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PRETACE 

In this paper, the authors look at some quite general optimization 
problems on the space of probabilistic measures. These problems ori- 
ginated in mathematical statistics but have applications in several other 
areas of mathematical analysis. The authors extend previous work by 
considering a more general form of the constraints, and develop numeri- 
cal methods (based on stochastic quasigradient techniques) and some 
duality relations for problems of this type. 

This paper is a contribution to research on stochastic optimization 
currently underway within the Adaptation and Optimization Project. 

ANDRZEJ WIERZBlCKl 
Qraimm 
System and Decision Sciences 



DUALITY RELATIONS AND NUMERICAL METHODS FOR 
OPTIMIZATION PROBLEXS ON THE SPACE OF 

PROBABILTTY MEASURES WITH CONSTRAINTS ON 
PROBABILlTY DENSITIES 

Yur i  h o l i e v  and Alezei Gaivoronski  

1. INTRODUCTION 

This paper is concerned with some quite general optimization problems on 

the space of probabilistic measures which originated in mathematical statistics 

but which also have applications in other areas of numerical analysis and 

optimization. 

Assume that we have a set Y which belongs to  Euclidean space Rn; let B(Y) 

denote the Borel field of subsets of Y. Consider two finite positive Borel meas- 

ures H-(y) and ~ ' ( y ) .  We shall investigate the following optimization problem: 

max *O(H) 
H 

(1) 

f dH-(y ) r fdH(y)  5 J d ~ + ( y )  for any A E B(Y) 
A A A 

(3) 

Here the J ~ ~ ( H ) .  i = c m ,  are functions which depend on measure H,  with pro- 

perties which are specified below. If measures H+ and H- have densities H;(y) 

and Hy(y), respectively, then constraint (3) becomes 

where is the (unknown) density of measure H. There are some special 

cases of this problem, notably when the following three conditions hold simul- 

taneously: (i) functions qi(H), i = G, are linear with respect to H, i.e., 



(ii) functions gi (y)  form a Tchebycheff system, and (iii) constraint (3) is either 

nonexistent or assumes the form C-< Y ( y )  g c'. In this case the problem 

can be treated analytically and provides the subject of moment theory (see 

[I-31 for more information on this topic). Special duality relations, numerical 

methods for solving (1)-(4) without constraint (3) and various applications to 

stochastic optimization problems have been described in [4-91. 

The purpose of this paper is to  develop numerical methods and some dual- 

ity theory for (1)-(4) with constraints of general form (3). Let us f i s t  consider 

one example from statistics in which constraint (3) plays an important role. 

The model under consideration is known as finite population sampliG [10,13.] 

and has much in common with optimal experimental design [12-141. Suppose 

that  we have a collection S of N objects labeled i = 1, ..., N. Each object is 

described by two variables yi and zi, where yi is known for all i and zi can be 

estimated.through observations zi using the expression zi = zi + Ti, where T~ is 

random noise. It is usually assumed that zi = $T(y)29, where 

$(y) = (+,(y) ,.... qm(y)) are known functions and 29 = (29, ,..., 29,) are unknown 

parameters. The problem is to choose a subset s c S containing n objects in 

such a way as to get  the best possible estimate of parameters 29 given observa- 

tions zi, i E S. Measure H+ can be associated with the initial distribution of 
- 

points yi, i = 1,N, and measure H with the subset s to be found. The variance 

matrix of the best linear estimate of parameters 29 in the case where all the  T~ 

are independent and have the same variance becomes (after substitution) pro- 

portional to  matrix M ,  where 

and the problem reduces to  that of minimizing some function of this matrix, 

for instance, its determinant: 

min det (M) 
H 

for any Bore1 A c Y. 

This problem is exactly of type (1)-(4); constraints (2) may express, for 

instance, limitations on the variance of the optimal plan. 



2. THE LWEAR PROBLEX 

We shall begin with duality relations and the characterization of optimal 

distributions for the following linear problem: 

jd.H-(y) sc j W ( y )  a j d H + ( y )  for any Borel A c Y c R 
A A A 

Let us first consider the case in which there are no constraints (6) .  Define 

p ( c e f ) = ~ y : y  E Y ,  f ( y ) = c {  

z + ( c , f ) = t y : y  E Y ,  f ( y ) > c {  

Z ' ( c , f )  = l y :  y  E Y ,  f  ( y )  < c j  

for some function f  ( y )  and let  

The following lemma gives all possible solutions of problem (5),(7),(8):  

kmma 1. S p p o s e  that is a solution of problem (5).(7).(8) and 

1. H+(y)  and H ( y )  are positive Borel measures such that 

m > j d H + ( y )  2 1, j c W - ( y )  a 1 ,  where Y is a compact set in Rn 
Y Y 

2. f inct ion is continuous. 

