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PREFACE 

This paper was done in collaboration between the System and Decision 
Sciences Area (SDS) and the Adaptive Resource Policy Project (ARP). It faces 
the problem of optimal experimental design. This problem arises in adaptive 
policy making a t  the stage of estimating a model's parameters. It can be con- 
sidered as an optimization problem with both objective functions and con- 
straints dependent upon probabilistic measures. Methods for dealing with 
such problems have recently been developed in SDS. In this paper, these 
methods are applied to optimal experimental design which allows us to get 
nontrivial results both in statistics and optimization theory. 

Andrzej Wierzbicki 
Chairman 
System and Decision Sciences Area 
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DESIGN OF MPERlMENl3 UNDER CONSlXAINTS 

A. Gaivoronski and V. Fedorov 

INTRODUCTION 

I t  is a specific feature of applied systems analysis that  the organization 

and implementation of experiments is a very difficult and expensive process. 

Any change in controllable variables (for instance, in agriculture, health ser- 

vice, economic experiments, etc.) can lead to significant expense or to some 

kind of loss which cannot be measured in currency units. Therefore, it is 

necessary to have methods of experimental design which take into account 

this side of experimental research. These methods were partly developed in 

the traditional theory of optimal design (see, for example, Fedorov 1972 and 

Silvey 1980). In the traditional approach it is usually only assumed that con- 

trollable variables belong to some given set (so called operability region). In 

this paper we try to analyze the experimental design problem under more 

sophisticated constraints. 

From the mathematical point of view, we deal with the designing of exper- 

iments which are described by a linear regression model: 

where f ( 2 )  is a (mx1)-vector of a known basic function, xi describes 



conditions of the i - th  measurement, I9 is a (mx1)-vector of unknown parame- 

ters, the subscript t stands for the true value of these parameters, i stands 

for the number of measurements, y i ~ ~ l  is the result of the i - th measure- 

ment, is the  random error with zero mean and the same variance for all 

measurements which obviously can be chosen equal to 1 by the appropriate 

scaling, moreover all errors are uncorrelated. 

For model (1) i t  is natural to use the best linear unbiased estimates (see 

Rao, 1968) 

N N 
where Y = x f (xi) f T(zi), Y = x f (zi) vi and 2 is supposed to be regular. I t  

i= l  a=l  

is well known that  the variance matrix (which defines the precision of estima- 

tor 5) equals 

Matrix a is called the information matr iz .  I t  is clear from (2) and (3) that  

matrix M is defined completely by the set tzi{p. If in some points zi there are 

ri measurements, then this matrix is defined by the set 

which is usually called the design, and points zi are its supporting points. If 

one can control o r  choose the value of zi, then i t  is sensible to look for 

optimal designs. 

The design 6; is optimal if 

where Q is sorne precision measure; for instance, i t  can be I p1 1 ,  t r  M or 

tr AB (for details, see Fedorov 1972 and Silvey 1980). 

To specify the extremal problem (4) one should describe (or do some 

suggestion on) the properties of function Q and the admissible set of designs 

tN. In traditiorlal experimental design theory, this se t  is defined through con- 

strai~.lts on the supporting points: z E X E R ~ ,  where X is the "operability" 

region. 



The results of th is paper a re  essentially connected with additional con- 

straints. Namely, we suggest t ha t  together with the previous constraint, one 

can deal with the  following constraints: 

In (5), functions <,(z) describe some losses when a measurement is done a t  

point z ,  and usually <,(z) > 0. 

As in the  traditional case, i t  is convenient t o  introduce instead of M(tN), a 

normalized information matrix: 

and deal with the function 

U i n g  this new notation, the extremal problem (4)-(5) can be presented in 

the following form: 

n - t i  = ~ r g  min + [M( (~ ) ] ,  C P ~ G o ( ~ ~ ) ~ O *  X1 i=lln (6) 
t a =l  

APPROXIbUlTE OF'TIMAL DESIGN 

Extremal problem (6) is discrete (pi=r,/ N) and its solution is quite diffi- 

cult for any practical situation. But when N is sufficiently large one can hope 

that  a "continuous" design (when pi is allowed to  equal any value between 0 

and 1) can be a good approximation of an exact (discrete) design (compare 

with Fedorov 1972; Silvey 1980). Moreover, it is convenient t o  describe a 

design not  by the  se t  of "weights" bijr, but  by t h e  arbitrary probabilistic 

measure t(&) with the supporting s e t  X. Of course, i t  can  happen tha t  some 

optimal design could be described by a continuous measure, which is no t  

natural ly convenient in practice. But i t  will be shown later t ha t  i t  is always 

possible to find a design with the same information matrix, but  with a finite 

number of supporting points. 



