
Stochastic Quasigradient Methods
and their Implications

Ermoliev, Y.M. and Gaivoronski, A.A.

IIASA Working Paper

July 1984

Ermoliev, Y.M. and Gaivoronski, A.A. (1984) Stochastic Quasigradient Methods and their Implications. IIASA Working

Paper. Copyright © 1984 by the author(s). http://pure.iiasa.ac.at/2463/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

S T O C m C QUASIGRADIENT METHODS
AND THEIR WLEMENTATION

Yuri Ermoliev
Alexei Gaivoronski

July 1984
WP-84-55

Working Papers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only
limited review. Views or opinions expressed herein do not
necessarily represent those of the Institute or of i ts National
Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg. Austria

PREFACE

This paper discusses various stochastic quasigradient methods and
considers their computer implementation. It is based on experience
gained both a t the V. Glushkov Institute of Cybernetics in Kiev and a t
IIASA

The paper falls naturally into three parts. The first is concerned
with problem definition and various ways of choosing the step size and
step direction. A detailed description of an interactive stochastic optimi-
zation package (STO) available a t IIASA forms the second part. Finally,
the use of this package is demonstrated by application to three test prob-
lems tha t have arisen during the course of IIASA work they include a
facility location problem and a water management problem.

This work was carried out within the Adaptation and Optimization
Project of the System and Decision Sciences Program.

ANDRZE J WIERZBICKI
Chairman
System and Decision Sciences

A number of stochastic quasigradient methods are discussed from
the point of view of implementation. The discussion revolves around the
interactive package of stochastic optimization routines (STO) recently
developed by the Adaptation and Optimization group at IIASk (This pack-
age is based on the stochastic and nondifferentiable optimization pack-
age (NDO) developed a t the V. Glushkov Institute of Cybernetics in Kiev.)
The IIASA implementation is described and its use il lustrated by applica-
tion to three problems which have arisen in various IlASA projects.

STOCHASI7C QUASIGRADENT METHODS AND THEIR
IMPLEMENTATION

Y w i E?rmoLiev and A l e z e i G a i v o r o n s k i

1. INTRODUCTlON

This paper discusses various stochastic quasigradient methods (see [1,2])

and considers their computer implementation. It is based on experience

gained both at the V. Glushkov Institute of Cybernetics in Kiev and a t IIGk

We a re concerned here mainly with questions of implementation, such as

the best way to choose step directions and step sizes, and therefore little atten-

tion will be paid to theoretical aspects such as convergence theorems and their

proofs. Readers interested in the theoretical side are referred to [1.2].

The paper is divided into five sections. After introducing the main problem

in Section 1, we discuss the various ways of choosing the step size and s tep

direction in Sections 2 and 3. A detailed description of an interactive stochas-

tic optimization package (STO) currently available at IIASA is given in Section 4.

This package represents one possible implementation of the methods described

in the previous sections. Finally, Section 5 deals with the solution of some test

problems using this package. These problems were brought to our attention by

other IIASA prcjects and collaborating institutions and include a facility loca-

tion problem, a water resources management problem, and the problem of

choosing the parameters in a closed loop control law for a stochastic dynamical

system with delay.

We are mainly concerned with the problem

where z represents the variables to be chosen optimally, X is a set of con-

straints, and o is a random variable belonging to some prubabilistic space

(R,B,P) . Here B is a Bore1 field and P is a probabilistic measure.

There are currently two main approaches to this problem. In the first, we

take the mathematical expectation in (I) , which leads to multidimensional

integration and involves the use of various approximation schemes [3-61. This

reduces problem (1) to a spe'cial kind of nonlinear programming problem which

allows the application of deterministic optimization techniques. In this paper

we concentrate on the second approach, in which we consider a very Limited

number of observations of random function f (z ,o) a t each iteration in order to

determine the direction of the next step. The resulting errors are smoothed

out until t he optimization process terminates (which happens when the step

size becomes sufficiently small). This approach was pioneered in [7,9].

W e assume that set X is defined in such a way tha t the projection operation

z -. nX(z) is comparatively inexpensive from a computational point of view,

where nx(z) = arg min llz - = ! I . For instance, if X is defined by linear con-
z EX

straints, then projection is reduced to a quadratic programming problem

which, although challenging if large scale, can nevertheless be solved in a finite

number of iterations. In this case it is possible to implement a stochastic

quasigradient algorithm of the following type:

Here zs is the current approximation of the optimal solution, ps is the s tep

size, and v S is a random step direction. This step direction may, for instance,

be a statist ical estimate of the gradient (or subgradient in the nondifferentiable

case) of function F(z): then vS = such that

where as decreases as the number of iterations increases, and the vector vS is

called a stochastic quasigradient of function F(2). Usually p, 4 0 as s 4 = and

therefore Ilzs+l - zS 1 1 -, 0 from (2). This suggests tha t we should take zS as the

initial point for the solution of the projection problem a t iteration number s +1,

thus reducing considerably the computational effort needed to solve the qua-

dratic programming problem at each step s = 1,2. Algorithm (2)-(3) can

also cope with problems with more general constraints formulated in terms of

mathematical expectations

by making use of penalty functions or the Lagrangian (for details see [1,2]).

The principal peculiarity of such methods is their nonmonotonicity, which

may sometimes show itself in highly oscillatory behavior. In this case it is

dificult to judge whether the algorithm has already approached a neighborhood

of the optimal point or not, since exact values of the objective function are not

available. The best way of dealing with such difEculties seems to be to use an

interactive procedure to choose the step sizes and step directions, especially i f

i t does not take much t ime to make one observation. More reasons for adopting

an interactive approach and details of the implementation are given in the fol-

lowing sections.

Another characterist ic of the algorithms described here is their pattern of

convergence. Because of the probabilistic nature of the problem, their asymp-

totic rate of convergence is extremely slow and may be represented by

Eere z * is the optimal point to which sequence zS converges and k is the

number of observations of random parameters o, which in many cases is pro-

portional to the number of iterations. In deterministic optimization a super-

linear asymptotic convergence rate is generally expected; a ra te such as (4)

would be considered as nonconvergence. But no algorithm can do asymptoti-

cally any better than this for stochastic problem (1) in the presence of nonde-

generate random &sturbances, and therefore the aim is to reach some neigh-

borhood of the solution rather than to find the precise value of the solution

itself. Algorithm (2)-(3) is quite good enough for this purpose.

2. CHOICE OF SllW DIRECTION

In this section we shall d~scuss different ways of choosing the step direc-

tion in algorithm (2) and some closely related algorithms. We shall first discuss

methods which are based on observations made at the current point zS or in its

immediate vicinity. More general ways are then presented which take into

account observations made a t previous points.

2.1. Gradients of random function f (z , 0)

The simplest case arises when it is possible to obtain gradients (or subgra-

dients in the nondifferentiable case) of function f (z , w) at fixed values of z and

w. In this case we can simply take

where oS is an observation of random parameter LI made a t step number s. If

both the observation of random parameters and the evaluation of gradients are

computationally inexpensive then it is possible to take the average of some

specified number N of gradient observations:

These observations can be selected in two ways. The first is to choose the oilS

according to their probability distribution. If we do not know the form of the

distribution function (as, for example, in Monte-Carlo simulation models) th is is

the only option. However, in this case t h e influence of low-probability high-cost

events may not be properly taken into account. In addition, the asymptotic

error of the gradient estimate is approximately proportional to 1/ q. The

second approach may be used when we know the distribution of the random

parameters o. In this case many other estimates can be derived; the use of

pseudo-random numbers* in part icular may lead to an asymptotic er ror approx-

imately proportional to log (N)/ N, which is considerably less than in the purely

random case. However, more theoretical research and more computational

experience are necessary before we can assess the true value of th is approach.

The main question here is whether the increase in the speed of convergence is

sufficient to compensate for the additional computational effort required for

more exact estimations of the F,(zS).

Unfortunately, our theoretical knowledge concerning the asymptotic

behavior of processes of type (2) tells u s litt le about the optimal number of

samples, even for relatively well-studied cases. For instance, what would be the

optimal number N of observations for the case in which function F(z) is

diflerentiable and there are no constraints? In this case we can establish both

asymptotic normality and the value of t he asymptotic variance. If, additionally,

p, - C / s then the total number of observations required to obtain a given

asymptotic variance is the same for all N << s. If sp, -, = then the wait-and-see

approach is asymptotically superior as long as 1Ir << s .

*A concept which arose ?om :he xse of quasi-Monte-Carlo zec:lmques in mult~&mensional
integration [9].

