# Hazard Rates and Probability Distributions: Representation of Random Intensities 

Yashin, A.I.

IIASA Working Paper
WP-84-021

March 1984

Yashin, A.I. (1984) Hazard Rates and Probability Distributions: Representation of Random Intensities. IIASA Working Paper. WP-84-021 Copyright © 1984 by the author(s). http://pure.iiasa.ac.at/2497/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

# HAZARD RATES AND PROBABILTTY DISTRIBUTIONS: rEPRESENTATION OF RANDOM INTENSITIES 

A.I. Yashin

March 1984
WP-84-21

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Mernber Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg. Austria

## PREFACE

Recent attempts to apply the results of martingale theory in probability theory have shown that it is first necessary to interpret this abstract mathematical theory in more conventional terms. One example of this is the need to obtain a representation of the dual predictable projections (compensators) used in martingale theory in terms of probability distributions. However, up to now a representation of this type has been derived only for one special case.

In this paper, the author gives probabilistic representations of the dual predictable projection of integer-valued random measures that correspond to jumps in a semimartingale with respect to the $\sigma$-algebras generated by this process. The results are of practical importance because such dual predictable projections are usually interpreted as random intensities or hazard rates related to jumps in trajectories: applications are found in such fields as mathematical demography and risk analysis.

ANDRZEJ WIERZBICKI
Chairman
System and Decision Sciences

# HAZARD RATES AND PROBABILITY DISTRIBUTIONS: REPRESENTATION OF RANDOM INTENSITIES 

A.I. Yashin<br>International Institute for Applied Systems Analysis,<br>A-2361 Laxenburg, Austria

## 1. INTRODUCTION

The development of the martingale approach in the theory of random processes has made it possible to formalize and then generalize many of the intuitive notions commonly used in applied fields. One of these is concerned with the concepts of hazard and hazard rate.

The term hazard rate is usually associated with the probability of occurrence of some unexpected event or series of such events. This notion, which is popular in risk analysis, corresponds to the idea of a compensator or dual predictable projection in martingale theory $[1,2,3,4,5,6,7,8,9,10]$. Many important results from this theory are formulated in terms of compensators: these include convergence of the parameter estimators and conditions for absolute continuity and singularity of the probabilistic measures [5, 6].

Probabilistic representation of the compensators provides a bridge between theory and applications. This paper is concerned with a generalization of Jacod's important result [1] in this area.

## 2. BASIC NOTATION AND DEFINITIONS

Let $(\Omega, H, H, P)$ be a probabilistic space, where $\mathbf{H}=\left(H_{t}\right)_{t \geq 0}$ is some nondecreasing right-continuous family of $\sigma$-algebras, $H=H_{\infty}$, and $\sigma$-algebra $H_{0}$ is completed by Pzero sets from $H$.

A real-valued random process $Y_{t}, t \geq 0$, is said to be $H$-adapted if for any $u \geq 0$ random variable $Y_{u}$ is $H_{u}$-measurable.

A non-negative random variable $\mathbf{T}$ is called the $H$-stopping time if the indicator process $Y_{t}=I(T \leq t), t \geq 0$, is $H$-adapted. We will use the notation $T \Delta S$ to describe the stopping time $\tau=\min (T, S)$.

For any $\mathbf{H}$-stopping time $\mathbf{T}$ there exists a $\sigma$-algebra $H_{\mathbf{T}}$ in $\Omega$, generated by events $\mathbf{A}$ from $H$ such that for any $t \geq 0$ we have $\mathbf{A} \cap\{\mathbf{T} \leq \boldsymbol{t}\} \in H_{t}$.

The $\mathbf{H}$-adapted process $m_{t}$ is called an $\mathbf{H}$-martingale if $\mathbf{E}\left|m_{t}\right| \leq \infty$ for any $t \geq 0$ and $\mathbf{E}\left(m_{t} \mid H_{u}\right)=m_{u}$ for any $t \geq u \geq 0$.

A real-valued $\mathbf{H}$-adapted process is a local $\mathbf{H}$-martingale if there exists a sequence of $\mathbf{H}$-stopping times $\left(\mathrm{T}_{\boldsymbol{n}}\right)_{n \geq 0}$ such that $\lim _{\boldsymbol{n} \rightarrow \infty} \mathrm{T}_{\boldsymbol{n}}=\infty$ and for any $n \geq 0$ the processes $m_{t \Delta I_{n}}, t \geq 0$, are uniformly integrable martingales.
$\bar{\AA}$ real-valued process $Y_{t}$ is $H$-well-measurable if the mapping $(\omega, t) \rightarrow Y_{t}$ is measurable with respect to the $\sigma$-algebra $\boldsymbol{W}(\mathbf{H})$ in $\Omega \times(0, \infty)$ generated by all $H$ adapted, right-continuous processes.

A real-valued process $Y_{t}$ is H-predictable if the mapping $(\omega, t) \rightarrow Y_{t}(\omega)$ is measurable with respect to the $\sigma$-algebra $\Pi(H)$ in $\Omega \times(0, \infty)$ generated by all $H$ adapted, left-continuous processes.

A stopping time $T$ is said to be $H$-predictable if the process $Y_{t}=\mathrm{I}(\mathrm{T} \leq t), t \geq 0$, is $\mathbf{H}$-predictable.

The $H$-adapted process $Y_{t}, t \geq 0$, is an $H$-semimartingale if it may be represented in the form:

$$
Y_{t}=A_{i}+M_{i}, \quad t \geq 0,
$$

where $A_{t}, t \geq 0$, is a locally integrable variation process and $M_{t}$ is an $\mathbf{H}$-adapted local martingale.

We shall let ( $E_{\Delta}, \mathbf{B}\left(E_{\Delta}\right)$ ) denote the measurable space such that $E_{\Delta}=E \cup \Delta$, where $\Delta$ is some auxiliary point, $\mathbf{B}\left(E_{\Delta}\right)=\mathbf{B}(E) \cup\{\Delta\}, E$ is Lusin space and $\mathbf{B}(E)$ is the Borelian $\sigma$-algebra on $E$.

We will use the term random measure to describe the non-negative transition measure $\eta(\omega ; \mathrm{dt}, \mathrm{d} x)$ from $(\Omega, H)$ over $(0, \infty) \times E_{\Delta}$.

Let $\Pi(H)$ denote the $\sigma$-algebra in $\Omega \times(0, \infty) \times E$ defined by:

$$
\Pi(\mathbf{H})=\Pi(\mathbf{H}) \otimes \mathbf{B}(E)
$$

A random measure $\eta$ is called $H$-predictable if for each non-negative $\bar{\Pi}(H)$ measurable function $X$ the process $\left(\eta X_{t}(\omega), t \geq 0\right.$, defined by

$$
\left(\eta \mathrm{X}_{t}(\omega)=\int_{\Sigma} \int_{0}^{t} \mathbf{X}(\omega, u, x) \eta(\omega ; \mathrm{d} u, \mathrm{~d} x)\right.
$$

is H-predictable.
Hereafter we will omit the symbol $\omega$ for simplicity.
We will also use the notation $G \vee F$ to describe the $\sigma$-algebra in $\Omega$ generated by sets from $\sigma$-algebras $G$ and $F$.

## 3. JACOD'S REPRESENTATION RESULT

Jacod's formula for the random intensity function deals with the case in which environmental factors are random variables and consequently do not change over time. The general process whose intensity is of interest is a sequence of random times and randorn variables called a multivariate point process.

Some additional formal constructions will be useful in deriving the representation of the random intensity in this particular case.

### 3.1. Multivariate point processes

According to [1], a multivariate point process is a sequence ( $\left.\mathrm{T}_{\boldsymbol{n}}, \mathrm{Z}_{\boldsymbol{n}}\right)_{n \geq 0}$. where the $\mathbf{T}_{\boldsymbol{n}}$ are $\mathbf{H}$-stopping times and the $\mathbf{Z}_{\boldsymbol{n}}$ are $H_{\mathbf{I}_{\boldsymbol{n}}}$-measurable random variables with values in $\left(E_{\Delta}, B\left(E_{\Delta}\right)\right)$. Note that $Z_{n}=\Delta$ if and only if $T_{n}=\infty$, and that the stopping times $\mathrm{T}_{\boldsymbol{n}}$ have the following properties:
(i) $\mathrm{T}_{1}>0$,
(ii) $\mathbf{T}_{\boldsymbol{n}+1}>\mathrm{T}_{\boldsymbol{n}}$, if $\mathrm{T}_{\boldsymbol{n}}<\infty$.
(iii) $T_{n+1}=T_{n}$, if $T_{n}=\infty$.

It follows from these assumptions that sequence $\left(T_{n}\right)_{n \geq 0}$ has a unique accumulation point $\mathrm{T}_{\infty}=\lim _{n \rightarrow \infty} \mathrm{~T}_{n}<\infty$. We will assume that $\mathrm{T}_{\infty}=\infty, \mathrm{T}_{0}=0$.

A sequence of stopping times $\left(T_{n}\right)_{n \geq 0}$ satisfying conditions (i)-(iii) is called a univariate point process or simple point process. Any arbitrary discrete-time random process is naturally also a multivariate point process.

A multivariate point process is uniquely characterized by the integervalued random measure $\mu$ on $(0, \infty) \times E$ defined by the equality:

$$
\mu((0, t], \Gamma)=\sum_{n \geq 1} I\left(\mathrm{~T}_{n} \leq t\right) \mathrm{I}\left(\mathbf{Z}_{n} \in \Gamma\right), \Gamma \in B(E), t \geq 0
$$

In the rest of this paper we shall use $\mu$ to denote the integer-valued random measure generated by some multivariate point process ( $\left.T_{n}, \mathrm{~K}_{n}\right)_{n \geq 0}$.

### 3.2. Dual predictable projections of integer-valued random measures

We shall define $H_{l}^{\mu}$ as a $\sigma$-algebra in $\Omega$ generated by the multivariate point process or, equivalently, by the integer-valued random measure $\mu$ up to time $t$ :

$$
H_{t}^{\mu}=\sigma\{\mu((0, u] . \Gamma), \quad u \leq t, \quad \Gamma \in \mathbf{B}(E)\}
$$

and let $\bar{H}_{0}$ be some fixed $\sigma$-algebra in $\Omega$. Denote by $H_{f}^{\mu}$ the non-decreasing family of $\sigma$-algebras

$$
\mathbf{H}_{b}^{\mu}=\left(H_{0, t}^{\mu}\right)_{t \geq 0} .
$$

where

$$
\begin{equation*}
H_{6, t}^{\mu}=\bar{H}_{0} \vee H_{t}^{\mu} \tag{1}
\end{equation*}
$$

are $\sigma$-algebras in $\Omega$ generated by the union of $\bar{H}_{0}$ and $H^{\mu} . t \geq 0$. The family $H_{\sigma}^{\mu}$ is known to be right-continuous [2].

According to [1], there is one and only one (up to a modification on a Pnull set) $\mathbf{H}_{0}^{\mu}$-predictable random measure $\nu_{0}$ on ( $\left.0, \infty\right) \times E$ such that for each non-negative $\Pi\left(H_{f}{ }^{\prime}\right)$-measurable function $X$ we have

$$
\mathbf{E} \int_{0}^{t} \int_{E} \mathbf{X}(u, x) \mu(\mathrm{d} u, \mathrm{~d} x)=\mathbf{E} \int_{0}^{t} \int_{E} \mathbf{X}(u, x) \nu_{0}(\mathrm{~d} u, \mathrm{~d} x)
$$

Measure $\nu_{0}$ is called the dual $\mathrm{H}_{\boldsymbol{\sigma}}{ }^{\mu}$-predictable projection of $\mu$. It turns out that one can choose a version of $\nu_{0}$ which $\mathbf{P}$-a.s. satisfles the inequality:

$$
\begin{equation*}
\nu_{0}(\{t\} . E) \leq 1 . \quad t \geq 0 . \tag{2}
\end{equation*}
$$

We shall use the following equivalent formulation of the above result in this paper:

The random measure $\nu_{0}$ is characterized by (2) and
(i) the process $\nu_{0}((0, t], \Gamma), t \geq 0$, is $\mathbf{H}_{6}{ }^{\mu}$-predictable for any $\Gamma \in \mathbf{B}(E)$

# HAZARD RATES AND PROBABIITTY DISTRIBUTIONS: REPRESENTATION OF RANDOM INTENSTTTES 

A.I. Yashin<br>International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria

## 1. INTRODUCTION

The development of the martingale approach in the theory of random processes has made it possible to formalize and then generalize many of the intuitive notions commonly used in applied fields. One of these is concerned with the concepts of hazard and hazard rate.

The term hazard rate is usually associated with the probability of occurrence of some unexpected event or series of such events. This notion, which is popular in risk analysis, corresponds to the idea of a compensator or dual predictable projection in martingale theory $[1,2,3,4,5,6,7,8,9,10]$. Many important results from this theory are formulated in terms of compensators: these include convergence of the parameter estimators and conditions for absolute continuity and singularity of the probabilistic measures $[5,6]$.

Probabilistic representation of the compensators provides a bridge between theory and applications. This paper is concerned with a generalization of Jacod's important result [1] in this area.

## 2. BASIC NOTATION AND DEFINITIONS

Let $(\Omega, H, H, P)$ be a probabilistic space, where $H=\left(H_{t}\right)_{t \geq 0}$ is some nondecreasing right-continuous family of $\sigma$-algebras, $H=H_{\infty}$, and $\sigma$-algebra $H_{0}$ is completed by P-zero sets from $H$.

A real-valued random process $Y_{i}, t \geq 0$, is said to be $H$-adapted if for any $u \geq 0$ random variable $Y_{u}$ is $H_{u}$-measurable.

A non-negative random variable $\mathbf{T}$ is called the $\mathbf{H}$-stopping time if the indicator process $Y_{t}=I(T \leq t), t \geq 0$, is $\mathbf{H}$-adapted. We will use the notation $T \Delta S$ to describe the stopping time $\tau=\min (T, S)$.

For any $H$-stopping time $T$ there exists a $\sigma$-algebra $H_{T}$ in $\Omega$, generated by events $\mathbf{A}$ from $H$ such that for any $t \geq 0$ we have $\mathbf{A} \cap\{T \leq t\} \in H_{t}$.

The $\mathbf{H}$-adapted process $m_{t}$ is called an H-martingale if $\mathbf{E}\left|m_{t}\right| \leq \infty$ for any $t \geq 0$ and $\mathbf{E}\left(m_{t} \mid H_{u}\right)=m_{u}$ for any $t \geq u \geq 0$.

A real-valued $\mathbf{H}$-adapted process is a local H-martingale if there exists a sequence of $H$-stopping times $\left(T_{n}\right)_{n \geq 0}$ such that $\lim _{n \rightarrow \infty} T_{n}=\infty$ and for any $n \geq 0$ the processes $m_{t \Delta T_{n}}, t \geq 0$, are uniformly integrable martingales.
$\bar{A}$ real-valued process $Y_{t}$ is $\mathbf{H}$-well-measurable if the mapping $(\omega, t) \rightarrow Y_{t}$ is measurable with respect to the $\sigma$-algebra $\mathbf{W}(H)$ in $\Omega \times(0, \infty)$ generated by all $H$ adapted, right-continuous processes.

A real-valued process $Y_{t}$ is $H$-predictable if the mapping $(\omega, t) \rightarrow Y_{t}(\omega)$ is measurable with respect to the $\sigma$-algebra $\Pi(H)$ in $\Omega \times(0, \infty)$ generated by all $H^{-}$ adapted, left-continuous processes.

A stopping time $T$ is said to be H-predictable if the process $Y_{t}=\mathbf{I}(\mathrm{T} \leq t), t \geq 0$, is H -predictable.

The $H$-adapted process $Y_{t}, t \geq 0$, is an $H$-semimartingale if it may be represented in the form:

$$
Y_{t}=A_{t}+M_{t}, \quad t \geq 0
$$

where $A_{t}, t \geq 0$, is a locally integrable variation process and $M_{t}$ is an $H$-adapted local martingale.

We shall let $\left(E_{\Delta^{\prime}} \mathbf{B}\left(E_{\Delta}\right)\right)$ denote the measurable space such that $E_{\Delta}=E \cup \Delta$. where $\Delta$ is some auxiliary point, $\mathbf{B}\left(E_{\Delta}\right)=\mathbf{B}(E) \cup\{\Delta\}, E$ is Lusin space and $\mathbf{B}(E)$ is the Borelian $\sigma$-algebra on $E$.

We will use the term random measure to describe the non-negative transition measure $\eta(\omega ; \mathrm{d} t, \mathrm{~d} x)$ from $(\Omega, H)$ over $(0, \infty) \times E_{\Delta}$.

Let $\Pi(H)$ denote the $\sigma$-algebra in $\Omega \times(0, \infty) \times E$ defined by:

$$
\Pi(\mathbf{H})=\Pi(\mathbf{H}) \otimes \mathbf{B}(E)
$$

A random measure $\eta$ is called $H$-predictable if for each non-negative $\bar{\Pi}(\mathbf{H})$ measurable function $X$ the process $(\eta X)_{t}(\omega), t \geq 0$, defined by

$$
(\eta \mathbf{X})_{t}(\omega)=\iint_{E}^{t} \mathbf{X}(\omega, u, x) \eta(\omega ; \mathrm{d} u, \mathrm{~d} x)
$$

is H-predictable.
Hereafter we will omit the symbol $\omega$ for simplicity.
We will also use the notation $G \vee F$ to describe the $\sigma$-algebra in $\Omega$ generated by sets from $\sigma$-algebras $G$ and $F$.

## 3. JACOD'S RPPRESENTATION RESULT

Jacod's formula for the random intensity function deals with the case in which environmental factors are random variables and consequently do not change over time. The general process whose intensity is of interest is a sequence of random times and random variables called a multivariate point process.

Some additional formal constructions will be useful in deriving the representation of the random intensity in this particular case.

### 3.1. Multivariate point processes

According to [1], a multivariate point process is a sequence $\left(T_{n}, Z_{n}\right)_{n \geq 0}$, where the $\mathbf{T}_{\boldsymbol{n}}$ are $\mathbf{H}$-stopping times and the $\mathrm{Z}_{\boldsymbol{n}}$ are $H_{\mathbf{T}_{\boldsymbol{n}}}$-measurable randorn variables with values in $\left(E_{\Delta}, \mathbf{B}\left(E_{\Delta}\right)\right)$. Note that $\mathbf{Z}_{n}=\Delta$ if and only if $T_{n}=\infty$, and that the stopping times $\mathrm{T}_{n}$ have the following properties:
(i) $\mathrm{T}_{1}>0$,
(ii) $\mathbf{T}_{\boldsymbol{n}+1}>\mathbf{T}_{\boldsymbol{n}}$, if $\mathrm{T}_{\boldsymbol{n}}<\infty$,
(iii) $T_{n+1}=T_{n}$, if $T_{n}=\infty$.

