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PREFACE 

In  t h i s  paper t h e  au thors  de f i ne  and study heavy v i a b l e  t r a j e c t o r i e s  

of a  con t ro l led  system wi th  feedbacks. V iab le t r a j e c t o r i e s  of a  con t ro l led  

system a r e  those which s a t i s f y ,  a t  each i n s t a n t ,  g iven c o n s t r a i n t s  on the  

s t a t e .  The con t ro l s  regu la t ing  v i a b l e  t r a j e c t o r i e s  evolve according t o  a  

set-valued map. Heavy v i a b l e  t r a j e c t o r i e s  a r e  those which a r e  assoc ia ted  

wi th  the con t ro l s  i n  t he  feedback map which have a  v e l o c i t y ,  a t  each i n s t a n t ,  

of minimal norm. The d i f f e r e n t i a l  equat ion governing the  evo lu t ion  of t h e  

con t ro l s  assoc ia ted  w i th  heavy v iab le  t r a j e c t o r i e s  i s  const ructed.  

This research  was conducted w i th in  the  framework of t he  Dynamics of 

Macrosystems study i n  t h e  System and Decision Sciences Program. 

ANDRZEJ WIERZBICKI 

Chairman 

System and Decision Sciences 

Program 



ABSTRACT 

We define and study the concept of heavy viable trajectories of 

a controlled system with feedbacks. Viable trajectories are trajectories 

satisfying at each instant given constraints on the state. The controls 

regulating viable trajectories evolve according a set-valued feedback 

map. Heavy viable trajectories are the ones which are associated to - 
the controls in the feedback map whose velocity has at each instant 

the minimal norm. We construct the differential equation.. governing 

the evolution of the controls associated to heavy viable trajectories 

and we prove their existence. 



HEAVY VIABLE TRAJECTORIES OF CONTROLLED SYSTEMS 

Jean-Pierre Aubin and Halina Frankowska 
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1 . Introduction 

When we study the evolution of macrosystems which arise in economics 

and the social sciences as well as in biological evolution, we should take 

into account not only : 

(1) our ignorance of the future environment of the system 

but also : 

(2) the absence of determinism (including the impossibility of a 

comprehensive description of the dynamics of the system) 

(3) our ignorance of the laws relating certain controls to the 

states of this system 

(4) the variety of dynamics available to the system. 

We propose to translate these requirements into mathematics by means 

of differential inclusions, which describe how the velocity depends in a 

multi-valued way upon the current state of the system. Another feature of 

such macrosystems is that the state of the system must obey given restric- 

tions known as viability constraints, which determine the viability 

domain ; viable trajectories are those lying entirely within the viability 

domain. Finding viable trajectories of a differential inclusion provides 

a mechanism of selection of trajectories which, contrary to optimal 

control theory, does not assume implicitely 

( 1 )  the existence of a decision maker operating the controls of 

the system (there may be more than one decisionmaker in a 

game-theoretical setting) 

(2) the availability of information (deterministic or stochastic) 

on the future of the system ; this is necessary to define the 

costs associated with the trajectories 

(3) that decisions (even if they are conditional) are taken once 

and for all at the initial time. 



Viability Theorems provide necessary and sufficient conditions for 

the existence of at least one viable trajectory starting from any viable 

initial state. It also provides the feedbacks (concealed in both the 

dynamics and the viability constraints) which relate the state of the 

system to the controls. These feedbacks are not necessarily deterministic : 

they are set-valued maps associating a subset of controls with each state 

of the system. We observe that the larger these subsets of controls are, 

the more flexible - and, thus, the more robust - the regulation of the 

system will be. 

Finally the third feature shared by those macrosystems is the high 

inertia of the controls which change only when the viability of the system 

is at stake. Associated trajectories are called heavy viable trajectories : 

they minimize at each instant the norm of the velocity of the control. 

We shall provide a formal definition of heavy viable trajectories, which 

requires an adequate concept of derivative of the set-valued feedback map. 