However, there is strong evidence that in constrained and/or

nondifferentiable cases the value of JV should be chosen adaptively. A very sim-

ple example provides some insight into the problem. Suppose tfiat z E R',

X = [a,=), F (z) = z, f,(zS.wS) = 1 + wS, where the wS, s = 1,2 ,..... are indepen-

dent random variables with zero mean. The obvious solution of this problem is

z = a. Suppose for simplicity that ps = p. This will not al ter our argument

greatly because ps usually changes very slowly for large s . In this case method

(2) . (5) will be of the form:

T, = max 1 0 , a - zS + p(l + wS)j

Method (2),(6) requires us to choose a step size N t imes greater than p; other-

wise its performance would be inferior to that of method (2),(5) (unless the ini-

tial point is in the immediate vicinity of the minimum). Method (2),(6) then

becomes

In order to compare the two methods we shall let s in the last equation denote

the number of observations rather than the number of i terations and renumber

the observations winS. The process

lo if i # 1N for 1 = 1,2. ... or a < y i - p (l + oi)
xi = a - y i + p(l + oi) otherwise

has the property that yiN = zS and therefore it is sufacient t o compare

y k with zk for k = LN, where

Suppose that z0 = yo # a. Then i f t: = min tk : zk = aj represents the t ime a t

which process rk first encounters the optimal point and t: = min I1 : y L N = a]

represents the time of the corresponding encounter of process z k with the

optimal point, it is c lear that t: S t i because from (7) and (9) we have that

yk = zk lor k < t d . This means that algorithm (2),(5) will get from some

remote initial point to the vicinity of the optimal point faster then algorithm

(2),(6) with N > 1. Now let us take z0 = y o = a. Then (7) and (8) imply that

& = 0 for k < N while rk may differ from zero. Therefore in this case

z N > y N = z 1 and the performance of algorithm (2),(6) with N > 1 becomes

superior to tha t of algorithm (2),(5) after reaching the vicinity of the optimal

point. This simple example demonstrates several important properties of con-

strained stochastic optimization problems, although more work is necessary

before we can make any firm theoretical recommendations concerning the

choice of the number of samples N. Above all, an appropriate definition of the

rate of convergence is needed: recent results by Kushner [lo] may be useful in

this regard.

A rather general adaptive way of changing the number N would be to begin

with a small value of N for the first few iterations (N = 1, lor example), and

increase N if additional tests show that the current point is in the vicinity of

the optimum. The following averaging procedure has been shown to be useful

in tests of th is type:

where r is defined by (5) or (6). It can be shown (see [1.2]) that

l/uS - F,(zs)II -+ 0 under ra ther general conditions, which include ps /as -+ 0.

The decision as to whether to change iV may then be based on the value of

r, = \lzs - rrX(zs - vs)ll. One possibility is to est imate and its empirical vari-

ance a t the same time:

and choose N such that oi S @rs, where the value of @ is set before beginning

the iterations. In practice it is suf ic ient to consider a constant

a, a - 0.01-0.05, where the greater the randomness, the smaller the value of

a. Our empirical recommendation for the initial value of N is

a: - 0.1 max 112, -=,I\.
z l , r z a

This method can be used to increase the number of samples per iteration

automatically. Another possibility is to al ter the value of N interactively; this

is one of the options implemented in the interactive package STO, which has

recently been developed a t IIASk Numerical experiments conducted with this

package show that in problems where f , (z , w) has a high variance, choosing a

value of N greater than one can bring about considerable improvements in per-

formance.

The method described above uses increasingly precise est imates of the

gradient. and therefore shares some of the features of the approximation tech-

niques developed in [3-61 for solving stochastic programming problems. All of

the remarks made here concerning sampling a re also valid for the other

methods of choosing described below.

However, i t is not always possible to use observations of the gradient

f , (z , w) of the random function to compute a stochastic quasigradient. In

many cases the analytic expression of f , (z , w) is not known, and even if it is, it

may be difficult to create a subroutine to evaluate it, especially for large-scale

problems. In this case it is necessary to use a method which relies only on

observations of f (z , w) .

2.2. FiniteditTerence approximations

If function F (z) is differentiable, one possibility is to use forward finite

differences:

or central h i t e differences:

where the ei are unit basis vectors from R". The most important question here

is the value of 6,. In order to ensure convergence with probability one it is

sufficient to take any sequence 6, such tha t Exm=, pf/ 6f < =J. I f it is possible to

take w f , , = u:,, then any 6, + 0 will do. However, the method may reach the

vicinity of the optimal point much faster if 6, is chosen adaptively. On the first

few iterations 6, should be large, decreasing ris the current point approaches

the optimal point. The main reason for this is that taking a large step 6 , when

the current point is far from the solution may smooth out the randomness to

some extent, and may also overcome some of the problems (such as curved val-

leys) caused by the erratic behavior of the determinist ic function ~ (z) . One

possible way of implementing such a strategy in an unconstrained case is given

below.

(i) Take a large initial value of 6, . such as 6 , - 0.1 max (12 - z,ll
r l , z z E X

(ii) Proceed with iterations (2), where is determined using (10) or (11).

While doing this, compute an estimate of t he gradient vS from (9).

(iii) Take

where the values of and p2 should be chosen before beginning the itera-

tive process.

It can be shown that this process converges when ufB1 = o;,~, although i t will

also produce a good approximation to the solution even if this requirement is

not met. Estimate (9) is not the only possibility - in fact, any of the estimates

of algorithm performance given in Section 3 would do.

Another strategy is to relate changes in the finite-difference approximation

s tep to changes in the step size. This is especially advisable if the s tep size is

also chosen adaptively (see Section 3). In the simplest case one may fix PI > 0

before start ing and choose 6, = pips, which, although contrary to theoretical

recommendations, will nevertheless bring the cur ren t point reasonably close to

the optimal point. To obtain a more precise solution i t is necessary to reduce

PI during the course of the iterations. This may be done e i ther automatically

o r interactively; both of these options are current ly available in the stochastic

optimization package STO.

Finite-difference algorithms (10) and (11) have one major &sadvantage,

and this is that the stochastic quasigradient variance increases as 6,

decreases. This means that finite-difference algorithms converge more slowly

than algorithms which use gradients (5). There are two ways of overcoming this

problem. Firstly, if i t is possible to make observations of function f (z , w) for

various values of z and fixed w , i t is a good idea to take the same values of w for

the differences (i.e., uTml = gfS2) when 6, is small because th is reduces the vari-

ance of the est imates quite considerably. Another way of avoiding th is increase

in the variance is to increase t he number of samples used to obtain when

approaching the optimal point, i.e.. to use finite-difference analogues of (6). If

t he re exists a y > 0 such tha t Ns6: > y , where N, is the number of samples

taken a t s tep number s , t hen the variance of remains bounded.

I t is somet imes useful to normalize the p , especially when t h e variance is

large.

Another disadvantage of t he finite-difference approach is t ha t i t requires

n + 1 evaluations of the objective Function for forward differences and 2n for

cen t ra l differences, where n is t he dimension of vector z. This may no t be

acceptable in Large-scale problems and in cases where function evaluation is

computational ly expensive. In th is si tuation a stochastic quasigradient can be

computed using some analogue of random search techniques.

2.3. Analogues of random search methods

When i t is not feasible to compute n + 1 values of the objective function a t

each i terat ion, t he following approach (which has some th ings in common with

t he random search techniques developed for determinist ic optimization prob-

lems) may be used:

Here t he h, a r e vectors distr ibuted uniformly on the uni t sphere, .Ms is the

number of random points and 6, is the s tep taken in t he random search. The

choice of M, is determined by the computational facilities available, although i t

i s advisable to increase M, as 6, decreases. This method of choosing p has

much in common with finite-difference schemes, and t he s ta temen ts made

above about the choice of 6, in t he flnite-difference case also hold for (12).

2.4. Snmothmg the objective function

Methods of choosing p which rely on finite-difference or random search

techniques a re only appropriate when the objective function F (z) is

differentiable. The use of similar procedures in the nondifferentiable case

would require some smoothing of the objective function. Suppose that the

function F (z) is not differentiable but satisfies the Lipschitz condition, and con-

sider the function

where H (y , r) is a probability measure with support in a ball of radius r cen-

tered at zero. We shall assume for simplicity that H (~ , T) has nonzero density

inside this ball. The function F (z , r) is differentiable and F (z , r) + ~ (z) uni-

formly over every compact set as r -r 0. It is now possible to minimize the

nonsmooth function ~ (z) by computing stochastic quasigradients for smooth

functions F (2 . r) and find the optimal solution of the initial problem by lett ing

r -. 0. This idea was proposed in [l l .] and studied further in [1 2] . It is not actu-

ally necessary to calculate the integral in (1 3) - it is sufficient to compute tS
using equations (1 0) - (1 2) , but at point zS + y S ra ther than point z S , where y S

is a random variable distributed according to H (Y , T ,) . In this case (1 0)

becomes:

The most commonly used distribution H (y , r) is uniform distribution on an n-

dimensional cube of side r . If we want to have convergence with probability one

we should choose r, such that b , / r S -. 0 and (r , - r s + l) / p s + 0. In practical

computations it is also advisable to choose the smoothing parameter rs in a

similar way to 6,. using one of the adaptive procedures discussed above.

Smoothing also has beneficial side effects in that i t improves the behavior of

the deterministic function F (z) . In the case where ~ (z) may be written as the

sum of two functions, one with a distinct global minimum and the other with

highly oscillatory behavior, smoothing may help to overcome the influence of

the oscillations, which may otherwise lead the process to local minima far from

the global one. Thus it can sometimes be useful to smooth the objective func-

tion even if we can obtain a gradient f , (z , o) . In this case we should take a

large value for the smoothing parameter r, on the first few iterations, decreas-

ing it as we approach the optimal point. The points a t which r, should be

decreased may be determined using the values of additional estimates, such as

those described below in Section 3 or given by (9). Everything said about the

choice of the finite-difference parameter 6, is also valid for the choice of the

smoothing parameter, including the connection between the step size and the

smoothing parameter and the possibility of interactive control of r,. The only

difference is that a decrease in 7, does not lead to an increase in the variance

of tS and that it is preferable to have 6, < 7,. This is also reflected in the sto-

chastic optimization software developed a t IIASA

All of the methods discussed so far use only the information available a t

the current point or in its immediate vicinity. We shall now discuss some more

general ways of choosing the step direction which take into account the infor-

mation obtained a t previous points.