It follows from these assumptions that sequence $\left(T_{n}\right)_{n \geq 0}$ has a unique accumulation point $\mathbf{T}_{\infty}=\lim _{n \rightarrow \infty} \mathbf{T}_{\boldsymbol{n}}<\infty$. We will assume that $\mathbf{T}_{\infty}=\infty, \mathbf{T}_{0}=0$.

A sequence of stopping times $\left(\mathrm{T}_{n}\right)_{n \geq 0}$ satisfying conditions (i)-(iii) is called a univariate point process or simple point process. Any arbitrary discrete-time random process is naturally also a multivariate point process.

A multivariate point process is uniquely characterized by the integervalued random measure $\mu$ on $(0, \infty) \times E$ defined by the equality:

$$
\mu((0, t], \Gamma)=\sum_{n \geq 1} \mathbf{I}\left(\mathbf{T}_{n} \leq t\right) \mathbf{I}\left(\mathbf{Z}_{n} \in \Gamma\right), \quad \Gamma \in \mathbf{B}(E), t \geq 0
$$

In the rest of this paper we shall use $\mu$ to denote the integer-valued random measure generated by some multivariate point process $\left(T_{n}, Z_{n}\right)_{n \geq 0}$.

### 3.2. Dual predictable projections of integer-valued random measures

We shall define $H_{l}^{\mu}$ as a $\sigma$-algebra in $\Omega$ generated by the multivariate point process or, equivalently, by the integer-valued random measure $\mu$ up to time $t$ :

$$
H_{t}^{\mu}=\sigma\{\mu((0, u], \Gamma), \quad u \leq t, \quad \Gamma \in \mathbf{B}(E)\}
$$

and let $\bar{H}_{0}$ be some fixed $\sigma$-algebra in $\Omega$. Denote by $\mathbf{H}^{\mu}$ the non-decreasing family of $\sigma$-algebras

$$
\mathbf{H}_{0}^{\mu}=\left(H_{6, t}^{\mu}\right)_{t \geq 0} .
$$

where

$$
\begin{equation*}
H_{6, t}^{\mu}=\bar{H}_{0} \vee H_{t}^{\mu} \tag{1}
\end{equation*}
$$

are $\sigma$-algebras in $\Omega$ generated by the union of $\bar{H}_{0}$ and $H_{t}^{\mu}, t \geq 0$. The family $\mathrm{H}_{0}^{\mu}$ is known to be right-continuous [2].

According to [1], there is one and only one (up to a modification on a Pnull set) $H^{\mu}$-predictable random measure $\nu_{0}$ on $(0, \infty) \times E$ such that for each non-negative $\Pi\left(H_{b}{ }^{\mu}\right)$-measurable function $X$ we have

$$
\mathbf{E} \int_{0}^{t} \int_{E} \mathbf{X}(u, x) \mu(\mathrm{d} u, \mathrm{~d} x)=\mathbf{E} \int_{0}^{t} \int_{E} \mathbf{X}(u, x) \nu_{0}(\mathrm{~d} u, \mathrm{~d} x)
$$

Measure $\nu_{0}$ is called the dual $\mathbf{H}_{5}^{\mu}$-predictable projection of $\mu$. It turns out that one can choose a version of $\nu_{0}$ which $\mathbf{P}$-a.s. satisfies the inequality:

$$
\begin{equation*}
\nu_{0}(\{t\}, E) \leq 1, \quad t \geq 0 \tag{2}
\end{equation*}
$$

We shall use the following equivalent formulation of the above result in this paper:

The random measure $\nu_{0}$ is characterized by ( 2 ) and
(i) the process $\nu_{0}((0, t], \Gamma), t \geq 0$, is $\mathbf{H}_{6}{ }^{\mu}$-predictable for any $\Gamma \in \mathbf{B}(E)$
(ii) the process $\left(\mu((0, t], \Gamma)-\nu_{0}((0, t], \Gamma)\right), t \geq 0$, is an $H^{\mu}$-adapted local martingale.

Dual predictable projections of integer-valued random measures may be interpreted as generalized cumulative random intensity functions.

Remark. Notice here that $\sigma$-algebra $\bar{H}_{0}$ is not necessarily formed by events independent of $H_{t}$. For instance, $\bar{H}_{0}$ could be the $\sigma$-algebra in $\Omega$ corresponding to the past history of some random process up to time 0 . We shall consider the $\sigma$-algebra $\bar{H}_{0}$ generated by a Wiener process up to time $\infty$.

### 3.3. Probabilistic representation of random intensity functions

In some senses, Jacod's representation of dual $\mathbf{H}^{\mu}$-predictable projections serves as a bridge between the abstract theory of random processes with jumps currently developing in the framework of the martingale approach, and the wide range of applications based largely on the knowledge of probabilistic distribution functions.

In order to express Jacod's result, we have to define regular versions of the $H \sigma_{,}^{\mu} \mathrm{r}_{n}$-conditional probabilities of events $\left\{\mathrm{T}_{n+1} \leq u\right\} \cap\left\{Z_{n+1} \in \Gamma\right\},\left\{\mathrm{T}_{n+1} \geq u\right\}$. where $u \geq 0, \Gamma \in B(E)$ and $n=1,2, \ldots$. This may be done using equalities

$$
\begin{aligned}
& \mathbf{P}\left(\mathrm{T}_{n+1} \leq u, \mathbf{Z}_{n+1} \in \Gamma \mid H_{6, \mathrm{~T}_{n}}^{\mu}\right)=\mathbf{E}\left(\mathrm{I}\left(\mathrm{~T}_{n+1} \leq u\right) \mathrm{I}\left(\mathrm{Z}_{n+1} \in \Gamma\right) \mid H_{6, \mathrm{~T}_{n}}^{\mu}\right) \\
& \mathbf{P}\left(\mathrm{I}\left(\mathrm{~T}_{n+1} \geq u\right) \mid H_{6, \mathrm{~T}_{n}}^{\mu}\right)=\mathbf{E}\left(\mathbf{I}\left(\mathrm{T}_{n+1} \geq u\right) \mid H_{6}^{\mu}, \mathrm{T}_{n}\right)
\end{aligned}
$$

It should be emphasized once again that in this part of the paper we are considering the case in which additional information about events and variables influencing the multivariate point process perceived by the statistician (observer) does not change over time.

The following theorem was proved in [1].
Theorem 1. The following is a representation of a dual $\mathbf{H}_{0}^{\prime}$-predictable projection $\nu_{0}$ of measure $\mu$ :

$$
\begin{equation*}
\nu_{0}((0, t], \Gamma)=\sum_{n=0}^{\infty} \mathrm{I}\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right) \sum_{p=0}^{n} \int_{\mathrm{T}_{p} \Delta t}^{\mathbf{T}_{p+1} \Delta t} \frac{\mathrm{~d}_{u} \mathbf{P}\left(\mathbf{T}_{p+1} \leq u, \mathbf{Z}_{p+1} \in \Gamma \mid H \boldsymbol{R}_{1} \mathrm{~T}_{p}\right)}{\mathbf{P}\left(\mathrm{T}_{p+1} \geq u \mid H, \mathbf{T}_{p}\right)} \tag{3}
\end{equation*}
$$

Corollary. Notice that if the $\sigma$-algebra $\bar{H}_{0}$ does not provide the observer with any information about the events, and if all he has at time $t$ is information
about events from the history $H_{t}^{\mu}$, the hazard rate coincides with the dual $\mathbf{H}^{\mu}$ predictable projection $\nu$ of the measure $\mu$ and the formula for $\nu$ is a simple corollary of equation (3):
$\nu((0, t], \Gamma)=\sum_{n=0}^{\infty} \mathbf{I}\left(\mathrm{T}_{n}<t \leq \mathrm{T}_{n+1}\right) \sum_{p=0}^{n} \int_{\mathrm{T}_{p} \Delta t}^{\mathbf{T}_{p+1} \Delta t} \frac{\mathrm{~d}_{\boldsymbol{u}} \mathbf{P}\left(\mathrm{T}_{p+1} \leq u, \mathrm{Z}_{p+1} \in \Gamma \mid H H_{p}^{\mu}\right)}{\mathbf{P}\left(\mathrm{T}_{p+1} \geq u \mid H_{\mathrm{P}_{p}}^{\mu}\right)}$.
In the case of a pure point process (a sequence of random times $T_{n}$ ), the formula for the dual $\mathbf{H}^{\boldsymbol{\mu}}$-predictable compensator $A(t)$ becomes:

$$
A(t)=\sum_{n=0}^{\infty} \mathrm{I}\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right) \sum_{p=0}^{n} \int_{\mathrm{T}_{p} \Delta t}^{\mathrm{T}_{p+1} \Delta t} \frac{\mathrm{~d}_{u} \mathrm{P}\left(\mathrm{~T}_{p+1} \leq u \mid H_{\mathrm{T}_{p}}^{\mathrm{N}}\right)}{\mathrm{P}\left(\mathrm{~T}_{p+1} \geq u \mid H H_{p}^{\mathrm{N}}\right)}
$$

where the $\sigma$-algebras $H_{t}^{\mathbf{N}}, t \geq 0$, are generated by the values of the point process $\left(T_{n}\right)_{n \geq 0}$ or, equivalently, by the values of the counting process $\mathbf{N}_{u}, u \geq 0$, up to time $t$.

Equations ( $3^{\prime}$ ) and ( $3^{\prime \prime}$ ) produce known results when applied to well-studied processes. Thus, for a Poisson process with deterministic local intensity function $\lambda(t)$, the dual predictable projection $\Lambda(t)$ defined by equation ( $3^{\prime \prime}$ ) coincides with the cumulative hazard rate and is given by the equality

$$
\Lambda(t)=\int_{0}^{t} \lambda(u) \mathrm{d} u
$$

For a finite-state, continuous-time, Markov process $\xi_{t}, t \geqslant 0$, with states $\{1,2, \ldots, N\}$ and intensities $\lambda_{i j}(t), i, j=(1,2, \ldots, N), t \geq 0$, equation ( $3^{\prime}$ ) gives the dual predictable projection in the form:

$$
\nu_{0}((0, t], \Gamma)=\int_{0}^{t} \sum_{j \in \Gamma} \lambda_{\xi_{u-}, \xi_{u}+j} \mathrm{~d} u
$$

Now assume that the observer has some additional information about the intensity function, for instance, that he knows the value of some random variable $\mathbb{Z}$ which influences the frequency of the jumps. This means that he is dealing with the history $H_{6, t}^{\mu}$ as determined by the equality (1), where $\sigma$-algebra $\bar{H}_{0}$ coincides with the $\sigma$-algebra $\sigma(\mathrm{Z})$ generated by random variable Z in $\Omega$. In this case the observer needs to use the dual $H_{j} \mu$-predictable projection of $\mu$ as a random intensity function. Thus, in the case of a double stochastic Poisson process $N_{t}, t \geq 0$, with random intensity function $Z \lambda(t), t \geq 0$ (where $Z$ is some
positive random variable), it is necessary to use eqn. (3) which gives the following dual $\mathbf{H}_{6}$-predictable projection of $\mathbf{N}_{t}, t \geq 0$ :

$$
\Lambda(t, \mathrm{Z})=\mathrm{Z} \int_{0}^{t} \lambda(u) \mathrm{d} u
$$

Note that if two observers have different information about the processes occurring in some real system (for example, if one of them knows the value of the variable $Z$ and the other does not), they will use different hazard rates to estimate the probability of change. In the case of continuously distributed jump-times in a double stochastic Poisson process, the relation between the two intensities (derived from a comparison between eqns. ( $3^{\prime \prime}$ ) and ( $3^{\prime}$ )) may be represented as follows:

$$
\begin{equation*}
\bar{\lambda}(t)=\mathbf{E}\left(\mathbf{Z} \mid H_{t}^{\mathbf{N}}\right) \lambda(t), \tag{4}
\end{equation*}
$$

where $\bar{\lambda}(t)$ is the $\mathbf{H}^{\mathbf{N}}$-predictable local hazard rate. This is related to the dual $\mathbf{H}^{\mathbb{N}}$-predictable projection $\bar{\Lambda}(t)$ of $\mathbf{N}_{t}$ by the equality:

$$
\bar{\Lambda}(t)=\int_{0}^{t} \bar{\lambda}(u) \mathrm{d} u
$$

We shall now prove the relation between $\bar{\lambda}(t)$ and $\lambda(t)$. Consider the integral $G_{n}(t)$ defined by the equality:

$$
G_{n}(t)=\int_{\mathbf{T}_{p} \Delta t}^{\mathbf{T}_{p+1} \Delta t} \frac{d_{u} \mathbf{P}\left(\mathbf{T}_{p+1} \leq u \mid H \mathbf{T}_{p}^{\mathbf{N}}\right)}{\mathbf{P}\left(\mathbf{T}_{p+1} \geq u \mid H \mathbf{T}_{p}^{\mathbf{N}}\right)} .
$$

which is taken from the right-hand side of eqn. $\left(3^{\prime \prime}\right)$. Let $\varphi_{p}(u)$ be the density function of conditional distribution $\mathbf{P}\left(\mathrm{T}_{\boldsymbol{p}+1} \leq \boldsymbol{u} \mid H \mathbf{T}_{p}\right)$. Note that the following equality holds:

$$
\varphi_{\pi}(u)=\int_{0}^{\infty} z \lambda(u) \exp \left\{-z \int_{\mathrm{T}_{n}}^{u} \lambda(v) \mathrm{d} v\right\} f(z) \mathrm{d} z,
$$

where $f(z)$ is the density distribution function of random variable Z. Using this equality and noting that for $\mathrm{T}_{\boldsymbol{p}} \leq \boldsymbol{u}$

$$
\exp \left\{-z \int_{\mathbf{T}_{p}}^{u} \lambda(v) \mathrm{d} v\right\}=\mathbf{P}\left(\mathbf{T}_{p+1}>u \mid H \mathbf{T}_{p}^{\mathrm{N}}, \mathbf{Z}=z\right)
$$

we have

$$
G_{p}(t)=\int_{\mathbf{T}_{p} \Delta t}^{\mathbf{T}_{p+1} \Delta t} \mathbf{E}\left(\mathbf{Z} \mid H_{\mathbf{T}_{p}}^{\mathbf{N}}, \mathbf{T}_{p+1}>u\right) \lambda(u) \mathrm{d} u
$$

Since

$$
\mathbf{I}\left(\mathbf{T}_{p} \leq u<\mathbf{T}_{p+1}\right) \mathbf{E}\left(\mathbf{Z} \mid H_{\mathbf{T}_{p}}^{\mathbf{N}}, \mathbf{T}_{p+1}>u\right)=\mathbf{I}\left(\mathbf{T}_{p} \leq u<\mathbf{T}_{p+1}\right) \mathbf{E}\left(\mathbf{Z} \mid H_{u}^{\mathbf{N}}\right) .
$$

we can derive the formula for the $\bar{\Lambda}(t)$ from eqn. ( $3^{\prime \prime}$ ).
Remark. Equation (4) shows that to calculate intensity functions $\bar{\Lambda}(t)$ or $\bar{\lambda}(t)$ it is first necessary to calculate the $H_{t}{ }^{\mathbf{N}}$-conditional mathematical expectation. This problem can be overcome by using an approach based on filtering of the jumping processes (see, for instance, [11,12]). In the simplest life-cycle models, which are characterized only by stopping time $\mathbf{T}$ (time of death) and are widely used in reliability and demographic analysis, the random intensity describes differences in susceptibility to death or failure [13]. Notice that in the case of life-cycle processes, equation ( $3^{\prime \prime}$ ) gives the following relation between the H -adapted compensator $A(t)$ and the local intensity function $\lambda(t)$ :

$$
A(t)=\int_{0}^{t \Delta T} \lambda(u) \mathrm{d} u .
$$

Recall that, from the definition of the compensator, the process

$$
M(t)=\mathbf{I}(\mathbf{T} \leq t)-A(t), \quad t \geq 0
$$

is an H -adapted martingale.

## 4. GENERAL FORMULA FOR REPRESENTATION OF RANDOM INTENSTTY

In spite of the fact that dual predictable projections exist for a wide class of families of $\sigma$-algebras, probabilistic representations are known only for $\sigma$ algebras with structure (1). However, in practical situations $\sigma$-algebras often have a more general structure. In particular, new information may be generated not only by the multivariant point process but also by some additional process $\eta_{t}$. In this case the $\sigma$-algebras describing the observation history have the form $H_{t}=H_{t}^{\eta} \vee H_{t}^{\mu}$, where $\sigma$-algebras $H_{t}^{k}$ are generated by some process $\eta_{t}$ which is observed simultaneously with the multivariate point process $\left(\mathrm{T}_{n}, \mathrm{Z}_{n}\right)_{n \geq 0}$. Detailed probabilistic characterization of dual predictable
projections is often useful when applying the results of the general theory of random processes in practice.

In this section we will give the probabilistic representation of the dual predictable projection of integer-valued random measures corresponding to the jumps of the semimartingale with respect to the family of $\sigma$-algebras generated by this process.

### 4.1. Generation of jumps

Let random process $X_{t}, t \geq 0$, defined on probability space ( $\Omega, H, \mathbf{H}, \mathbf{P}$ ) be $\mathbf{H -}$ adapted, take values in $\mathbf{R}^{k}$ and have right-continuous, left-limited sampling paths. Denote by $\mathrm{H}^{\boldsymbol{x}}$ the family of $\sigma$-algebras

$$
H_{t}^{x}=\bigcap_{r \geq t} \sigma\left\{X_{u}, u \leq r\right\}
$$

and assume that $H_{0}^{x}$ is completed by the sets from $H^{x}=H_{\infty}^{x}$ with a P-probability of zero. Assume also that process $X_{t}$ may be represented as follows:

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} A_{u} \mathrm{~d} u+\int_{0}^{t} B_{u} \mathrm{~d} w_{u}+\int_{0}^{t} \int_{E} x \mu(\mathrm{~d} u, \mathrm{~d} x) \tag{5}
\end{equation*}
$$

where $A_{u}$ and $B_{u}$ are $\mathbf{H}^{x}$-adapted matrices of appropriate dimensions, matrix $B_{u}$ is non-singular for any $u \geq 0, E=R^{k}-\{0\}$, and $w_{u}$ is an $H$-adapted, $k$ dimensional Wiener process independent of $X_{0}$.

Note that, in general, the dimension of $X_{f}$ may be greater than that of the jumping changes. This can mean, for instance, that we are also considering situations with two-component processes of which one is pure jumping and the other is continuous.