We show that as long as the state of the system lies in the interior of 

the viability domain, any regulating control will work. Therefore, along 

a heavy trajectory, the system can maintain the control inherited from 

the past. (The regulatory control remains constant even though the state 

may evolve quite rapidly). 

What happens when the state reaches the boundary of the viability 

domain ? If the chosen velocity is "inward" in the sense that it pushes 

the trajectory back into the domain, then we can still keep the same 

regulatory control. 

However, if the chosen velocity is "outward", we are in a period of 

crisis and must find, as slowly as possible, another regulatory control 

such that the new associated velocity pushes the trajectory back into the 

viability domain. 

When this strategy for "structural change" fail, the trajectory 

"dies" i.e., it is no longer viable (see Figure 1). 
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The outline of this paper is as follows. In section 2, we define 

the viability problem for controlled systems with feedbacks, which 

contain the usual controlled systems and the differential inclusions, and 

we recall Haddad's viability theorem. We proceed by introducing other 

tangent cones and by defining contingent derivatives of set-valued maps 

which we need to define heavy viable trajectories. We define them in 

section 3 and state the existence theorem of heavy viable trajectories, 

which we prove in section 4. We give explicit formulas in the smooth case 

in section 5. 
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The equations which govern the evolution of heavy viable trajectories 

also reveal a division of the viability domain into "cells" : each cell is 

the subset of viable states which can be regulated by a given control. 

To pass from one cell to another requires the control to be changed. The 

boundaries of these cells signal the need for structural change. 

We mentionned biological evolution as a motivation for studying heavy 

viable trajectories. Paleontological concepts such as punctuated equilibria 

proposed by Elredge and Gould are consistent with the concept of heavy 

viable trajectories. 

Indeed, for the first time, excavations at Kenya's Lake Turkana 

have provided clear fossil evidence of evolution from one species to another. 

The rock strata there contain a series of fossils that show every small step 

of an evolutionary journey that seems to have proceeded in fits and starts. 

Williamson [I981 1 examined 3.300 fossils showing how thirteen species 

of molluscs changed over several million years. What the record indicated 

was that the animals stayed much the same for immensely long stretches of 

time. But twice, about 2 million years ago and then again 700.000 years 

ago, the pool of life seemed to explode - set off, apparently, by a drop 

in the lake's water level. In an instant of geologic time, as the changing 

lake environment allowed new types of molluscs to win the race for survival, 

all of the species evolved into varieties sharply different from their 

ancestors. That immediate forms appeared so quickly, with new species 

suddendly evolving in 5.000 to 50.000 years after millions of years of 

constancy, challenges the traditional theories of Darwin's disciples 

since the fossils of Lake Turkana don't record any gradual change ; rather, 

they seem to reflect eons of stasis interrupted by brief evolutionary 
I' revolutions". 



2 . Background notes. 

We introduce a viability domain K , a subset of a finite diqensional 

space X , a finite dimensional control space U , a set-valued map F 

from K to U and a continuous function f from graph(F) to X . We 

define the viability problem for a controlled system with feedbacks as 

follows : V xo E K , find T > O  and an absolutely continuous function 

x( 0 )  satisfying 

I i) for almost all t E [O,T ] , x' (t) = f(x(t) ,u(t)) 

(2.1) ii) for almost all t E [O,T ] , u(t) E F(x(t)) 

iii) x(0) = xo . 

which are viable on [O,T ] in the sense that 

(2.2) for all t E [O,T ] , x(t) E K . 

By taking U = X , f(x,u) = u , we obtain the particular cqse of a 

viability problem for a differential inclusion 

The viability requirement (2.2) involves naturally restrictions of the 

dynamical system at the boundary of K . It happens that the best way to 

describe these conditions is to use the contingent cone to K at x 

(see Aubin-Cellina [I984 1, p. 176-179, for instance) defined by ; 

dK(x+hv) 
(2.4) V E X  I lim inf h = 0) h + 0+ 

We define the feedback map R from K to U by 

(2.5) R(x) := {u E F(X) I f (x,u) E T~(x)I 



We observe that any viable trajectory of the controlled system (2.1) 

is a solution to the "feedback" differential inclusion 

I i) for almost all t E [O,T ] , x' (t) = f (x(t) ,u(t)) 

ii) for almost all t E [O,T ] , u(t) E R(x(t)) 

iii) x(0) = xo 

(the initial set-valued map F is replaced by the feedback map R ) ,  

The main viability theorem (see Haddad [ 1981 1 ,  Aubin-Cellina [ 1984 ] 

p. 239-240) provides necessary and sufficient conditions for the existence 

of viable trajectories of (2.3). 

