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PREFACE

In this paper, the authors look at some quite general optimization
problems on the space of probabilistic measures. These problems ori-
ginated in mathematical statistics but have applications in several other
areas of mathematical analysis. The authors extend previous work by
considering a more general form of the constraints, and develop numeri-
cal methods (based on stochastic quasigradient techniques) and some
duality relations for problems of this type.

This paper is a contribution to research on stochastic optimization
currently underway within the Adaptation and Optimization Project.

ANDRZEJ WIERZBICKI
Chairman
System and Decision Sciences
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DUALITY RELATIONS AND NUMERICAL METHODS FOR
OPTIMIZATION PROBLEMS ON THE SPACE OF
PROBABILITY MEASURES WITH CONSTRAINTS ON
PROBABILITY DENSITIES

Yuri Frmoliev and Alezei Gaivoronski

1. INTRODUCTION

This paper is concerned with some quite general optimization problems on
the space of probabilistic measures which originated in mathematical statistics
but which also have applications in other areas of numerical analysis and
optimization.

Assume that we have a set Y which belongs to Euclidean space R"; let B(Y)
denote the Borel field of subsets of Y. Consider two finite positive Borel meas-

ures H(y) and H*(y). We shall investigate the following optimization problem:

max YO(H) (1)

Vi(H)<0 (2)
{dH‘(y)s{dH(y)s{dH*(y) for any A € B(Y) (3)
.{:dH(y) =1 . (4)

Here the \I’i(H). i = 0,m, are functions which depend on measure H, with pro-
perties which are specified below. If measures H* and A~ have densities H;’(y)

and H,(y). respectively, then constraint (3) becomes
Hy(y) < H,(y)< Hf(y) .

where H, (y) is the (unknown) density of measure H. There are some special
cases of this problem, notably when the following three conditions hold simul-

taneously: (i) functions ¥*(H), i = 0,m, are linear with respect to H, i.e.,

Vi(H) = {q‘(y)dH(y)
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(ii) functions g*(y) form a TchebychefI system, and (iii) constraint (3) is either
nonexistent or assumes the form C~ < Hy(y) < C*. In this case the problem
can be treated analytically and provides the subject of moment theory (see
[1-3] for more information on this topic). Special duality relations, numerical
methods for solving (1)—(4) without constraint (3) and various applications to

stochastic optimization problems have been described in [4-9].

The purpose of this paper is to develop numerical methods and some dual-
ity theory for (1)—(4) with constraints of general form (3). Let us first consider
one example from statistics in which constraint (3) plays an important role.
The model under consideration is known as finite population sampling [10,11]
and has much in common with optimal experimental design [12—-14]. Suppose
that we have a collection S of N objects labeled i = 1,...,N. Each object is
described by two variables y; and z;, where y; is known for all ¢ and z; can be
estimated through observations z; using the expression z; = z; + 7;, where 7; is
random  noise. It is  usually assumed that =z;= #/T(y )8, where
Y(y) = (¥,(¥).... ¥ (y)) are known functions and ¥ = (8,.....3,,) are unknown
parameters. The problem is to choose a subset s C S containing n objects in
such a way as to get the best possible estimate of parameters ¥ given observa-
tions z;, i € S. Measure H* can be associated with the initial distribution of
points y;, i = 1,N, and measure H with the subset s to be found. The variance
matrix of the best linear estimate of parameters ¥ in the case where all the 7,
are independent and have the same variance becomes (after substitution) pro-

portional to matrix M, where
M7= fyy)yT(y)dH(y)

and the problem reduces to that of minimizing some function of this matrix,

for instance, its determinant:

ml'bn det (M)
SdH(y) = faB*(y)
A A

for any Borel A C Y.
This problem is exactly of type (1)—(4); constraints (2) may express, for

instance, limitations on the variance of the optimal plan.