It follows from (3) that the measure $\mu$ is $\boldsymbol{H}^{\boldsymbol{\pi}}$-adapted and that

$$
\mathbf{Z}_{\boldsymbol{n}}=X_{\mathbf{T}_{\boldsymbol{n}}}-X_{\mathbf{T}_{\boldsymbol{n}}-} .
$$

Let $\nu^{x}$ denote the dual $\mathbf{H}^{\boldsymbol{x}}$-predictable projection of integer-valued random measure $\mu$. Our main aim is to derive the probabilistic representation of measure $\nu^{x}$.

### 4.2. The form of the hazard rate

The main result of this subsection is formulated in terms of auxiliary processes $X_{n, t}$ defined by the equalities:

$$
\begin{equation*}
X_{n, t}=X_{0}+\int_{0}^{t} A_{u} \mathrm{~d} u+\int_{0}^{t} B_{u} \mathrm{~d} w_{u}+\int_{0}^{T_{n} \Delta t} \int_{E} x \mu(\mathrm{~d} u, \mathrm{~d} x) \tag{6}
\end{equation*}
$$

where $A, B, w, \mu$ have been defined previously. Introducing the measures $\mu_{n}$ defined by the equalities

$$
\mu_{n}((0, t], \Gamma)=\sum_{k} \mathbf{I}\left(\mathbf{T}_{k} \leq \mathrm{T}_{n} \Delta t\right) \mathrm{I}\left(\mathrm{Z}_{n} \in \Gamma\right), \Gamma \in \mathrm{B}(E), t \geq 0, n \geq 0
$$

eqn. (8) may be rewritten as follows:

$$
X_{n, t}=X_{0}+\int_{0}^{t} A_{u} \mathrm{~d} u+\int_{0}^{t} B_{u} \mathrm{~d} w_{u}+\int_{0}^{t} \int_{E} x \mu_{n}(\mathrm{~d} u, \mathrm{~d} x)
$$

Notice that measure $\mu_{n}$ may be considered as a measure of the jumps of the process $X_{n, t}, t \geq 0$.

Introduce $\sigma$-algebras $H_{t}^{I_{n}}$ and $H_{t}^{\mu_{n}}$ such that:

$$
\begin{aligned}
& H_{t}^{x_{n}}=\bigcap_{u>t} \sigma\left\{X_{n, r}, r \leq u\right\} \\
& H_{t}^{\mu_{n}}=\sigma\left\{\mu_{n}((0, t], \Gamma), u \leq t, \Gamma \in \mathbf{B}(E)\right\},
\end{aligned}
$$

and define the regular versions of the conditional probabilities of events

$$
\left\{\mathbf{T}_{p+1} \leq u\right\} \cap\left\{\mathbf{Z}_{p+1} \in \Gamma\right\}, \quad\left\{\mathbf{T}_{p+1} \geq u\right\}, \quad u>0, \Gamma \in \mathbf{B}(E)
$$

using the equalities

$$
\begin{gathered}
\mathbf{P}\left(\mathbf{T}_{p+1} \leq u, \mathbf{Z}_{p+1} \in \Gamma \mid H_{u}^{x_{p}}\right)=\mathbf{E}\left(\mathrm{I}\left(\mathbf{T}_{p+1} \leq u\right) \mathrm{I}\left(\mathrm{Z}_{p+1} \in \Gamma\right) \mid H_{u}^{x_{p}}\right) \\
\mathbf{P}\left(\mathbf{T}_{p+1} \geq u \mid H_{u}^{x_{p}}\right)=\mathbf{E}\left(\mathrm{I}\left(\mathbf{T}_{p+1} \geq u\right) \mid H_{u}^{x_{p}}\right) .
\end{gathered}
$$

The next assertion is the main result of this paper.
Theorem 2. Assume that coefficients $A$ and $B$ are such that a strong solution of equation (3) exists and is unique. Then we have the following representation of the cheal $\boldsymbol{H}^{\boldsymbol{F}}$-predictable projection $\nu^{x}$ of integer-valued random measure $\mu$ :

$$
\begin{equation*}
\nu^{x}((0, t], \Gamma)=\sum_{n=0}^{\infty} \mathbf{1}\left(\mathbf{T}_{\boldsymbol{n}}<t \leq \mathbf{T}_{n+1}\right) \sum_{p=0}^{n} \int_{\mathbf{T}_{p} \Delta t}^{\mathbf{T}_{p+1} \Delta t} \frac{\mathrm{~d}_{u} \mathbf{P}\left(\mathbf{T}_{p+1} \leq u, \mathbf{Z}_{p+1} \in \Gamma \mid H_{u}^{x_{p}}\right)}{\mathbf{P}\left(\mathbf{T}_{p+1} \geq u \mid H_{u}^{x_{p}}\right)} . \tag{7}
\end{equation*}
$$

This theorem is proved in the Appendix.

Sometimes it is more convenient to use another form of representation for $\nu^{x}$. transforming the conditional probabilities on the right-hand side of (7). For this purpose we introduce the function $F(u, \Gamma)$, making use of the equality

$$
F(u, \Gamma)=\left.\mathbf{P}\left(\mathbf{Z}_{n+1} \in \Gamma \mid H_{\mathbf{T}_{n+1^{-}}}^{\tau}\right)\right|_{\mathbf{T}_{n+1}=u}, \Gamma \in \mathbf{B}(E), u \geq 0, n \geq 0,
$$

 bability of event $\left\{Z_{n+1} \in \Gamma\right\}$. The dual $H^{x}$-predictable projection $\nu^{x}$ of measure $\mu$ may then be represented in terms of this function as follows:

$$
\nu^{x}((0, t], \Gamma)=\sum_{n=0}^{\infty} \mathrm{I}\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right) \sum_{p=0}^{n} \int_{\mathrm{T}_{p} \Delta t}^{\mathrm{T}_{p+1} \Delta t} \frac{F(u, \Gamma) \mathrm{d}_{u} \mathrm{P}\left(\mathrm{~T}_{p+1} \leq u \mid H_{u}^{x_{p}}\right)}{\mathrm{P}\left(\mathrm{~T}_{p+1} \geq u \mid H_{u}^{x_{p}}\right)}
$$

## 5. EXAMPLES

### 5.1. Conditional Gaussian property

Let process $Y(t), t \geq 0$, satisfy the linear stochastic differential equation

$$
\begin{equation*}
\mathrm{d} Y(t)=a_{0}(t)+a_{1}(t) Y(t) \mathrm{d} t+b(t) \mathrm{d} w(t), Y(0)=Y_{0}, \tag{8}
\end{equation*}
$$

where $Y_{0}$ is a Gaussian random variable with mean $m_{0}$ and variance $\gamma_{0}, w(t)$ is an $\mathbf{H}$-adapted Wiener process, $\mathbf{H}=\left(H_{t}\right)_{t \geq 0}$ is some non-decreasing, rightcontinuous family of $\sigma$-algebras, and $H_{0}$ is completed by P-zero sets from $H=H_{\infty}$. Denote by $\mathbf{H}^{y}$ the family of $\sigma$-algebras in $\Omega$ generated by the values of the random process $Y(u)$, i.e.,

$$
\mathbf{H}^{y}=\left(H_{t}^{y}\right)_{t \geq 0}, \quad H_{t}^{y}=\bigcap_{u>t} \sigma\{Y(v), \quad v \leq u\}, \quad t \geq 0
$$

Assume that process $Y(t)$ determines the random rate of occurrence of some unexpected event characterized by the random time $T$, through the equality:

$$
\begin{equation*}
\mathrm{P}(\mathrm{~T}>t \mid H \psi)=\exp \left\{-\int_{0}^{t} Y^{2}(u) \lambda(u) \mathrm{d} u\right\} \tag{9}
\end{equation*}
$$

Notice that process $Z(u)=Y^{2}(u), u \geq 0$, may be interpreted as the frailty of an individual changing stochastically over time. Using the terminology of martingale theory one can say that the process

$$
A(t)=\int_{0}^{t \Delta T} \lambda(u) Y^{2}(u) \mathrm{d} u
$$

is an $\mathrm{H}^{y}$-predictable compensator of the life-cycle process $X_{t}=\mathrm{I}(\mathrm{T}<t), \quad t \geq 0$. This means that the process $M_{t}=\mathrm{I}(\mathbf{T}<t)-A(t), \quad t \geq 0$ is an $H^{y}$-adapted martingale. Associating the stopping time $\mathbf{T}$ with the time of death, we may describe the process $Y^{2}(t), t \geqslant 0$, as the age-specific mortality rate for an individual with history $Y_{0}^{t}=\{Y(u)\}, 0 \leq u \leq t$.

Letting $\bar{\lambda}(t), t \geq 0$, denote the observed age-specific mortality rate we have $\bar{\lambda}(t)=\lambda(t) \overline{\mathbf{Z}}(t), \quad t \geq 0$, where $\overline{\mathbf{Z}}(t)=\mathbf{E}\left\{Y^{2}(t) \mid \mathbf{T}>t\right\}[13]$.

In order to calculate the observed mortality rate $\bar{\lambda}(t), t \geq 0$, it is necessary first to calculate the second moment of the conditional distribution of the $Y(u)$ given the event $\{T \geq 0\}$. It turns out that this moment may be calculated quite easily using the result of the following theorem.

Theorem 3. Assume that process $Y(t)$ and stopping time $\mathbf{T}$ are related through eqns. (8) and (9). Then the conditional distribution of $Y(t)$ given $\{T \geq t\}$ is Gaussian. The parameters of this distribution, i.e., the mean $m_{t}$ and the variance $\gamma_{t}$, are given by the following equations:

$$
\begin{gather*}
\frac{d m_{t}}{d t}=a_{0}(t)+a_{1}(t) m_{t}-2 m_{t} \gamma_{t} \lambda(t), m_{0}  \tag{10}\\
\frac{d \gamma_{t}}{d t}=2 a_{1}(t) \gamma_{t}+b^{2}(t)-2 \lambda(t) \gamma_{t}^{2}, \quad \gamma_{0} \tag{11}
\end{gather*}
$$

The formula for $\bar{\lambda}(t)$ is then $\bar{\lambda}(t)=\lambda(t)\left(m_{t}^{2}+\gamma_{t}\right)$.
This theorem may be proved in a similar way as the conditional Gaussian property for processes governed by stochastic differential equations of the diffusion type (see [14]).

## 6. APPENDIX: PROOF OF THEOREM 2

The proof uses representation (3) for $\nu_{0}$. It turns out that if the $\sigma$-algebra $\bar{H}_{0}$ in eqn. (1) is of a particular form (which will be specified later) then the $H_{6, \mathrm{~T}_{n}}$-conditional probabilities of events $\left\{\mathrm{T}_{p+1} \leq u\right\} \cap\left\{\mathrm{Z}_{p+1} \in \Gamma\right\}$ and $\left\{\mathrm{T}_{p+1} \geq u\right\}$ will P-a.s. coincide with the $H_{u}^{x_{n}}$-conditional probabilities of these events on the integration intervals in (7). Representation of measure $\nu_{0}$ through $H_{u}^{x_{n}}$ conditional probabilities makes it easier to prove its $\mathrm{H}^{\boldsymbol{x}}$-predictability property. It is then easy to check that the process

$$
\left(\mu((0, t], \Gamma)-\nu_{0}((0, t], \Gamma)\right), \quad t \geq 0
$$

is an $\mathbf{H}^{\boldsymbol{x}}$-adapted martingale for any $\Gamma \in \mathbf{B}(E)$. The fact that $\nu^{\boldsymbol{x}}$ is unique shows that $\nu^{x}$ and $\nu_{0}$ coincide P-a.s. Representation (7) is derived from (3) through substitution of the conditional probabilities. Several auxiliary results will be useful in the proof of Theorem 2: these are derived in the following subsections.

### 6.1. Auxiliary $\sigma$-algebras

Introduce the auxiliary right-continuous families of $\sigma$-algebras $\mathbf{H}^{\boldsymbol{w}}, \mathbf{H}^{\mu}, \mathbf{H}^{\boldsymbol{w}, \mu}, \mathbf{H}_{n}^{\boldsymbol{\nu}}, \mathbf{H}_{0}^{\omega, \mu}$ and $\overline{\mathbf{H}}^{\boldsymbol{\omega}}$, where

$$
\begin{aligned}
& \mathbf{H}^{w}=\left(H_{t}^{w}\right)_{t \geq 0}, \quad H_{t}^{w}=\sigma\left\{w_{u}, u \leq t\right\} \vee \sigma\left(X_{0}\right), H^{w}=H_{\infty}^{w}, \\
& \mathbf{H}^{\mu}=\left(H_{l}^{\mu}\right)_{t \geq 0}, \quad H_{l}^{\mu}=\sigma\{\mu((0, u], \Gamma), u \leq t, \Gamma \in \mathbf{B}(E)\}, H^{\mu}=H_{\infty}^{\mu}, \\
& \mathbf{H}^{\omega, \mu}=\left(H_{t}^{\nu, \mu}\right)_{t \geq 0} . \quad H_{t}^{\nu, \mu}=H_{t}^{\mu} \vee H_{t}^{\mu}, \\
& H_{n}^{\omega}=\left(H_{n, t}^{\omega}\right)_{t \geq 0}, \quad H_{n, t}^{\omega}=H_{t}^{\mu} \vee H \Psi_{n}^{\#}=H_{t}^{\nu} \vee H_{\infty}^{\mu_{n}}, \\
& \mathbf{H}_{0}^{\omega, \mu}=\left(H_{0, t}^{w} t_{t \geq 0}, \quad H_{0, t^{\mu}}^{\omega}=H^{w} \vee H_{t}^{\mu},\right. \\
& \overline{\mathbf{H}}^{\omega}=\left(\bar{H}_{t}^{\omega}\right)_{t \geq 0} . \quad \bar{H}_{t}^{\omega}=\bar{H} \vee H_{t}^{\nu},
\end{aligned}
$$

where $\bar{H}$ is some $\sigma$-algebra in $\Omega$ and $\sigma$-algebras $H_{0}^{\omega}$ and $H_{\phi}^{\mu}$ are completed by $\mathbf{P}$ zero sets from $\sigma$-algebras $H^{\boldsymbol{w}}$ and $H^{\mu}$, respectively.

Recall also that family $\mathbf{H}^{x}$ is defined as follows:

$$
\mathbf{H}^{\boldsymbol{F}}=\left(H_{t}^{\Gamma}\right)_{t \geq 0}, \quad H_{t}^{x}=\bigcap_{r>t} \sigma\left\{X_{u}, u \leq r\right\}
$$

### 6.2. Existence of $\mathbf{H}^{x}$-predictable projections

We shall now establish that dual $\mathbf{H}^{x}$-predictable projections exist and are unique.

Lemma 1. The dual $\mathrm{H}^{x}$-predictable projections $\nu^{x}$ of the integer-valued random measure $\mu$ exist and are unique.

Proof. Note that the sets [0] $\left.E] T_{n}, T_{n+1}\right] E$ belong to $\bar{\Pi}$ and have measure

$$
M_{\mu}(\mathrm{d} \omega, \mathrm{~d} u, \mathrm{~d} x)=\mathrm{P}(\mathrm{~d} \omega) \mu(\mathrm{d} u, \mathrm{~d} x)
$$

less than or equal to 1 . This means that measure $M_{\mu}$ is $\sigma$-finite on $((\Omega(0, t] E), \bar{\Pi})$. From [1] , this implies that the lemma is true.

### 6.3. Characterization of $H^{w, \mu}$-stopping times

For any $t \geq 0$ let

$$
H_{t_{1}^{\infty}}^{\omega}=\sigma\left\{w_{r}-w_{u}, r \geq u \geq t\right\} .
$$

The next assertion is a generalization of Lemma 3.2 in Jacod's paper [1].
Lemma 2. Let $\mathbf{T}$ be the $\mathbf{H}^{w, \mu}$-stopping time. For any $n \geq 0$ there exists a random variable $\mathrm{S}^{n}$ such that indicator $\mathrm{I}\left(\mathrm{S}^{n} \geq u\right)$ is $H_{n, u}^{u}$-measurable for any $u \geq 0$ and the following equality holds:

$$
\mathrm{I}\{\mathbf{T} \geq u\} \mathrm{I}\left\{\mathrm{~T}_{\boldsymbol{n}}<u \leq \mathrm{T}_{n+1}\right\}=\mathrm{I}\left\{\mathrm{~S}^{n} \geq u\right\} \mathrm{I}\left\{\mathrm{~T}_{\boldsymbol{n}}<u \leq \mathrm{T}_{n+1}\right\} .
$$

Proof. It follows from the definition of the $\sigma$-algebra $H_{u}^{\mu}$ that the following families of sets coincide:

$$
H_{u-}^{\mu} \cap\left\{\mathrm{T}_{n}<u \leq \mathrm{T}_{n+1}\right\}=H_{\mathbf{T}_{n}}^{\mu} \cap\left\{\mathrm{T}_{n}<u \leq \mathrm{T}_{n+1}\right\}
$$

and consequently the families of sets

$$
\left(H_{u}^{w} \vee H_{u-}^{\mu}\right) \cap\left\{\mathbf{T}_{n}<u \leq \mathbf{T}_{n+1}\right\}=H_{u}^{w} \vee H_{\mathbf{T}_{n}}^{\mu} \cap\left\{\mathbf{T}_{n}<u \leq \mathbf{T}_{n+1}\right\}
$$

also coincide. Take the set $\{\mathbf{T}<u\}$ from $H_{u}^{u} \vee H_{u-}^{\mu}$, and find the set $\mathbf{D}_{u}$ from $H_{u}^{w} \vee H \Psi_{n}$ such that

$$
\{T<u\} \cap\left\{T_{n}<u \leq T_{n+1}\right\}=D_{u} \cap\left\{T_{n}<u \leq T_{n+1}\right\} .
$$

Note that for $r<u$ we now have

$$
\left[\left(\mathbf{D}_{\boldsymbol{r}} \cap\left\{\mathbf{T}_{n}<\boldsymbol{r}\right\}\right) \cup\left(\mathbf{D}_{u} \cap\left\{\mathbf{T}_{\boldsymbol{n}}<u\right\}\right)\right] \cap\left\{\mathbf{T}_{n}<u \leq \mathbf{T}_{\boldsymbol{n}+1}\right\}=\mathbf{D}_{u} \cap\left\{\mathbf{T}_{n}<u \leq \mathbf{T}_{n+1}\right\} .
$$

Define $S^{n}$ by the equalities

$$
\left\{\mathrm{S}^{n}<u\right\}=\bigcup_{r \leq u}\left(\mathrm{D}_{r} \cap\left\{\mathrm{~T}_{n}<r\right\}\right),
$$

where the $r$ are rational numbers. We then obtain

$$
\{\mathbf{T}<u\} \cap\left\{\mathbf{T}_{n}<u \leq \mathrm{T}_{n+1}\right\}=\left\{\mathrm{S}^{n}<u\right\} \cap\left\{\mathbf{T}_{n}<u \leq \mathrm{T}_{n+l}\right\}
$$

or

$$
\{\mathbf{T} \geq u\} \cap\left\{\mathbf{T}_{n}<u \leq \mathbf{T}_{n+1}\right\}=\left\{S^{n} \geq u\right\} \cap\left\{\mathbf{T}_{n}<u \leq T_{n+1}\right\} .
$$

thus completing the proof of Lemma 2.