Theorem 2.1 

We assume that 

I i) K is locally compact 

ii) F is upper semicontinuous with nonempty convex 

compact images 

I iii) f is continuous and is &ffine with respect to the control 

Then the "first order" tangential condition 

is necessary and sufficient for the existence of a viable trajec- 

tory of the controlled system (2.1) for all xo E K . A 

As a by-product of our study of heavy viable trajectories, we shall 

prove the existence of viable trajectories under another set of assumptions : 

The convexity of the images of F is no longer required, but we shall need 



the differentiability of f and F (which we shall define) and above all, 

we need to add to the first-order tangential condition (2.8) a "second 

order tangential condition" involving the derivative of the feedback map R. 

Before defining heavy viable trajectories, we need to recall the 

following facts. 

When K is a subset of a finite dimensional X , we can define 

other concepts of tangent cones, among which we mention 

a) the tangent cone (introduced by Clarke [ 1975 1 )  : 

b) the Dubovickii-Miljutin [I963 ] cone : 

We have the following relations (see Cornet [ 1981 1 ; Penot [ 1981 1 , 
Aubin-Ekeland [ 1984 1 p 409. 

CK(x) = lim inf TK(y) C TK(x) 
Y + x  

and Y E K  

(2.12) Int CK(x) C DK(x) C Int TK(x) 

The tangent cone is always convex. It coincides with the contingent cone 

when K is a smooth manifold (tangent space) or when K is convex or, 

more generally, when K is soft in the sense that 

(2.13) x + TK(x) is lower semicontinuous . 

(see Aubin-Clarke [ 1977 1 1. 



Consider now a set-valued map R from X to U and a point (x,u) 

of its graph. The contingent derivative DR(x,u) is the set-valued map 

from X to U defined by 

It is equivalent to say that 

(2.15) lim inf d [w , R(x+hvt)-u 
h ) = o  h + 0+ 

The contingent derivative DR(x,u) is a closed process (a map whose 

graph is a closed cone). We say that the map F is soft if its graph is 

soft. Then DR(x,u) is a closed convex process, because its graph is 

equal to the tangent cone to Graph(R) at (x,u)). We shall say that R 

is lower semicontinuouslv differentiable if 

(2.16) (x,u,v) + DR(x,u)(v) is lower semicontinuous 

We observe that in this case DR(x,u) is a closed convex process because 

property (2.16) implies that (x,u) + T 
Graph (R)  

(x,u) is lower semicontinuous, 

and thus, Graph DR(x,u) is a closed convex cone. 

Finally, when K is a closed subset of X , we denote by 

(2.17) m(~) := ru E K  I llul = min I I~U} = aK(0) 
V E K  

the subset of elements of K with minimal norm. If F is a continuous 

set-valued map with closed convex images, the single-valued map 

x + m(F(x)) is continuous. This is no longer the case when F is only 

upper or lower semicontinuous (with closed convex images). However, 



if F is lower semicontinuous with closed images, 
(2.18) 

then x +d(O,F(x)) is upper semicontinuous 

We refer to Aubin [ 1983 ] and Aubin-Ekeland, [ 1984 1 ,  Chapter 7, Clarke 

(1983 ] for a general presentation of nonsmooth analysis relevant to 

this studv. 

3 . Heavy viable trajectories. 

