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A SURVET OF REPLTCATOR EQUATIONS 

KmZ Sigmund 

Institute of Mathematics, University of Vienna, Vienna, Austria 

What are the units of natural selection? This question has aroused consid- 

erable debate in theoretical biology. Suggestions range from pieces of polynu- 

cleotides, genes or gene complexes to individuals, groups or species. It could 

turn out, however, that different answers are correct in different contexts, 

depending on the scale on which selection acts most decisively. This is some- 

what analogous to physics, where the dominant force may be gravitational, 

electromagnetic, or strong or weak inter-particle attractions. depending on the 

problem. 

I t  is therefore convenient to consider an abstract unit of natural selection 

in theoretical investigations, which can be replaced by the appropriate real 

unit (genes, individuals or species) in specific circumstances. This abstract 

unit is termed a rep l ica tor  in Dawkins' book ?'he Eztended PBRnotllpe (Dawkins, 

1982). The term describes any entity which (a) can give rise to an unlimited (at 

least in principle) sequence of copies and (b) occurs in variants whose proper- 

ties may influence the number of copies. 

Biomathematical arguments support the usefulness of this concept. 

Indeed, the remarkable similarity of dynamical systems describing the action 

of selection in the most diverse fields lends weight to the notion of a common 

mechanism underlying these different observations. The term repl icafur 

-its has been applied to this mechanism (see Schuster and Sigmund, 

1983). In the case of continuous time (generations blending into each other), 

the dynamics can be described by an ordinary differential equation x = fix) of 

the type 

while for discrete t i e  (separate generations) the dynamics are given by a 

difference equation x + Tx with 



In both cases, the term @ is defined by 

and ensures that the state x of the system remains on the unit simplex 

n 
2$, = = (Z~,. . . . I~) clRn : Czi = 1, zi 2 O for all ij . ( 1.4) 

i =l 

The functions fi(x) describe the interaction of the different variants of the 

underlying replicator, and are specified by an appropriate biological model. 

In particular. first-order interaction terms, i.e., linear functions 

f i(x) =   AX)^ defined by a matrix A = (%). wkere 

lead to dynamics which have been investigated independently in (i) population 

genetics, (ii) population ecology, (iii) the theory of prebiotic evolution of self- 

replicating polymers and (iv) sociobiological studies of evolutionarily stable 

traits of animal behavior. Within these contexts, the dynamics describe the 

effects of selection upon (i) allele frequencies in a gene pool, (ii) relative fre- 

quencies of interacting species, (iii) concentrations of polynucleotides in a 

dialysis reactor and (iv) distributions of behavioral phenotypes in a given 

species. 

Alter a brief summary of the biological background in Section 2, we present 

a survey of the mathematical aspects of continuous- and discrete-time replica- 

tor equations. There are many interesting results, in particular for the Brst- 

order case, due to the work of Akin, Hofbauer, Zeeman and others. Section 3 is 

concerned with some general properties of replicator equations. and in Section 

4 we discuss the existence and stability of equilibria and present some 

theorems on time averages and exclusion properties. Results concerning the 

permanence of the biological components of the system are presented in Sec- 

tion 5. Gradient systems for replicator equations are described in Section 8, 

and Section 7 gives an overview of the classification of low-dimensional phase 

portraits. Fmally, Section €3 summarizes the relationships between game 

theory and first-order replicator equations. 



2.1. Population genetics 

Genes are the quintessential replicators. It is therefore quite appropriate 

that  the first systematic study of a class of replicator equations was in popula- 

tion genetics: the classical work of Fisher, Haldane and Wright on the eflects of 

natural selection upon the frequencies of alleles a t  a single locus of a diploid. 

randomly mating population. 