### 6.4. Representation of martingales

The following result plays a fundamental role in the analysis of the predictability property.

Lemma 9. Let $\mathrm{Z}_{4}$ be a right-continuous, left-limited, square-integrable, $\overline{\mathbf{H}}^{w}$-martingale process. Then an $\overline{\mathbf{H}}^{w}$-adapted process $f(u, \omega), u>0$, exists such that

$$
\mathbf{E} \int_{0}^{t} f^{2}(u, \omega) \mathrm{d} u<\infty, t \geq 0
$$

and

$$
\mathrm{Z}_{t}=\mathrm{z}_{0}+\int_{0}^{t} f(u, \omega) \mathrm{d} w_{u} .
$$

The proof of this lemma is similar to that of Theorem 5.5 in [14]. The following well-known result is important in the proof of some auxiliary assertions.

Lemma 4. Let L be some vector space of bounded real functions defined on $\Omega$. Assume that it contains the constant 1 , is closed with respect to uniform convergence, and is such that for any uniformly bounded increasing sequence of non-negative functions $f_{n}, n \geq 0, f_{n} \in \mathbf{L}$ the function $f=\lim _{n \rightarrow \infty}$ also belongs to L Let $Q$ be a subset of L which is closed with respect to multiplication. Then
the space L contains all bounded functions, measured with respect to the $\sigma$ algebra $H$ generated by the elements of $Q$.

Remark. This result is known as the monotonic class theorem, and is proved in [15]. The theorem is also true if
(a) $L$ is closed with respect to monotonic and uniform convergence and
(b) $Q$ is the algebra and $1 \in Q$
or
( $a^{\prime}$ ) Lis a set of functions closed with respect to monotonic convergence to the bounded function and
(b) $Q$ is a vector space closed with respect to operation $\Lambda$ (maximum of two functions) and $1 \in Q$.

### 8.5. Predictability of $H_{n}^{w}$-well-measurable processes

It turns out that $H_{n}^{w}$-well-measurable processes have the following remarkable property:

Lemma 5. Let $Y_{i}^{n}$ be an arbitrary $\mathrm{H}_{n}^{w}$-well-measurable process. Then process $Y_{t}^{n} I\left\{\mathrm{~T}_{n}<t\right\}$ is $\mathrm{H}_{n}^{w}-p r e d i c t a b l e$.

Proof. Let $\mathbf{T}$ be an arbitrary $\mathbf{H}_{n}^{w_{-s t o p}}$-stoping time, and denote by $\lambda(t)$ the dual $\mathbf{H}_{n}^{w_{-}}$ predictable projection of non-decreasing process $I(T \leq t)$. From the definition of $\lambda(t)$ the process $\mathbf{Z}_{t}=I(T \leq t)-\lambda(t)$ is an $H_{n}^{w}$-martingale.

Now consider the process $v_{u}=w_{\mathbf{T}_{n}+u}-w_{\mathbf{T}_{n}}$, and define $H_{n}^{v}=\left(H_{n, t}^{v}\right)_{t \geq 0}$, where $H_{n, t}^{v}=\sigma\left\{v_{u}, u \leq t\right\} \vee H_{n, T_{n}}^{w}$.

Observe that $H_{n, t}^{v}=H_{n, T_{n}+t}^{w}$ and consequently that family $\mathbf{H}_{n}^{v}$ coincides with family $H_{n}^{n, w}=\left(H_{n, T_{n}+t}^{w}\right)_{t \geq 0}$. It is not difficult to check that $v_{u}$ is a Wiener process with respect to $H_{n}^{v}$ and that $Z_{f}^{n}=Z_{T_{n}+t}$ is an $H_{n}^{n, w}$-martingale process.

From Lemma 3 we have the following representation of $\mathbf{Z}_{\boldsymbol{i}}$ :

$$
Z_{t}^{n}=Z_{0}^{n}+\int_{0}^{t} f_{n}(u, \omega) d v_{u}
$$

or, in terms of $\mathbf{Z}_{4}$,

$$
Z_{T_{n}+u}=Z_{T_{n}}+\int_{T_{n}}^{T_{n}+u} f_{n}\left(T_{n}+r, \omega\right) \mathrm{d} w_{T_{n}+r}
$$

Taking $\mathrm{T}_{n}+u=t$ we get

$$
\mathrm{Z}_{\psi} \mathrm{I}\left(\mathrm{~T}_{n}<t\right)=\left[\mathrm{Z}_{\mathrm{T}_{n}}+\int_{\mathrm{T}_{n}}^{t} f_{n}(u, \omega) \mathrm{d} w_{u}\right] \mathrm{I}\left(\mathrm{~T}_{n}<t\right) .
$$

The right-hand side of this equality is an $H_{n}^{w}$-predictable process. Remembering the definition of $Z_{4}$, we deduce that the process $I(T \leq t) I\left(T_{n}<t\right)$ is $H_{n}^{w_{-}}$ predictable.

The result of the lemma may then be derived from the monotonic class theorem [15].

### 6.6. Characterization of $\mathrm{H}^{\boldsymbol{\omega}, \mu}$-predictable processes

The following assertion describes the structure of $\mathbf{H}^{\boldsymbol{\mu}, \mu}$-predictable processes.

Lemma 6. An $\mathrm{H}^{w, \mu}$-adapted process $\mathrm{Z}_{6}$ is $\mathrm{H}^{\boldsymbol{w}, \mu}$-predictable if and only if, for any $n \geq 0$, there exists an $H_{n}^{w}$-well-measurable process $Y_{t}^{n}$ such that

$$
\begin{equation*}
Y_{t}^{n} \mathrm{I}\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right)=\mathrm{Z}_{4} \mathrm{I}\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right) \tag{A.1}
\end{equation*}
$$

## Proof

Necessity. Consider the process $\mathbf{Z}_{4}=\mathbf{I}(t \leq T)$, where $T$ is an arbitrary $H^{\boldsymbol{\nu}, \mu_{-}}$ stopping time. It follows from Lemma 1 that

$$
\mathrm{I}(t \leq \mathrm{T}) \mathrm{I}\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right)=\mathrm{I}\left(t \leq \mathrm{S}^{n}\right) \mathrm{]}\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right)
$$

which leads to equality ( $B$ ) with $Y_{t}^{n}=\mathrm{I}\left(t \leq \mathrm{S}^{n}\right)$. That these conditions are necessary may be proved from the monotonic class theorem.
Sufficiency. Observe that for an arbitrary $H_{n}^{w}$-adapted process $Y_{t}$, the process $\mathbf{I}\left\{\mathbf{T}_{\boldsymbol{\pi}} \leq t\right\} Y_{\boldsymbol{t}}$ is $\mathrm{H}^{\boldsymbol{w}, \mu_{\text {-adapted. }} \text {. This is because }}$

$$
\left(H_{t}^{w} \vee H \Psi_{n}\right) \cap\left\{\mathrm{T}_{n} \leq t\right\}=\left(H_{t}^{w} \vee H_{t}^{\mu}\right) \cap\left\{\mathrm{T}_{n} \leq t\right\}, n \geq 0
$$

and any arbitrary set from $\left(H_{t}^{w} \vee H_{Z-}^{\mu}\right) \cap\left\{\mathbf{T}_{n} \leq t\right\}$ is $H_{t}^{w} \vee H_{t}^{\mu}$-measurable. Leftcontinuous $\mathbf{H}_{\boldsymbol{n}}^{\boldsymbol{w}}$-adapted processes $Y_{t}$ generate left-continuous $H^{\boldsymbol{w}}{ }^{\mu}$-adapted processes $I\left\{\mathrm{~T}_{n} \leq t\right\} Y_{t}$. This means that the following inclusion is true:

$$
\begin{equation*}
\left.\left.\Pi\left(H_{n}^{w}\right) \cap\right] \mid T_{n}, T_{n+1}\right] \mid \subseteq \Pi\left(H^{w, \mu}\right) \tag{A.2}
\end{equation*}
$$

where $\Pi\left(H_{n}^{w}\right)$ and $\Pi\left(H^{w, \mu}\right)$ are $\sigma$-algebras for $H_{n}^{w}$ - and $H^{w, \mu}$-predictable sets respectively, and $\left.] \mid T_{n}, T_{n+1}\right] \mid$ is the stochastic interval corresponding to the stopping times $T_{n}$ and $T_{n+1}$. The inclusion (A.2) yields:

$$
\begin{equation*}
\left.\left.\bigcup_{n}\right\rfloor \mid \mathbf{T}_{n}, \mathbf{T}_{n+1}\right] \mid \cap \Pi\left(\mathbf{H}_{n}^{w}\right) \subseteq \Pi\left(\mathbf{H}^{w, \mu}\right) \tag{A.3}
\end{equation*}
$$

From Lemma 5, the process $Y_{t}^{n} \mathrm{I}\left(\mathbf{T}_{n} \leq t\right)$ is $H_{n}^{w}$-predictable. Inclusion (A.3) shows that the process $\sum_{\pi} Y_{t}^{n} \mathbf{I}_{\left.] \mid \mathbf{I}_{n}, \mathbf{T}_{n+1}\right] \mid}$ (which according to equality (A.1) coincides with process $\mathbf{Z}_{\psi}$ ) is $\mathrm{H}^{\boldsymbol{\omega}} \boldsymbol{\mu}$-predictable. This completes the proof.

### 6.7. A property of conditional distributions

Let $H, G, F$ be $\sigma$-algebras in $\Omega$. Assume that they are complete with respect to measure $\mathbf{P}$ and such that $G \subseteq H, F \subseteq H$. The next statement will then be useful in analyzing the form of the dual predictable projection.

Lemma 7. Let $\mathbf{B} \in H, \mathbf{P}(\mathbf{B})>0$ be such that the families of sets $F \cap \mathbf{B}$ and $G \cap \mathbf{B}$ coincide $\mathbf{P}$-a.s. Then for any $H$-measurable integrable random variable $\eta$ the following equality holds:

$$
\mathbf{I}(\mathbf{B}) \mathbf{E}(\eta \mid G \vee \mathbf{B})=\mathbf{I}(\mathbf{B}) \mathbf{E}(\eta \mid F \vee B)
$$

Proof. For any $A \in H$ define the measure $\mathrm{P}^{\mathbf{B}}(A)$ as follows:

$$
\mathbf{P}^{\mathbf{B}}(\mathbf{A})=\frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{B})} .
$$

Let $\mathbf{E}^{\mathbf{B}}$ denote the mathematical expectation with respect to $\mathbf{P}^{\mathbf{B}}$. The families of sets $G \cap \mathbf{B}$ and $F \cap \mathbf{B}$ form $\sigma$-algebras of the subsets of set $\mathbf{B}$ that, generally speaking, are not $\sigma$-algebras in $\Omega$. Since these families are complete with respect to measure $\mathrm{P}^{\mathrm{B}}$, they coincide $\mathrm{P}^{\mathrm{B}}$-a.s. with the $\sigma$-algebras $G \vee B$ and $F \vee B$, respectively.

It follows from the conditions of the lemma that for any $A \in H$ we have

$$
\mathbf{P}^{\mathbf{B}}(\mathbf{A} \mid G \cap \mathbf{B})=\mathbf{P}^{\mathbf{B}}(\mathbf{A} \mid F \cap \mathbf{B}), \quad \mathbf{P}^{\mathbf{B}} \text {-a.s. }
$$

or, equivalently,

$$
\mathbf{P}^{\mathbf{B}}(\mathbf{A} \mid G \vee B)=\mathbf{P}^{\mathbf{B}}(\mathbf{A} \mid F \vee B), \quad \mathbf{P}^{\mathbf{B}}-\text { a.s. }
$$

and thus the following equality holds $\mathrm{P}^{\mathbf{B}}$-a.s. for any bounded random variable $\eta$ :

$$
\mathbf{E}^{\mathbf{B}}(\eta \mid G \vee \mathbf{B})=\mathbf{E}(\eta \mid F \vee \mathbf{B})
$$

This may be rewritten in the form

$$
\mathbf{I}(\mathbf{B}) \mathbf{E}^{\mathbf{B}}(\eta \mid G \vee \mathbf{B})=\mathbf{I}(\mathbf{B}) \mathbf{E}^{\mathbf{B}}(\eta \mid F \vee \mathbf{B}), \quad \mathbf{P} \text {-a.s. }
$$

or

$$
\mathbf{I}(\mathbf{B}) \mathbf{E}(\eta \mid G \vee \mathbf{B})=\mathbf{I}(\mathbf{B}) \mathbf{E}(\eta \mid F \vee B), \quad \text { P-a.s. }
$$

thus completing the proof.

### 6.8. Some properties of conditional mathematical expectations

The next assertion will be useful in proving the predictable characterization of some random measures.

Lemma 8. Let $\mathbf{A} \in H_{T_{n+1}}^{\mu}$. Then the following equalities are true for any $t>0$ :

$$
\begin{gather*}
\mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathrm{I}(\mathbf{A}) \mid H^{w} \vee H_{\mathbf{P}_{n}}^{\mu}\right)=\mathrm{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathrm{I}(\mathbf{A}) \mid H_{t}^{w} \vee H \mathbb{P}_{n}^{\mu}\right)  \tag{A.4}\\
\mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \geq t\right) \mid H^{w} \vee H \mathbf{I}_{n}^{\mu}\right)=\mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \geq t\right) \mid H_{t}^{w} \vee H{\underset{\mathbf{T}}{n}}_{\mu}^{\mu}\right)
\end{gather*}
$$

Proof. Since $B_{u}$ is non-singular for any $u \geq 0$, the process $w_{t}$ may be represented as follows:

$$
w_{t}=\int_{0}^{t} B_{u}^{-1}\left(d X_{u}^{c}-A_{u} \mathrm{~d} u\right)
$$

where

$$
X_{t}^{c}=X_{t}-\int_{0}^{t} \int_{E} x \mu(\mathrm{~d} u, \mathrm{~d} x)
$$

This shows that the process $w_{t}$ is $\mathrm{H}^{\boldsymbol{x}}$-adapted and leads to the inclusion:

$$
\begin{equation*}
H_{t}^{u} \vee H_{t}^{\mu} \subseteq H_{t}^{x} \tag{A.5}
\end{equation*}
$$

Consider now the bounded random variables $X_{1}, X_{2}, X_{3}$ which are measurable with respect to $\sigma$-algebras $H_{i}^{w}, H_{\Psi_{n}}$ and $H_{t, \infty}^{w}$, respectively. Note that $X_{3}$ does not depend on events from $H_{t}$ and consequently $H_{t}^{x}$ since $H_{t}^{x} \subseteq H_{t}$.

Define $d=\mathbf{E}\left(X_{1} X_{2} X_{3} \mathrm{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathbf{I}(\mathbf{A})\right)$. Using the $H^{w} \vee H_{\mathbf{T}_{n}}^{\mu}$-measurability of the product $X_{1} X_{2} X_{3}$ this can be rewritten as

$$
d=\mathbf{E}\left(X_{1} X_{2} X_{3} \mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathbf{I}(\mathbf{A}) \mid H^{w} \vee H_{\mathbf{T}_{n}}^{\mu}\right) .\right.
$$

Observe now that the product $X_{1} X_{2} \mathrm{I}\left(\mathrm{T}_{n+1} \leq t\right) \mathrm{I}(\mathrm{A})$ is $H_{t}^{w}$-measurable and consequently $H_{t}^{x}$-measurable. Using the fact that $X_{3}$ is independent of the events of $\sigma$-algebra $H_{t}^{x}$ we obtain

$$
\begin{equation*}
d=\mathbf{E}\left(X_{1} X_{2} \mathrm{I}\left(\mathrm{~T}_{n+1} \leq t\right) \mathrm{I}(\mathbf{A})\right) \mathbf{E} X_{3} . \tag{A.6}
\end{equation*}
$$

Since $\mathrm{I}\left(\mathrm{T}_{n+1} \leq t\right)=\mathrm{I}\left(\mathrm{T}_{n+1} \leq t\right) \mathrm{I}\left(\mathrm{T}_{n} \leq t\right)$ equation (A.6) may be rewritten as follows:

$$
d=\mathbf{E}\left(X_{1} X_{2} \mathrm{I}\left(\mathbf{T}_{n} \leq t\right) \mathbf{E}\left(\mathrm{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathrm{I}(\mathbf{A}) \mid F_{t}^{\omega} \vee H \mathbf{T}_{n}^{\mu},\left\{\mathbf{T}_{n}<t\right\}\right)\right) \mathbf{E} X_{3}
$$

Noting that events from ( $H_{t}^{w} \vee H{\underset{n}{n}}^{)} \cap\left\{\mathbf{T}_{n}<t\right\}$ also belong to $H_{t}^{x}$ and since $X_{3}$ is independent of $H_{t}^{x}$ we get

$$
\begin{aligned}
d & =\mathbf{E}\left(X_{1} X_{2} X_{3} \mathrm{I}\left(\mathbf{T}_{n} \leq t\right) \mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathrm{I}(\mathbf{A}) \mid H_{t}^{\mu} \vee H H_{\mathbf{T}}^{\mu},\left\{\mathbf{T}_{n}<t\right\}\right)\right) \\
& =\mathbf{E}\left(X_{1} X_{2} X_{3} \mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathbf{I}(\mathbf{A}) \mid H_{t}^{\mu} \vee H H_{\mathbf{T}_{n}}^{\mu}\right)\right) .
\end{aligned}
$$

Thus
$\mathbf{E}\left(X_{1} X_{2} X_{\mathbf{3}} \mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathbf{I}(\mathbf{A}) \mid H^{w} \vee H_{\mathbf{P}_{n}}\right)\right)=\mathbf{E}\left(X_{1} X_{2} X_{3} \mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathbf{I}(\mathbf{A}) \mid H_{\boldsymbol{t}}^{\mu} \vee H \mathbf{T}_{n}\right)\right)$.
Using the monotonic class theorem we prove the first part of the lemma.
In a similar way it is possible to prove the equalities:

$$
\mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1}<t\right) \mathrm{I}(\mathbf{A}) \mid H^{w} \vee H_{\mathbf{T}_{n}}^{\mu}\right)=\mathbf{E}\left(\mathrm{I}\left(\mathbf{T}_{n+1}<t\right) \mathrm{I}(\mathbf{A}) \mid H_{t}^{\mu} \vee H_{\mathbf{I}_{n}^{\prime}}^{\mu}\right) .
$$

which yield

$$
\mathbf{E}\left(\mathrm{I}\left(\mathbf{T}_{\mathrm{n}+1} \geq t\right) \mid H^{w} \vee H \psi_{\mathbf{t}}\right)=\mathbf{E}\left(\mathrm{I}\left(\mathbf{T}_{n+1} \geq t\right) \mid H_{t}^{w} \vee H \psi_{\mathbf{n}}\right)
$$

### 6.9. Predictability analysis of the $\nu_{0}$

The following assertion is an important step towards the proof of the main result.

