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QUASIDIFFERENTIABLE PROBLElilS IN OPTIMAL CONTROL 

V.F. Demyanov, V.N. Nikulina, and I.R. Shablinskaya 

1. INTRODUCTION 

Nondifferentiability in control theorv aGpears naturally on 

the right-hand side of the system of equations as well as in the 

functional (through saturation functions, by taking the modulus, 

etc.). In many cases both the system and the functional are de- 

scribed by quasidifferentiable functions, a class which is de- 

fined and investigated in [ I - 3 1 .  

This paper is concerned with the variations of trajectory 

caused by using different variations of the control for such quasi- 

differentiable right-hand sides. We consider five different types 

of control variations. Necessary conditions for an extremum of 

a quasidifferentiible functional are then stated. 

The main intention of the authors is to draw the attention 

of specialists in control theory and its applications to a new 

class of problems which seems to be promising and practically 

oriented. A special case of this class of prohlens has already 

been discussed in [ 4 1  . 



1.1 Statement of the Problem 

Let the object of study be governed by the following system 

of ordinary differential equations: 

(1 (1) (1) where x = (x ,..., x(")), u = (U . U r  f = (f ~ - - = r f ( ~ ) )  1 

tE[O,T], and T > 0 is fixed. 

We shall use h' to denote the set of r-dimensional vector 

functions which are piece-wise continuous (right-hand continuous) 

on [O,T] . Let us set 

where V C E r  is a compact set. The set U is called the class of 

admissible controls and any u E U  a control. 

Functions f (i) are (i) defined on S (where S CEn+r+l is the 

set of all admissible x,u,t); (ii) continuous with respect to x 

and u; (iii) Lipschitzian with respect to x on S; (iv) piece-wise 

continuous with respect to x on S; and (v) quasidifferentiable 

with respect to x and S. (In Section 2.5 it will be assuned that 

F ( ~ )  I S  are quasidifferentiable jointly with respect to x and u.) the 

Recall that the function F defined on En is quasidifferenti- 

able at x E E n  if it is directionally differentiable and there 

exist convex compact sets - aF (x) C En and %F(x) C En such that 

~F(x) - 1 = lim a [F(x+cig)-F(x) ] = max (v,g) 
ag ci'+O vEaF - (x) 

+ min (w,g) VgEEn . 
WETF (x) 

Let x(t,u) denote the solution of system (1) -(2) for a 

chosen uEU.  



The problem is to minimize the functional 

subject to u E U  where @ ( x )  is quasidifferentiable, finite and 

Lipschitzian on the set of admissible x. 
* 

Let u E U  denote a u which minimizes 1, i.e., 

* 
I (.u ) = min 1 (u) . 

u a  

(We shall not consider here the problem of whether such a u exists 

or is unique. ) 

* * * * 
The pair of functions (x ,U ) where x (t) = x(t,u ) will be * 

called an optimal process; u (t) is known as an optimal control * 
and x (t) an optimal trajectory. 

2. VARIATIONS OF A CONTROL 

To derive necessary conditions for a minimum of (3) the 

following controls are generally used: 

* 
where the function Au, is called a v a r i a t i o n  of u . 

We shall consider several variations of the control and the 

corresponding variations of the trajectory. 

2.1 A Needle Variation (A Sharp Variation). 

Let 

* 
Y - u  (t) , t ~ [ e , e + ~ )  

Au, (t) = 

0 ,  t~ [e,e+~) 

where y EV, 8 E [C),T), E > 0. 

We wish to find 



* 
where the vector function h is the variation of the trajectory x * 
caused by variation of the control u . 

It is clear that h(t) = 0 VtE[0,0). 

For t > 8 we have 

* * 
x (t) 2 x(t.uE) = Xo + jo f(x (r)tu (,).,)dr 

E 

Invoking (5), and taking the limit as E++O,  we obtain 

* * 
h(i) (t) = f (i) (x* (0) ,y,0) - f (i) (x (0) .u (e),e) 

(6) 

max (v,h(r)) + min (w,h(r)) d.r ViE1:n 

- wEif (i) (r) I 
* * * 

where - af (i) (r) = - afii) (x (c) ,U (T) ,T) and ~f (i) (r) = 7fAi) (x (r) , 
* 

U (r),r) are respectively a subdifferential and a superdifferen- 

tial of f (i) with respect to x. 

For every r the sets af (i) (r) cEn  and ~f (i) (r) CEn  are convex - 
and compact. 