2. THE LINEAR PROBLEM

¥We shall begin with duality relations and the characterization of optimal

distributions for the following linear problem:

max 4 9%(y)dH(y) (5)

.4q"(y)dH(y)so. i=Tm (6)
{M‘(y)s{dﬂ(y)s{dﬂ*(y) for any Borel Ac ¥ c R (7)
4dﬂ(y)=1 . (8)

Let us first consider the case in which there are no constraints (6). Define
Z%c.f)=ty:yeY. fly)=c]
ZHe f)=ly:y €Y, fly)>c}
Z(c.f)=ly:yeY. fly)<c}

for some function f (y) and let

¢® =inf{c: f d(AYy)-H (y)) <1 —de_(y)f
Z*(c.q%) Y

The following lemma gives all possible solutions of problem (5),(7).(8):
Lemma 1. Suppose that H'(y) is a solution of problem (5),(7).(8) and

1. HY(y) and H(y) are positive Borel wmeasures such that
o > de"’(y) >1, de‘(y) < 1, where Y is a compact set in F™
Y Y

2.  Punction ¢%y) is continuous.
Then

(i) .{dﬂ'(y) = {dH*’(y) for any Borel A ¢ Z¥(c *,q°)
(ii) .{dH*(y) > :{dH'(y) > {dH‘(y) for any Borel A c Z%¢c *.q°) and

J 'y =1- [ dH*@y)- [ dH (y)
2% °.q% Z¥c g% Z(c"q%
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(iii) de'(y) = de'(y) for any Borel A ¢ Z(c *.q9).
A A
Proof. We may assume without loss of generality that g%y) = 0. If this is not
the case we may take §%y) = ¢%y) ~ mil}'x/ q%y) instead of g%y), which will not
ye

aflect the optimal distribution. Let us first show that a measure H with proper-
ties (i)—(iii) exists. From the continuity of the function g%y), the sets Z*(c,q9)
and Z‘(c.qo) are open with respect to the set Y while the set Z°(c,q°) is closed.
Thus, for arbitrary Borel set ACY we have A=A, UAjUA_, where
A, cZ*c".q9%, 4y c 2%c*.g%). A_c Z7(c".q0). and sets A, 4,. A_ are measur-
able. Therefore any measure on Y is fully defined by its values on subsets of

Z*(c*.q9. 2% "*.g%. Z(c’.g%. From the definition of Z*(c,q) we have:

Z¥c'q% = Uy Z*(c.q9)

c>c’
and Z*(c,,g% c Z*(c,.9°) for all ¢, > c,. This gives

lim [ dE*(y)= [ aH*(y)
eic e .g°) Z*c g

and therefore

1- [ daHYy)- [ dH @) - [ dH(y)=0
Z'c "% Z7(c"q% 2%c" ")

from the definition of ¢ °.

Now consider the sequence c, <c°, Cgs1=Cg. €5 »C . We have the fol-

lowing relations:
Zc;.q% € Z7(c;.9% v 2%c,.q%) € Z7(cg 1.9

U Z(c5.9°) = 27(c g%

Considering the finite positive Borel measure H = H* — H~ we obtain

im [ dR(y)= [ dH(®y)
R (L) Z(c"\g9

J dH@y)= S dH(y)

Z(c, g% Z(cqy.qMu2%ec,.q°%
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Taking into account the finiteness of the measure H we obtain:

dH(y)—de(y)— S dH(y)—llmide(y)- S dH@)=

Z%c ", q%)uZ*c "¢ Z(c".q% Z(cy 9
lim { fdH(y) - S di(y)} =lim [ dH(y)
s@= Y Z(c,.q°)u2%c,.q%) = Z*(c, .99

From the definition of ¢ and the fact that cg <C * we have

[ aH@E)>1 -de"(y)
Z*(C,,q )

which gives

1- f ar*@y)- [ dH(w)- [ dH*(@y)=o0
Z¥c"\q° Z7(c"q¢% 2%k ".q%
All of this proves that (i)—(iii) do not contradict each other and that there is
some positive Borel measure & which satisfies (i)—(iii) and also constraints (7)
and (8). Now let H’ be an arbitrary positive Borel measure which satisfies con-
straints (7) and (8). Suppose that for this measure there is some set
A’ ¢ Z*(c *,q0) such that (i) does not bold, i.e.,