( i )  j ~ * ( ~ )  = j ~ + ( y )  for m y  Bore2 A c Z+(C *,qO) 
A A 

( i i )  j d H + ( y )  2 j d H * ( y )  a f d H - ( y )  for any Borel A c @(c *.qO) and 
A A A 

j d ~ * ( y ) = l -  j w + ( y ) -  j d.H-(y) 
P ( c  *,qO) z+(c * , q 4  Z(C *,go) 



(iii) J ~ H  *(y) = J c ~ - ( y )  f o r  m y  &re1 A c Z-(c *.go). 
A A 

Proof. We may assume without loss of generality t ha t  gO(y) r 0. If this is not 

the case we may take ~ ' ( y )  = gO(y) - min gO(y) instead of gO(y),  which will not 
Y E Y  

affect the  optimal distribution. Let us  first show tha t  a measure H with proper- 

t ies (i)-(iii) exists. From the continuity of the  function gO(y),  the sets Z+(C ,go) 

and Z-(c,g0) are  open with respect t o  t he  se t  Y while t he  se t  @(c ,go) is closed. 

Thus, for arbi t rary Borel se t  A c Y we have A = A+ u A. u A_, where 

A+ C Z+(c :go), A. C @(c *,go), A- C Z-(c *,go), and sets  A + ,  A o ,  A- are rneasur- 

able. Therefore any measure on Y is fully defined by its values on subsets of 

Z'(c *.go), f l ( c  *,go) , Z-(c *,g O). From the  definition of Z+(C ,g O) we have: 

and Z+(cl.go) c ~ + ( c ~ g O )  for all c > c2. This gives 

and therefore 

1 -  J W + ( Y ) -  j w - ( y ) -  J dH-(y )zO 
P(C .,9D) z- (c  ,qO) zO(c ' ,qO) 

from the definition of c *. 

Now consider the sequence c, < c , c ,+~  r c, , c, + c *. We have the fol- 

lowing relations: 

Considering the finite positive Borel measure H = H+ - H- we obtain 

J G ( Y ) S  J m y )  
z - ( c ,  ,qO) z-(c ,  , q 9 u m c ,  ,qO) 



Taking into account the finiteness of the measure H we obtain: 

From the definition of c and the fact that c, < c we have 

which gives 

All of this proves that (i)-(iii) do not contradict each other and that there is 

some positive Borel measure f?t which satisfies (i)-(iii) and also constraints (7) 

and ( 8 ) .  Now let H' be an arbitrary positive Borel measure which satisfies con- 

straints (7) and (8). Suppose that for this measure there is some set 

A' c Z+(C *,go) such that (i) does not hold, i.e., 

Let us consider a sequence c, 4 c *, c, > c *, and take A, = ~ + ( c ~ , q O )  n A e .  We 

have A'  = u A,, 4 C 4 + ,  and therefore 

Thus, there must exist a c, > c and a y > 0 such that 

Note that  qO(y) > c, > c for y E 4. Using the delkition of fi and constraint 

(7) we have: 



for arbitrary set A c Z+(C *.go), and 

for arbitrary set A C Z-(c This, together with the fact that is posi- 

tive, implies: 

We shall now use (9)-(11) to estimate the difference between the values of the 

objective function for measures fi and H': 

Thus, H' cannot be the optimal measure, thus proving (i). Parts (ii) and (iii) 

may be proved in the same way. 

For the particular case in which we have only the upper measure H+, which 

is atomless, the result of Lemma 1 is close to Theorem 1 from [ l l.]. 