Lemma 9. For any $\Gamma \in \mathbf{B}(E)$ the process $\nu_{0}((0, t], \Gamma), t \geq 0$, is $\mathbf{H}^{u, \mu}$-predictable.
Proof. It follows from Lemmas 5 and 6 that the dual $H_{0}^{w, \mu}$-predictable projection of integer-valued random measure $\mu(\mathrm{d} u, \mathrm{~d} x)$ may be represented as follows:

$$
\nu_{0}((0, t], \Gamma)=\sum_{n=}^{\infty} I\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right) \sum_{p=0}^{n} \int_{\mathrm{T}_{p} \Delta t}^{\mathbf{T}_{p+1} \Delta t} \frac{d_{u} \mathbf{P}\left(\mathrm{~T}_{p+1} \leq u, \mathrm{Z}_{p+1} \in \Gamma \mid H_{u}^{w} \vee H_{\mathbf{P}_{p}}^{\mu}\right)}{\mathbf{P}\left(\mathrm{T}_{p+1} \geq u \mid H_{u}^{w} \vee H H_{p}^{\mu}\right)}
$$

Observe that the function on the right-hand side of this equality immediately following the indicator $\mathrm{I}\left(\mathrm{T}_{n}<t \leq \mathrm{T}_{n+1}\right)$ is $H_{t}^{\omega} \vee H_{\mathbf{I}_{n}}^{\mu}$-measurable, with right-continuous, left-limited sampling paths. This means that the function is $H_{n}^{w}$-well-measurable. From Lemma 3 the process

$$
\mathbf{I}\left(\mathbf{T}_{n}<t\right) \sum_{p=0}^{n} \int_{\mathbf{T}_{p} \Delta t}^{\mathbf{T}_{p+1} \Delta t} \frac{\mathrm{~d}_{u} \mathbf{P}\left(\mathbf{T}_{p+1} \leq u, \mathbf{Z}_{p+1} \in \Gamma \mid H_{u}^{w} \vee H_{\mathbf{p}_{p}}\right)}{\mathbf{P}\left(\mathbf{T}_{p+1} \geqslant u \mid H_{u}^{w \vee} \vee H_{\mathbf{T}_{p}}^{\mu}\right)}
$$

is $H_{n}^{w}$-predictable, and consequently (from Lemma 4) the process $\nu_{0}((0, t], \Gamma)_{t \geq 0}$ is $\mathbf{H}^{\boldsymbol{w}} \boldsymbol{\mu}$-predictable for any $\Gamma \in \mathbf{B}(E)$. This completes the proof.

### 6.10. Measure $\nu$ as the dual $\mathrm{H}^{\boldsymbol{\mu}, \mu}$-predictable projection of $\mu$

The next two lemmas give the probabilistic form of the dual $\mathbf{H}^{\boldsymbol{w}, \boldsymbol{\mu}_{-}}$ predictable projection of $\mu$.

Lemma 10. For any $\Gamma \in B(E)$ the process

$$
Y_{t}^{\Gamma}=\mu((0, t], \Gamma)-\nu_{0}((0, t], \Gamma), t \geq 0
$$

is an $H^{w, \mu}$-adapted laçal martingale.
Proof. From the definition of the $\nu_{0}, Y_{t}^{\Gamma}$ is an $H_{0}^{w, \mu}$-adapted local martingale for any $\Gamma \in B(E)$. Introduce the process

$$
X_{t}^{\Gamma}=\mathbf{E}\left(Y_{t}^{\Gamma} \mid H_{t}^{w, \mu}\right), \quad t \geq 0
$$

It is easy to see that $X_{i}$ is an $H^{\boldsymbol{\omega}, \mu}$-adapted local martingale. However, it follows from Lemma 6 that the process $Y_{t}^{\Gamma}$ is $H^{\nu, \mu}$-adapted and consequently coincides with $X_{t}^{\Gamma}$, thus proving the lemma.

The following assertion provides a probabilistic characterization of the dual $\mathbf{H}^{\boldsymbol{\omega}, \mu}$-predictable projection of measure $\mu$.

Lemma 11. The dual $\mathrm{H}^{\boldsymbol{w}, \mu_{-p r e d i c t a b l e ~}^{\text {-projection }} \text { of integer-valued random }, ~}$ measure $\mu$ coincides with the process $\nu_{0}$.

This may be proved using Lemmas 6 and 7 and the uniqueness of the dual $\mathbf{H}^{\omega, \mu}$-predictable projection of $\mu$.

### 6.11. Probabilistic form of the dual $\mathbf{H}^{\boldsymbol{x}}$-predictable projection of $\mu$

The fact that eqn. (4) has a strong solution for $X_{t}$ yields the inclusion

$$
H_{t}^{x} \subseteq H_{t}^{w} \vee H_{i}^{\mu},
$$

which, together with (11), shows that $\sigma$-algebras $H_{t}^{w} \vee H_{t}^{\mu}$ and $H_{t}^{x}$ coincide. This in turn means that the classes of $\mathrm{H}^{w_{1} \mu_{-}}$and $\mathbf{H}^{x}$-predictable processes coincide, and consequently that $\nu_{0}$ is $\mathbf{H}^{\boldsymbol{x}}$-predictable.

The introduction of a non-singularity condition for $B_{u}, u \geq 0$, means that for any $n \geq 0$ we have:

$$
w_{t}=\int_{0}^{t} B_{u}^{-1}\left(\mathrm{~d} X_{n, u}^{c}-A_{u} \mathrm{~d} u\right)
$$

where

$$
X_{n, t}^{c}=X_{n, t}-\int_{0}^{t} \int_{E} x \mu_{n}(\mathrm{~d} u, \mathrm{~d} x), n>0, t \geq 0
$$

It follows from these equalities that process $w_{t}$ is $H^{x_{n}}$-adapted and consequently that

$$
H_{t}^{w} \vee H_{t}^{\mu_{n}} \subseteq H_{t}^{x_{n}}
$$

Note also that equations (6) have a strong, unique solution for $X_{n, t}, n \geq 0$. This fact yields the inverse inclusion:

$$
H_{t}^{x_{n}} \subseteq H_{t}^{w} \vee H_{t}^{\mu_{n}}
$$

and consequently

$$
H_{t}^{x_{n}}=H_{t}^{w} \vee H_{t}^{\mu_{n}} .
$$

From the definition of $H_{t}^{\mu_{n}}$ we have

$$
H_{t}^{\mu_{n}} \cap\left\{\mathbf{T}_{n}<t\right\}=H_{\mathbf{T}_{n}}^{\mu_{n}} \cap\left\{\mathbf{T}_{n}<t\right\}=H \mathbf{T}_{n}^{\mu} \quad\left\{\mathbf{T}_{n}<t\right\}
$$

and thus

$$
\left(H_{t}^{w} \vee H_{\mathbf{I}_{n}}^{\mathbf{I}_{n}}\right) \cap\left\{\mathbf{T}_{n}<t\right\}=\left(H_{t}^{w} \vee H_{t}^{\mu_{n}}\right) \cap\left\{\mathbf{T}_{n}<t\right\}=H_{t}^{x_{n}} \cap\left\{\mathbf{T}_{n}<t\right\}
$$

Substituting the $H_{t}^{u} \vee H_{\mathbf{I}_{n}}^{\mu}$-conditional probabilities in eqn. (3) by $H_{t}^{x_{n}}$ conditional probabilities we obtain:

$$
\nu_{0}((0, t], \Gamma)=\sum_{n=0}^{\infty} \mathrm{I}\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right) \sum_{p=0}^{n} \int_{\mathrm{T}_{p} \Delta t}^{\mathrm{T}_{p+1} \Delta t} \frac{\mathrm{~d}_{u} \mathrm{P}\left(\mathrm{~T}_{p+1} \leq u, \mathrm{Z}_{p+1} \in \Gamma \mid H_{u}^{x_{p}}\right)}{\mathbf{P}\left(\mathrm{T}_{p+1} \geq u \mid H_{u}^{x_{p}}\right)}
$$

From Lemma 7 and the coincidence of the $\sigma$-algebras $H_{t}^{w} \vee H_{t}^{\mu}$ and $H_{t}^{x}$ for any $t \geq 0$, we deduce that process

$$
Y_{t}^{\Gamma}=\mu((0, t], \Gamma)-\nu_{0}((0, t], \Gamma), t \geq 0
$$

is an $\mathbf{H}^{\boldsymbol{z}}$-adapted local martingale. The uniqueness of the dual $\mathbf{H}^{\boldsymbol{x}}$-predictable projection means that measures $\nu_{0}$ and $\nu^{\boldsymbol{x}}$ coincide, thus completing the proof of Theorem 2.

## References

1. J. Jacod, "Multivariate Point Processes: Predictable Projection, Radon-Nicodim Derivatives, Representation of Martingales," Zeitschrift für Wahrscheinlichkeitstheory und Verw. Gebiete 31, pp.235-253 (1975).
2. J. Jacod, Calcules Stochastique et Probleme de Martingales. Lecture Notes in Mathematics, Vol. 714, Springer-Verlag, Heidelberg (1979).
3. P. Bremaud, Point Processes and Queues, Springer-Verlag, New York, Heidelberg and Berlin (1980).
4. C. Dellacherie, Capacities et Processus Stachastiques, Springer-Verlag, Berlin and New York (1972).
5. Yu.M. Kabanov, R.S. Liptzer, and A.N. Shiryaev, "Absolute Continuity and Singularity of Locally Absolutely Continuous Probability Distributions," Math. Sbornik USSR (in Russian) 35(5), pp.631-680 (1979).
6. A.I. Yashin, "Convergence of Bayesian Estimations in Adaptive Control Schemas," Proceedings of the Workshop on Adaptive Control, October 27-29, 1982, Forence, Italy, pp.51-75 (1982).
7. R. Rebolledo, "Central Limit Theorem for Local Martingales," Zeitschrift für Wahrscheinlichkeitstheory und Verw. Gebiete 51, pp.269-286 (1980).
B. R.S. Liptzer and A.N. Shiryaev, "Functional Central Limit Theorem for Semimartingales," Probability Theory and Applications (in Pussian) 25, pp.667688 (1980).
8. M.H.A. Davis, "Detection Of Signals With Point Process Observations." Department of Computing and Control, Publ. 73/8, Imperial College, London (1973).
9. C.S. Chou and P.A. Meyer, Sur la Representation des Martingales Comme Integrales Stochastiques dans les Processus Pounctuels, Lecture Notes in Mathematics, Vol. 465, Springer-Verlag, Berlin (1975).
10. A.I. Yashin, "Filtering of Jumping Processes," Automatic and Remote Contral 5, pp.52-58 (1970).
11. D.L. Snyder, Random Point Processes, John Wiley and Sons, New York (1975).
12. J.W. Vaupel and A.I. Yashin, The Deviant Dynamics of Death in Heterogeneous Populations, $R R-83$ 1. International Institute for Applied Systems Analysis, Laxenburg, Austria (1982).
13. R.S. Liptzer and A.N. Shiryaev, Statistics of Random Processes, SpringerVerlag. Berlin and New York.
14. P.A. Meyer, Probability and Potentials, Waltham, Blaisdell (1966).
(ii) the process $\left(\mu((0, t], \Gamma)-\nu_{0}((0, t], \Gamma)\right), t \geq 0$, is an $H^{\mu}$-adapted local martingale.

Dual predictable projections of integer-valued random measures may be interpreted as generalized cumulative random intensity functions.

Remark. Notice bere that $\sigma$-algebra $\bar{H}_{0}$ is not necessarily formed by events independent of $H_{t}$. For instance, $\bar{H}_{0}$ could be the $\sigma$-algebra in $\Omega$ corresponding to the past history of some random process up to time 0 . We shall consider the $\sigma$-algebra $\bar{H}_{0}$ generated by a Wiener process up to time $\infty$.

### 3.3. Probabilistic representation of random intensity functions

In some senses, Jacod's representation of dual $H^{H}{ }^{\mu}$-predictable projections serves as a bridge between the abstract theory of random processes with jumps currently developing in the framework of the martingale approach, and the wide range of applications based largely on the knowledge of probabilistic distribution functions.

In order to express Jacod's result, we have to define regular versions of the
 where $u \geq 0, \Gamma \in \mathbf{B}(E)$ and $n=1,2, \ldots$. This may be done using equalities

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{T}_{n+1} \leq u, \mathbf{Z}_{n+1} \in \Gamma \mid H{ }_{0}^{\mu} \mathbf{T}_{n}\right)=\mathbf{B}\left(\mathrm{I}\left(\mathrm{~T}_{n+1} \leq u\right) \mathrm{I}\left(\mathrm{Z}_{n+1} \in \Gamma\right) \mid H \sigma_{1} \mathbf{T}_{n}\right) \\
& \mathrm{P}\left(\mathrm{I}\left(\mathrm{~T}_{n+1} \geq u\right) \mid H \boldsymbol{\delta}_{,}^{\mu} \mathrm{r}_{n}\right)=\mathrm{E}\left(\mathrm{I}\left(\mathrm{~T}_{n+1} \geq u\right) \mid H \delta_{,}^{\mu} \mathrm{T}_{n}\right) .
\end{aligned}
$$

It should bee emphasized once again that in this part of the paper we are considering the case in which additional information about events and variables influencing the multivariate point process perceived by the statistician (observer) does not change over time.

The following theorem was proved in [1].
Theorem 1. The following is a representation of a dual $\mathbf{H}^{\boldsymbol{f}}$-predictable projection $\nu_{0}$ of ma asura $\mu$ :

$$
\begin{equation*}
\nu_{0}((0, t] . \Gamma)=\sum_{n=0}^{\infty} I\left(T_{n}<t \leq T_{n+1}\right) \sum_{p=0}^{n} \int_{T_{p} \Delta t}^{T_{p+1} \Delta t} \frac{d_{u} P\left(T_{p+1} \leq u, Z_{p+1} \in \Gamma \mid H H_{1}^{\mu} T_{p}\right)}{P\left(T_{p+1} \geq u \mid H \delta_{1}^{h} \mathbf{I}_{p}\right)} \tag{3}
\end{equation*}
$$

Corollary. Notice that if the $\sigma$-algebra $\bar{H}_{0}$ does not provide the observer with any information about the events, and if all he has at time $t$ is information
about events from the history $H_{l}^{\mu}$, the hazard rate coincides with the dual $H^{\mu}$ predictable projection $\nu$ of the measure $\mu$ and the formula for $\nu$ is a simple corollary of equation (3):

$$
\nu((0, t], \Gamma)=\sum_{n=0}^{\infty} \mathbf{I}\left(\mathbf{T}_{n}<t \leq \mathrm{T}_{n+1}\right) \sum_{p=0}^{n} \int_{\mathbf{T}_{p} \Delta t}^{\mathbf{T}_{p+1} \Delta t} \frac{\mathrm{~d}_{u} \mathbf{P}\left(\mathbf{T}_{p+1} \leq u, \mathbf{Z}_{p+1} \in \Gamma \mid H \psi_{p}\right)}{\mathbf{P}\left(\mathbf{T}_{p+1} \geq u \mid H \mathbf{f}_{p}\right)} .
$$

In the case of a pure point process (a sequence of random times $T_{n}$ ), the formula for the dual $\boldsymbol{H}^{\boldsymbol{\mu}}$-predictable compensator $A(t)$ becomes:

$$
A(t)=\sum_{n=0}^{\infty} \mathrm{I}\left(\mathbf{T}_{n}<t \leq \mathbf{T}_{n+1}\right) \sum_{p=0}^{n} \int_{\mathbf{T}_{p} \Delta t}^{\mathbf{T}_{p+1} \Delta t} \frac{\mathrm{~d}_{u} \mathbf{P}\left(\mathbf{T}_{p+1} \leq u \mid H_{\mathbf{T}_{p}}^{\mathbf{N}}\right)}{\mathbf{P}\left(\mathbf{T}_{p+1} \geq u \mid H \mathbf{T}_{p}^{\mathbf{N}}\right)}
$$

Where the $\sigma$-algebras $H_{t}^{\mathbf{N}}, t \geq 0$, are generated by the values of the point process $\left(T_{n}\right)_{n \geq 0}$ or, equivalently, by the values of the counting process $N_{u}, u \geq 0$, up to time $t$.