SaH(y) < fdHH(y)
A’ A’

Let us consider a sequence ¢g 4 ¢ ’, ¢, >c”’, and take A= Z+(cs,q°) NnA’. We

§

have A" = | 4; . A; C A;,, and therefore

lim [dH(y) = [dH(y) . lim fdH*(y) = [dH*(y)
S"N”A. A S-‘”A. A

Thus, there must exist a ¢, > ¢ * and a y > 0 such that

= faH(y) - [dH*(y) = faH"(y) - [faB(y)
A A, 4y 4

Note that g%y) > ¢, > ¢’ for y € A;. Using the definition of # and constraint
(7) we have:

Jar (y) < fdA(y)
A A



for arbitrary set 4 ¢ Z*(c *.g9), and

JaH (y) = fdA(y)
A A

for arbitrary set 4 < Z7(c¢ *,q%). This, together with the fact that g%y) is posi-

tive, implies:

,{ g%(y)d(H (y) - H(y)) < Af' A(H (y) - H(y)) (9)
S fwWaH @) -Ay)<c® [ dH@)-HE) (10
ZHc " gON4 Z*c g4,
[ waE @) - By <c® [ aH(y) - HE) . (11)
Z7(c g9 Z(c".q%

We shall now use (9)—(11) to estimate the difference between the values of the

objective function for measures F and H":

4q°(y) dH(y) —4q°(y) df(y) =

Af.q°(y)d(H’(y) -ByN+ [ q%w)aE () - H) +

Z*c " g4,
S @aH W) -By)+ [ ®@)aH W) -BE)) =
2°(c",q% Z{(c"q9

e JAH (@) -B) +c* [ aH(y)-H@E)+
4 ZH(c®, g\ A4,

¢’ f aHW -B@)+c” [ dHW)-AE) =
PAICA D] Z(c’q%

(cs =¢”) Af.d(H’(y) - H(y)) +C’4d(H'(y) - B(y)) = —y(cg —=c*) <0

Thus, H’ cannot be the optimal measure, thus proving (i). Parts (ii) and (iii)

may be proved in the same way.

For the particular case in which we have only the upper measure H*, which

is atomless, the result of Lemma 1 is close to Theorem 1 from.[ll].

Erample 1. Suppose that measures H* and A~ have piecewise-continuous den-
sity functions H; and Hy_, respectively. In this case it is natural to look for the
optimal measure among probabilistic measures with piecewise-continuous
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probability density functions (p.d.f.s) H, (y). and to replace constraint (7) by:
v
H (y)<H((y)sHy) . yeY . (7a)

The optimal p.d.f. H;(y) under these circumstances is defined as follows:
[H}w) if y € 2%(c ")
H(y)=|H (y) if y €Z7(c".g°)
H(y) = Hy)< B (y).

J H@day=1- [ HYyy - [ Hi(y)dy

[ 2% "\¢% Z¥c " g9 Z7(c".q9

ify € 2%c *.q%

Example 2. Suppose that measures H* and A~ assign positive weights to a

finite number of points, i.e.:

v

—_— i
H* = {(p;*, y,). i=T11, Pz‘+ 0, Z pi+21;

i=

[

H =Hp y;). 1 =11, p720,

P <1

Mk

]
-

i
pi =p; ., i=
Define the sets I*, I9 /™ as follows:
I'c.g® =ti:q%y;) >c. 1=i <]
Plc.g® =ti:q%y;)=c, 1<ix<l]
I(c.g% =ti: ¢%y;) <c, 1<i<li]

and take

¢’ =inffc: Y pt+ Y P <1
I*(c,q% P(c ,¢%ul(c,g%

The optimal probabilistic measure is then defined as follows:

H* = {(p/w;). i = 1]
where
pt it ie (e *.q9
p ifier(c’q?

prsp’spt. Y pl=1- ¥ pt- Y po if i€l
Pc’g% I*c"\g® I(c" g%

L4

Dy
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The result of this lemma may be easily generalized to the case in which
the Borel field in (7) is replaced by some other g-field D. In this case it is
necessary for the sets Z*(c,q%. Z7(c.q%). Z%c.q% to belong to D. The proof

of the lemma remains unchanged.