We consider the viability problem (2.1), (2.2) for controlled systems 

with feedbacks. We have seen that viable trajectories are solutions to the 

feedback differential inclusion (2.6). When the functions x(*) and u(-) 

are absolutely continuous, we can differentiate the "first order" feedback 

1 aw 

(3.1) V t E [O,T 1 , u(t) E R(x(t)) 

and obtain the "second order" feedback law 

(3.2) for almost all t E [ O,T 1 , u' (t) E DR(x(~) ,u(t)) (f (x(t) ,u(t))) 

We now propose to select among all regulatory controls satisfying (3.2) 

the ones whose velocity has a minimal norm : such trajectories seem to 

be present in the evolution of macrosystems arising in social, economic 

and biological sciences (which motivated viability theory in the first 

place). 

Definition 3.1 

We shall say that absolutely continuous functions x ) , u ( ) )  form 

a heavy viable trajectory if it is a solution to the system of differential 

inclusions : 



I i) x' = f(x,u) 

ii) u' E rn(DR(x,u) (f (x,u))) 

iii) (x(0) ,u(O)) given in ~raph(R) 

which are viable in the sense that 

(3.4) V t E [ O,T 1 , x(t) E K and u(t) E R(x(t)) . 

We shall say that the subsers 

are the viability cells of the system. A 

We observe that along a heavy viable trajectory, a system will keep 

the control u(to) as long as the state x(t) remains in the viability 

cell C(u(to)) for t > t o  , because in this case inclusion (3.3)ii) 

states that ut(t) = 0 . If not, when x(t) leaves the viability cell 
- - 

C(u(to)) at time to , the control starts to evolve at time t until 
0 

the time t l  when x(tl) E C(u(tl)) . 

In the case of ordinary differential inclusions (when U = X and 

f(x,u) = u ), heavy viable trajectories can be written x(to)+(t-to)xV(to) 

when x(to) E c(x'(to>) as long as x(t o ) + (t-to)x'(to) remains in 

C(x'(to)) . In this case, the viability cells display areas of the viability 

domain where "linear quantitative growth" holds true. 

We observe also the following inclusion 

{x E R-'(u) I ~(x,u) E T 
R-l (u) 

for all u E Im(R) . 



We shall state our main existence theorem. 

Theorem 3.2 

I We assume that f is C in a neighborhood of Graph(F) and that 

(3.7) the maps F and TK are soft 

We posit the following "transversality condition" 

f (x,u) E Graph(R) , f (y,z) E X x X , -3 v E X satisfying 

E ~;(x,u)v + P(X,U)DF(X,U) (v) - DT~(X, f(x,u)) (v-y) 

Then the derivative of the feedback map R can be written 

Assume moreover that 

(3.10) Graph(F) is locally compact 

and that 

(3.11) The feedback map R is lower semicontinuously differentiatle 

Then the "first order" condition 

(3.12) f x E K  , R(x)ZQ 

and the "second order" condition 

imply the existence of heavy viable trajectories of the controlled system 

(2.1) for any initial state x E K and initial control u E R(x0) if 
0 0 



(3.14) Graph(TK) is locally compact 

If the graph of TK is not locally compact, the initial control must 

satisfy 

Several comments are in order. Theorem 3.2 should be compared to 

Theorem 2.1. Theorem 3.2 does not involve convexity requirements, but 

smoothness conditions (3.7) and (3.11) and second order condition (3.13) 

on top of the first order condition (3.12). The solutions are more regular 

(the control is absolutely continuous instead of being only measurable), 

but there exist the restriction (3.15) on the initial state when the 

graph of TK is not locally compact. Unfortunately, this happens 

whenever K involves inequality constraints : Take for instance K =R+  . 
Then Graph(TK) = ({O) x R+) U (10,m [ x  R) is not locally compact. But 

the map TK is soft and even lower semicontinuously differentiable 

because 

if v G O  
(3.16) DTK (x, U) (v) = 

otherwise . 

This crucial example shows that assumption (3.7) is not unreasonable. 

