0 £40

a contradiction. Thus we conclude from the preceding results
that Step 4’ produces <t XB w.p. 1.
We may now establish convergence of the resulting method.

Theorem 4.2. Suppose that Algorithm 2.1 with Step 4’ generates

an infinite sequence {xk} with perturbation parameters rk+0,
starting from a point xl chosen at random according to some
positive probability density on some ball in RN. Then ]B(xk)[=l
for all k w.p. 1, and every accumulation point of {xk} is inf-

stationary for f w.p. 1.

Proof. Of course, xle XB w.p. 1 and hence, by the preceding re-
sults, {x lc X

by introducing the following modifications in the last three pa-

w.p. 1. Thus the assertion can be established

ragraphs of the proof of Theorem 3.3.

since x* & X, {dk}k.eK is bounded, d*,0 and f is loca-

lly Lipschitz continuous, for any >0 we have

£( xS ed®+(£)23%) - £(xF) < £(x+td®) - £(X) + ¢

for all. te[0,t(g)] if keK is large enough, because

[f(xk-+tdk-+(t)2 d¥) - (X +a%) + £(F) - £(x) | ¢

L([x5-%| + £()%]d%] + |x-xK|

)

where L is a Lipschitz constant of f around x. Next, choose
¢ such that (3.7) holds for all teT, where T=[1/2'%%, 1/2%]
for some 1i>0, and replace (3.8) by

f(xk+tdk+(t)25k)-g X )+m t)zuk for all te€T and large

k € K.



Then for E=l/21+2 we may replace (3.10) by
£(xXty < £(xReeRake(£5)235%) < 15 ) 4m(T) 20K,

since Step 4’ decreases trial stepsizes by a factor of at most
2/(1+rk) with rk+0. Hence the proof may be completed as before.

We conclude that in practice the modified algorithm will
typically generate only two search directions at each iteration.

5. Conclusions

We have presented a randomized version of the method of
Kiwiel (1984b) for minimizing smooth compositions of max-type
functions. Our modifications may decrease significantly the wark
inveolved in quadratic programming and line searches.

A few words about possible extensions are in order. The
first of our ideas, i.e. the random choice of only two search
directions at each iteration, may be easily incorporated in the
methods of Demyanov et al. (1983) and Kiwiel (1984c) for solving
constrained problems with functions of the form (1.1) or with
pointwise maxima of such'functions, and in the algorithm of
Kiwiel (1984d4) for constrained maxminmax problems. The second
concept, i.e. the use of only two randomized curvilinear se-
arches at each iteration, is readily applicable to the algori-
thms of Kiwiel (1984c¢,1984d). Its use in the methods of Demya-
nov et al-. (1983) would involve either introducing approximate
minimizations along arcs, or employing the curvilinear searches
of Section 4.

QOf course, efficient and robust implementations of all the-
se methods will require much work. We intend to pursue this sub-

ject in the near future.
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