Another easily treated case arises when constraint (7) is replaced by

JdH (y) < faH(y) = fdH*(y), i =TN ,
A A A

where sets 4; are closed, 4, NA4; = ¢ fori # j, and

Y JaAYy)=1 . [dH*(y) =0
Y4 /

2

for all B such that B n 4; = ¢ fori = 1,N.

We shall now turn to a numerical algorithm for solving (5), (7)., (8). 1t is
clear from Lemma 1 that the problem of finding the optimal solution of
(5).(7).(8) is essentially that of finding the smallest possible ¢ for which

[ dH YY) + S dH (y)<1 . (12)
Z*(c g% Z%c,g%uZ(c.q%

In what follows we present a simple algorithm for finding such a ¢. This algo-
rithm is based on stochastic quasigradient methods developed for stochastic
nonsmooth optimization problems [15]. We shall assume that H* and H~ have
density functions H;' and H, respectively, so that constraint (7) becomes (7a)
and (12) is equivalent to the following problem:

Find the smallest possible ¢ such that
wic)<1 , (13)
where

W(c>=4v<c.y)dy

_ Hy+(y) if g%y) > c
view) = H(y) ifq®%y)=c

Observe that, under the conditions of Lemma 1, #(c) is a nonincreasing func-

tion of ¢ such that lim F(c) = W(c*) for arbitrary ¢ *. Consider the multi-valued
céc



function

Fc)=td:a —-1<d<b, -1, a, = limW(c"), b, = lim #(c")]

C —

‘-C c =C

s

Problem (13) now becomes the problem of finding ¢ such that
De () . (14)

From the properties of the function W(c), there exists a concave function F(c)
such that #(c) = F.(c), where F_(c) is the set of subdifferentials of function
F(c) at the point c:

1 5 1
v(t,y) - “(—Y)dy dt —{é/:['u(t,y) - u(—y)]dt dy

Fe)=[[
c. .Y

[
= u(Y)E, f[v(t.w - ;(l—y)—]dt

Here u(Y) is the Lebesque measure of Y, y is distributed uniformly on the set
Y, E, denotes expectation with respect toy, andc_= mi$ g%y). Thus, problem
YE

(14) becomes one of maximizing the function E, f(c.y), where

dt

] 1
F(e.y) —c_/:['v(t-y) 62}

Stochastic quasigradient methods capable of solving this problem can be
implemented with little computational effort. One such method can be stated

as follows:

oS+l = oS4 (15)
Ps

where

BI) = iy it 9%) > e

) H;(y) - u(ly) it g%y)=<c®

Ps 1s a stepsize such that
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and y is a random variable uniformly distributed on Y.

Let us now consider the problem (5)—(8), i.e., include constraints of type
(6). We shall first prove the duality result which reduces it to a minimax prob-
lem with an inner problem of type (5).(7).(8). A similar result for problems

without constraints (7) was proved in [7].

We begin by defining the set G of feasible distributions:

G={H: 4q"(y)dH(y) =0, i = 1m,, 4q"(y)dH(y)s 0, i =m.m,

{dH'(y)sidH(y)S£dH+(y). A cB(Y): fdH(y) =1, supp HC Y]

and the set G of all distributions satisfying (7):

G={H: {dH‘(y) S{dH(y) s{dH*(y). A < B(y)}

The problem then becomes

rggg{ g%y)dH(y)

Consider the following set:

Z=lz:z =(20...2,,). 2 =_{’.qi(y)dH(y). HeG) . (16)

Theorem 1. Suppose that the conditions of Lemma 1 are salisfied and that the
Jollowing additional assumptions hold:

1. Y is compact and the g*(y), i = 0,m, are continuous
2. Oe€intco Z.
Under these conditions a solution to problem (5)—(8) ezxists and

: 0 - i + - . e
i max = ming(u), where U =fu:u, =20, 1 =m,m!{ and
(i) Hec'{:q (y) u€U+¢( ) { Uy 1 J

p(u) =mng[q°(y)-'Z}nu,-q"(y)]dH(y) : (17)
=1

subject to the constraint

{dH_(y)S{d.H(y)s{dH*'(y) (18)



-11 -

Jor any Borel A.