&ample 1. Suppose that measures H+ and H- have piecewise-continuous den- 

sity functions H; and Hv-, respectively. In this case i t  is natural to look for the 

optimal measure among probabilistic measures with piecewise-continuous 



probability density functions (p.d.f.s) ~ ~ ( y ) ,  and to replace constraint (7) by: 

The optimal p.d.f. ~ ; ( y )  under these circumstances is defined as follows: 

Elzample 2. Suppose that measures H+ and H- assign positive weights to a 

finite number of points, i.e.: 

Define the sets P, r as follows: 

P(c,gO) = ti: gO(yi) = C ,  1si 411 

and take 

The optimal probabilistic measure is  then defined as follows: 

- 
H*=t(p;yi), i =1.1] , 

where 



The result of this lemma may be easily generalized to the case in which 

the Bore1 field in ( 7 )  is replaced by some other a-field D. In this case it is 

necessary for the sets 2 + ( c , q 0 ) ,  ~ - ( c , q O ) .  $ (c .qO)  to belong to D. The proof 

of the lemma remains unchanged. 

Another easily treated case arises when constraint ( 7 )  is replaced by 

where sets 4 are closed, 4 n 4 = $ for a # j ,  and 

- 
for all B such that B n 4 = $ for i = 1,N.  

We shall now turn to a numerical algorithm for solving ( 5 ) ,  ( 7 ) ,  ( 8 ) .  It is 

clear from Lemma 1  that  the problem of finding the optimal solution of 

( 5 ) , ( 7 ) , ( 8 )  is essentially that of finding the smallest possible c  for which 

In what follows we present a simple algorithm for finding such a c  . This algo- 

rithm is based on stochastic quasigradient methods developed for stochastic 

nonsmooth optimization problems [15]. We shall assume that  H+ and H- have 

density functions $ and H i ,  respectively, so that constraint ( 7 )  becomes (7a )  

and ( 1 2 )  is equivalent to the following problem: 

Find the smallest possible c  such that 

where 

Observe that, under the conditions of Lemma 1, W ( c )  is a nonincreasing func- 

tion of c  such that lim W(c ) = W(c *) for arbitrary c  *. Consider the multi-valued 
C & C *  



function 

Problem (13) now becomes the problem of finding c such that  

0 E I(c) . (14) 

From the properties of the function W(c), there exists a concave function ~ ( c )  

such that  p(c) = F,(c), where F,(c) is the set  of subdifferentials of function 

F(c ) a t  the point c : 

Here P(Y) is the Lebesque measure of Y, y is distributed uniformly on the set 

Y. Ey denotes expectation with respect to y ,  and c- = min gO(y). Thus, problem 
YEY 

(14) becomes one of maximizing the function I$ f (c ,y), where 

Stochastic quasigradient methods capable of solving this problem can be 

implemented with little computational effort. One such method can be stated 

as follows: 

where 

p, is a stepsize such that  



and y is a random variable uniformly distributed on Y. 

Let us now consider the problem (5)-(B), i.e., include constraints of type 

( 6 ) .  We shall 'first prove the duality result which reduces it to a minimax prob- 

lem with an inner problem of type ( 5 ) , ( 7 ) , ( 8 ) .  A similar result for problems 

without constraints ( 7 )  was proved in [?I. 
We begin by defining the set G of feasible distributions: 

and the set G  of all distributions satisfying (7 ) :  

The problem then becomes 

Consider the following set: 

2 = 12 : z = ( z O  ..... z m ) .  z = q ( y ) ( y ) ,  H E G j  . (16 )  
Y 

Theorem 1.  9u.ppose that the conditions of Lemma 2 m e  satisfied a d  that the 

following additional assumpt ions hold: 

1 .  Y i s ~ o m p a c t a n d t h e ~ ~ ( ~ ) ,  i = D , m , a r e c o n t i n u o u s  

2.  0 E int co 2. 

Wnder these condit ions a solut ion to problem (5 ) - (8 )  ezis ts  m d  

(i) m a x ~ q O ( y )  = min p ( u ) .  where U+ = lu : u, 2 0, i = ml.mj and 
H E G  y U E V +  

subject to the constraint 



for any Borel A .  

(ii) Fbr anv solution H *  of problem (5)-(8) there ezis ts  n u *  E U+ such that H*  

.is n solution of problem (17)-(18) for u = u and p(u *) = max p(u)  
u € V +  

Proof. In what follows we shall consider the reduction of the usual Rn topology 

to  set Y for sets from P. In particular, we shall use the term "open set" as an 

abbreviation for "open set  with respect to Y ,  and so on. Consider Arst the set  