Equations ( $3^{\circ}$ ) and ( $3^{\prime \prime}$ ) produce known results when applied to well-studied processes. Thus, for a Poisson process with deterministic local intensity function $\lambda(t)$, the dual predictable projection $\Lambda(t)$ defined by equation ( $3^{\prime \prime}$ ) coincides with the cumulative hazard rate and is given by the equality

$$
\Lambda(t)=\int_{0}^{t} \lambda(u) \mathrm{d} u
$$

For a finite-state, continuous-time. Markov process $\xi_{t}, t \geq 0$, with states $\{1,2, \ldots, N\}$ and intensities $\lambda_{i j}(t), i, j=(1,2, \ldots, N), t \geq 0$, equation ( $3^{\prime}$ ) gives the dual predictable projection in the form:

$$
\nu_{0}((0, t], \Gamma)=\int_{0}^{t} \sum_{j \in \Gamma} \lambda_{f_{u}-\xi_{u-}+j} d u
$$

Now assume that the observer has some additional information about the intensity function, for instance, that he knows the value of some randorn variable Z which influences the frequency of the jumps. This means that he is dealing with the history $H_{6, t}{ }^{\prime}$ as determined by the equality (1), where $\sigma$-algebra $\bar{H}_{0}$ coincides with the $\sigma$-algebra $\sigma(\mathbb{Z})$ generated by random variable $\mathbf{Z}$ in $\Omega$. In this case the observer needs to use the dual $\mathbf{H}_{\boldsymbol{j}}$-predictable projection of $\mu$ as a random intensity function. Thus, in the case of a double stochastic Poisson process $\mathrm{H}_{\boldsymbol{t}}, t \geq 0$, with random intensity function $\mathrm{Z} \lambda(t), t \geq 0$ (where $Z$ is some
positive random variable), it is necessary to use eqn. (3) which gives the following dual $\mathrm{H}_{\mathrm{f}}$-predictable projection of $\mathbf{N}_{\boldsymbol{t}}, t \geq 0$ :

$$
\Lambda(t, \mathrm{Z})=\mathrm{z} \int_{0}^{t} \lambda(u) \mathrm{d} u
$$

Note that if two observers have different information about the processes occurring in some real system (for example, if one of them knows the value of the variable $\mathbf{Z}$ and the other does not), they will use different hazard rates to estimate the probability of change. In the case of continuously distributed jump-times in a double stochastic Poisson process, the relation between the two intensities (derived from a comparison between eqns. ( $3^{\prime \prime}$ ) and ( $3^{\prime}$ )) may be represented as follows:

$$
\begin{equation*}
\bar{\lambda}(t)=\mathbf{E}\left(\mathbf{Z} \mid H_{t}^{\mathbf{N}}\right) \lambda(t) . \tag{4}
\end{equation*}
$$

where $\bar{\lambda}(t)$ is the $H^{\mathbb{N}}$-predictable local hazard rate. This is related to the dual $\mathbf{H}^{\mathbf{N}}$-predictable projection $\bar{\Lambda}(t)$ of $N_{t}$ by the equality:

$$
\bar{\Lambda}(t)=\int_{0}^{t} \bar{\lambda}(u) \mathrm{d} u .
$$

We shall now prove the relation between $\bar{\lambda}(t)$ and $\lambda(t)$. Consider the integral $G_{n}(t)$ defined by the equality:

$$
G_{n}(t)=\int_{\mathbf{T}_{p} \Delta t}^{\mathbf{T}_{p+1} \Delta t} \frac{\mathrm{~d}_{u} \mathbf{P}\left(\mathbf{T}_{p+1} \leq u \mid H \mathbf{T}_{p}^{\mathbf{N}}\right)}{\mathbf{P}\left(\mathbf{T}_{p+1} \geq u \mid H \mathbf{T}_{p}^{\mathbf{N}}\right)} .
$$

which is taken from the right-hand side of eqn. ( $3^{\prime \prime}$ ). Let $\varphi_{p}(u)$ be the density function of conditional distribution $\mathbf{P}\left(\mathbf{T}_{\boldsymbol{p}+1} \leq \boldsymbol{u} \mid H_{\mathbf{P}_{p}}^{\mathbf{N}}\right)$. Note that the following equality holds:

$$
\varphi_{n}(u)=\int_{0}^{\infty} z \lambda(u) \exp \left\{-z \int_{I_{\pi}}^{u} \lambda(v) \mathrm{d} v\right\} f(z) \mathrm{d} z .
$$

where $f(z)$ is the density distribution function of random variable Z. Using this equality and noting that for $\mathrm{T}_{\mathrm{p}} \leq u$

$$
\exp \left\{-z \int_{\boldsymbol{F}_{2}}^{u} \lambda(v) \mathrm{d} v\right\}=\mathrm{P}\left(\mathrm{~T}_{p+1}>u \mid H_{\mathrm{I}_{p}}^{\mathbf{N}}, \mathrm{Z}=z\right) .
$$

we have

$$
G_{p}(t)=\int_{\mathbf{T}_{p} \Delta t}^{\mathbf{T}_{p+1} \Delta t} \mathbf{E}\left(\mathbf{Z} \mid H \mathbf{I}_{p}, \mathbf{T}_{p+1}>u\right) \lambda(u) \mathrm{d} u
$$

Since

$$
\mathrm{I}\left(\mathrm{~T}_{p} \leq u<\mathrm{T}_{p+1}\right) \mathbf{E}\left(\mathbf{Z} \mid H_{\mathbf{L}_{p}}^{\mathbf{N}}, \mathrm{T}_{p+1}>u\right)=\mathrm{I}\left(\mathrm{~T}_{p} \leq u<\mathrm{T}_{p+1}\right) \mathbf{E}\left(\mathbf{Z} \mid H_{u}^{\mathbf{N}}\right)
$$

we can derive the formula for the $\bar{\Lambda}(t)$ from eqn. ( $3^{\prime \prime}$ ).
Remark. Equation (4) shows that to calculate intensity functions $\bar{\Lambda}(t)$ or $\bar{\lambda}(t)$ it is first necessary to calculate the $H_{t} \mathbf{N}$-conditional mathematical expectation. This problem can be overcome by using an approach based on fltering of the jumping processes (see, for instance, [11,12]). In the simplest life-cycle models, which are characterized only by stopping time $\mathbf{T}$ (time of death) and are widely used in reliability and demographic analysis, the random intensity describes differences in susceptibility to death or failure [13]. Notice that in the case of life-cycle processes, equation ( $3^{\prime \prime}$ ) gives the following relation between the $\mathbf{H}$-adapted compensator $A(t)$ and the local intensity function $\lambda(t)$ :

$$
A(t)=\int_{0}^{t \Delta T} \lambda(u) \mathrm{d} u
$$

Recall that, from the definition of the compensator, the process

$$
M(t)=\mathrm{I}(\mathbf{T} \leq t)-A(t), \quad t \geq 0
$$

is an $\mathbf{H}$-adapted martingale.

## 4. GENERAL FORMULA FOR REPRESENTATION OF RANDOM INTENSITY

In spite of the fact that dual predictable projections exist for a wide class of families of $\sigma$-algebras, probabilistic representations are known only for $\sigma$ algebras with structure ( 1 ). However, in practical situations $\sigma$-algebras often have a more general structure. In particular, new information may be generated not only by the multivariant point process but also by some additional process $\eta_{t}$. In this case the $\sigma$-algebras describing the observation history have the form $H_{t}=H_{t}^{\eta} \vee H_{t}^{\mu}$, where $\sigma$-algebras $H_{t}^{k}$ are generated by some process $\eta_{t}$ which is observed simultaneously with the multivariate point process $\left(I_{n} \cdot Z_{n}\right)_{n \geq 0}$. Detailed probabilistic characterization of dual predictable
projections is often useful when applying the results of the general theory of random processes in practice.

In this section we will give the probabilistic representation of the dual predictable projection of integer-valued random measures corresponding to the jumps of the semimartingale with respect to the family of $\sigma$-algebras generated by this process.

### 4.1. Generation of jumps

Let random process $X_{t}, t \geq 0$, defined on probability space ( $\Omega, H, H, P$ ) be $H-$ adapted, take values in $\mathbf{R}^{\boldsymbol{k}}$ and have right-continuous, left-limited sampling paths. Denote by HF the family of $\sigma$-algebras

$$
H_{t}^{\tau}=\bigcap_{r>t} \sigma\left\{X_{u}, u \leq r\right\}
$$

and assume that $H_{0}^{x}$ is completed by the sets from $H^{x}=H_{\infty}^{x}$ with a P-probability of zero. Assume also that process $X_{t}$ may be represented as follows:

$$
\begin{equation*}
X_{t}=X_{0}+\int_{0}^{t} A_{u} \mathrm{~d} u+\int_{0}^{t} B_{u} \mathrm{~d} w_{u}+\int_{0}^{t} \int_{E} x \mu(\mathrm{~d} u, \mathrm{~d} x) \tag{5}
\end{equation*}
$$

where $A_{u}$ and $B_{u}$ are $H^{\boldsymbol{z}}$-adapted matrices of appropriate dimensions, matrix $B_{u}$ is non-singular for any $u \geq 0, E=R^{k}-\{0\}$, and $w_{u}$ is an H-adapted, $\boldsymbol{k}$ dimensional Wiener process independent of $X_{0}$.

Note that, in general, the dimension of $X_{t}$ may be greater than that of the jumping changes. This can mean, for instance, that we are also considering situations with two-component processes of which one is pure jumping and the other is continuous.

It follows from (3) that the measure $\mu$ is $\mathbf{H F}^{\text {-adapted and that }}$

$$
\mathbf{Z}_{n}=X_{\mathbf{\tau}_{n}}-X_{\mathbf{T}_{\boldsymbol{n}}-} .
$$

Let $\boldsymbol{v}^{\boldsymbol{z}}$ denote the dual $\mathbf{H}^{\boldsymbol{r}}$-predictable projection of integer-valued random measure $\mu$. Our main aim is to derive the probabilistic representation of measure $w^{2}$.

### 4.2. The form of the hazard rate

The main result of this subsection is formulated in terms of auxiliary processes $X_{n, t}$ defined by the equalities:

$$
\begin{equation*}
x_{n, t}=X_{0}+\int_{0}^{t} A_{u} \mathrm{~d} u+\int_{0}^{t} B_{u} \mathrm{~d} w_{u}+\int_{0}^{\mathbf{T}_{n} \Delta t} \int_{E} x \mu(\mathrm{~d} u, \mathrm{~d} x) \tag{6}
\end{equation*}
$$

where $A, B, w, \mu$ have been defined previously. Introducing the measures $\mu_{n}$ defined by the equalities

$$
\mu_{n}((0, t], \Gamma)=\sum_{k} \mathrm{I}\left(\mathrm{~T}_{k} \leq \mathrm{T}_{n} \Delta t\right) \mathrm{I}\left(\mathrm{Z}_{n} \in \Gamma\right) . \Gamma \in \mathbf{B}(E) . t \geq 0, n \geq 0 .
$$

eqn. (8) may be rewritten as follows:

$$
X_{n, t}=X_{0}+\int_{0}^{t} A_{u} \mathrm{~d} u+\int_{0}^{t} B_{u} \mathrm{~d} w_{u}+\int_{0}^{t} \int_{E} x \mu_{n}(\mathrm{~d} u, \mathrm{~d} x)
$$

Notice that measure $\mu_{n}$ may be considered as a measure of the jumps of the process $X_{n, t}, t \geq 0$.

Introduce $\sigma$-algebras $H_{t}^{x_{n}}$ and ${H_{t}}^{\mu_{n}}$ such that:

$$
\begin{aligned}
& H_{t}^{z_{n}}=\bigcap_{u>t} \sigma\left\{X_{n, r}, r \leq u\right\}, \\
& H_{t}^{\mu_{n}}=\sigma\left\{\mu_{n}((0, t], \Gamma), u \leq t, \Gamma \in \mathbf{B}(E)\right\} .
\end{aligned}
$$

and define the regular versions of the conditional probabilities of events

$$
\left\{\mathrm{T}_{p+1} \leq u\right\} \cap\left\{Z_{p+1} \in \Gamma\right\}, \quad\left\{\mathrm{T}_{p+1} \geq u\right\}, \quad u>0, \Gamma \in B(E)
$$

using the equalities

$$
\begin{gathered}
\mathbf{P}\left(\mathbf{T}_{p+1} \leq u, \mathbf{Z}_{p+1} \in \Gamma \mid H_{u}^{x_{p}}\right)=\mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{p+1} \leq u\right) \mathbf{I}\left(\mathbf{Z}_{p+1} \in \Gamma\right) \mid H_{u}^{x_{p}}\right) \\
\mathbf{P}\left(\mathbf{T}_{p+1} \geq u \mid H_{u}^{x_{p}}\right)=\mathbf{B}\left(\mathbf{I}\left(\mathbf{T}_{p+1} \geq u\right) \mid H_{u}^{x_{p}}\right)
\end{gathered}
$$

The next assertion is the main result of this paper.
Theorem 2. Assume that cospficients $A$ and $B$ are such that a strong solution of equation (3) exists and is unique. Then we have the following rapresentation of the dual HF-pradictable projection $\nu^{x}$ of integar-valued random measurs $\mu$ :
$\nu^{x}((0, t], \Gamma)=\sum_{n=0}^{\infty} \mathrm{I}\left(\mathrm{T}_{n}<t \leq \mathrm{T}_{n+1}\right) \sum_{p=0}^{n} \int_{\mathrm{T}_{p} \Delta t}^{\mathrm{T}_{p+1} \Delta t} \frac{\mathrm{~d}_{u} \mathrm{P}\left(\mathrm{T}_{p+1} \leq u, \mathrm{Z}_{p+1} \in \Gamma \mid H_{u} \boldsymbol{x}_{p}\right)}{\mathrm{P}\left(\mathrm{T}_{p+1} \geq u \mid H_{u}^{x_{p}}\right)}$.
This theorem is proved in the Appendix.

Sometimes it is more convenient to use another form of representation for $\nu^{\boldsymbol{x}}$, transforming the conditional probabilities on the right-hand side of (7). For this purpose we introduce the function $F(u, \Gamma)$, making use of the equality

$$
F(u, \Gamma)=\left.P\left(\mathbf{Z}_{n+1} \in \Gamma \mid H_{\mathbf{I}_{n+1}-}^{\boldsymbol{I}}\right)\right|_{\mathbf{I}_{n+1}=u}, \Gamma \in \mathbf{B}(E), u \geq 0, n \geq 0
$$

where $\mathbf{P}\left(\mathbf{Z}_{n+1} \in \Gamma \mid H \boldsymbol{I}_{n+1^{-}}\right)$is the regular version of the $H \boldsymbol{I}_{\boldsymbol{I}_{+1}}$ - conditional probability of event $\left\{Z_{n+1} \in \Gamma\right\}$. The dual $H^{\boldsymbol{x}}$-predictable projection $\nu^{\boldsymbol{x}}$ of measure $\mu$ may then be represented in terms of this function as follows:

$$
v^{x}((0, t], \Gamma)=\sum_{n=0}^{\infty} \mathrm{I}\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right) \sum_{p=0}^{n} \int_{\mathrm{T}_{p} \Delta t}^{\mathrm{I}_{p+1} \Delta t} \frac{F(u, \Gamma) \mathrm{d}_{u} \mathrm{P}\left(\mathrm{~T}_{p+1} \leq u \mid H_{u}^{x_{p}}\right)}{\mathrm{P}\left(\mathrm{~T}_{p+1} \geq u \mid H_{u}^{x_{p}}\right)}
$$

## 5. EXAMPLES

### 5.1. Conditional Gaussian property

Let process $Y(t), t \geq 0$, satisfy the linear stochastic differential equation

$$
\begin{equation*}
\mathrm{d} Y(t)=a_{0}(t)+a_{1}(t) Y(t) \mathrm{d} t+b(t) \mathrm{d} w(t), Y(0)=Y_{0} \tag{8}
\end{equation*}
$$

where $Y_{0}$ is a Gaussian random variable with mean $m_{0}$ and variance $\gamma_{0}, w(t)$ is an $H$-adapted Wiener process, $\mathbf{H}=\left(H_{t}\right)_{t \geq 0}$ is some non-decreasing, rightcontinuous family of $\sigma$-algebras, and $H_{0}$ is completed by P-zero sets from $H=H_{\infty}$. Denote by $H^{\boldsymbol{y}}$ the family of $\sigma$-algebras in $\Omega$ generated by the values of the random process $Y(u)$, i.e.,

$$
\mathbf{H}^{y}=\left(H_{t}\right)_{t \geq 0}, \quad H_{t}^{y}=\bigcap_{u>t} \sigma\{Y(v), \quad v \leq u\}, \quad t \geq 0
$$

Assume that process $Y(t)$ determines the random rate of occurrence of some unexpected event characterized by the random time $T$, through the equality:

$$
\begin{equation*}
P(\Gamma>t \mid H \ell)=\exp \left\{-\int_{0}^{t} Y^{2}(u) \lambda(u) \mathrm{d} u\right\} \tag{9}
\end{equation*}
$$

Notice that process $Z(u)=Y^{2}(u), u \geq 0$, may be interpreted as the frailty of an individual changing stochastically over time. Using the terminology of martingale theory one can say that the process

$$
A(t)=\int_{0}^{t \Delta \mathbf{T}} \lambda(u) Y^{2}(u) \mathrm{d} u
$$

is an $\mathbf{H}^{\boldsymbol{y}}$-predictable compensator of the life-cycle process $X_{t}=\mathbf{I}(\mathbf{T}<t), \quad t \geq 0$. This means that the process $M_{t}=\mathbf{I}(\mathbf{T}<t)-A(t), \quad t \geq 0$ is an $\mathbf{H}^{y}$-adapted martingale. Associating the stopping time $\mathbf{T}$ with the time of death, we may describe the process $Y^{2}(t), t \geq 0$, as the age-specific mortality rate for an individual with history $Y_{0}^{t}=\{Y(u)\}, 0 \leq u \leq t$.

Letting $\bar{\lambda}(t), t \geq 0$, denote the observed age-specific mortality rate we have $\bar{\lambda}(t)=\lambda(t) \overline{\mathbf{Z}}(t), \quad t \geq 0$, where $\overline{\mathbf{Z}}(t)=\mathbf{E}\left\{Y^{2}(t) \mid \mathbf{T}>t\right\}[13]$.

In order to calculate the observed mortality rate $\bar{\lambda}(t), t \geq 0$, it is necessary first to calculate the second moment of the conditional distribution of the $Y(u)$ given the event $\{T \geq 0\}$. It turns out that this moment may be calculated quite easily using the result of the following theorem.

Theorem 3. Assume that procsss $Y(t)$ and stopping time $\mathbf{T}$ are related through eqns. (8) and (9). Then the conditional distribution of $Y(t)$ given $\{T \geq t\}$ is Gaussian. The parameters of this distribution, i.e., the mean $m_{t}$ and the variance $\gamma_{t}$, are given by the following equations:

$$
\begin{gather*}
\frac{d m_{t}}{d t}=a_{0}(t)+a_{1}(t) m_{t}-2 m_{t} \gamma_{t} \lambda(t), \quad m_{0}  \tag{10}\\
\frac{d \gamma_{t}}{d t}=2 a_{1}(t) \gamma_{t}+b^{2}(t)-2 \lambda(t) \gamma_{t}^{2}, \quad \gamma_{0} \tag{11}
\end{gather*}
$$

The formula for $\bar{\lambda}(t)$ is then $\bar{\lambda}(t)=\lambda(t)\left(m_{t}^{2}+\gamma_{t}\right)$.
This theorem may be proved in a similar way as the conditional Gaussian property for processes governed by stochastic differential equations of the diffusion type (see [14]).

## 6. APPENDIX PROOF OF THEOREM 2

The proof uses representation (3) for $\nu_{0}$. It turns out that if the $\sigma$-algebra $\bar{H}_{0}$ in eqn. (1) is of a particular form (which will be specified later) then the $H_{\sigma_{1}, \tau_{n}}^{\mu}$-conditional probabilities of events $\left\{\mathrm{T}_{p+1} \leq u\right\} \cap\left\{Z_{p+1} \in \Gamma\right\}$ and $\left\{\mathrm{T}_{p+1} \geq u\right\}$ will P-a.s. coincide with the $H_{u}^{x_{n}}$-conditional probabilities of these events on the integration intervals in (7). Representation of measure $\nu_{0}$ through $H_{u}^{x_{\sim}}$. conditional probabilities makes it easier to prove its $H^{x}$-predictability property. It is then easy to check that the process

$$
\left(\mu((0, t], \Gamma)-\nu_{0}((0, t], \Gamma)\right), \quad t \geq 0
$$

is an $\mathbf{H}^{\boldsymbol{r}}$-adapted martingale for any $\Gamma \in \mathbf{B}(E)$. The fact that $\nu^{\boldsymbol{x}}$ is unique shows that $\nu^{\boldsymbol{x}}$ and $\nu_{0}$ coincide P-a.s. Representation (7) is derived from (3) through substitution of the conditional probabilities. Several auxiliary results will be useful in the proof of Theorem 2 : these are derived in the following subsections.