2.5. Averaging over preceding iterations

The definition of a stochastic quasigradient given in (3) allows us to use

information obtained a t previous points as the i terations proceed; this informa-

tion may sometimes lead to faster convergence to the vicinity of the optimal

point. One possible way of using such information is to average the stochastic

quasigradients obtained in preceding iterations via a procedure such as (9).

The us obtained in this way may then be used in method (2). This is another

way of smoothing out randomness and neutralizing such characterist ics of

deterministic behavior as curved valleys and oscillations. Methods of this type

may be viewed as stochastic analogues of conjugate gradient methods and were

first proposed in [13]. We can choose according to any of (5). (6). (10). (ll),

(12), or (14). Since vS -, Fz(zs) under ra ther general conditions (see [1.2]),

method (9) can be considered as an alternative to method (6) for deriving pre-

cise estimates of gradient Fz(z). This method has an advantage over (6) in that

it provides a natural way of using rough estimates of F,(zS) on the first few

iterations and then gradually increasing the accuracy as the current point

approaches the optimal point. In this case (9) can be incorporated in the adap-

tive procedures used to choose the smoothing parameter and the step in the

finite-difference approximation.

However, i t is not necessary to always take a, -, 0, because we have conver-

gence for any 0 s a, S 1. Sometimes it is even advantageous to take

a, = a = constant, because in this case more emphasis is placed on information

obtained in recent iterations. In general, the greater the randomness. the

smaller the value of a that should be taken. Another averaging technique is

given by

where Ms is the size of the memory, which may be fixed.

2.6. Using secon&order information

There is strong evidence tha t in some cases setting

may bring about considerable improvements in performance. Here can be

chosen in any of the ways discussed above. Matrix -% should be positive definite

and take into account both the second-order behavior of function F (z) and the

s t ructure of the random part of the problem. One possible way of obtaining

second-order information is to use analogues of quasi-Newton methods to

update matr ix 4. To implement this approach, which was proposed by Wets in

[3], it is necessary to have - F,(zs)II -. 0.

3. CHOICE OF SlXP SIZE

The simplest way of choosing the step-size sequence in (2) is to do it before

starting the iterative process. Convergence theory suggests that any series

with the properties:

can be used as a sequence of s tep sizes. In addition, it may be necessary to

take into account relations between the step size and such things a s the

smoothing parameter or the s tep in a finite-difference approximation. Rela-

tions of this type have been briefly described in the preceding sections. In most

cases the choice p, - C / s , which obviously satisfies (17), provides the best pos-

sible asymptotic ra te of convergence. However, since we are mainly concerned

with reaching the vicinity of the solution, rule (17) is of limited use because a

wide variety of sequences can be modified to satisfy it. The other disadvantage

of choosing the step-size sequence in advance is that this approach does not

make any use of the valuable information which accumulates during solution.

These "programmed" methods thus perform relatively badly in the majority of

cases.

The best st rategy therefore seems to be to choose the s tep size using an

interact ive method. It is assumed that the user can monitor the progress of

the optimization process and can intervene to change the value of the s tep size

or other parameters. This decision should be based on the behavior of the esti-

mates p(zs) of the c u r r e n t value of the objective function. The est imates may

be very rough and a r e general ly calculated using only one observation per

i terat ion, as in the following example:

I t appears tha t although the observations f (zS,oS) may vary greatly, the ?
display much more regular behavior. Monitoring the behavior of some com-

ponents of the vector zs in addition to the ? also seems to be useful. One pos-

sible implementation of t he interact ive approach may proceed along the follow-

ing lines:

(i) The user first chooses the value of t he s tep size and keeps it constant for a

number of i terat ions (usually 10-20). During this period t h e values of the

est imate ? and some of the components of the vector zS a re displayed.

pozsibly with some additional information.

(ii) The user decides on a new value for the step size using the available infor-

mation. Three different cases may occur:

- The cur ren t s t ep size is too large. In this case both the values of the

est imate ? and the values of the monitored components of zS exhibit

random jumps. It is necessary to decrease the s tep size.

- The cur ren t s tep size is just right. In th is case the est imates decrease

steadily and some of the monitored components of the cu r ren t vector

zs also exhibit regular behavior (steadily decrease or increase). This

means tha t t he user may keep the s tep size constant unti l oscil lations

occur in t he est imate and/or in the components of the cu r ren t

vector zs .

- The cur ren t s tep size is too small. In this case the est imate ? will

begin to change slowly, or simply fluctuate, after the first few i tera-

tions, while the change in zS is negligible. It is necessary to increase

the s tep size.

(iii) Continue with the i terations, periodically performing step (ii), until

changes in the s tep size no longer result in any dist inct t rend in either the

function est imate or the current vector zS, which will oscillate around

some point. This will indicate that the cur ren t point is close to the solu-

tion.

This method of choosing the s tep size requires an experienced user, but we

have found tha t the necessary skills are quickly developed by trial and error.

The main reasons for adopting an interactive approach may be summarized as

follows:

- Interactive methods make the best use of the information which accumu-

lates during the optimization process.

- Because the precise value of the objective function is not available, i t is

impossible to use the rules for changing the s tep size developed in deter-

ministic optirnization (e.g., line searches).

- Stochastic effects make i t extremely difficult to define formally when the

step size is "too big" or "too small"; theoretical research has not thrown

any light on this problem.

The main disadvantage of the interactive approach is that much of the

user's t ime is wasted if i t takes the computer a long t ime to make one observa-

tion f (zS,wS). For th is reason a great effort has been made to develop

automatic adaptive ways of choosing the s tep size, in which the value of the

step size is chosen on the basis of information obtained a t all or some of the
-

previous points zi, i = 1,s. Methods of this type are considered in [14-201. The

approach described in the following sections involves the estimate of some

measures of algorithm performance which we denote by $i(5s,uS), where ZS

represents the whole sequence lz1,z2, ..., zs j and us t h e se t of parameters used

in the estimate. In general, algorithm performance measures are at tempts to

formalize the notions of "oscillatory behavior" and "regular behavior" used in

interactive step-size regulation, and possess one or more of the following pro-

perties:

- the algorithm performance measure is quite large when the algorithm

exhibits dist inct regular behavior, i.e.. when t h e est imates of the function

value decrease or the components of the cur ren t vector zS show a distinct

trend:

- the algorithm performance measure becomes small and even changes its

sign if the estimates of the current function value stop improving or if the

current point s tar ts to oscillate chaotically;

- the algorithm performance measure is large far from the solution and

small in the immediate vicinity of the optimal point.

Automatic adaptive methods for choosing the step size begin with some reason-

ably large value of the step size, which is kept constant as long as the value of

the algorithm performance measure remains high, and then decreases when

the performance measure becomes less than some prescribed value. The

behavior of the algorithm usually becomes regular again after a decrease in the

step size, and the value of the performance measure increases; after a number

of iterations oscillations set in and the value of the performance measure once

again decreases. This is a sign that it is t ime to decrease the step size. A

rather general convergence result concerning such adaptive piecewise-linear

methods of changing the step size is given in [18]. However, in many cases it is

difficult to determine how close the current point is to the optimal point using

only one such measure - a more reliable decision can be made using several of

the measures described below. Unfortunately, i t is not possible to come to any

general conclusions as to which performance measure is the "best" for all sto-

chastic optimization problems. Moreover, both the values of the parameters

used to estimate the performance measure and the value of the performance

measure at which the step size should be decreased a re different for different

problems. Therefore if we fix these parameters once and for all we may achieve

the same poor performance as if we had chosen the whole sequence of s tep

sizes prior to the optimization process. Thus, i t is necessary to tune the

parameters of automatic adaptive methods to different classes of problems, and

the interactive approach can be very useful here. An experienced user would

have l i t t le difficulty in using the values of the performance measures to deter-

mine the correct points at which to change the s tep size. and in learning what

type of performance measure behavior requires an increase or a decrease in

the s tep size. The interactive approach is of part icular use if one iteration is

not very time-consuming and there are a number of similar problems to be

solved. In this case the user can identify the most valuable measures of perfor-

mance in the &st few runs, f ix their parameters and incorporate this

knowledge in automatic adaptive step-size selection methods for the remaining

problems.

Although interactive methods usually provide the quickest means of reach-

ing the solution, they cannot always be implemented, and in this case

automatic adaptive methods prove to be very useful. The stochastic optimiza-

tion package ST0 developed a t IIASA and the Kiev stochastic and

nondifferentiable optimization package NDO both give the user the choice

between automatic adaptive methods and interactive methods of determining

the step size. Below we describe some particular measures of algorithm perfor-

mance and methods of choosing the step size.

The main indicators used to evaluate the performance of an algorithm are

estimates of such things as the value of the objective function and its gradient.

The averaging procedure (9) may be used to estimate the value of the gradient,

as described earlier in this paper. The main advantage of this procedure is that

i t allows us to obtain estimates of the mean values of the random variables

without extensive sampling a t each iteration, since a very limited number of

observations (usually only one) is made at each iteration. This estimate.

although poor a t the beginning, becomes more and more accurate as the itera-

tions proceed. One example of such an estimate is (18). which is a special case

of the more general formula

Any observation pS with the property

can be used instead of f (zS,oS) in (19), where d, -, 0. For example, (6) would

do. In order to get lim,,,l - F(zS) I = 0 i t is necessary to have p,/7, -, 0.

