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PREFACE

In a recent paper, V.F. Demyanov, S. Gamidov and I. Sivelina
developed an algorithm for solving optimization problems, given
by smooth compositions of max-type functions.

In this paper the authors apply this algorithm to a larger
class of quasidifferentiable functions.

This paper is a contribution to research on nondifferentiable
optimization currently underway with the System and Decision Sci-
ences Program.

A.B. Kurzhanskii

Chairman
System and Decision
Sciences Program
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On the steepest descent method for aclass of quasi-differenti-

able optimization problems

D.Pallaschke, P.Recht

0. Introduction

In a recent paper V.F.Demyanov, S.Gamidov and T.J.Sivelina pre-
sented an algorithm for solving a certain type of quasidiffer-
entiable optimization problems [3].

More precisely, they considered the class # of all functions

given by

F = (R > R|f(x) = F(x,vy (X),eeny (XD},
where

yi:]Rn—> Bid is defined by

. (X) = max ¢,. (xX) I.=1,...,N,; 1i=1,...,m
yl jEI.¢J—J i 7 ! i ! !
i

and

¢ij:mn—>m for all i€{1,...,m} and all jeI,.

The functions F and ¢ij under consideraticns are assumed to be-
long to the classes C1 (IRIH'm

The optimization wnroblem consists in minimizing a function

) and C1(IJH resvectively.

f € £ under constraints.

In this naper we will apply the minimization algorithm of [3]
to another class of quasidifferentiable functions.
We are ahle to prove for this type of optimization problems a

convergence theorem similar to that in [3].



1. Steemest descent method

We will shortly recall the steepest descent algorithm for mini--

mizing a quasidifferentiable function in the unconstrained case.
Let f:R"— R be a quasidifferentiable function.

Then for every X€R" there exist two compact, convex sets 5f|§
and gfli, such, that for every geﬂfl,||gH2=‘1,the directional

derivative is given by:

EE _ = max <v,g> + min <w,g>
X Vegf|§ wEBf|§
Here <,> denotes the canonical inner product in Efl.

In terms of these two sets, a steepest descent direction for £
at x is given by '

_ v W
g =9 =T
o "ol
with
{|v0+w0||= max (min | v | 5 ) -

2 weﬁfli Veéf‘i

Now, in the steepest descent algorithm, we start with an arbit-

rary point xOEIJI.

Let us assume that for k >0 the point x eR™ has already been

k
defined, then define

Xppq 35 X Hoapegix ),

where g(xk) is a steepest descent direction of £ at Xy and the

real number akgzo is choosen in such a way, that

min f(xk+ag(xk)) = f(xk+akg(xk))-

a>0
Obviously, the sequence (xk) inducesa monotonously decreas-
ing sequence (f(xk)) of kEW values of the function f£.

kEW

A modification of the steepest descent algorithm is pronosed
in [3]. Therefore we define:



Definition: Let € ,u be positive real numbers and f::Rn+IR be

quasidifferentiable.Let N be a neighbourhood of all
points Xé;Rn , where £ is not differentiable. Then
for XOE N we define:

3_fl, = conv ( u S f]

o) SEJRn
sl ,s €

X +S>
O

3£ := conv < u SE| )
RS s€ R" XotS
Telhs »

If x g N ,then 3 _f|_ := 3f| and 9_f|_ := 3f]|
o ~€ = Ix TR X

o O (@] o

X

If ésf’x and ‘—a'uf|xo are compact sets,then f is
called (eg,u)- quasidifferentiable in X
With the introduction of these two sets, we now give a modi-
fied steepest descent algorithm to find an e-inf-stationary
point x* of £.

Let us assume that f: R™> R is quasidifferentiable and more-
over that, for givene,u>0,it is (eg,u) - quasidifferentiable.
Then choose an arbitrary xoeﬂfl. Suppose, that X, has already
be defined.

If -3f <. © 3.f(x,) then X, is an e-inf stationary point and

k
the algorithm stops.