Since the maps F and TK are soft, the derivative DR(x,u) 

defined by (3. ) is a closed convex process and the differential inclusicn 

(3.3)ii) governing the velocity of the control is actually the differential 

equation 

There are no general explicit formula allowing to couch n~(DR(x,u)f(x,u)j) 

in terms of DF(x,u) (f(x,u)) , DTK(x,u)(f(x,u)) and fl(x,u) by using 

formula (3.9). However, see Annex for some further remarks on this nrnble~. 



We can also provide sufficient conditions for the regularity 

assumption (3.11) to hold true. For instance, thanks to a theorem on the 

lower semicontinuity of the intersection of two lower semicontinuous maps 

(see Aubin-Cellina [I984 ] p. 49), conditions (3.7) and (3.11) follow 

from the following ones 

I i) the set-valued maps F and TK are lower semi- 

continuously differentiable 

I ii) (x,u) -t DF(x,u) (f (x,u)) is bounded on some neighborhood 

I of each point (x,u) of Graph(R) 

We can adapt Theorem 3.2 to viability domains K which are the 

intersection of a subset L whose tangent cone has a locally compact 

graph and another subset. Namely, consider the case of a viability 

domain of the form : 

(3.18) i 

1 where A is a C -map from X to a finite dimensional space Y . We 

also assume that 

' 

T~(x) = T~(x) n T (x) and T (x) = A~(X)-'T~((UI) 
A- (M) A- ' (M) 

iii) V (x,u) E Graph(R) , 3 y > 0 , 3 E  > 0 such that 

(Y 'V) B~raph  (R) ((x,u),E) , V z E B(O,y) , we have 

2 E f;(y,v)f(y,v) + f:(y,v)DF(y,v)(f(y,v)) 

- DT,(Y,~(Y,v)) (~(Y,v)) 

This holds true for instance when : 



L and M are closed convex subsets and A is linear, 
(3.21) 

satisfying 0 E Int(A(L)-M) 

(see Aubin-Cellina [I984 ] p. 325) or when 

L and M are soft 
(3.22) 

and when V x E K , A'(x)T~(x) - TM(Ax) = X 

(see Aubin-Ekeland [ 1984 ] p. 440). 

In this case, the feedback map R can be written 

(3.23) R(x) := {u E F(x) I f(x,u) E TL(x) and A1(x)f(x,u) E T~(Ax)} 

Corollary 3.3. 

Let us assume that (3.20) holdstrue and that the graphs of F and 

TL are locally compact. We posit assumptions (3.7), (3.8), (3.11). (3.12) 

and (3.13) of Theorem 3.2. 

Then for any xo E K and any control uo E F(xo) satisfying 

there exist T > 0 and a heavy viable trajectory of the controlled system 

(2.1) on IO,T I .  A 

Proof. We replace F by F n T L  , whose graph is locally compact and 

we observe that A'(x)D~(Ax) C D (XI . 
A- (M) 

Let us formulate Theorem 2 in the particular case of differential 

inclusions, when U := X and f(x,u) := u . 



Corollary 3.4. 

Let us assume that the maps F and TK are soft and satisfy the 

"transversality condition" 

Y (x,u) E Graph(R) , Y (y,z) E X x X , 3 v E X such that 
(3.25) 

z E DF (x, u) (v) - DTK (x-u) (v-y) 

Then 

(3.26) DR(x,u) (v) = DF(x,u) (v) fi DTK(x,u) (v) . 

Assume that the graph of F is locally compact and that the regularity 

condition (3.11) is satisfied. We posit the first and second order 

conditions 

1 ii) Y (x,u) E Graph(R) , u E Dom DF(x,u) 17 Dom DTK(x,u) 

Then, for any xo E K and any uo E F(xo) satisfying either 

(3.28) u E TK(xo) when the graph of TK is locally compact 
0 

or 

(3.29) u DK(xo) 
0 

1 then there exist T > 0 and a C heavy viable trajectory of x' E F(x) , 
x(0) = xo and xl(0) = u , a solution to the second order differential 

0 

equation 



4 . Proof of the theorem. 

We shall prove this theorew in several steps. We begin by computing 

the derivative of the feedback map in terms of the derivatives of f , 
F and TK . 

Lemma 4.1. 