(ii) Fbr any solution H® of problem (5)—(8) there exists au”’ € U* such that H*

is a solution of problem (17)—(18) foru =" and ¢(u*) = max ¢(u).
uwel*

Proof. In what follows we shall consider the reduction of the usual #™ topology
to set Y for sets from KF™. In particular, we shall use the term "open set” as an
abbreviation for "open set with respect to Y", and so on. Consider first the set
Z defined in (16). This set is convex because for any z‘,z” € Zand A: 0sA <1

we have

Az + (1-N)z" = xiq"(y)dH](y) + (1->\)4q"(y)¢Hz(y)
= _{qi(y)d [AH (y) + (1-N\)Ha(y)]

for any H,,H, € G, and G is convex by definition. We shall now prove that Z is
closed. Consider an arbitrary convergent sequence 2%:z5 ¢ Z, 25+ 2°. To
prove that Z is closed we have to show that z° € Z. A probabilistic measure H®

is associated with each point 2 such that 2§ = fqi(y)st(y). i = 0,m, and
{dH'(y) < [ (y) s{dH*‘(y)
. A

Set Y is compact and therefore, according to the Prohorov theorem [16],

there must exist a subsequence H**(y) and a measure H° such that

lim [f (y)dH™(y) = [f (¥)aH W)

for every continuous bounded f (y). Now take an arbitrary closed set 4 C Y and
consider the open set 4, = {y: p(y.4) < ¢}, where p(y.A) is the Hausdorf dis-

tance between y and A:

p(y.A) = inflly -2
zeA

We have

lim faH*(y) = [dH*(y)
t-'OA, A

lim faH"(y) = [dH"(y)
U4, A
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due to the fact that A, decreases to A as £ + 0. Now consider the following func-

tion (see [16]):

1
V. (y)=1 ;—p(y.A)] ,
where
1 if t<0
T(t) =41-t if O0<t <1
0 if 1<t

This function is continuous and bounded for £ > 0, and therefore we have

’lci_rj_l‘f Vely )AE* (y) = [, (y)dH " (y)

On the other hand,

S y)dH* (y) < Ades“(y) < h[dH+(y)

and
f%(y)dH'(y)z{dH'(y) :
leading to
.{dH'(y) S_A[dH*(y)

for arbitrary £. Thus we finally obtain
SaH (y) = fdH*(y)
A 4

for any closed A.

This expression holds for all open sets because for any open set A there

exists a sequence of closed sets A; such that 4;,, D 4 and

U4, = 4
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This fact, together with the regularity of measures H* and H’, implies that
JeH () s faH*(y)
A A
for any A ¢ B(Y). Therefore H® € G, and since

2z, = lim 2* = lim [ q*(y)dH"*(y)
kv k ey
= 4q‘(y)dH'(y) -

we must have z * € Z. This confirms that set Z is closed.

We have now proved that Z is a convex compact set in R™*! and therefore

that the optimal value of the problem

sup ]Y'q°(y)dH(y)

is equal to the optimal value of the following finite-dimensional problem:

max z 19
zeZ 0 ( )

2,=0, i=1m, (20)
2, <0, i =m,;m . (21)

From assumption 2 of the theorem we deduce that the optimal value of

(19)—(21) must be equal to the optimal value of the following minimax problem:

min max [z 22)
uelt L€l 0 121 (

and thus for any solution z * of (18)—(21) there must exist a u® € U* such that
— L . —_— —
©’) = min p(u), @{u) =max[z P
plu’) = min plu). p(u) =max[zo- Z 5]
and

z Z u; zJ -max[z0 z u; z . (23)
J'—'
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We may now deduce that a solution to (5)—(B) exists because a solution to
(18)—(21) exists and for each z € Z there is an H € G such that

iq"(y)dH(y) =z, i=0m

From (22) we obtain

rggg_{:qo(y)dfl(y) ming(u) = min max [zo- Z 2 ]

wel? uel* z€

min, max [1g°()~ zu 9? (y)]aA(y) = min plu)

wel* H =1

and the first part of the theorem is proved.