For continuous design. (6) can be rewritten in the  following way: 

In the sequel we shall need fulfillment of the following assumptions: 

(a) The set  X is compact. 

(b) The functions f ( z )  and  p ( z )  a re  continuous on X. 

(c)  +[MI is a convex function. 

(d) There exists Q such tha t  [#:+[M(#)]sQ<~, Jp(z)[(dz)<oj = E(Q)#$. 
X 

- 
(e) For any #EE(Q) and #EZ, where E is the se t  of designs satisfying to  

(8)v 

where r (d ,#, j )  = o (a). 

THEOREM 1. If conditions (a) and  (b) hold, then for any design #EE 

there can  always be found a design E E  d h  the same information ma t r i z  

[M(#) = ~ ( j ) ] ,  the same value of the cost funct ion 

[Jp(z)#(&) = f yD(~ )~ (dz ) ] .  a n d  confaining no more than 
X X 

m ( m + l )  + 1 + 1 support ing points, 
2 

Roof.  Since any matr ix  M(#) is symmetric, i t  is completely 

described by m ( m  +I) /  2 elements. Therefore both M(#) and 

a(#) = f p(z)#(&) can be described by a vector of dimension 
X 

m m + l  k = ) +l. From the  definition the  set S* of the corresponding vec- 
2 

tors  is the  convex hull of the se t  S = f q ( z ) ,  ~ E X ~ E @ ,  where 
- 

s T ( ~ )  = [f n(z)f &z) ,  axp, p7(z)], a$=%, r = l . l .  Due to Caratheodory's 

theorem, any point s from S* can be represented in the form 



k +1 
where s i € S ,  pirO. p i = l .  This fact proves the theorem. 

i=l  

THEOREM 2. 

I. /f the conditions ( a )  (c) hold, then a necessary and suff icient con- 

dit ion for a design [ *  to be optimal .is fulf i l lment of the inequali ty 

II. 7 7 ~  set  of optimal designs is convez. 

Proof. The inequality (9) follows from assumption (c) and from the 

fact that a necessary and sufficient condition for M* to be the solution of 

the minimization problem min\k[M], where + is a convex function, is the 

nondecreasing of + along any feasible hrect ion (compare for instance 

with Whittle 1973 and Fedorov 1981). The convexity of the set of optimal 

designs is  the  obvious consequence of the  convexity of the  funct ion I) . 
Remark. I f  there are no constraints (8), then 

mi; j t (z. [*) [(dZ) = min $42 ,[*) 
&= x z EX 

and Theorem 2 coincides with the well-known "equivalency theorem" from 

traditional experimental design theory (see, for instance, Fedorov and 

Malyutov 1972; Kiefer 1974; Whittle 1973). 

According to Theorem 2 we should solve problem (9) in order to 

check particular plans for optimality. This problem is much easier than 

the initial one because it is linear with respect to [. However, i t  still 

remains an optimization problem in regard to probabilistic measures and 

further attempts should be made to reduce it to a more tractable one. 

This can be done by applying duality results for optimization problems in 

which the objective function depends on probabilistic meausres (Ermoliev 

1970; Ermoliev and Nedeva 1982; Ermoliev, Gaivoronski, and Nedeva 

1983). 

THEOREM 3. 