We posit assumptions (3.7) and (3.8). Then formula (3.9) holds true 

and DR(x,u) is a closed convex process. 
A 

Proof. 

We set $(x,u):= (x,f(x,u)) and we observe that 

(4.1) Graph(R) = Graph F n $-I (Graph(TK)) 

Therefore, we know that 

(4.2) 
- 1 

T ~ r a p h  (R) (X'U) T~raph(~) (x,u) 1, 

I 

For proving the other inclusion, we use the formula of Aubin [I983 ] 
I 

(see also Aubin-Ekeland, [I984 ] p. 440) to compute the tangent cone of 
I 

Graph(R) . The transversality assumption (3.8) implies that ~ 

Then we deduce that I 

'Graph (F) ($(x,u) C (x,u> 

Since the maps F and TK are soft, then the tangent and contingent cones 

coincide. Hence inclusions (4.21, (4.4) and CGraph(R) (x9U) T~raph(~)  (x,~) 

imply the equality 



which,  o b v i o u s l y ,  i m p l i e s  fo rmula  (3.9). Fur thermore ,  p r o p e r t y  (2 .4 )  i )  

i m p l i e s  t h a t  ( x ,u )  + Graph DR(x,u) is  lower semicon t i nuous .  

We s e t  

Lemma 4.2. 

The t r a j e c t o r i e s  o f  t h e  f i r s t  o r d e r  system o f  d i f f e r e n t i a l  i n c l u s i o n s  

i x ' ( t )  = f ( x ( t ) , u ( t ) )  

i i )  u l ( t )  E G ( x ( t ) , u ( t ) )  

i i i )  ( x ( 0 )  ,u(O))  = (xo,uo) g i ven  i n  Graph(R) 

which a r e  v i a b l e  i n  t h e  s e n s e  t h a t  

a r e  heavy v i a b l e  t r a j e c t o r i e s  o f  t h e  c o n t r o l l e d  sys tem ( 2 . 1 ) .  
A 

Proo f .  

Indeed,  t h e  v i a b l e  t r a j e c t o r i e s  of  ( 4 . 7 ) ,  (4 .8 )  s a t i s f y  

T h i s  i n c l u s i o n  and i n c l u s i o n  ( 4 . 7 ) i i )  imply t h a t  u l ( t )  be longs  t o  

m(DR(x(t) , u ( t ) )  ( f  ( x ( t )  , u ( t ) ) ) .  



Lemma 4.3. 

Let us assume that f is continuous, that the graph of F is 

locally compact, that 

(x,u) E Graph(R) + d(O,DR(x,u) (f (x,u)) 
(4.9) 

is upper semicontinuous 

and that the first and second order conditions 

i) V x E K  , R(x)#0 
(4.10) 

ii) V (x,u) E Graph(R) , f (x,u) E Dom DR(x,u) 

hold true. 

Then for any x E K and any control u E F(x ) satisfying eitker 
0 0 0 

(4.11) f(xo,uo) E TK(xo) when Graph(TK) is locally compact 

0 r 

(4.12) f(xo,uo) E DK(xo) 

there exist T > 0 and a heavy viable trajectory of the controlled syszern 

(2.1) on [O,T I .  A 

Proof. 

a) By Lemma 4.2, we have to prove the existence of viable trajectsries 

to the system (4.71, (4.8). Condition (4.9) is equivalent to the upper 

semicontinuity of the set valued map G . Then 

(4.13) 
( (x,u) -+ f (x,u) x G(x,u) is upper semicontinuous with compzct 

convex values. 