### 6.1. Auxiliary $\sigma$-algebras

Introduce the auxiliary right-continuols families of $\sigma$-algebras $\mathbf{H}^{\boldsymbol{\omega}}, \mathbf{H}^{\mu}, H^{\boldsymbol{\omega}, \mu}, H_{n}^{w}, H_{0}^{w, \mu}$ and $\bar{H}^{\boldsymbol{\omega}}$, where

$$
\begin{aligned}
& \mathbf{H}^{w}=\left(H_{t}^{w}\right)_{t \geq 0}, \quad H_{t}^{w}=\sigma\left\{w_{u}, u \leq t\right\} \vee \sigma\left(X_{0}\right), H^{w}=H_{\infty}^{w} \\
& \mathbf{H}^{\mu}=\left(H_{t}^{\mu}\right)_{t \geq 0}, \quad H_{t}^{\mu}=\sigma\{\mu((0, u], \Gamma), u \leq t, \Gamma \in \mathbf{B}(E)\}, H^{\mu}=H_{\infty}^{\mu} \\
& \mathbf{H}^{w, \mu}=\left(H_{t}^{w, \mu}\right)_{t \geq 0}, \quad H_{t}^{w, \mu}=H_{t}^{w} \vee H_{t}^{\mu} \\
& \mathbf{H}_{n}^{w}=\left(H_{n, t}^{w}\right)_{t \geq 0}, \quad H_{n, t}^{w}=H_{t}^{w} \vee H \Psi_{n}=H_{t}^{w} \vee H_{\infty}^{\mu_{n}} \\
& \mathbf{H}_{0}^{w \mu}=\left(H_{0, t^{\mu}}^{w}\right)_{t \geq 0}, \quad H_{0, t^{\mu}}^{w}=H^{w} \vee H_{t}^{\mu} \\
& \overline{\mathbf{H}}^{w}=\left(\bar{H}_{t}^{w}\right)_{t \geq 0}, \quad \bar{H}_{t}^{w}=\bar{H} \vee H_{t}^{w}
\end{aligned}
$$

where $\bar{H}$ is some $\sigma$-algebra in $\Omega$ and $\sigma$-algebras $H_{0}^{\nu}$ and $H^{\mu}$ are completed by $P$ zero sets from $\sigma$-algebras $H^{\boldsymbol{\omega}}$ and $H^{\mu}$, respectively.

Recall also that family $H^{\mathbf{F}}$ is defined as follows:

$$
\mathbf{H}^{\boldsymbol{F}}=\left(H_{t}^{\tau}\right)_{t \geq 0}, \quad H_{t}^{\tau}=\bigcap_{r>t} \sigma\left\{X_{u}, u \leq r\right\}
$$

### 6.2. Existence of $\mathrm{H}^{\boldsymbol{x}}$-predictable projections

We shall now establish that dual $\mathrm{H}^{\boldsymbol{x}}$-predictable projections exist and are unique.
Lemma 1. The dual $H^{x}$-predictable projections $v^{x}$ of the integer-valued random measure $\mu$ exist and are unique.

Proof. Note that the sets [0] $\left.E] \mathrm{T}_{n}, \mathrm{~T}_{n+1}\right] E$ belong to $\bar{\Pi}$ and have measure

$$
M_{\mu}(\mathrm{d} \omega, \mathrm{~d} u, \mathrm{~d} x)=\mathbf{P}(\mathrm{d} \omega) \mu(\mathrm{d} u, \mathrm{~d} \boldsymbol{x})
$$

less than or equal to 1 . This means that measure $M_{\mu}$ is $\sigma$-finite on ( $(\square(0, t] E), \bar{\Pi})$. From [1] , this implies that the lemma is true.

### 6.3. Characterization of $\mathbf{H}^{\boldsymbol{\omega}, \mu_{\text {-stopping }} \text { times }}$

For any $t \geq 0$ let

$$
H_{t, \infty}^{\nu}=\sigma\left\{w_{\tau}-w_{u}, r \geq u \geq t\right\}
$$

The next assertion is a generalization of Lemma 3.2 in Jacod's paper [1].
 variable $\mathrm{S}^{n}$ such that indicator $\mathrm{I}\left(\mathrm{S}^{n} \geq u\right)$ is $H_{n, u}^{w}$-measurable for any $u \geq 0$ and the following equality holds:

$$
\mathbf{I}\{\mathbf{T} \geq u\} \mathrm{I}\left\{\mathrm{~T}_{n}<u \leq \mathrm{T}_{n+1}\right\}=\mathrm{I}\left\{\mathrm{~S}^{n} \geq u\right\} \mathrm{I}\left\{\mathrm{~T}_{n}<u \leq \mathrm{T}_{n+1}\right\} .
$$

Proof. It follows from the definition of the $\sigma$-algebra $H_{\psi}^{\mu}$ that the following farnilies of sets coincide:

$$
H_{u-}^{\mu} \cap\left\{\mathbf{T}_{n}<u \leq \mathbf{T}_{n+1}\right\}=H \psi_{n} \cap\left\{\mathbf{T}_{n}<u \leq \mathbf{T}_{n+1}\right\}
$$

and consequently the families of sets

$$
\left(H_{u}^{u} \vee H_{u-}^{\mu}\right) \cap\left\{\mathbf{T}_{n}<u \leq \mathbf{T}_{n+1}\right\}=H_{u}^{w} \vee H \mathbf{T}_{n} \cap\left\{\mathbf{T}_{n}<u \leq \mathbf{T}_{n+1}\right\}
$$

also coincide. Take the set $\{T<u\}$ from $H_{u}^{\mu} \vee H_{u-\text {, }}^{\mu}$ and find the set $D_{u}$ from $H_{4}^{2 a} \vee H_{\Psi_{n}}$ such that

$$
\{T<u\} \cap\left\{T_{n}<u \leq T_{n+1}\right\}=D_{u} \cap\left\{T_{n}<u \leq T_{n+1}\right\} .
$$

Note that for $r<u$ we now have

$$
\left[\left(\mathbf{D}_{r} \cap\left\{\mathbf{T}_{n}<r\right\}\right) \cup\left(\mathrm{D}_{u} \cap\left\{\mathbf{T}_{n}<u\right\}\right)\right] \cap\left\{\mathbf{T}_{n}<u \leq \mathbf{T}_{n+1}\right\}=\mathrm{D}_{u} \cap\left\{\mathbf{T}_{n}<u \leq \mathbf{T}_{n+1}\right\} .
$$

Define $5^{n}$ by the equalities

$$
\left\{5^{n}<u\right\}=\bigcup_{r \leq u}\left(D_{r} \cap\left\{T_{n}<r\right\}\right) .
$$

where the $\tau$ are rational numbers. We then obtain

$$
\{T<u\} \cap\left\{T_{n}<u \leq T_{n+1}\right\}=\left\{S^{n}<u\right\} \cap\left\{T_{n}<u \leq T_{n+l}\right\}
$$

or

$$
\{\mathbf{T} \geq u\} \cap\left\{\mathbf{T}_{\pi}<u \leq \mathbf{T}_{n+1}\right\}=\left\{S^{n} \geq u\right\} \cap\left\{\mathbf{T}_{\pi}<u \leq T_{n+1}\right\} .
$$

thus completing the proof of Lemma 2.

### 8.4. Representation of martingales

The following result plays a fundamental role in the analysis of the predictability property.

Lemma 3. Let $Z_{i}$ be a right-continuous, left-limited, square-integrable, $\overline{\mathbf{H}}^{\omega}$-martingale process. Then an $\overline{\mathbf{H}}^{w}$-adapted process $f(u, \omega), u>0$, exists such that

$$
\mathbf{E} \int_{0}^{t} f^{2}(u, \omega) \mathrm{d} u<\infty, t \geq 0
$$

and

$$
\mathrm{z}_{4}=\mathrm{z}_{0}+\int_{0}^{t} f(u, \omega) \mathrm{d} w_{u}
$$

The proof of this lemma is similar to that of Theorem 5.5 in [14]. The following well-known result is important in the proof of some auxiliary assertions.
Lemma 4. Let L be some vector space of bounded real functions defined on $\Omega$. Assume that it contains the constant 1. is closed with respect to uniform convergence, and is such that for any uniformly bounded increasing sequence of non-negative functions $f_{n}, n \geq 0, f_{n} \in L$ the function $f=\lim _{n \rightarrow \infty}$ also belongs to L Let $Q$ be a subset of L which is closed with respect to multiplication. Then
the space L contains all bounded functions, measured with respect to the $\sigma$ algebra $H$ generated by the elements of $Q$.

Remark. This result is known as the monotonic class theorem, and is proved in [15] . The theorem is also true if
(a) $L$ is closed with respect to monotonic and uniform convergence and
(b) $Q$ is the algebra and $1 \in Q$
or
( $a^{\prime}$ ) Lis a set of functions closed with respect to monotonic convergence to the bounded function and
(b) $Q$ is a vector space closed with respect to operation $\Lambda$ (maximum of two functions) and $1 \in Q$.

### 6.6. Predictability of $\mathrm{H}_{n}^{w}$-well-measurable processes

It turns out that $H_{n}^{w}$-well-measurable processes have the following remarkable property:

Lemma 5. Let $Y_{i}^{n}$ be an arbitrary $\mathrm{H}_{n}^{w}$-well-measurable process. Then process $Y_{t}^{n} \mathrm{I}\left\{\mathrm{T}_{n}<t\right\}$ is $\mathrm{H}_{n}^{w}-$ predictable.

Proof. Let $T$ be an arbitrary $\mathbf{H}_{n}^{\boldsymbol{w}_{\text {- }}}$ stopping time, and denote by $\lambda(t)$ the dual $\mathbf{H}_{n}^{\boldsymbol{w}_{-}}$ predictable projection of non-decreasing process $\mathbf{1}(\mathbf{T} \leq t)$. From the definition of $\lambda(t)$ the process $\mathbf{Z}_{t}=1(T \leq t)-\lambda(t)$ is an $H_{n}^{w}$-martingale.

Now consider the process $v_{u}=w_{\mathbf{I}_{n}+u}-w_{\mathbf{I}_{n}}$, and define $H_{n}^{v}=\left(H_{n, t}^{v}\right)_{t \geq 0}$, where $H_{n, t}^{v}=\sigma\left\{\nu_{u}, u \leq t\right\} \vee H_{n, T_{n}}^{w}$.

Observe that $H_{n, t}^{v}=H_{n, T_{n}+t}^{w}$ and consequently that family $H_{n}^{v}$ coincides with family $H_{n}^{n, w}=\left(H_{n, T_{n}+t}^{w}\right)_{t \geq 0}$. It is not difficult to check that $v_{u}$ is a Wiener process with respect to $H_{n}^{\nu}$ and that $Z_{t}^{n}=Z_{I_{n}+t}$ is an $H_{n}^{n, w}$-martingale process.

From Lemma 3 we have the following representation of $\mathbb{Z}_{\boldsymbol{n}}^{n}$ :

$$
\mathrm{Z}_{\boldsymbol{i}}^{n}=\mathrm{Z}_{0}^{n}+\int_{0}^{t} f_{\pi}(u, \omega) \mathrm{d} v_{u},
$$

or, in terms of $\mathbf{Z}_{\boldsymbol{t}}$,

$$
Z_{I_{n}+u}=Z_{T_{n}}+\int_{I_{n}}^{I_{n}+u} f_{n}\left(T_{n}+r, \omega\right) d w_{I_{n}+r}
$$

Taking $\mathbf{T}_{n}+u=t$ we get

$$
Z_{y} I\left(T_{n}<t\right)=\left[Z_{\mathbf{T}_{n}}+\int_{\mathbf{T}_{n}}^{t} f_{n}(u, \omega) \mathrm{d} w_{u}\right] \mathbf{I}\left(\mathrm{T}_{n}<t\right)
$$

The right-hand side of this equality is an $H_{n}^{w}$-predictable process. Remembering the definition of $Z_{H}$, we deduce that the process $I(T \leq t) I\left(T_{n}<t\right)$ is $H_{n}^{w-}$ predictable.

The result of the lemma may then be derived from the monotonic class theorem [15].

### 6.6. Characterization of $\mathrm{H}^{\boldsymbol{\nu} \mu}$-predictable processes

The following assertion describes the structure of $\mathbf{H}^{\boldsymbol{\omega}} \boldsymbol{\mu}$-predictable processes.

Lemma 6. An $\mathrm{H}^{\boldsymbol{U}, \mu}$-adapted process $\mathrm{Z}_{4}$ is $\mathrm{H}^{\boldsymbol{\nu}, \mu}$-predictable if and only if, for any $n \geq 0$, there exists an $H_{n}^{w}$-well-measurable process $Y_{t}^{n}$ such that

$$
\begin{equation*}
Y_{t}^{n} I\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right)=\mathrm{Z}_{\boldsymbol{n}} \mathrm{I}\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right) \tag{A.1}
\end{equation*}
$$

## Proof

Necessity. Consider the process $\mathbf{Z}_{\boldsymbol{t}}=\mathrm{I}(t \leq T)$, where $\mathbf{T}$ is an arbitrary $\mathbf{H}^{\boldsymbol{w}, \boldsymbol{\mu}_{-}}$ stopping time. It follows from Lemma 1 that

$$
\mathrm{I}(t \leq \mathrm{T}) \mathrm{I}\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right)=\mathrm{I}\left(t \leq \mathrm{S}^{n}\right) \mathrm{I}\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right)
$$

which leads to equality (8) with $Y_{t}^{n}=I\left(t \leq S^{n}\right)$. That these conditions are necessary may be proved from the monotonic class theorem.

Sufficiency. Observe that for an arbitrary $H_{n}^{w}$-adapted process $Y_{t}$, the process $1\left\{\mathrm{~T}_{\mathbb{R}} \leq t\right\} Y_{t}$ is $\mathbf{H}^{\boldsymbol{\omega} \boldsymbol{\mu} \text {-adapted. This is because }}$

$$
\left(H_{t}^{w} \vee H \Psi_{n}\right) \cap\left\{T_{n} \leq t\right\}=\left(H_{t}^{w} \vee H / \mu\right) \cap\left\{T_{n} \leq t\right\}, n \geq 0
$$

and any arbitrary set from $\left(H_{t}^{\mu} \vee H_{Z-}^{\mu}\right) \cap\left\{\mathrm{T}_{n} \leq t\right\}$ is $H_{t}^{\mu} \vee H_{Z}^{\mu}$-measurable. Leftcontinuous $H_{\pi}^{w}$-adapted processes $Y_{t}$ generate left-continuous $H^{\boldsymbol{W}}{ }^{\mu}$-adapted processes $I\left\{T_{\boldsymbol{n}} \leq t\right\} Y_{t}$. This means that the following inclusion is true:

$$
\begin{equation*}
\left.\left.\Pi\left(H_{n}^{w}\right) \cap\right] \mid T_{n}, T_{n+1}\right] \mid \subseteq \Pi\left(\mathbf{H}^{w, \mu}\right) \tag{A.2}
\end{equation*}
$$

where $\Pi\left(H_{n}^{\omega}\right)$ and $\Pi\left(H^{\omega, \mu}\right)$ are $\sigma$-algebras for $H_{n}^{w}$ - and $H^{\omega, \mu}$-predictable sets respectively, and $\left.] \mid T_{n}, T_{n+1}\right] \mid$ is the stochastic interval corresponding to the stopping times $\mathbf{T}_{n}$ and $\mathbf{T}_{n+1}$. The inclusion (A.2) yields:

$$
\begin{equation*}
\left.\left.\bigcup_{n}^{\cup}\right] \mid \mathbf{T}_{n}, \mathbf{T}_{n+1}\right] \mid \cap \Pi\left(\mathrm{H}_{n}^{w}\right) \subseteq \Pi\left(\mathrm{H}^{w, \mu}\right) . \tag{A.3}
\end{equation*}
$$

From Lemma 5, the process $Y_{t}^{n} \mathrm{I}\left(\mathrm{T}_{n} \leq t\right)$ is $\mathrm{H}_{n}^{w}$-predictable. Inclusion (A.3) shows that the process $\sum_{n} Y_{t}^{n} I_{\left.] \mid \mathbf{I}_{n}, \mathbf{T}_{n+1}\right] \mid}$ (which according to equality (A.1) coincides with process $\mathbf{Z}_{\boldsymbol{t}}$ ) is $\mathbf{H}^{\boldsymbol{\omega}, \mu}$-predictable. This completes the proof.

### 6.7. A property of conditional distributions

Let $H, G, F$ be $\sigma$-algebras in $\Omega$. Assume that they are complete with respect to measure $\mathbf{P}$ and such that $G \subseteq H, F \subseteq H$. The next statement will then be useful in analyzing the form of the dual predictable projection.

Lemma 7. Let $\mathbf{B} \in H, \mathbf{P}(\mathbf{B})>0$ be such that the families of sets $F \cap \mathbf{B}$ and $G \cap \mathbf{B}$ coincide $\mathbf{P}-\mathrm{a} . \mathrm{s}$. Then for any $H$-measurable integrable random variable $\eta$ the following equality holds:

$$
\mathbf{I}(\mathbf{B}) \mathbf{E}(\eta \mid G \vee \mathrm{~B})=\mathbf{I}(\mathbf{B}) \mathbf{E}(\eta \mid F \vee \mathrm{~B}) .
$$

Proof. For any $A \in H$ define the measure $\mathrm{P}^{\mathrm{B}}(A)$ as follows:

$$
\mathbf{P}^{\mathbf{B}}(\mathbf{A})=\frac{\mathbf{P}(A \cap \mathbf{B})}{\mathbf{P}(\mathbf{B})}
$$

Let $\mathbf{E}^{\mathbf{B}}$ denote the mathematical expectation with respect to $P^{\mathbf{B}}$. The families of sets $G \cap B$ and $F \cap B$ form $\sigma$-algebras of the subsets of set $\mathbf{B}$ that. generally speaking, are not $\sigma$-algebras in $\Omega$. Since these families are complete with respect to measure $\mathrm{P}^{\mathrm{B}}$, they coincide $\mathrm{P}^{B}$-a.s. with the $\sigma$-algebras $G \vee B$ and $F \vee B$, respectively.