%ppose that conditions (a)-(c) are held and function is continuous 

w i t h  respect to t * .  Then 



1. min ~ E Z  /$(z .[*)[(dr)  = max p ( u )  
U E U +  

where 

2. Iibr a n y  s u c h  t h a t  

/ $ ( z , c * ) K & )  = m$ / $ ( z B t * ) t ( & )  
&a 

there exists ZL such tha t  r,o(ii) = maxp(u)  where has a support se t  
U E  LJ+ 

belonging to  

X ( 5 )  = l z : z ~ X ,  ~(ii) = $(z .[*)  + cT$(z)j. 
3. Among t h e  so lu t ions  of (9) there  a l w a y s  e z i s t s  one  with n o  m o r e  t h a n  

l  support ing  po in t s  

This theorem is actually a re-statement of Theorem 1  from a paper by 

Ermoliev, Gaivoronski, and Nedeva (1983) .  I t  reduces problem (9) to a 

finite-dimensional minimax problem. 

Therefore, in Theorem 2 the unequality (9) can be replaced by the 

following one 

max min [ $ ( z , [ * )  + u T p ( z ) ]  r 0  
U E U t  2E-X 

which is more similar to the "traditional" condition. In the following 

notation q ( z , u , [ )  = $(z , [ ) + u T p ( z )  will be used. 

Let u* be a solution of ( 1 0 )  and all constraints from ( 8 )  are active; 

i.e., 

In the opposite case one can consider (7) which contains fewer, and only 

active, constraints. 

THEOREM 4. If / t  * ( d r  ) n y>0. t h e n  the  f u n c t i o n  q ( z  .u '.,$*) achieves  
X' 

zero  o n  t h e  s e t  X. 

Proof.  Let us suggest that  a t  least on some set X: 

Then, due to ( 1 0 )  and ( 1 2 ) :  



But at  the same time 

because for any design ,$ 

due to condition (c), and the second summand equals zero due to (11). 

This contradiction proves the theorem. 

Remark. If the design [ *  contains a finite number of supporting 

points z:, i ==, then for all of them, 

Of course Theorems 2 and 3 cannot provide prescriptions for the 

design's construction in general, but very often they help in the under- 

standing of some essential features of them. 

&ample 1. Let us consider the design problem for one-dimension 

polynomial regressions: 

with the D-criterion of optimality: 

and with the following constraints 

Let us suggest that p(z) are continuous functions on the interval ( z  (< l  

and that the system 

is a Chebyshev system on the same interval. 



I t  is easy to  check tha t  t he  conditions (a)-(c) a re  fulfilled and the  

resul ts of Theorems 2 and 4 take place here. For D-optimal designs one 

has  ll/(z,[) = m-f T ( z ) ~ - l f  ( z )  (see, for instance, Fedorov 1972). In our 

case f T(z) = (1,z ,..., zm-I), and therefore 

In other words, the function q(z ,u, [ )  is a l inear combination of t he  

function (15). I t  is known that  a l inear combination with some non-zero 

coefficients of s functions which is a Chebyshev system can have no more 

tha t  s roots. Therefore the function g (z ,u , [ )  has no more than ( 2 m + l )  

1 1+1  
roots and has no more than rn + - (if 1 is even) or m + - (if 1 is odd) 

2 2 

minima on the interval lz (gl .  But in accordance to  Theorem 3, the  func- 

tion q ( z ,u  *,[*) should approach its low boundary a t  the supporting points 

1 
of an optimal design. So their number  cannot exceed m+-,  if 1 is even, 

2 

if 1 is odd, which is much less than the upper boundary from or m+- 
2 

Theorem 1. 

&ample 2. Let us now apply t h e  simplest version of (13), (14) with 

rn =2 (simple l inear regression), but  with t h e  following constraints. 

In th is case, system (15) is not a Chebyshev one, and therefore the previ- 

ous result cannot apply. 

According to  Theorem 2 and the  symmetry of constraints (16), the  

information matrix hi(() for any optimal design should be diagonal. For a 

diagonal matr ix M([) one has: 

I t  is evident t ha t  q(z,u,,$)-0, when u *  =c-I and  

Therefore if a design [ *  which satisfies (17) can  be found, then according 

to  Theorem 2, i t  will be optimal design. In fact  (17) describes a family of 

distributions with the  given second moment  and i t  is not difficult to  find 



some members of it. For instance, the following two designs: 

and 

belong to  this family. We remember tha t  in the traditional case (only one 

constraint: 1 z 1 <I), t he  optimal design problem has a unique solution: 
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