However, estimate (18) assigns all observations of function values the same

weight. This sometimes leads to considerable bias in the estimate for all the

iterations the user can afford to run. Therefore for practical purposes i t is

sometimes more useful to adopt procedures of the type described in Section 2

for the estimation of gradients. These include estimate (19) with fixed 7, = 7.

where 7 - 0.01-0.05. and the method in which the average is taken over the

preceding rCI, iterations:

Although these estimates do not converge asymptotically to F(zS), they place

more emphasis on observations made a t recent points. All of the estimates ?
may also be used in an interactive mode to determine the step size, as

described above. In addition, the values of the parameters used to determine

the step size may also be chosen interactively. For example, the values of

parameters b and b in

can be made to depend on the behavior of p.
We shall now describe some automatic adaptive rules for choosing the step

size. The important point as regards implementation is how to choose the ini-

tial value of the s tep size po. We suggest tha t the value of a stochastic quasigra-

dient should first be computed a t the initial point. and tha t the initial value

of the step size should then be chosen such tha t

where 1 - 10-20 and D is a rough estimate or the size of the domain in which we

believe the optimal solution to be located. This means that i t is possible to

reach the vicinity of each point in this domain within the first 20 i terations or

S 0.

3.1. Ratio ot function estimate to the path length

Before beginning the iterations we choose the initial step size po, two posi-

tive constants cxl and az, a sequence M, and an integer fi. After every fi i tera-

tions we revise the value of the step size in the following way:

(i) Compute the quantity

Here the us are the averaging parameters used in the estimation of both ?
and M, , while Z9 is again the whole sequence of points preceding 2 ' . The quan-

tity

is the length of the path taken by the algorithm during the preceding Ms itera-

tions. The function 91(53,uS) is another example of a measure which can be

used to assess algorithm performance.

(ii) Take a new value of the step size:

f

Ps+l - p, otherwise
- 1

In this method the step size is changed at most once every f i iterations. This is

essential because function ipl changes slowly, and if its value is less than a2 a t

iteration number s i t is likely that the same will be true at iteration number

s +l. Therefore a should lie in the range 5-20. This procedure can be modified

in various ways, such as continuing for & iterations with a fixed step size. then

starting to compare values until inequality (24) is satisfied whereupon the step

size is reduced We then wait another fi iterations and repeat the procedure.

Recommended values of al and a2 lie within the ranges 0.5-0.9 and 0.005-0.1,

respectively. The number Ms may be chosen to be constant and equal to &. If

we have a number of similar problems i t is very useful to make the first run in

a semi-automatic mode, i.e., to intervene in the optimization process to

improve the values of parameters al , a2, @ - the new values can then be used

in a fully automatic mode to solve the remaining problems.

This algorithm is by no means convergent in the traditional sense, but i t

outperformed traditional choices like C / s in numerical experiments because it

normally reaches the vicinity of the optimal point more quickly. However, i t is

possible to safeguard convergence by considering a second sequence C /s ,

where C is small, and switching to this sequence if the step size recommended

by (24) falls below a certain value. This step size regulation was introduced in

[151.

3.2. Use of gradient estimates

Take 92 = cS instead of 91(2s,us) in (24), where cs is one of the gradient

estimates discussed above, and the us represent all the parameters used.

including averaging parameters and the frequency of changes in the step size.

3.3. Ratio of progress and path

The quantity I I Z ~ - " - zs 11 represents the progress made by the algorithm

between iteration number s - Ms and iteration number s . If we keep the step

size constant, the algorithm begans to oscillate chaotically after reaching some

neighborhood of the optimal point. The smaller the value of the step size, the

smaller the neighborhood at which this occurs, and thus the total path between

iterations s and s - Ms begins to grow compared with the distance between

points z - 61, and zS. This means that the function

can be used as a performance measure in equation (24).

3.4. Analogues of line search techniques

The decision as to whether (and how) to change the step size may be based

on the values of the scalar product of adjacent step directions. If we have

(P-l,P) > 0, then this may be a sign that regular behavior prevails over sto-

chastic behavior, the function is decreasing in the step direction and the step

size should be increased. Due to stochastic effects the function will very often

increase rather than decrease, but in the long run the number of bad choices

will be less than the number of correct decisions. Analogously. if this inequal-

ity does not hold then the step size should be decreased. The rule for changing

the step size is thus basically a s follows:

where the values of al, a2, a3 (recommended values al - 0.4-0.8 , 1 < a2< 1.3

and 0.7 s a3 < 1) should be chosen before starting the iterations. It is also

advisable to have upper and lower bounds on the step size to avoid divergence.

Sometimes it is convenient to normalize the vectors of step directions, i.e.,

il = 1. The lower bound may decrease as the iterations proceed. This method

may also be applied to the choice of a vector step size, treating some (or all)

variables or groups of variables separately. A number of different methods

based on the use of scalar products of adjacent step directions to control the

step size have been developed by Uriasiev [19], Pflug [16]. and Ruszczynski and

Syski [20].

The interactive stochastic optimization package implemented a t IIASA

(STO) is based on the same ideas as the package for stochastic and

nondifferentiable optimization developed in Kiev (NDO). It allows the user to

choose between interactive and automatic modes and makes available the s to-

chastic quasigradient methods described in Sections 2 and 3. In the interactive

mode the program offers the user the opportunity to change the step parame-

ters and the methods by which the step size and step direction are chosen dur-

ing the course of the iterations. The user can also stop the iterative process

and obtain a more precise estimate of the value of the objective function before

continuing. The package is written in FORTRAN-77.

Before initiating the optimization process the user has to:

(i) Provide a subroutine UF which calculates the value of function f (z ,o) for

fixed z and w and. optionally, a subroutine UG which computes the gra-

dient f,(z,w) of this function; the function evaluation subroutine should

be of the form:

FVNCl"I0N UF(N,X)

DIMENSION X(N)

Calculation of J (z,w)

RETURN

END

Here N is the dimension of the vector of variables X (Note that the imple-

mentation on the IIASA VAX actually requires the subroutine to be entered

in lower-case letters rather than capitals.) A description of the subroutine

which calculates a quasigradient is given later in this paper.

(ii) Compile these subroutines with the source code to obtain an executable

module.

(iii) Provide a t least one of the following additional data files:

- algorithm control file (used only in the non-interactive option)

- parameter Ale (used only in the interactive option)

- initial data Ale (should always be present)

All of these files are described in some detail later in the paper.

The optimization process can then begin. The program first asks the user

a series of questions regarding the required mode (interactive or automatic),

method of step size regulation, choice of step direction. etc. These questions

appear on the monitor and should be answered from the keyboard or by refer-

ence to a data file. We shall represent the dialogue as follows:

Question? Answm

with the user's response given in italics. The first question is

Interactive mode? reply yes or no yes/no

To choose the interactive option the user should type in yes (or y); to select the

automatic option he should answer no (or n). In the lat ter case the program

would ask no further questions, but would read all the necessary information

from the algorithm control file (which is usually numbered 2 - under UNrX con-

ventions its name is fort.2). The iterative process would then begin, terminat-

ing after 10,000 iterations i f no other stopping criterion is fulfilled. The algo-

r i thm control file must contain answers to all of the following questions except

those concerned either with dialogue during the iterations or with the parame-

ter f3le (such questions are marked with an asterisk below). This file is given a

name only for ease of reference - the important thing for the user is its

number.

Assume now that the user has chosen the interactive option by answering

yes to the first question. The program then asks

parameter f lle? (number)

The user should respond either with the number of the file of default pararne-

ters or with the number of the file in which the current values of the algorithm

parameters are stored. The file of default parameters is provided with the pro-

gram and has the name fort.12 (under UNlX conventions); thus, to refer the

program to the default file the user should answer 12. The purpose of this file is

to help the user to set the values of algorithm parameters in the ensuing dialo-

gue and also to store such improved values as may be discovered by the user

through tr ial and error. I f the user assigns the algorithm parameters any

values other than those in the default file. the new values become the default

values in subsequent runs of the program. This Ale is optional.

The program then asks

read parameter file? reply yes or no y e s / n o

The answer yes implies that the file specified in the previous question

exists, and tha t default parameter values are stored in this file. In th is case,

when asking the user about parameter values. the program will read the default

option in t he parameter file and reproduce i t on the screen together with the

question. If t h e user accepts this default value he should respond with 0 (zero);

otherwise h e should en ter his own value, which will become the new default

value.

The answer no means tha t no default values a re available at the moment.

In this case the program will form a new default file (labeled with the number

given as an answer to the previous question); i ts contents will be based on the

user's answers to future questions. This new default file, once formed, can be

used in subsequent runs.

The next question is

number of variables? (n u m b e r)

t o which the user should respond with the dimension of the vector of variables

2. He is then asked

Initial data file? (nurn b e r)

and should reply with the number of the initial data file. This file should con-

tain the following elements (in exactly this order):

- The initial point, which should be a sequence of numbers separated by

commas or other delimiters.

- Any additional data required by subroutines UF or TJG if such data

exists and the user chooses to put it in the initial data file (optional).

- Information about the constraints (described in more detail below)

The program then asks

step size regulation? is

Here is is a positive integer from the set 11,2.3,4,6,7{, where the diflerent

values of is correspond to different ways of choosing the s tep size. (The integer

5 is reserved for an option currently under development.)

1 Adaptive automatic step size regulation (24) based on algorithm perfor-
mance function (22) and function estimate (18).

2 Manual step size regulation based on algorithm performance function
(22) and function estimate (18).

3 Adaptive automatic step size regulation (24) using algorithm perfor-
mance measure (22) and a function estimate based on a finite number of
previous observations (21).