Z defined in (16). This set  is convex because for any z ',e " E Z and A: 0 s X 4 1 

we have 

for any H1,H2 E G, and 5 is convex by definition. We shall now prove that  Z is 

closed. Consider an arbitrary convergent sequence z s  : z S  E Z ,  zS + z * .  To 

prove tha t  Z is closed we have to show that  z E Z. A probabilistic measure HS 

is associated with each point z s  such that  zf = / g ' ( y ) m ( y ) ,  i = G. and 

Set Y is compact and therefore, accorchng to the  Prohorov theorem [16], 

there must  exist a subsequence P k ( y )  and a measure H*  such tha t  

for every continuous bounded f (y ). Now take an arbitrary closed set A c Y and 

consider the open set A, = ly : p(y,A) < E ] ,  where p(y.A) is the  Hausdorf dis- 

tance between y and A:  

We have 



due to  the fact that A, decreases to A as E J 0. Now consider the following func- 

tion (see [16]): 

where 

This function is continuous and bounded for E > 0, and therefore we have 

On the other hand, 

leading to 

for arbitrary E .  Thus we finally obtain 

for any closed A .  

This expression holds for all open sets  because for any open s e t  A t he re  

exists a sequence of closed sets 4 such that  4+1 > A, and 



This fact, together with the regularity of measures H+ and H*, implies that 

for any A c B( Y). Therefore H* E G ,  and since 

we must have z E 2. This confirms that set Z is closed. 

W e  have now proved that Z is a convex compact set in R ~ + '  and therefore 

that the optimal value of the problem 

is equal to the optimal value of the following finite-dimensional problem: 

max z0  
2 €Z 

(19) 

z , = o .  i=l .nl  (20) 

z , < o ,  i=nl.n . (21) 

From assumption 2 of the theorem we deduce that the optimal value of 

(19)-(21) must be equal to the optimal value of the following minimax problem: 

m 
min max [ z  0- C ujzj] 
UEV+ ~ € 2  j = 1  

and thus for any solution z ' of (19)-(21) there must exist a u E U+ such that  

- m 
( ~ ( u * )  = min ?(u ) ,  F(u) =rnax[zo-  Cujz j ]  

u E V f  x €2 j =I 



We may now deduce that a solution to (5)-(8) exists because a solution to 

(19)-(21) exists and for each z E Z there is an H E G such that 

From (22) we obtain 

m 
m a ~ ~ ~ ~ ( ~ ) d H ( y )  = rninY(u) = min max [zO- C ujz j  ] 
H E G  y U E  V+ U E V + Z E Z  j = 1  

m 
= rnin max j [q"y)-E u jq j (y) ]  dH(y) = rnin q(u) 

U E V +  H E C  y j =I U E  V+ 

and the &st part of the theorem is proved. 

Now let H* be an arbitrary solution of (5)-(8) and 

i= jq i (y)dH*(y)  . i = . 

From (23). there exists a u *  E U+ such that 

and 

q(u '1 = min p(u) 
u E V +  

This completes the proof. 

We have now reduced the original problem (5)-(8) to that  of minimizing 

the convex function q(u). According to Lemma 1, the optimal solution of 

(5)-(8) is then described by the optimal value u*  and a constant c *, which is 

the smallest possible value of c such that the following inequality holds: 

j dH+(Y) + J M - ( y ) g  1 , (24.1 
Z+(C ,u *) z-(c ,u *)uZO(c ,u *) 

where 

z+(c,u)  = f y :  y E Y ,  r (u , y )  > c ]  



The following distributions H' are then possible candidates for the optimal 

solution: 

In this case, however, not all of the distributions defined by (24)-(25) are 

optimal. In order to ensure optimality i t  is necessary to introduce a unique- 

ness condition which specifies that  the point 

be the same for all H* defined by (24)-(25). This will be the case if, for 

instance. 

I t  is very difficult to obtain u ' by minimization of p(u) using convex optim- 

ization methods. This is because i t  is necessary to solve problem (17)-(18) (or. 

equivalently, (24)) in order to get the value of p(u)  for particular u ,  which is in 

itself a computational challenge. However, it is possible to implement stochas- 

t ic optimization methods for solving this problem using an approach similar to 

(15). We shall suppose once again that  the measures have densities, so that 

constraint (7) may be replaced by (?a). 