Let us now rewrite system (6) in the following shorter form: 

+ min (w,h(r))] dr 
wE3f ( r ) 

where 



Suppose t h a t  a l l  mappings - af ( i )  and ~ f  ( i )  a r e  p iece-wise con- 

t i n u o u s  on [O,T]. Then it fo l l ows  from ( 6 )  t h a t  

6") (t)  = max ( v , h ( t ) )  + min (w,h (t) 

v € a d i )  - (t) w z f  ( i )  (t)  

W e  can a g a i n  rewrite t h i s  system i n  a  s h o r t e r  form: 

h ( t )  = max ( v , h ( t ) )  + min ( w , h ( t ) )  ( 8 )  
v€af ( t )  - wE7f (t)  

If - a f ( t )  and T f ( t )  a r e  p iece-wise con t i nuous  mappings t hen  a  

s o l u t i o n  t o  ( 8 )  - ( 9 )  e x i s t s  and is un ique  f o r  any f i x e d  y  € V and 

0E[O,T) .  Here, h ( t )  depends on 0 and y .  

2 . 2  A M u l t i p l e  Needle V a r i a t i o n  (Needle V a r i a t i o n s  a t  Seve ra l  

P o i n t s )  

L e t  

* 
y i - u  ( t ) ,  t E [ B i , € I i + & k . )  Y i f 1 : r  , 

1 

A u E ( t )  = 

0  I t q  u [ e i l e . + & ~ . )  
i € l  : r 1 1  

where y iEVt  e i E  [ O , T ) ,  k .  1 - > 0, r > 0,  and r is  a n  a r b i t r a r y  

( b u t  f i x e d )  n a t u r a l  number. 
* 

I t  i s  c l e a r  t h a t  x , ( t )  = x  ( t)  f o r  t < e l .  I f  t > e l  t hen  - 
w e  have 



where r ( t)  E  l  :r is  such t h a t  

' r ( t )  ' 5 ' r ( t ) + l  (11)  

I f  r ( t )  = r t h e n  r + l  = T.  

Without  l o s s  o f  g e n e r a l i t y  w e  can  assume t h a t  t >  0 r ( t )  + "r (t) 

From (10)  it f o l l ows  t h a t  

max ( v , h ( ~ ) )  + min ( w , h ( T ) ) l d ~  

- w ~ T f  ( T 

1  

max ( v , h ( ~ ) ) +  min ( w , h ( ~ ) ) ] d - r +  . . .+ 
w€Tf ( T ) 

max ( v , h ( ~ ) )  + min ( w , h ( ~ ) ) l d ~  . (12 )  

r ( t )  - 
w ~ 3 f  ( T )  

Now l e t  u s  i n t r o d u c e  t h e  f u n c t i o n s  

w h i l e  f o r  t > B i  t h e  f u n c t i o n  h i ( t )  s a t i s f i e s  t h e  d i f f e r e n t i a l  

e q u a t i o n  

h i ( t l  = rnax (v ,h i  ( t)  + min ( w t h i ( t ) )  ( 1  3) 
V E ~  ( t I  WET^ ( t 

w i t h  i n i t i a l  c o n d i t i o n  



From (12)  it i s  c l e a r  t h a t  h ( t )  = h  r ( t )  ( t )  

~ h u s ,  h ( t )  (which depends on y  , {Oi l f  and { l i } )  i s  a  p iece -  
wise con t i nuous  f u n c t i o n  s a t i s f y i n g  t h e  sys tem o f  d i f f e r e n t i a l  

e q u a t i o n s  ( 8 )  ( o r ,  e q u i v a l e n t l y  (1 3)  ) w i t h  s e v e r a l  "jumps" a s  

i n d i c a t e d  by (14)  . 

2.3 A Bundle o f  V a r i a t i o n s  

L e t  

- where y i e v ,  L i > O .  Z k i  = 1 ,  e l  - 8,  f3i+l = ei+€gi1 er+€er = e + ~  
i = l  

and r i s  an  a r b i t r a r y  n a t u r a l  number. 

I t  i s  n o t  d i f f i c u l t  t o  check t h a t  

For  t > B ,  w e  have 

+ max ( v , h ( ~ ) )  + min ( w , h ( ~ ) )  d ~  . I (1 5 )  
WE a f  ( T I  

The v a r i a t i o n  of  t r a j e c t o r y  h ( t )  s a t i s f i e s  t h e  sys tem of  

o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  ( 8 )  w i t h  i n i t i a l  c o n d i t i o n  



The v e c t r o  f u n c t i o n  h  ( t)  depends h e r e  on Y t { ei 1 and 8 

2 . 4  A M u l t i p l e  Bundle o f  V a r i a t i o n s  ( A  Bundle o f  V a r i a t i o n s  a t  

S e v e r a l  P o i n t s ) .  