4 Manual step size regulation based on the same estimates of algorithm
performance as for is = 3.

6 Automatic step size regulation using algorithm performance measure
(24) and function estimate (19) with Axed y,.

7 Manual step size regulation based on the same estimates of algorithm
performance as for is = 6.

The difference between adaptive automatic and manual s tep size regulation

(see is = 1.2) is that in the first case the step size is chosen automatically,

although the user may terminate the iterations at specified points and con-

t inue with another step size regulation. while in the second case the user

changes the value of the step size himself. Both step size regulations are based

on the same estimates of function value and algorithm performance.

The next question is

s tep direction? (5 figures) id2 id2 id3 id4 id5

The user has to respond with five figures which specify various ways of choosing

the step direction, e.g., 11111. W e shall refer to these figures as i d l , id2, id3,

id4 and id5. The subroutine which estimates the step direction makes some

number of initial observations at each step; these are then averaged in

some way to obtain the vector p. and the final step direction v s is calculated

using both p and values of v z for i C s.

The value of id1 specifies the nature of the initial observations

id1 Definition

A direct observation of a stochastic quasigradient is available For and
the user has to specify a subroutine UG to calculate it:

SUBROUTINE UG(N,X,G)
DIMENSION X(N),G(N)

Calculation of a stochastic quasigradient
RETURN
END

where C(N) is an observation of a stochastic quasigradient.

2 Central finite-difference approximation of the gradient as in (11).

3 The pvs are calculated using random search techniques (1 2) .

4 Forward finite-difference approximation of the initial observations pms as
in (10) .

5 Central finite-difference approximation of the gradient as in (11) . All
observations of the function used in one observation of raS are made
with the same values of random parameters o.

6 The F" are calculated using random search techniques (1 2) . All obser-
vations of the function used in one observation of a re made with the
same values of random parameters o.

7 Forward finite-difference approximation of the initial observations pas as
in (10). All observations of the:function used in one observation of pus
are made with the same values of random parameters o.

Note that for id1 = 5 6 . 7 all observations of the function used in one observation

of a re made with the same values of random parameters o. In this case the

user should write a function UF which supports this feature as follows:

FVNCTION UF(N,X)

DIMENSION X(N)

COMMON/OMEG/LO,MO

If LO= 1 and MO= 1 then obtain new values

of random factors o and set MO=O.

Make an observation of the function a t point z.

RETURN

END

The second figure idzdetermines the point a t which observations a re made:

i d2 Definition

1 The initial direction is calculated a t the current point zS

2 The initial direction is calculated a t a point chosen randomly from
among those in the neighborhood of the current point zS

The value of id3 deflnes the way in which the s tep in a finite-difference or ran-

dom search approximation of p" is chosen:

id3 Definition

1 The approximation s tep is Axed. The observations of the objective func-
tion a t point zs originally used to obtain gradient observations PnS are
not used to update the estimate of the function employed for step size
regulation.

2 The rat io b , / p s of the s tep in the Bnite-&fference approximation to the
s tep size of the algorithm is fixed (see (10)-(12)). The observations of
the objective function a t point z S originally used to obtain gradient
observations pas are not used to update the est imate of the function
employed for step size regulation.

3 The approximation step is fixed. The observations described for id3 = 1,2
above are used to update the cur ren t est imate of the objective function.

The rat io 6 , / p s of the s tep in the finite difference approximation to the
s tep size of the algorithm is fixed (see (10)-(12)). The observations
described for id3 = 1,2 above are used to update the cur ren t est imate of
the objective function.

The fourth figure id4 defines the type of averaging used to obtain from obser-

vations p".
id4 Definition

-.
1 No averaging, P = ttlS, i = 1.

2 Number of samples > 1.

The value of id5 specifies the way in which the final step direction u s is

obtained from previous values of u s and from r .
id5 Definition

1 No previous information is used. The final vector v S is simply se t equal
t o p.

2 (9) is used.

3 A positive number n3 is provided by the user. Set
k (s) = max Ik : kn3 + 1 < s 1. Then the final direction v S is computed
from (15). where Ms = s - k (s) n g + 1.

4 No previous information is used. The final vector u s is se t equal to r
and is normalized.

5 (9) is used. The final vector v S is normalized.

6 A positive number n3 is provided by the user. Let
k (s) = max Ik : kn3 + 1 S s 1. Then the final direction v S is computed
from (15). where M, = s - k (s) n 3 + 1. The final vector v S is normalized.

The program then asks about the type of constraints present in the problem:

constraints? (numb er)

The answer (in the present implementation) must be 1,2,3 or 4. These values

deflne the type of constraints present and correspond to the following options:

1 There are no constraints a t all.

2 There are upper and lower bounds on the variables. The values of these
bounds should be given at the end of the initial data file in the form of
strings of numbers separated by commas or other delimiters. The string
containing the upper bounds should come first.

3 There is one constraint zF=l 4 z i s b . The coefficients q should be
given a t the end of the initial data file. The string containing the
coefficients of linear form comes first and then. on a separate line. the
right-hand side.

4 There are general l inear constraints b l s Az < b,. In this case the pro-
gram computes a projection on these constraints at each iteration, using
the quadratic programming package SOL/QPSOL [21]. The previous point
t s - l is used as the initial approximation to the solution at iteration
number s. The precision of projection also varies, being rough during
the flrst few iterations and improving as the process proceeds. All of
these facilities are intended to reduce the amount of computation
required a t each iteration.
The following information should appear a t the end of the initial data file
(in exactly this order):

upper bounds on variables z
lower bounds on variables z
upper bounds b , on general linear constraints
lower bounds b l on general l inear constraints
number of nonzero elements in matrix A
numbers of nonzero elements in the columns of matrix A
nonzero elements of matrix A in increasing order of column number
row numbers of nonzero elements. in the same order as the elements
themselves

The next question is

termination condition? (numb e r)

There is currently only one possible answer, which is 1. This means that the

iterations terminate when the step size becomes smaller than some value

specified by the user. Additional options are under development.

The prograrn then asks the user whether the interactive mode is required

during the iterations:

interactive mode during iterations? reply yes or no yes/m

Note that the answer to this question should not be included in the algorithm

control file for the completely non-interactive option (as indicated by the aster-

isk). If the user replies yes (or y), the progriun will allow the user to change

the parameters of the algorithm and even the algorithm itself during the

course of the iterations. I f the answer is n o (or n) the prograrn will not corn-

municate with the user during the iterations but will instead ask the following

two questions:

n u m ber of iterations? (n u m b e r)

This is the number of iterations that should be performed before the process

terminates (if i t has not already been terminated by some other condition). I t

is necessary to put an answer to this question in the algorithm control file for

the completely non-interactive option.

extra output? reply yes or no y e s / n o

This is the program's way of asking the user whether information about the

iterations should be saved. Note that these two questions do not appear if the

user has chosen to run the program in the interactive mode during the itera-

tions.

Now comes a group of questions about step direction parameters. These

questions depend on the values of id l , id2, id3, id4 and id5 given previously (see

the discussion of answers to the question step direction?).

If id1 = 4.5 then the question

number of random directions? (n ~ m b e r)

appears. The required answer is Ms from (12).

If idZ = 2 the user is asked

relation between step size and neighborhood? (n u m b e r)

The answer is the ratio of the step size to the size of the neighborhood (of the

current point) from which the observation point is chosen (i.e., r S / p s in the

discussion of (13)).

If id3 = 1,3 and id1 # 1 the program asks

step in finite difference approximation? (n u m b e r)

The required answer is the value of step 6 , in the finite-difference or random

search approximation (10)-(12) of the gradient observation. In this case 6, is

fixed. However, if id3 = 2,4 the question

relation between step in flnite difference approximation and step size? (n u m b e r)

appears. The answer is the ratio 6 , / p , of the finite-difference approximation

step to the algorithm step size.

If id4 = 2 the program asks

number of samples? (n u m b e r)

This is the number of samples taken a t one point to obtain the averaged esti-

mate (see, for instance, N in (6)).

The question

discount rate? (n u m b e r)

appears if i d 5 = 2.5. The required answer is the (Axed) value of a, from (9).

However, if id5 = 3,6 the program asks

number of averaging s teps? (n u m b e r)

The user should respond with the value of ng (see ear l ier discussion of i d 5

options).

We now have a group of questions concerning t h e values of step size param-

eters. Which questions appear depends on the way in which the step size is

being chosen (see earl ier discussion of the question s t e p size regulation?).

If t he user has chosen automatic step size regulation (is = 1,3,6) he will be

asked t h e following four questions:

lnitlal s tep size? (n u m b e r)

This is p,,.

multiplier? (n u m b e r)

The required answer is al from (24).

frequency of s tep size changes? (n u m b e r)

The user should give the value of fi (see discussion of (24)).

lower bound on function decrease? (n u m b e r)

This is a2 from (24).

However, i f the user has chosen to regulate t h e s tep size interactively

(is = 2,4,7) he will only be asked

value of s tep size? (n u m b e r)

The following questions appear only if there are general l inear constraints, i.e..

if the answer t o the question constraints? is 4:

number of general linear constraints? (n u m b e r)

correspondence between s tep size and accuracy of projection? (n u m b e r)

The answer to t'he first question is obvious but the second requires some expla-

nation. In order to keep the amount of computation to a minimum, the accu-

racy r, of projection is linked to the value of the step size: T, = ~ p , . This leads

to only rough projection during the first few i terat ions (when the step size is

large) and more precise projection as the current point approaches the optimal

point. The required answer to the last question is the value of c; recommended

values lie in the range 0-1.

Another group of questions is concerned with the estimates of the objec-

tive function and also affects the choice of step size:

size of memory? (number)

The answer is M, From (22). which in this implementation is fixed. If the step

size regulation is defined by is = 6,7 the program asks

multiplier for function averaging? (number)

The user should give the value of y, in (19). which is fixed.