It is also clear that the tangential condition : 



is satisfied. If the subset Graph(R) were locally compact, it is 

sufficient to apply Theorem 2.1 to the problem (4.7)-(4.8) for solving 

the problem. This is possible under assumption (4.11). Unfortunately, 

we have observed that this is not necessarily the case. We then shall 

follow the method proposed by Cornet and Haddad [I983 ] for solving the 

viability problem for second order differential inclusions. The idea 

is to replace Graph(TK) by a locally compact subset K C Graph(TK) 

large enough for the tangential condition (4.14) to remain valid for K . 
The price to pay is to choose the initial control uo E F(xo) such that 

f(x ,u ) belongs to the tangent cone DK(xo) introduced by Dubovickii- 
0 0 

Miljutin [ 1963 I .  

b) Assume now that the graph of TK is no longer locally compact 

and take f(xo,uo) in DK(xo) . 
There exist E > O  and a > 0 such that the compact convex subset 

We observe that the interior of KO is non empty and that f(xo,uo) 

belongs to the interior of TK (xo) . Since the graph of x + Int T 
0 

is open (see Aubin-Cellina [I984 1 p. 221), there exists 6 E 1 0 , ~  1 
such that 

V x E KO Il (xo+6B) , f(xo,uo)+6B C Int TK (x) = DK (x) 
0 0 

By the continuity of f , there exist p < 6 and TI < 6 such that : 



We s e t  

which i s  o b s v i o u s l y  compact. 

S i n c e  DK ( x )  C TK (x)  C TK(x) , we deduce from (4.16) t h a t  K i s  
0 0 

a s u b s e t  of  Graph(R) . 
c )  L e t  us  s e t  v  := f ( x ,u )  and choose w i n  m(DR(x,u)(v)) . 

So (v,w) be longs  t o  f ( x , u )  x  G(x,u) . It i s  s u f f i c i e n t  t o  check t h a t  

f o r  imply ing t h e  v i a b i l i t y  c o n d i t i o n  

S ince  w E D R ( x , u ) ( v )  , then (v,w) E T  Graph (R) ( X s U )  T ~ r a p h  (F) ( x , u )  
There e x i s t  sequences hn + 0+ , Vn + v and w + w such t h a t  

n  

0 

Also,  f o r  n  l a r g e  enough, x+hnvn be longs  t o  xo+PB and u+h w 
o o n n  

be longs t o  uo+QB . S i n c e  f  ( x ,u )  be longs t o  f  (xo,u0)+68 , t h e n  vn 
0 

belongs t o  f ( x o , u o ) +  B f o r  n  l a r g e  enough so  t h a t ,  by t h e  v e r y  

d e f i n i t i o n  o f  KO , xo+hnvn be longs t o  KO . Hence 

(4.21) (x+hnvn , u+hnwn) be longs t o  K f o r  l a r g e  n  ' s  

and p r o p e r t y  (4.18 ensues .  

d )  We t h e n  app ly  t h e  v i a b i l i t y  theorem : t h e r e  e x i s t s  a  s o l u t i o r  

of  t h e  system (4 .7 )  such t h a t  , 



(4.22) f o r  a l l  t E [O,T ] , ( x ( t )  , u ( t ) )  E K C Graph(R) . 

This  is  a  heavy s o l u t i o n  of t h e  con t ro l l ed  system (2.1) .  

Proof of Theorem 3.2. 

The f i r s t  p a r t  fo l l ows  from Lemma 4.1 and t h e  second p a r t  from 

Lemma 4.3, by observ ing t h a t  (4.9)  fo l lows from (3.11).  

5  . Exam~ le  : t he  smooth case .  

We cons ider  now t h e  smooth case ,  when 

and when F i s  t h e  cons tan t  map equal  t o  U . 

Theorem 5.1. 

Let  us assume t h a t  f  i s  a  C'  - func t ion  from X x  U t o  X , 
g  i s  a c2 - func t ion  from X t o  Y and t h a t ,  V x  E  K , g l ( x )  E L(X,Y) 

i s  s u r j e c t i v e .  We suppose t h a t  

(5.1) V x  E K  , R(x) := {u E  U 1 g l ( x )  f ( x , u )  = O} # @ 

and t h a t  

(5.2)  V (x ,u)  E Graph(R) , g l ( x )  f:(x,u) E L(U,Y) i s  s u r j e c t i v e  . 