Otherwise, if _gf‘x ¢ 3_£(x,),then compute
k

vo+w
g(xk) = - Hm—”—
o "oll,
with
|| v _+w_]|| = max (min [|v+w]l )
© ©°, wey £ v€8€f| 2
B Xy = Xy

and define ka:=xk+akg(xk), where akgio is chosen in such a
way, that

min £(x

k+a‘3(xkn = f(xk+akg(xk)).
>0



In this paper we want to apnly this modification for finding
an t-inf stationary point for a class of quasidifferentiable
functions.

2. A motivating example

Let F,G: R’ —> R be two arbitrary functions with F,GEC, (R) ..
Then define the following, quasidifferentiable function
£:R"— R by

f;= max (|G| ,-F~-|G|) - ||G] -2|F]| .
This type of function is considered in [1] and does obviously
not belong to the class # , defined in the introduction. For

illustration in figqure 1 the gramh of a function £ of such a

type is given for

. 2 _ W2_

F:IR* — IR, F(x1,x2) = Xi-X,

R RN _ 22
G:IR IR, G(X1,X2) = x1 x2+1.2.

in the set Q=[-1,1.4] x [-2,1.25].
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For functions of that type, as well as for the class ¥ , the

following properties are valid, as observed in [3].

I. If for all xenfl, the convex, compact sets 3f % and 3£ -
are computed as in [3] the two mappings
x —> 3f|  and x —=>3f

are upper-semi-continuous. Moreover for suitable eg,u > 0

the function gef, ?uf are also unner-semi-continous.



II. If x€R" is not a stationarv noint, then there exist a
real number M> 0 and a neighbourhood Uo of OEIJI, such

that for all yEUO

df

" dlg+yT vl

< M-

dg
dg

- a,

3. A convergence Theorem

Theorem:
Let f:ﬂii——élR be a quasidifferentiable function with the following proper-
ties:
() There exist vreal numbers € >0, u >0 such that for all xER" f s
(e, W—-quasidifferentiable and the mappings
z j%fLr ? z awqm

and
> gva P th:

are upper semi-continuous (u.s.c.)

(z2) If 2 €R' is not an e-inf stationary point, then there erist an
M>0 and a netghbourhood v, of 0eR" such that for all yeU, g€1¥1

2.

Then: Every limit point of the sequence (xn)nEIv’ constructed by the modi-
fied steepestdescentalgorithm, is an e-inf stationary point of f.

<M

yHg

Proof:

Let x* be a limit point of (xn) and let us assume, that

x* is not e-inf stationary. nemN

Hence there exist a v_€3 f| s and a w_e3f|_» such that
o —e I'x o) X

|| v _+w |
o

o“ = sup (inf ||v+wH2) =a>0.

2 wedf| #\vey f| «



v _tw

o o . : : . . *

Thus g:= " T is a normalized descent direction in x
o o

2
Nbserve that Woeauf‘x

Since x F—e»a £ is u.s.c.,there exist a neighbourhood T cf
gef % and a nelghbourhood U of x* such that for all xeU
f' < O .

—_c X

Moreover,to 9 f‘x* there exlst a neighbourhood ¥ of 5 f «*
and a neighbourhood V of x* such that for all x€V

Choose Uo according to assumption (ii) of the theorem. To

*
W:=Ur\Vr7(UO+x ) there exists a k,EN such that for all k;:ko,
xkEW. (Here k isthe index of the convergent subsequence .)

Let us dencte by w;eguf % the point, which is nearest to W, -
k

From the upper semicontinuity of Euf we have

lim w* = W
"k o)

Now, let Vkea f’ be a point of minimal distance to —wr.
—_ Xk k

Then lim (dist(vk,ggf.x*)=o.

This follows from the fact, that for every k (k large encugh)

dist(vk,ggf'x*) < Syausd. (3 f} k,a f x*) ,

which tends to O by the choice of fJ.
The neighbourhoods of égf\x* can be assumed to be bounded,
since ng <* is compact.