With the answers to these questions the algorithm control file for the non-

interactive option is complete. The rest of this section describes the ways in

which the algorithm parameters and the algorithm itself may be modified dur-

ing the course of the iterations. This may be done only if the answer to the

question Interactive mode during iterations? reply yes or no was yes. In this case

the program will now perform the first iteration and produce a string of infor-

mation something like this:

1 0. 7505.826 7505.826 0. 1.000 100.458 109.575

Here the first number is the number of the current iteration, the second is the

value of some algorithm performance measure (see (22), (25) for examples of

such Functions), the third is the estimate of the value of the objective function

a t the current point (see (18). (19). (21) for examples of such estimates). the

fourth is an observation of f (zS,oS), the fifth currently has no meaning and

always contains 0, the sixth is the step size, and the rest are values of variables

qs (the default is that only the values of the first two such variables are

displayed). ARer th is str ing the following question will appear:

continue? reply "space",step,dir,var,estim,go,yes or no

This gives the user the opportunity to continue without any change. to alter the

frequency of communication. to change the step size or step direction pararne-

ters, to display variables other than the first two, to stop a t the current point

and obtain a precise estimate of the value of the objective function, to switch

from interactive to automatic mode, or to terminate the iterations and con-

t inue the solution with another algorithm. We shall now describe all of these

options in some detail.

"space" If the user hits the space bar nothing will change and the program
will perform another 10 i terations. The information about the pro-
cess is displayed after each iteration; after t he 10-th i teration the
user is once again given the opportunity to make changes (the
question continue? reply "space",step ... appears).

s t e p This means that the user wants to change the step size parame-
te rs (but not the step size regulation itself) and all the related
questions will be repeated. Default or previous values of the step
parameters will appear on the screen together with the questions.

di7 This means that the user wants to change the step direction
parameters (but not the way in which the step direction is chosen)
and the questions concerned with this will be repeated. Default or
previous values of the direction parameters will appear on the
screen together with the questions.

war In this case the quantity and/or the selection of variables
displayed on the screen may be changed. The following questions
will appear:

number of printed variables? (number)
i.e., if t he user wants to print out the values of four variables
rather than the default twb, he answers 4.

printed variables? (number , n u m b e r , ) *
Here the user specifies which part icular variables he wants
displayed by giving the numbers of the chosen variables separated
by commas.
Questions concerning the frequency of communication will also
appear here (see description of response yes below).

e s t h In this case the program will stop a t the cur ren t point and esti-
mate the value of the objective function. The following questions
will appear:

number of observations? (number)
i.e., the number of observations to be made, and

message frequency? (number)
i.e.. the number of observations after which the current est imate
is displayed. The user is also asked for the point a t which the esti-
mate should be made:

what point? reply current, new or exit c u n e n t / n e w / e d *
If the answer is new the program asks the question:

where to find new point? reply screen or file screen/ f i le
If the user wants to enter the new point from the keyboard he
should reply screen (or s) . He should then type the desired point
on a new line, separating the components by commas. If, however,
t he new point is stored in some Ale the response should be f i l e
(or f) and the user is then asked

file number? (number)
The answer is obviously the number of the file containing the new
point. This new point is taken as the start ing point for future
i terations if the user answers yes to the following question:

replace current point by new? reply yes or no yes /no

which appears when the estimation of the objective Function at
the new point has been completed. This facility makes i t possible
to exchange the current point for an arbitrary point chosen by the
user and also to make precise estimations a t arbitrary points.
Finally, if the answer to the question what point? reply current, new
or exit is e z i t the estimation procedure will end and the iterations
will continue.

This means that the user does not want to continue in the interac-
tive mode; he wants the process to proceed automatically. This is
useful once the algorithm parameters have been established and
also in the case when one iteration is very time-consuming. The
user is then asked

number of iteratlons? (number) I

i.e., the total number of iterations before termination. After this
the program has no more communication with the user and ter-
minates after the specified number of iterations.

Yes In this case the frequency of communication can be changed. The
following questions appear:

output frequency? (number) I

This is the number of iterations after which information about the
process is displayed on the screen (the default value is 1, i.e.. a
string of information is printed after every iteration).

dialogue frequency? (number) I

This is the number of process information strings (see above)
printed before the user is asked the question continue? reply
space,step,dir,var,estim,yes or no. The default is 10. i.e., the user is
given ten strings of information about the process before he is
asked whether he wishes to make any changes.

This means that the user wishes either to terminate the iterations
or change the method The program asks:

continue? reply "space",yes or no "space" / y e s / n o
Here hitting the space bar means that the user wishes to proceed
with the iterations using the same method, maybe returning to
the initial point (see below); yes means he wishes to change the
way in which the step size and/or step direction are chosen (the
program will ask further questions about this - see below); n o
means that he wishes to terminate the iterations completely
(some self-explanatory questions will then appear). If the user
answers ".spaceH or yes the program will ask

return to initial values? reply yes or n o yes /no
and the user should give the appropriate response.

The very first appearance of the question continue? reply space,step,dir,

var,estim,yes or no is followed by the question

least value of step size? (numb e r) I

The answer is the least permissible value of the step size. If the current step

size is less than this value then the iterations will terminate. In other cases

the process terminates after 10,000 iterations with a question about whether to

continue or not.

Everything that appears on the screen during the interactive dialogue

automatically also goes to file number 15 (fort. 15 in UNIX). This makes it possi-

ble to study the process after it has terminated.

This section provides some idea of the capabilities of the package of sto-

chastic optimization subroutines ST0 available a t IIASA The implementation

described here is the first version, and development of the second continues.

This revised version will include methods For solving certain special problems,

in part icular problems with recourse, and new methods for step size regulation

will be introduced.

5.1. Facility location problem

We first consider a simple model of facility location in a stochastic environ-

ment. Suppose that we have to determine the amounts zi of materials, facili-

ties, etc.. required a t points i = l,n in order to meet a demand oi. The demand

is random, and all we know is its distribution function

Pfo, I: Zl ,.... on < 53,j = H(G). The actual value w = (w l , on) of the demand is

not known when the decision concerning the z = (z, ,..., z,) has to be made.

Assume tha t we have made a decision z about the distribution of facilities and

then found that the actual demand is o. We have to pay for both oversupply and

shortfalls, i.e., the penalty charged at the i - th location is $f(oi - zi) if wi 2 zi

and &(zi - oi) if oi < zip where the functions $f(y) and $i(y) are nondecreas-

ing. In the simplest case these functions are linear and the total penalty for

fixed z and o is z,TL=I max lai(wi - zi) , bi(zi - oi)j, where a, r 0. bi 1 0.
-

i = 1,n. In most cases i t is reasonable to select z in such a way tha t the aver-

age penalty is a t a minimum, i-e.. to minimize the following function:

J 5 max tq(oi - zi), bi(zi - ~i)jdH(~)
i = l

This approach can easily be generalized to deal with more complex facility loca-

tion models (see [1.15.22]). The numerical experiment presented here is basi-

cally an application of the facility location model described above to the

problem of high school location in Turin. Italy (see [15.22]). In this example n

is the number of districts in the city (23 in this case), ui is the number of stu-

dents who want to at tend schools in district i , and ii is the capacity of schools

in distr ict i. It is assumed that a student living in district i will choose a

school in district j with probability p i j , where

- , -%
Pij - ,, 2 p i j

j=1

and c,, is proportional to the distance between districts i and j . The values of

ci, are taken from [15]. as a re the values of the parameters (A = 0.15 and

% = bi = 1.0 for all i). The demand wi is assessed by assigning individual stu-

dents to a school in a part icular district on the basis of probabilities pi j , thus

simulating the student's choice of school. In order to reduce the amount of

computation the number of students was scaled. Table 1 gives the resulting

solution (the number of places that should be provided), together with the total

number of students' actually attending schools in each &strict.

TABM 1 The solution of the problem of high school location in Turin, Italy [15,22]

District I 2 3 4 5 6 7 8

Number of 13.0 15.0 11.0 14.0 14.0 11.0
students

12.0 I
Number of 23.0 26.0 23.0 22.0 18.0 14.0
students

15.0 1
Solution

District

17.9 13.0 18.9 19.0 16.0 13.9 10.8 10.2

9 10 11 12 13 14 15 16

Solution
1

District

All real data was divided by a scaling factor of 100. We also have the constraint

XGlzi = M , where -M is the total number of students in the city divided by 100

(339 in this case). Once o has been obtained it is quite easy to calculate a sto-

chastic quasigradient. We can use vector p = ((f . ($(:) in method (2),

where

13.0 19.8 26.0 20.0 16.6 15.7 14.0 13.0

17 18 19 20 2 1 22 23

Number of
students

Solution

14.0 14.0 10.0 10.0 5.0 8.0 2 1.0

13.0 15.7 10.0 10.1 5.0 10.3 17.0

Here wf is the demand in d ist r ic t i (calculated by s imulat ing the students'

behavior) a t i terat ion n u m b e r s , and zt is the i - th component of the solution a t

this i terat ion. The init ial point was obtained by assuming t ha t each s tudent

goes to school in his native distr ict . After exte'nsive averaging, the value of the

objective funct ion a t th is point was found to be 74.2 - t h e opt imal value is 55.9.