Take 

* j-1 j 
y . - .  - u  ( t ) ,  t E [ e i  + E 2 L ik ,  ei+E 2 "k) 

'3 k=O k=O 

where € > O f  O i  E  [OtTl r Y i j  EVI  
' i j  ' i j  

2 0 ,  and k iO = 0  f o r  a l l  

i E l : N ,  j € 1 :  M .  where ,  2 !Lij = 1  and Mi and N are n a t u r a l  
1 j=1 

numbers. 

Cons ide r  t h e  f u n c t i o n s  

w h i l e  f o r  t > e i  t h e  f u n c t i o n  h i ( t )  s a t i s f i e s  t h e  d i f f e r e n t i a l  

e q u a t i o n  (13 )  w i t h  i n i t i a l  c o n d i t i o n s  

I t  i s  now p o s s i b l e  t o  show t h a t  

where r ( t )  w a s  d e f i n e d  i n  (1  1  ) . The f u n c t i o n  h  (t) depends on 

{ y . . } ,  {e i } ,  and i e i j }  . 
1 3  



2.5 A Classical Variation 

Suppose in addition to the above assumptions that the set 

U is convex and f is quasidifferentiable jointly in x and u, 

i.e., 

1 
(x'u't) lim - [f (x+ah,u+aq,t)-f (x,u,t) ] = 

3 [h,ql a++O 
a. 

- - max [ (vl ,h) + (v2 tq) 1 + min [(w rh)+(w2tq)I- 
[vl ,v21 E - afx (t) ru 

[wl .w21 €%f (tj 
xru 

Now let 

* 
nuE (t) = E (~ ( t )  - U (t) ) - Eq(t) , U E U - 

Proceeding as above we find that h(t) satisfies the system 

of ordinary differential equations 

h(t) = max [ (vl rh(t) )+(v2rq(t) I + 
[vl rv21 E - afx (t) ru 

+ min [(wl ,h(t))+(w2,q(t))1 
[w1rw21 €7fX IU(t) 

with initial condition 

Here afx , U( t c En+r andgf  ( ~ ) c E ~ + ~  are convex compact sets. 
x ,u 

Thus for all of the five control variations considered here 

we obtain 

* 
x (t) = x (t) + ~h(t )  + o (€1 

E 

where h(t) satisfies a particular system of equations, depending 

on the control variation chosen. 



3. NECESSARY OPTIlYALITY CONDITIONS 

Since @ is quasidifferentiable and Lipschitzian we have 

and therefore the following necessary condition holds: 
* 

Theorem I .  If u E U  is an optimal control then 

* 
aq(x (T) = rr.ax (v,~(T)) + min (wfh(~)) 0 (16) 

 ah(^) VEa@(x*(T)) w E g@ (x* (TI 

for all admissible variations of trajectory h(~). 

It is possible to obtain different necessary conditions by 

considering different types of control variations. Suppose, for 

example, that f is smooth with respect to x and that we choose 

a needle variation. 

Introduce the functions Yv (t) , Yw (t) : 

* 
yv(T? = v ,  vEa@(x (T)) 

* 
dYw(t) 

- 
afT(x* (t) .u (t) .t, 

- - Yw (t) , t " T 
dt ax 

a f 
where - is the derivative of f with respect to x. Then the 

ax 

following result can be obtained from (16): 

* 
Theorem 2 .  For a control u EU to be optimal it is necessary 

that 



* * * * 
min [ max A H(x ,u ,Yv,e) + min A H(x ,u ,Yw,8) 

Y Y 
y € V  VE?$(X*(T)) w € b ~ ( x * ( ~ ) )  

where 

Condition (17) is a generalization of the Pontryagin maximum 

principle [51 . 

Remark I .  If f is not smooth we cannot rewrite (16) in a compact 

form such as (17). In the case where there are only a finite 

number of points at which - 3f and %f are not singletons, the function 

h can again be presented in a shortened form, allowing (16) to 

be varified comparatively easily. 

Remark 2. The most interesting case arises when there exists a 

set of nonzero measure for which - af(t) and %f(t) are not singletons. 

This introduces the problem of the so-called "sliding modes" - a 

very important area for further study. 

Remark 3. Different control variations are associated with different 

necessary conditions (thecase in which f - but not @ - is smooth 

has been discussed in [4]). Note that if both f and $ are smooth 

the more complicated controls (a multiple needle variation, bundle 

of variations, multiple bundle of variations) are useless since 

we obtain the same necessary condition as in the case of a needle 

variation. If C$ is non-smooth, however, these conditions differ, 

yielding necessary conditions of differing complexity. Some 

illustrative examples are described in [4]. 

Remark 4. The problem now is to find more computationally useful 

formulations of (16) for different control variations. We are also 

faced with a new type of differential equation in the shape of 

equation (8) - we shall call this a quasilinear differential 

equation. The properties of its solutions have yet to be investigated. 
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