The problem of solving (5)-(7) now becomes the following: 

Find u such that 

u * = a r g  min J r ( ~ . ~ ) ~ ( ~ . c ( u ) ) d y  . 
U € V +  y 



where 

and c (u)  is a solution of the following problem: 

where 

Here p(Y) is the Lebesque measure of Y, c, is a large negative number and y is 

distributed uniformly over Y. Problems (26)-(27) can be solved simultaneously 

using stochastic quasigradient techniques. The method in this particular case 

is: 

where src is a projection operator on u+, 

and yS is an observation of the random variable, which is uniformly distributed 

on Y. 

The convergence of this algorithm can be studied using the theory of nons- 

tationary processes in stochastic optimization [I?]. Method (29) may be con- 

sidered as a means of tracking the changing maximum of function (27). Under 

quite broad assumptions, convergence requires that b s / p ,  -, 0. In this case we 



have 

and algorithm (29) becornes a stochastic quasigradient method for solving 

Applying this theory to the problem at hand, we find that  method (28 ) - (29 )  

will solve problem ( 2 6 ) - ( 2 7 )  if, in addition to the conditions specified in 

Theorem 1, we have the following constraints on the stepsizes: 

3. THE GENERAL NONLTNEAR PROBLEYI 

We now have all the tools necessary to investigate the general nonlinear 

problem ( 1 ) - ( 4 ) .  The approach is the same as in [ 8 ] .  We shall assume that 

functions rk i (H) are directionally differentiable: 

for a = Crn and H I , H 2  E c, where 

In what follows we assume that  functions q i ( y , ~ )  are such that expression ( 3 1 )  

is meaningful. The following lemma gives conditions which are necessary and 

in the convex case also sufficient for distribution H to be a solution of problem 

( 1 ) - ( 4 ) .  

kmma 2. Suppose t h a t  + ( H e )  r + ( H )  f o r  s o m e  H' E G a n d  al l  H E G ,  a n d  that  

t h ~  fo l lowing c o n d i t i o n s  a r e  sa t i s f i ed :  

1. f i n ~ t i o n s q ' ( ~ , ~ ) ,  i = = , a r e  b o u n d e d o n  Y f o r d l  H E G  

2. ~ ~ 0 ( ~ l ) - ~ 0 ( a ~ 2 + ( 1 - a ) H l ) ~  < L a , O < a % l a n d L  < =  

3 .  f i n c t i o n s  \ki ( H ) ,  i = G, m e  c o n v e z ,  i . e . .  



where  

I f ,  addi t ional ly ,  qO(k?) is concave and  the  d is t r ibu t ion  H*  sat is f ies ( 3 2 ) ,  

then H* is the  so lu t ion  of p rob lem (1)- (4) .  

The proof of this lemma is similar to that of Lemma 1 from [B] and is 

therefore omitted. 

Combining the results of Lemma 2 and Theorem 1, we obtain Theorem 2. 

Theorem 2. Suppose t h a t  qO(H') r \ kO(H)  fo r  aLl H E G ,  t ha t  t h e  condit ions of 

L e m m a  2 m e  sat isf ied and  tha t  t he  fol lowing assumpt ions  hold: 

1. S t  Y c R .is compac t  

2. ~ + ( y )  and H'(y ) are posi t ive Borel m e a s u r e s  s u c h  that 

- 
3. F i m ~ t i o n s q ~ ( ~ , H * ) ,  i = O , m , a r e c o n t ~ u o u s o n Y .  

Then 

(i) We have 

where  

v + = { u : ~ r o j  , 



s u b j e c t  to  c o n s t r a i n t s  

fo r  any Borel  A c Y .  

(ii) m e r e  e z i s t  a u E C+ and a c s u c h  tha t  

q(u *) = rnin q(u) 
U E  V C  

j d H * ( y )  = f cWt(y)  f o r  dl Borel A c ZC(c *.u *) 
A A 

jw*(y) = f ~ - ( y )  f o r  all Boral A c Z-(c *.u *) 
A A 

fm-(y ) ~ W ( Y  ) + f W + ( y  ) f o r  dl Bore1 A c @ ( c  *,u *) 
A A A 

j w*(y)=l- j W + ( y ) -  j w-(y) , 
zO(c ,u? z + ( c  ,u') Z ( c  ,u ') 

w h e r e  

z'(c,u)=ty:y E Y ,  Q(u ,y )>~ j  

Z-(c .u) = [y : y E Y ,  Q(u,y) < c j 

@(c,u) = fy:  y E Y ,  Q(u.y) = c j  

and 

Numerical methods for solving nonlinear problems with constraints of type 

(3) will be the subject of a subsequent paper. 
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