We shal l f irst p resent resul ts obtained using the interact ive option for changing

the s tep size, i.e., resul ts obtained by giving t he answer 2 t o t he question step

size regulation? The s tep direct ion was specified a s 11111, i.e, a d i rec t observa-

t ion of a stochast ic quasigradient is available, th is observation is made a t t he

cu r ren t point. the approximation s tep is fixed. t he re is no averaging, and no

previous information is used. The size of the memory available for calculat ing

the performance measure (22) was se t at 10. Table 2 reproduces t h e informa-

tion displayed on the moni tor during t he first 30 iterations.

TABLE 2 Information displayed during the first 30 iterations (facility location problem.
interactive step size regulation)

Iter. Performance Estimate Observation Step size z 4 223

no. measure of F (z 9) of J (zS ,us)

The observations of f (z S , ~ ') given in Table 1 do not provide any c lues a s to

whether t he algori thm is improving the values of t he objective funct ion F (z S)

or not. A t Arst sight these observations appear to osci l late randomly between

40 and 80. By contrast , the es t imates ? of the function F (zS) display much

more stable behavior, general ly decreasing during the Arst 22 i terat ions from

73 t o 64 a n d then stabil izing a round the values 63-64 with some small

oscillations. Looking at the behavior of the two selected variables, we see that

their values show a steady increase or decrease until iteration number 8 for z4

and iteration number 5 for zz3. In later iterations both variables exhibit oscil-

latory behavior. The value of the performance measure during the first 4 itera-

tions is negative, due to the instability of the initial estimates. I t then begins

to increase and reaches approximately 0.2, reflecting the regular behavior of

the estimate Fs. After this i t decreases in an oscillatory fashion to the range

0.03-0.06. All of this indicates that it is time to decrease the step size.

TABLE 3 Information displayed during iterations 31-59 (facility location problem, in-
teractive step size regulation)

Iter. Performance Estimate Observation Step size
no. measure ? of F(zS) of J (zs .us)

31 0.045 62.379 42.783 0.500
33 0.025 62.295 62.783 0.500
35 0.052 61.652 52.609 0.500
37 0.063 61.565 46.957 0.500
39 0.079 61.318 52.261 0.500
41 0.050 61.211 68.174 0.500
43 0.051 60.815 51.304 0.500
45 0.070 60.452 57.9 13 0.500
47 0.059 60.279 45.652 0.500
49 0.035 60.277 64.957 0.500
5 1 0.043 60.104 6 1.739 0.500
53 0.017 60.133 64.696 0.500
55 0.017 60.240 67.043 0.500
57 -0.030 60.819 65.565 0.500
59 -0.052 61.189 85.391 0.500

After changing the step size. the estimates of F(zS) decreased steadily dur-

ing iterations 31-51, and then started to increase during iterations 52-59 (see

Table 3). The performance measure first increased, reaching a level of

0.05-0.07 between iterations 35 and 47 before dropping back to negative values.

I t is necessary to decrease the step size once again.

We decided to stop after iteration number 80 (see Table 4) and estimate the

value of the objective function a t the current point. The average after the first

500 observations was 56.53, which shows that we are fairly close to the optimal

solution. Note that this estimate is considerably lower than the value of

(61.0) given in the table. This is due to the fact that the estimate is calcu-

lated from (18) including only one additional observation f (zS,wS) per itera-

tion, and it therefore includes observations made at early points which are

clearly far from the optimum. Nevertheless, this estimate is still useful in

determining the value of the step size because it reflects the general behavior

TABLE 4 Information displayed during iterations 62-80 (facility location problem, in-
teractive step size regulation)

Iter. Performance Estimate Observation Step size z 4 =23

no. measure ? o f F (z s) o f f (zS,wS)

of the algorithm. Subsequent iterations improved the value of the objective

function only marginally (see Table 5).

TABLE 5 [nformation displayed during iterations 90-3070 (facility location problem, in-
teractive step size regulation)

Iter. Performance Estimate Observation Step size 2 4 2 23

no. measure % o f F (z s) o f I (z s , o s)

90 0.063 60.601 54.087 0.200 17.930 17.730
100 0.143 59.876 45.739 0.100 18.287 17.687
120 0.022 59.579 57.670 0.100 18.330 17.530
140 0.061 58.890 45.374 0.100 18.626 17.826
160 -0.011 59.161 56.278 0.100 19.226 17.626
1 80 0.319 58.76 1 44.744 0.020 19.379 17.299
200 0.008 58.608 49.144 0.020 19.237 17.277
300 0.317 57.847 43.322 0.020 18.946 17.146
400 -0.368 57.627 81.986 0.005 18.909 17.129
500 0.270 57.584 63.554 0.005 18.869 17.099
8 00 -0.830 57.0 12 58.455 0.00 1 18.967 17.017

1100 3.773 57.071 66.512 0.0003 18.980 17.000
1570 1.521 56.858 79.613 0.000 1 18.983 16.998
2070 0.916 56.629 46.567 0.000 1 18.975 16.998
2570 -0.874 56.603 71.741 0.0001 18.978 17.001
3070 0.118 56.425 55.729 0.0001 18.982 17.000

Our final estimate of the objective function was 56.0, which is close to the

optimal solution.

The same results can be obtained by automatic regulation of the step size.

In this case we give the answer 1 to the question step slze regulation?, i.e.. adap-

tive automatic step size regulation (24) using function estimate (18). We also

set

initial step size 1.0

multiplier 0.7

frequency of step size change 15

lower bound on function decrease 0.02

size of memory 15

(see the description of the step size parameters in Section 4). The results are

presented in Table 6.

TABLE 6 Information displayed during iterations 2-1200 (facility location problem,
adaptive automatic step size regulation)

Iter.
no.

Performance
measure

Estimate
P OF ~ (2 ~)

77.826
72.522
69.232
65.457
63.609
84.980
64.435
64.304
61.951
61.563
60.593
60.246
59.526
59.277
58.495
58.440
57.936
57.683
57.387
57.1 16
57.006
56.726
56.623

Observation
of j (z S , d)

60.26 1
57.739
54.522
48.174
56.087
65.652
58.522
49.652
49.39 1
68.696
90.195
65.349
48.282
50.012
58.695
63.486
36.450
47.760
43.263
50.086
43.503
76.801
65.457

Step size

The value of the objective function a t the final point (average of 4000

observations) is 56.2, which is close to the optimal value. The behavior of the

algorithm was virtually the same as in the interactive case: quite a reasonable

approximation of the optimal solution was obtained after 100-150 iterations.

with litt le improvement being observed thereafter.

5.2. Control of water resources

This example is taken from work by A. Prekopa and T. Szantai. An extended

description of the problem together with a solution obtained by reduction to a

special type of nonlinear programming problem is given in [23]. Here we shall

show how the problem can be solved using stochastic quasigradient methods.

The basic aim is to control the level of water in Lake Balaton (a large, shallow

lake in western Hungary). A certain volume of water 2i flows into the lake from

rivers, rainfall, etc.. in time period i. This inflow varies randomly from one

period to another , but it is possible to derive i ts probabilistic distribution from

previous observations. The control pa ramete r is the amount zi of water

released from the lake into the River Danube in each t ime period; the objective

is to maximize the probabil ity of the water level lying within specified bounds.

It tu rns ou t tha t a reasonable control policy can be determined by considering

only two consecutive periods of t ime, which in this example a re measured in

months. Mter appropriate t ransformat ions we arrive a t the following problem

(for details see [23]):

where t he se t Z(z1,z2) is defined as follows:

Here %, bi a r e respectively the lower and upper bounds on the "generalized"

water level: in this part icular example we took al = a2 = -205, b = b = 95.

R = 200. The random water inputs w l and w2 have a joint normal distr ibut ion

H(wl,w2) with expectat ions E(wl) = -28.07. E(02) = -59.43 and covariance

matr ix

Let X(z1,z2,w1,~2) denote the indicator function of the s e t Z(z1,z2), i.e..

The problem then becomes

a n d can be solved using stochast ic quasigradient methods. We took (95.95) as

t he initial point; t he value of t he objective function a t th is point was 0.32.

According to [23], t he optimal solution is (2,0), with an objective function value

of 0.957. We decided to solve the problem using a finite-difference

approximation of a stochast ic quasigradient. Below we demonst ra te how our

interact ive software package ST0 may be used to solve this problem, specifying

interact ive s tep size regulat ion (option 2) and s tep direction 21124, (i.e., taking

a centra l finite-difference approximation of the gradient, calculat ing the s tep

direct ion a t the cu r ren t point, with a fixed approximation step, a number of

samples g rea te r than 1, no previous information, and such t ha t the s tep direc-

t ion vector has uni t norm).

The parameters were se t a t the following values:

step in finite difference approximation 10.0

number of samples 5

value of step size 10.0

size of memory 20

The resul ts a re given in Table 7.

TABLE 7 [cformation displayed during iterations 1-110 (water management problem,
interactive s tep size regulation)

Iter.
no.

Performance Estimate Observation Step size 2 I =2

measure ? of F (z s) of I (zs ,us)

After i terat ion 110 we stopped and est imated the value of t he funct ion a t

t h e cu r ren t point on the basis of 4000 observations - we obtained a value of

0.843, which is close to t he optimal value. Subsequent i terat ions improved the

value of the objective funct ion only marginal ly (see Table 8).

After i terat ion 200 we changed t he s tep in the f ini te-df ierence approxima-

tion to 1.0. The value of t he objective funct ion a t t he final point was 0.85, i.e.,

we had reached t he optimal value. However, the values of t he controls were far

TABLE 8 Information displayed during iterations 120-8090 (water management prob-
lem, interactive step size regulation)

Iter.
no.