It follows from the conditions of the lemma that for any $\mathbf{A} \in H$ we have

$$
\mathbf{P}^{\mathbf{B}}(\mathbf{A} \mid G \cap \mathbf{B})=\mathbf{P}^{\mathbf{B}}(\mathbf{A} \mid F \cap \mathbf{B}), \quad \mathbf{P}^{\mathbf{B}} \text { - a.s. . }
$$

or, equivalently,

$$
\mathrm{P}^{\mathrm{B}}(\mathrm{~A} \mid G \vee \mathrm{~B})=\mathrm{P}^{\mathrm{B}}(\mathrm{~A} \mid F \vee B), \quad \mathrm{P}^{\mathrm{B}} \text { - a.s. }
$$

and thus the following equality holds $\mathrm{P}^{\mathbf{B}}$-a.s. for any bounded random variable $\eta$ :

$$
\mathbf{E}^{\mathbf{B}}(\eta \mid G \vee \mathbf{B})=\mathbf{E}(\eta \mid F \vee \mathbf{B})
$$

This may be rewritten in the form

$$
\mathbf{I}(\mathbf{B}) \mathbf{E}^{\mathbf{B}}(\eta \mid G \vee \mathbf{B})=\mathbf{I}(\mathbf{B}) \mathbf{E}^{\mathbf{B}}(\eta \mid F \vee \mathbf{B}), \quad \text { P-a.s. }
$$

or

$$
\mathbf{I}(\mathbf{B}) \mathbf{E}(\eta \mid G \vee \mathbf{B})=\mathbf{I}(\mathbf{B}) \mathbf{E}(\eta \mid F \vee \mathbf{B}), \quad \text { P-a.s. }
$$

thus completing the proof.

### 6.8. Some properties of conditional mathematical expectations

The next assertion will be useful in proving the predictable characterization of some random measures.

Lemma 8. Let $A \in H{\underset{1}{n+1}}$. Then the following equalities are true for any $t>0$ :

$$
\begin{align*}
& \mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathrm{I}(\mathbf{A}) \mid H^{\boldsymbol{w}} \vee H \mathbf{f}_{\mathbf{n}}\right)=\mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{\mathrm{n}+1} \leq t\right) \mathbf{I}(\mathbf{A}) \mid H_{\boldsymbol{t}}^{\boldsymbol{w} \vee H \mathbf{f}_{n}}\right)  \tag{A.4}\\
& \mathbf{B}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \geq t\right) \mid H^{\boldsymbol{w}} \vee H_{\mathbf{I}_{n}}\right)=\mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{\boldsymbol{n}+1} \geq t\right) \mid H_{t}^{\boldsymbol{L}} \vee H \boldsymbol{f}_{\boldsymbol{n}}^{\mu}\right) .
\end{align*}
$$

Proof. Since $B_{u}$ is non-singular for any $u \geq 0$, the process $w_{t}$ may be represented as follows:

$$
w_{t}=\int_{0}^{t} B_{u}^{-1}\left(\mathrm{~d} X_{u}^{c}-A_{u} \mathrm{~d} u\right)
$$

where

$$
X_{t}^{c}=X_{t}-\int_{0}^{t} \int_{E} x \mu(\mathrm{~d} u, \mathrm{~d} x)
$$

This shows that the process $w_{t}$ is $H^{F}$-adapted and leads to the inclusion:

$$
\begin{equation*}
H_{t}^{\mu} \vee H_{t}^{\mu} \subseteq H_{t}^{2} \tag{A.5}
\end{equation*}
$$

Consider now the bounded random variables $X_{1}, X_{2}, X_{3}$ which are measurable with respect to $\sigma$-algebras $H_{t}^{\omega}, H \Psi_{n}$ and $H_{t, \ldots}^{\mu}$, respectively. Note that $X_{3}$ does not depend on events from $H_{t}$ and consequently $H_{t}^{x}$ since $H_{t}^{x} \subseteq H_{t}$.

Define $d=\mathbf{E}\left(X_{1} X_{2} X_{3} \mathrm{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathbf{I}(\mathbf{A})\right)$. Using the $H^{w} \vee H_{\boldsymbol{I}_{n}}^{\mu}$-measurability of the product $X_{1} X_{2} X_{3}$ this can be rewritten as

$$
\alpha=\mathbf{E}\left(X_{1} X_{2} X_{3} \mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathbf{I}(\mathbf{A}) \mid F^{w} \vee H_{\mathbf{Y}_{n}}\right)\right.
$$

Observe now that the product $X_{1} X_{2} \mathrm{I}\left(\mathrm{T}_{n+1} \leq t\right) \mathrm{I}(\mathbf{A})$ is $H_{t}^{w}$-measurable and consequently $H_{t}^{x}$-measurable. Using the fact that $X_{3}$ is independent of the events of $\sigma$-algebra $H_{t}^{x}$ we obtain

$$
\begin{equation*}
d=\mathbf{E}\left(X_{1} X_{2} I\left(\mathbf{T}_{n+1} \leq t\right) I(\mathbf{A})\right) \mathbf{E} X_{3} \tag{A.8}
\end{equation*}
$$

Since $\mathrm{I}\left(\mathrm{T}_{n+1} \leq t\right)=\mathrm{I}\left(\mathrm{T}_{n+1} \leq t\right) \mathrm{I}\left(\mathrm{T}_{n} \leq t\right)$ equation (A.6) may be rewritten as follows:

$$
d=\mathbf{E}\left(X_{1} X_{2} \mathrm{I}\left(\mathbf{T}_{n} \leq t\right) \mathbf{E}\left(\mathrm{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathrm{I}(\mathbf{A}) \mid H_{t}^{\omega} \vee H \dot{f}_{n},\left\{\mathrm{~T}_{n}<t\right\}\right)\right) \mathbf{E} X_{3}
$$

Noting that events from $\left(H_{t}^{\nu} \vee H \Psi_{n}\right) \cap\left\{\mathbf{T}_{n}<t\right\}$ also belong to $H_{t}^{x}$ and since $X_{3}$ is independent of $H_{t}^{x}$ we get

$$
\begin{aligned}
& d=\mathbf{E}\left(X_{1} X_{2} X_{3} \mathbf{I}\left(\mathbf{T}_{n} \leq t\right) \mathbf{E}\left\{\mathbf{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathbf{I}(\mathbf{A}) \mid H_{t}^{\mu} \vee H_{\mathbf{t}_{n}},\left\{\mathbf{T}_{n}<t\right\}\right)\right) \\
& =\mathbf{E}\left(X_{1} X_{2} X_{3} \mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathbf{I}(\mathbf{A}) \mid H_{t}^{\mu} \vee H{\underset{\sim}{n}}_{\mu}^{\mu}\right)\right) .
\end{aligned}
$$

Thus

$$
\mathbf{E}\left(X_{1} X_{2} X_{3} \mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathbf{I}(\mathbf{A}) \mid H^{\boldsymbol{w}} \vee H \mathbf{\Psi}_{n}\right)\right)=\mathbf{E}\left(X_{1} X_{2} X_{3} \mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1} \leq t\right) \mathbf{I}(\mathbf{A}) \mid H_{t}^{\mu} \vee H \Psi_{n}\right)\right)
$$

Using the monotonic class theorem we prove the first part of the lemma.
In a similar way it is possible to prove the equalities:

$$
\mathbf{E}\left(\mathbf{I}\left(\mathbf{T}_{n+1}<t\right) \mathbf{I}(\mathbf{A}) \mid H^{w} \vee H \Psi_{n}\right)=\mathbf{B}\left(\mathbf{I}\left(\mathbf{T}_{n+1}<t\right) \mathbf{I}(\mathbf{A}) \mid H_{t}^{w} \vee H \Psi_{n}\right),
$$

which yield

$$
\mathbf{E}\left(\mathrm{I}\left(\mathbf{T}_{\mathrm{n}+1} \geq t\right) \mid H^{\boldsymbol{w}} \vee H \Psi_{n}\right)=\mathbf{E}\left(\mathrm{I}\left(\mathbf{T}_{\mathrm{n}+1} \geq t\right) \mid H_{t}^{\mu} \vee H \Psi_{\mathbf{n}}\right)
$$

### 6.9. Predictability analysis of the $\nu_{0}$

The following assertion is an important step towards the proof of the main result.

Lemma 9. For any $\Gamma \in \mathbf{B}(E)$ the process $\nu_{0}((0, t], \Gamma), t \geq 0$, is $\mathbf{H}^{\omega, \mu}$-predictable.
Proof. It follows from Lemmas 5 and 6 that the dual $H_{0}^{\mu, \mu}$-predictable projection of integer-valued random measure $\mu(\mathrm{d} u, \mathrm{~d} x)$ may be represented as follows:

$$
v_{0}((0, t], \Gamma)=\sum_{n=}^{\infty} \mathrm{I}\left(\mathrm{~T}_{n}<t \leq \mathrm{T}_{n+1}\right) \sum_{p=0}^{n} \int_{\mathrm{T}_{p} \Delta t}^{\mathbf{T}_{p+1} \Delta t} \frac{d_{u} \mathbf{P}\left(\mathrm{~T}_{p+1} \leq u, \mathrm{Z}_{p+1} \in \Gamma \mid F_{u}^{\mu} \vee H \mathbf{t}_{p}\right)}{\mathrm{P}\left(\mathrm{~T}_{p+1} \geq u \mid H_{u}^{u} \vee H \psi_{p}^{\mu}\right)} .
$$

Observe that the function on the right-band side of this equality immediately following the indicator $\mathrm{I}\left(\mathrm{T}_{n}<t \leq \mathrm{T}_{\mathrm{n}+1}\right)$ is $H_{t}^{w} \vee H \mathcal{P}_{n}^{\mu}$-measurable, with right-continuous, left-limited sampling paths. This means that the function is $\mathbf{H}_{n}{ }^{w}$-well-measurable. From Lemma 3 the process

$$
\mathbf{I}\left(\mathbf{T}_{n}<t\right) \sum_{p=0}^{n} \int_{\mathbf{r}_{p} \Delta t}^{\mathbf{T}_{p+1} \Delta t} \frac{\mathrm{~d}_{u} \mathbf{P}\left(\mathbf{T}_{p+1} \leqslant \boldsymbol{u}, \mathbf{Z}_{p+1} \in \Gamma \mid H_{u}^{w} \vee H \mathbf{t}_{p}\right)}{\mathbf{P}\left(\mathbf{T}_{p+1} \geqslant u \mid H_{u}^{\mu} \vee H H_{p}^{\mu}\right)}
$$

is $H_{n}^{w}$-predictable, and consequently (from Lemma 4) the process $\nu_{0}((0, t], \Gamma)_{t \geq 0}$


## B.10. Measure $\nu$ as the dual $\mathrm{H}^{\boldsymbol{\omega}, \mu}$-predictable projection of $\mu$

The next two lemmas give the probabilistic form of the dual $H^{w^{,}, \mu_{-}}$ predictable projection of $\mu$.

Lemma 10. For any $\Gamma \in B(E)$ the process

$$
Y_{t}^{\Gamma}=\mu((0, t], \Gamma)-v_{0}((0, t], \Gamma), t \geq 0 .
$$

is an $H^{w, \mu}$-adapted local martingale.
Proof. From the deflnition of the $\nu_{0}, Y_{t}^{\Gamma}$ is an $H_{0}^{\nu, \mu}$-adapted local martingale for any $\Gamma \in B(E)$. Introduce the process

$$
\chi_{t}^{\Gamma}=\mathbf{E}\left(Y_{t}^{\Gamma} \mid H_{t}^{\mu, \mu}\right), \quad t \geq 0
$$

It is easy to see that $X_{t}$ is an $H^{\boldsymbol{\omega}, \mu}$-adapted local martingale. However, it follows from Lemma 6 that the process $Y_{t}^{\Gamma}$ is $\mathrm{H}^{\mu, \mu}$-adapted and consequently coincides with $X_{i}^{\Gamma}$, thus proving the lemma.

The following assertion provides a probabilistic characterization of the dual $\mathbf{H}^{\boldsymbol{\omega}}{ }^{\mu}$-predictable projection of measure $\mu$.

Lemma 11. The dual $\mathrm{H}^{w, \mu}$-predictable projection of integer-valued random measure $\mu$ coincides with the process $\nu_{0}$.

This may be proved using Lemmas 6 and 7 and the uniqueness of the dual


### 6.11. Probabilistic form of the dual $\boldsymbol{H}^{\boldsymbol{r}}$-predictable projection of $\mu$

The fact that eqn. (4) has a strong solution for $X_{i}$ yields the inclusion

$$
H_{t}^{x} \subseteq H_{t}^{\mu} \vee H_{t}^{\mu},
$$

which, together with (11), shows that $\sigma$-algebras $H_{t}^{\mu} \vee H_{l}^{\mu}$ and $H_{t}^{\boldsymbol{x}}$ coincide. This in turn means that the classes of $\mathbf{H}^{\mu, \mu}$ - and $\mathbf{H}^{x}$-predictable processes coincide, and consequently that $\nu_{0}$ is $\mathbf{H}^{\boldsymbol{F}}$-predictable.

The introduction of a non-singularity condition for $B_{u}, u \geq 0$, means that for any $n \geq 0$ we have:

$$
w_{t}=\int_{0}^{t} B_{u}^{-1}\left(\mathrm{~d} X_{n, u}^{c}-A_{u} \mathrm{~d} u\right) .
$$

where

$$
X_{n, t}^{c}=X_{n, t}-\int_{0}^{t} \int_{E} x \mu_{n}(\mathrm{~d} u, \mathrm{~d} x), n>0, t \geq 0
$$

It follows from these equalities that process $w_{i}$ is $\mathrm{H}^{\mathbf{r}}$-adapted and consequently that

$$
H_{t}^{\mu} \vee H_{t}^{\mu_{n}} \subseteq H_{t}^{x_{n}}
$$

Note also that equations (8) have a strong, unique solution for $X_{n, t}, n \geq 0$. This fact yields the inverse inclusion:

$$
H_{t}^{x_{n}} \subseteq H_{t}^{\mu} \vee H_{t}^{\mu_{n}}
$$

and consequently

$$
H_{t}^{x_{1}}=H_{t}^{\mu} \vee H_{t}^{\mu_{v}}
$$

From the definition of $H_{t}^{\mu_{n}}$ we have

$$
H_{t}^{\mu_{n}} \cap\left\{\mathbf{T}_{n}<t\right\}=H_{\mathbf{T}_{n}}^{\mu_{n}} \cap\left\{\mathbf{T}_{n}<t\right\}=H_{\mathbf{t}_{n}}^{\mu} \quad\left\{\mathbf{T}_{n}<t\right\}
$$

and thus

$$
\left(H_{t}^{\mu} \vee H \mathbf{\Psi}_{n}\right) \cap\left\{\mathbf{T}_{n}<t\right\}=\left(H_{t}^{\mu} \vee H_{t}^{\mu_{n}}\right) \cap\left\{\mathbf{T}_{n}<t\right\}=H_{t}^{x} \cap\left\{\mathbf{T}_{n}<t\right\}
$$

Substituting the $H_{t}^{\mu} \vee H \psi_{n}^{\prime}$-conditional probabilities in eqn. (3) by $H_{t}^{x_{n}}$ conditional probabilities we obtain:

$$
\nu_{0}((0, t], \Gamma)=\sum_{n=0}^{\infty} \mathbf{I}\left(T_{n}<t \leq T_{n+1}\right) \sum_{p=0}^{n} \int_{T_{p} \Delta t}^{T_{p+1} \Delta t} \frac{\mathrm{~d}_{u} P\left(T_{p+1} \leq u, Z_{p+1} \in \Gamma \mid H_{u}^{x_{p}}\right)}{P\left(T_{p+1} \geq u \mid H_{u}^{x_{p}}\right)} .
$$

From Lemma 7 and the coincidence of the $\sigma$-algebras $H_{t}^{\mu} \vee H_{t}^{\mu}$ and $H_{t}^{x}$ for any $t \geq 0$, we deduce that process

$$
\boldsymbol{Y}_{t}^{\Gamma}=\mu((0, t], \Gamma)-\nu_{0}((0, t], \Gamma), t \geq 0
$$

is an $\mathbb{F}$-adapted local martingale. The uniqueness of the dual $\boldsymbol{F}^{\boldsymbol{F}}$-predictable projection means that measures $\nu_{0}$ and $\nu^{x}$ coincide, thus completing the proof of Theorem 2.

## References

1. J. Jacod. 'Multivariate Point Processes: Predictable Projection, Radon-Nicodim Derivatives, Representation of Martingales." Zeitschrift für Wahrscheinlichkeitstheory und Verw. Gebiete 31, pp.235-253 (1975).
2. J. Jacod, Calcules Stochastique et Probleme de Martingales. Lecture Notes in Hathematics, Val. 714, Springer-Verlag, Heidelberg (1979).
3. P. Bremaud, Point Processes and Queues, Springer-Verlag, New York, Heidelberg and Berlin (1980).
4. C. Dellacherie, Capacities et Procassus Stochastiques, Springer-Verlag, Berlin and New York (1972).
5. Yu.M. Kabanov, R.S. Liptzer, and A.N. Shiryaev, "Absolute Continuity and Singularity of Locally Absolutely Continuous Probability Distributions," Math. Sbornik USSR (in Russian) 35(5), pp.631-680 (1979).
6. A.I. Yashin, "Convergence of Bayesian Estimations in Adaptive Control Schemas.' Proceedings of the Workshop on Adaptive Control, October 27-29. 1982, Forence, Italy, pp. 51-75 (1982).
7. R. Rebolledo, "Central Limit Theorem for Local Martingales," Zeitschrift für Wahrscheinlichkeitstheory und Verw. Gebiete 51, pp. 269-256 (1980).
8. R.S. Liptzer and A.N. Shiryaev, "Functional Central Limit Theorem for Semimartingales," Probability Theory and Applications (in Russian) 25, pp.667688 (1980).
9. M.H.A. Davis, "Detection Of Signals With Point Process Observations," Department of Computing and Control, Publ. 73/8, Imperial College, London (1973).
10. C.S. Chou and P.A. Meyer, Sur la Representation des Martingales Comme Integrales Stochastiques dans les Processus Pounctuels, Lecture Notes in Mathematics, Vol. 465 , Springer-Verlag, Berlin (1975).
11. A.I. Yashin, "Filtering of Jumping Processes," Automatic and Remote Control 5, pp.52-58 (1970).
12. D.L. Snyder, Random Point Processes, John Wiley and Sons, New York (1975).
13. J.W. Vaupel and A.I. Yashin, The Deviant Dynamics of Death in Heterogeneous Populations, RR-83-1. International Institute for Applied Systems Analysis, Laxenburg, Austria (1982).
14. R.S. Liptzer and A.N. Shiryaev, Statistics of Random Processes, SpringerVerlag. Berlin and New York.
15. P.A. Meyer, Probability and Potentials, Waltham, Blaisdell (1968).