Now let /#* be an arbitrary solution of (5)—(8) and

z7= fq*(y)aA’(y). i =0,

From (23), there exists au’ € U* such that

J18%) - $uei@)an (@) = 25~ F uge; =
Y 2 F=

max [z - 2 "z, ] = max Jlg%y) - ﬁu,-'q"(y)]dH(y)
zeZ HeG 'y j=1

and

p(u® = min p(u)
uwelt

This completes the proof.

We have now reduced the original problem (5)—(8) to that of minimizing
the convex function g(u). According to Lemma 1, the optimal! solution of
(5)—(8) is then described by the optimal value u* and a constant ¢ °, which is

the smallest possibie value of ¢ such that the following inequality holds:

J aFt(y)+ S dH (y)=<1 , (24)

Zc,u”) Z(c,uZc,u”
where

Z¥eu)={y:yeY, r(u,y)>c)
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ZH(cu)=ly:yeY., riuy) <c}
cw)=ty:ye?, r{uy)=c}

ruy) = q%y) - Lu;qi(y)
j=1

The following distributions H® are then possible candidates for the optimal

solution:

HY(y) vy e Z¥c.r)

H®=H(y) VvyeZ(cr) (25)
SaH*(y) = fdH (y) = fdH (y) VA:A€B(Y), AcZ%%"u")
A A A

In this case, however, not all of the distributions defined by (24)—(25) are
optimal. In order to ensure optimality it is necessary to introduce a unique-

ness condition which specifies that the point

z'=fz:2z =(24...2,,) ., 2; = éq"(y)dl{’(y)}

be the same for all H' defined by (24)—(25). This will be the case if, for

instance,

dH(y)=0, [ dH*(y)=0
2% u’) %% °u")

It is very difficult to obtain « * by minimization of #(u) using convex optim-
ization methods. This is because it is necessary to solve problem (17)—(18) (or,
equivalently, (24)) in order to get the value of p(u ) for particular u, which is in
itself a computational challenge. However, it is possible to implement stochas-
tic optimization methods for solving this problem using an approach similar to

(15). We shall suppose once again that the measures have densities, so that

constraint (7) may be replaced by (7a).
The problem of solving (5)—{7) now becomes the following:

Find u * such that

u’=arg ;Iéi{l; .{r(u,y)Hy(y.c(u))dy . (26)
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where
Hi(y) if r(uy)>c
H (y.c) =B (y) if r(uy)<c
Hy+(y) = Hy(y) = H{(y) if T('u.,y) =c

and c (u) is a solution of the following problem:

max Eyf

v(tu,y) - (Y)] : (27)
where

Hi(y)ifr(uy) > ¢

v(tuy) = HAy)ifr(uy) <t

Here u(Y) is the Lebesque measure of Y, ¢, is a large negative number and y is
distributed uniformly over Y. Problems (26)—(27) can be solved simultaneously
using stochastic quasigradient technigques. The method in this particular case

is:
cstl=¢c% + p £ (28)

ust = nfi(us - 6,7°) . (29)

where n'['} is a projection operator on U*,

H,*'(ys) - “(1y) if T(us'ys) > ¢S

= ~(4;S 1 ; S 4SY e S
H (y )—#(},) if r(us.y®)<c
nf=q'(y®) v(csu’y®)

and ¥° is an observation of the random variable, which is uniformly distributed

on Y.