Then, f o r  any x  E K and uo such t h a t  g l ( xo ) f ( xo ,uo )  = 0  , t h e r e  
0 

e x i s t s  a  heavy v i a b l e  t r a j e c t o r y ,  a  s o l u t i o n  t o  t h e  system of d i f f e r e n t i a l  

i n c l us i ons  : 



Proof. 

In this simple case, we can compute m(DR(x,u))(v) explicitely. 

Indeed, since TK(x) = Ker gl(x) , then R(x) = {u E U I g'(x)f(x,u)=O: . 
By setting : 

we observe that Graph(R) = {(x,u) ( h(x,u) = 0) . This function os C 1 

and we check easily that 

Since both gl(x) and gl(x)f:(x,u) are surjective by assumption, then 

hl(x,u) is surjective. Therefore, this contingent cone to Graph(R) 

at (x,u) - actually, its tangent space - is the set of pairs (v,w) 

such that hl(x,u)(v,w) = 0 . Hence 

Now, we can compute explicitely the element of minimal norm m(DR(x,u)(v)) 

which minimize the norm Uwll under the linear constraint 



I ts s o l u t i o n  is  g iven  e x p l i c i t e l y  by t h e  r igh t -hand s i d e  o f  ( 5 . 3 ) i i )  . 

Example. Heavy v i a b l e  t r a j e c t o r i e s  on a f f i n e  subspaces.  

We c o n s i d e r  t h e  c a s e  when K = {x E  X I Gx = y )  where G E  L(X,Y) 

i s  s u r j e c t i v e .  We assume t h a t  

i )  V x  E  K , 3 u  E U such  t h a t  Gf (x ,u)  = 0 

(5 .6)  i i )  V x  E K , V u  E U such  t h a t  Gf (x ,u)  = 0 , ~ f : ( x , u )  

i s  s u r j e c t i v e .  

Then f o r  any xo s a t i s f y i n g  Gxo = y  , uo s a t i s f y i n g  Gf(xo,uo) = 0 , 
t h e r e  e x i s t s  a  heavy v i a b l e  t r a j e c t o r y ,  a  s o l u t i o n  t o  t h e  system of  

d i f f e r e n t i a l  e q u a t i o n s  

* 
When G = g  E X (Y = R) , assumpt ions (5 .6 )  become 

( i )  V x E K  , 3 u E U  such t h a t  < g , f ( x , u ) >  = 0 

I i i )  V x E K ,  V u E U  such  t h a t  < g , f ( x , u ) >  = 0 , 
* 

t hen  f:(x,u) g  # 0 

and e q u a t i o n  ( 5 . 7 ) i i )  becomes 



Example. Heavy viable trajectories on the sphere. 

Let G be a symmetric positive definite linear operator from * 
X to X and we take 

We assume that 

Then the heavy viable trajectories on the sphere are the solutions to 

the system of differential equations 

Remark. 

Consider the case when 

where g is a C* -map from X to Y and A  is a C 1  -map from X 

to Z , Y and Z being finite dimensional spaces. We assume that 

Y -+ TM(y) is lower semicontinuous, that 

(5.14) V x E K , A '  (x) Ker g' (x) - TM(Ax) = X . 

and that, Y y, z E Z x Z , 3 v , a solution to the inclusion : 



where we have set f : f(x,u) , g' := gt(x) , A' = A'(x) , f: = fl(x,u) , 
X 

f: := f:(x,u) , AW(u,v) = A1'(x) (u,v) , gl'(u,v) = gI1(x) (u,v) . 

Assumption (5.14) implies that 

(5.16) R(x) = iu E U  I gl(x)f(x,u) = 0 and A1(x)f(x,u) ET~(A~)) 

and assumption (5.15) implies that 

Annex. 

Let L C X and M C Y be two closed convex subsets and A E L(X,Y) 

satisfying 

(* 1 0 E Int (A(L) - M) 

Then K := L '7 A-I(M) is a nonempty closed convex subset. Let n and 
L 

n denote the projectors of best approximation onto L and M . Then M 
we can write 

where q is a solution to the equation 

* 
Furthermore, Am(K) = nM(q + A ~ ~ ( - A  q)) . 
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