Hence, there exists a subsequence (vk) , also indexed by k,

which converges to vega f'x kel

Thus, for a suitable subseguence and an index K we have:

lim|{wk+v = HwO+GH22 dist(wo,ggf x*) = a

|
ki



We see that 5=vovsince the Euclidian norm is strict.
Therefore, for all k>K

a
Nk + VkH2 i E

Now, we want to show, that for k large enough
+
A L Vi Wy
Ik | v +w
k k',
is a descent direction in x¥.
For this, let o > 0. Then:

af

f(x — =
(Xk X )+agk]

+a§k)=f(x*)4-d[ +oﬂ|xk-x*+a§rH)

x*

k

From assumption (ii) follows

af df *
- x = o = + 0 (|x, ~x"|])
al (x) -x*) +ag, | ag, | k 9
X X
and therefore
N * daf * . A %
£ (x +ag, ) =£f(x )+cxa§; *+OQ|xk—x +agk“}+OQ(xk—x |L)
X I

=f (x*)+ 0S5 |  +0(||x, -x9]) +0(a)
a3, k

X* 2

By definition of quasidifferentiability we have:

— = min (max <w+v,§k>)
weauf’Xk Vegef’XP

and therefore,by definition of v, :

k
éﬁgl < max <wy+v,§k>
Ix T vey f :
=1
< max (— <wk+v,wk+vk>- wk+ka )
vey £ 2



- 2, -1 _ - &
= %Iwk+vk|| wk+ka = Ilvk+wkH -3
2 2 2
. af a . ~
Since T < max <v,g,. > + mlq_{w,gk> ’
I <* VEU B wE af]x*
@Ef?x*cn

woeaf‘x* and iiz Wy =W

we find for a given § > o an index K1 such that for all kjiK1

af

= max <v,§. > + min <w,§, >
dgk x*_ veld ’ k wed N k
< (max <v,§, >+8) + <w ,§.>
— vep f k o K
—c xk
< max  ev, g o48) + <w 8,5 + W w|
V€3€f|x x~+) k' 9k kYol
k
= £¥;! +26< -2+ 25,
*x

Thus, for all k>K

*
x L]

11 We see that §k is a descent direction in

Hence, there is TO>'O such that
-~ *
f(xk+rogk) < £(x7).

Now, by the definition of the sequence (xk) via the modi-

fied steepest descent algorithm we have: keN

£(xypq) = £(x 4o, 9(x, ) = Sigf(xk+ag(xk))

| A

min f(xk+agk) = f(xk+ )

a, 9
4>0 k°k

| A

-~ *
f(xk+rogk) < £(x7).



This contradicts the facts that (£(x,)) is monotonously

decreasing and 1lim f(xk)=f(x*). k€N

QED.

Remark: The proof also remains valid fore=o, i.e. replacing

"e-inf-stationary" by "inf-stationary".

4. Numerical experiences.

The above mentioned modification of the steepest descent method
was implemented on the Siemens 7780 at the Computer Center of
the University of Karlsruhe.

Applying this procedure to the motivating example of section 2,
e~-inf stationary points,also for problems under constraints,(cf.
[2]) could easily be found.

Let us now discuss a further

example
let f:]R3q R be given bv
= _ 2 2
£, (x1,x2,x3) —((x1+x2) + ‘Ax1 X,) TH4x] Y/ 2
and
- _ _ 2 2
£, (k% ,xq) =(x 4x) = Vixg=x,) 2+axl ) / 2
with:
f(x1,x2,x3) = |f1(x1,x2,x3)| - \fz(x1,x2,x3)|

Obviously £,,f, &C, (R)

This function naturally occurs in the investigation of condition
of matrices, namely if we assign to any symmetric (nxn)-matrix

A=(a..) . the difference of moduli of the maximal and minimal

ij’1<i,j<n
eigenvalue 1Amax| and ’Amin| respectively, i.e.
¢:L(E#31Rnf“——9zm
wn(A):=‘Amax| - |)‘min‘
This function is quasidifferentiable, since Amax = ﬁuﬁ <AX,X>
is a convex function and A_. = inf <Aax,x> is a conza;; function.

min - Igl=1



For n=2, ¢ coincides with the above defined function f:IR3—-+ R.

Morover, the properties i) and ii) of the theorem are valid for

the sets 3 _f and guf for suitable € and u. Figure 2 below gives

an illustration of the graph of the function f for 4 different
values of Xqy i.e. Xy = 0.3;

x3 = 0.2; x3 = 0.1; x3 = 0.0.

f(ll.nz,.)) for x]=f),3
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