The convergence of this algorithm can be studied using the theory of nons-
tationary processes in stochastic optimization [17]. Method (29) may be con-
sidered as a means of tracking the changing maximum of function (27). Under

quite broad assumptions, convergence requires that ds/p; - 0. In this case we
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have

¢(u®) - max Sla%y) - fujq"(y)]dﬂ(y) -0
j=1

and algorithm (29) becomes a stochastic guasigradient method for solving

min ¢{u).
uel*

Applying this theory to the problem at hand, we find that method (28)—(29)
will solve problem (26)—(27) if, in addition to the conditions specified in

Theorem 1, we have the following constraints on the stepsizes:

ps =0, 6,20, V4o =, Y p¥<ew, 6;/ps+0 . (30)
=0

=0

3. THE GENERAL NONLINEAR PROBLEM

We now have all the tools necessary to investigate the general nonlinear
problem (1)—(4). The approach is the same as in [8]. We shall assume that

functions ¥*(H) are directionally differentiable:

Vi(H, + a(Hy — Hy)) = ¥ (H,) + a 4 gt (y.H)A(Hy(y) — Hy(y)) + (o H . Hp) (31)

fori = 0,m and H].Hz € G. where

Ti(a.Hl.Hz)/a -0 as a-0

In what follows we assume that functions g*{y,H) are such that expression (31)
is meaningful. The following lemma gives conditions which are necessary and

in the convex case also sufficient for distribution H to be a solution of problem
(1)—(4).

Lemma 2. Suppose that ¥(H") > ¥(H) for some H® € G and all H € G, and that
the following conditions are salisfied:

1. Functions g*(y.H), i = 0,m, are boundedon Y for all H € G
2. |VH,) -¥NaH,+ (1 —a)H,)| <Lla, O<a<land [ <=

3. PFunctions V*(H), i = 1.m., are convez, i.e.,

Vi(aH,; + (1 - a)Hy) < a¥i(H,) + (1 - o)V (Hy)
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4. There eristsan H € G such that V¥ (H) < -0 <0 fori = 1,m. Then

sup [q%y.H")aH = [q%y.H")dH" | (32)
HeG®“y Y
where
G ={H: 4q"(y.H’)dH(y> < 4q"(y.H')dH‘(y).

HeG, fdH{y)=1, i e/, °={i:¥(H") =0}
Y ,

If. additionally, ¥%(H) is concave and the distribution H' satisfies (32),
then H' is the solution of problem (1)—(4).

The proof of this lemma is similar to that of Lemma 1 from [8] and is

therefore omitted.
Combining the results of Lemma 2 and Theorem 1, we obtain Theorem 2.

Theorem 2. Suppose that YO(H*) > VO(H) for all H € G, that the conditions of

Lemma 2 are satisfied and that the following assumptions hold:
1. SetY C K" is compact
2. H%(y) and H(y) are positive Borel measures such that

m>de"’(y)?.1. de'(y)sl
Y Y

3. Functions q*(y,H"), i = 0.m, are continuous on Y.
Then
(i) We have

Ja%y.H")AH (y) = min¥(u) ,
Y uel*

where
Ut =tu:u; =20} ,

Y(u) = mgxf[qo(y.H') -3 ujqj(y-H.)]dH(y) + ) u;d;

jer jer

dj = 4q"(y.H’)dH’(y) :
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subject to constraints

JdH (y) < faH(y) = fdH*(y)
A A A

Jor any Borel A C Y.

(ii) Thereeristau' € Ut and ac *® such that

Y(x*) = min¥(u)

uwe Ut

fd.H'(y)=fd.H+(y) for all Borel AcZHc"u")

A ) A

de'(y)=de‘(y) for all Borel AcZ(cu”)

A A
fd.H“(y)sde(y)sde*(y) for all Borel AcZ% c*u”)
A A A

f ag'@w=1- [ avt@w)- [ aH () ,
2% °u®) ZHc ") Z(c'u")

where
ZHeu)=fy:y €Y. Flu,y) >cl
Z(cu)={y:yeY, Flu,y)<cj

cu)=fy:yc¥. Fluy)=rc}

and

Fluy) =¢%y.H") - ¥ uigi(y.H")
jep

Numerical methods for solving nonlinear problems with constraints of type

(3) will be the subject of a subsequent paper.
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