Performance
measure

Estimate Observation Step size I 2

P of F(z3) of f (zS,oS)

0.625 1.000 1O.OCO 10.000 17.071
0.673 1.000 1.000 0.106 1.707
0.720 0. 1.000 2.707 6.309
0.792 1.000 0.100 3.071 7.835
0.797 0. 0.100 1.787 8.110
0.829 1.000 0.100 3.463 6.392
0.845 1.000 0.100 0.383 5.538
0.852 0. 0.010 0.161 4.895
0.854 1 .OOO 0.005 0.071 5.049
0.856 1 .OOO 0.005 0.C64 4.955
0.855 1.000 0.005 0.106 4.980
0.856 1.000 0.00 1 0.016 4.970
0.855 1.000 0.00 1 0.020 4.985

from the solution due to the flatness of the function around the optimum.

5.3. Determining the parameters in a closed loop control Law for stochastic

dynamical systems with delay

We have so far considered only static optimization problems. However, all

of the techniques described above can also be applied to many classes of

dynamical stochastic optimization problems. The example that we shall con-

sider was suggested by A. Wierzbicki and is the problem of finding the optimal

control parameters in a closed loop control law for a l inear dynamical system

disturbed by random noise. The state equations include response delay and

may be written as follows:

where t is a discrete time. zt is the s tate of the dynamical system at t ime t . ut

is the value of the control a t time t , and wt is the random noise at t ime t . In

this particular example the wt were taken to be distributed uniformly over the

interval [- b , b] and such that wi and w j are uncorrelated for i # j. However,

neither this part icular type of dstr ibut ion nor these correlation properties are

prerequisites for the use of the methods described in the preceding sections.

The controls ut were chosen according to the following closed loop control law:

where the decision parameters are zl r 0 and z2 r 0.

The objective is to minimize the deviation of the s tate of the system from

zero. We may therefore state the problem as follows: minimize the objective

function

with respect to the control law parameters zl and z2, subject to constraints

(28) and (29) and non-negativity constraints on z1 , z2. We solved the problem

with the following parameter values: time horizon T = 100, delay k = 5, state

equation coefficient a = 0.9, bounds for random noise b = 0.1. With these values

the optimal control parameters are zl = 0.1, zz = 0; the value of the objective

function obtained after 10,000 observations was 4.52. It was discovered during

preliminary runs that for zl r 0.3, z2 r 0.1 the system becomes unstable and

therefore these values were taken as upper bounds for the variables.

We set the initial point equal to the upper bounds zp = 0.3, z: = 0.1; the

value of the objective function a t this point (based on 3000 observations) was

422.56. We chose automatic step size regulation (option I) , i.e., the step size

changes are based upon performance function (22). The step direction was

specified as 71 114, i.e., taking a forward finite-difference approximation of the

gradient of t he random objective function f (z,o) with all observations of the

function needed for one gradient evaluation made a t the same value of the

noise; with a fixed finite difference step and the finite-difference evaluation per-

formed a t the cur ren t point; without averaging; using no previous information

and normalizing the resulting step direction. The parameters of the algorithm

were as follows:

step In finite difference approximation 0.0001

Initial step size 0.1

multiplier
(for diminishing the step size)

frequency of step size change
(actually the frequency with which
the step size is reviewed)

lower bound on function decrease
(the lowest value of performance
funct ion (22) which does not lead
to a decrease in t h e s tep size)

size of memory
(for evaluating (22))

least value of s t e p size
(stopping cr i ter ion)

The resu l ts of the calculat ions a re given in Table 9.

TABLE 9 tnformation displayed during iterations 1-120 (control law problem, automatic
step size regulation)

Iter. Performance Estimate Observation Step size 2 I %2

no. measure ? of F(zs) of 1 (zs ,as)

1 0. 8.141 8.141 0.100 0.232 0.027
2 18.570 6.284 4.427 0.100 0.149 0.
3 12.23 1 5.695 4.5 17 0.100 0.054 0.
4 7.093 6.013 6.968 0.100 0.097 0.
5 6.727 5.450 3.199 0.100 0. C75 0.
10 3.428 5.056 4.C84 0.100 0.073 0.
15 2.416 4.759 4.254 0.100 0.103 0.C99
20 0.42 1 4.733 4.2 1rl 0.100 0.029 0.
30 0.119 4.651 5.326 0.100 0.052 0.
40 0.058 4.615 4.896 0.100 0.050 0.
50 -0.012 4.631 5.1~3 0.085 0.071 0.
70 0.00 1 4.668 5.131 0.072 0.112 0.
90 0.005 4.665 4.943 0.061 0.076 0.059
100 0.042 4.621 3.481 0.052 0.076 0.
120 0.033 4.601 4.872 0.044 0.094 0.

We stopped after i terat ion 120 to es t imate t h e value of t he objective function.

which was calculated to be 4.54 af ter 3000 observations and is fairly close to the

optimal value. Subsequent i terat ions improved t h e solut ion only marginally

(see Table 10).

This example once again demonst ra tes t he character is t ic behavior of sto-

chast ic optimization algori thms: t h e neighborhood of t he optimal solution is

reached reasonably rapidly; oscil lations then occur in th is neighborhood and

t h e cu r ren t approximation to t h e optimal solution improves slowly.

The na tu re of stochast ic quasigradient algori thms allows easy extension of

model (28)-(30) to mult ivariable and nonl inear systems.

TABLE 10 Information displayed during iterations 150-1500 (control law problem, au-
tomatic s tep size regulation)

Iter. Performance Estimate
no. measure % of F(zS)

Observation
of / (zS ,us)

3.776
4.234
5.224
4.413
4.478
4.958
4.973
4.544
3.571
4.437
4.789
3.704
4.120
4.633
5.070
4.860
4.621

Step size 2 1

REFERENCES
1. Yu. Ermoliev. .4iethods of S tochas t i c P r s g r a m m i n g (in Russian). Nauka,

Moscow, 1976.

2. Yu. Ermoliev. Stochastic quasigradient methods and the i r applications to
systems optimization. Stochas t i cs . 9 (1983) 1-36.

3. R. J.-El. Wets. Stochastic programming: solution techniques and approxima-
tion schemes. In Mathemat i ca l P r o g r a m m i n g . The Sta te o f t h e Art.
Springer-Verl ag, 1983.

4. L. Nazareth and R. J-B. Wets. Algorithms for stochast ic programs: the case
of nonstochastic tenders. Working Paper WP-83-5, International Inst i tute
for Applied Systems Analysis, Laxenburg, Austria, 1983.

5. P. Kall. Stochast ic L inear P r o g r a m m i n g . Springer-Verlag, Berlin. 1976.

6. A. Prekopa. On probabilistic constrained programming. In H. Kuhn (Ed.),
Proceed ings of t h e P r i n c e t o n S y m p o s i u m o n Mathemat i ca l P r o g r a m m i n g ,
pp. 113-138. Pr inceton University Press. Princeton. 1970.

7. H. Robbins and S. Monroe. A stochast ic approximation method. Ann. ~ U d h .
S t a t . , 22 (1951) 400-407.

8. J. Kiefer a n d J. Wolfowitz. Stochastic approximation of the maximum of a
regression function. Ann. Math. S a t . , 23 (1952) 462-466.

9. B. Fox and H. Niedereiter. Lectures on quasi-Monte-Carlo methods given a t
IlAsA, 1983.

10. H. Kushner. Asymptotic behavior of stochastic approximation and 1 arge
deviations. Lecture given a t IIASA, 1983.

11. Yu. Errnoliev and E. Nurrninski. Limit ex t remum problems. Xzbernet ika . 4
(1973) 130- 132.

12. k Gupal. Sliochastic .Methods f o r S l u t i o n o f Y o n s m o o t h O p t i m i z a t i o n Prob-
l e m s . Naukova Dumka. Kiev, 1979.

A. Gupal and A Basenov. Stochastic analogue of conjugate gradient
methods. Kibernetika, 1 (1972) 79-83.

H. Kesten. Accelerated stochastic approximation. A n n . Math. Sa t i s t . , 29
(1958) 41-59.

Yu. Ermoliev, G. Leonardi and J. Vira. The stochastic quasigradient method
applied to a facility location problem. Working Paper WP-81-14, Interna-
tional Insti tute for Applied Systems Analysis, Laxenburg, Austria, 1981.

G. Pflug. On the determination of the step size in stochastic quasigradient
methods. Collaborative Paper CP-83-25, International Institute for Applied
Systems Analysis, Laxenburg, Austria. 1983.

V. Fabian. Stochastic approximation method. Czechoslovakinn Mathemati-
cal Journal. 10 (1960) 191-200.

N. Chepurnoi. Dissertation. V. Glushkov Insti tute of Cybernetics. Kiev,
1982.

S. Uriasiev. Dissertation. V. Glushkov Insti tute of Cybernetics, Kiev, 1982.

k Ruszczynski and W. Syski. A method of aggregate stochastic subgra-
dients with on-line stepsize rules for convex stochastic optimization prob-
lems. Mathematical Programming S u d y , forthcoming.

P. Gill, W. Murray, M. Saunders, and M. Wright. User's guide for SOL/QPSOL:
a FORTRAN package for quadratic programming. Technical Report SOL 83-
7, Systems Optimization Laboratory, Stanford University, 1983.

Yu. Ermoliev and G. Leonardi. Some proposals for stochastic facility loca-
tion models. Working Paper WP-80-176. International Institute for Applied
Systems Analysis, Laxenburg, Austria, 1980.

A. Prekopa and T. Szantai. On optimal regulation of a storage level with
application to the water level regulation of a lake. European J o ~ ~ r n a i ~f
Operations Research, 3 (1979) 175-189.