Briefly, i f  A, ,... ,& denote the possible alleles and zi ,..A, their frequencies 

within the adult population, then random fusion of gametes yields zygotes of 

genotype 4% with frequency 2zizj for i # j and z: for i = j. (This is the 

Hardy-Weinberg law). Let qj denote the fifness of genotype 45, which in this 

context is the probability of i ts survival from zygote to  adulthood. The geno- 

types 4% and $4 are identical (it does not matter which parent contributes 

which allele) and hence = aji. Since the heterozygous genotype 4% ( i  # j) 

carries one gene A, while the homozygous genotype A,A, carries two such 

genes, the frequency (Tx)~  of allele A, in the adult stage of the new generation 

is proportional to  

and hence to  z,  AX)^. Thus 

under the obvious assumption that @ (which can be interpreted as the average 

fitness of the population) is not equal to zero. 

The corresponding continuous-time selection equation 

= zi ((A x), - i P )  with qj = aj, (2.2) 

has been known since the thirties. I t  is considerably easier to  handle than its 

discrete counterpart (2.1), but its derivation is less clear. I t  is usually obtained 

under the assumption that  the population is always in Hardy-Weinberg equili- 

brium, an assumption which is not strictly valid in general (see Ewens, 1979). 



Thus first-order replicator equations with symmetric matrices occur in 

population genetics. 

In the model considered here, selection acts through the different viabili- 

ties of the genotypes. Differential fecundities (where the number of offspring 

depends on the mating pair) lead to equations for the genotype frequencies 

which are not of replicator type (see Pollak, 1979). Except in some special 

cases (e.g., multiplicative fecundity), these equations behave rather differently 

from (2.1) or (2.2) (see Bomze et  al., 1903). The effects of mutations and (for 

models with several genetic loci) recombination are also not described by repli- 

cator equations. 

On the other hand, frequency-dependent fitness coe5cients fall within the 

general framework of replicator equations. Models for haploid organisms lead 

to equations of the type 

where z, is the frequency of chromosome Gi and a, denotes its fitness. Equa- 

tions of this type are almost trivial if the coe5cients q are constant. If they 

are frequency dependent, however, (e-g., if they are linear Functions of 2,) then 

interesting replicator dynamics occur. 

2.2. Prebiotic evolution 

Equations of type (2.3) were f i s t  studied (initially within the framework of 

chemical kinetics) in an important series of papers by Eigen (1971) and Eigen 

and Schuster (1979) on prebiotic evolution. In this context the zi are the con- 

centrations of self-replicating polynucleotides (RNA or DNA) in a well-stirred 

dialysis reactor with a dilution flow 9 regulated in such a way that the total con- 

centration z1 + . . . + z,, remains constant (without loss of generality we can 

set this concentration equal to 1). In the absence of mutations this leads to 

continuous-time replicator equations (generation effects do not play any part 

even if the initial population of molecules reproduces in some synchronized 

way 1. 



Independent replication of the polymers leads to (2.3) with constant repro- 

duction rates %. This implies (except in the case of kinetic degeneracy) that 

all but one of the molecular species will vanish, with the loss of the correspond- 

ing encoded information. In their search for ways of preserving the initial 

amount of molecular information, Eigen and Schuster were led to study net- 

works of catalytically interacting polynucleotides. Such interactions (and the 

corresponding replication rates) are usually quite complicated, but neverthe- 

less some rather general results have been obtained. In addition, certain spe- 

cial cases of linear catalytic (or inhibiting) interactions, yielding first-order 

replicator equations 

have been studied as approximations of more realistic chemical kinetics. 

The hypercycle (a closed feedback loop in which each molecular species is 

catalysed by its predecessor) has attracted particular attention (see Schuster 

et  al., 1979, 1980; Hofbauer e t  al., 1980). Both the cooperation of the com- 

ponents within a hypercycle and the strict competition between individual 

hypercycles suggest that such networks may have been involved in some 

phases of early prebiotic evolution. The hypercycle equation is given by 

where the indices are taken on modulo n and the functions 4 ( x )  are strictly 

positive on q. If the 4 are constants kt, the above equation reduces to a spe- 

cial case of the first-order replicator equations: 

obtained if matrix A = (q j )  in (2.5) is a permutation matrix: 



2.3. Animal behavior 

Taylor and Jonker (1978) were the first to introduce first-order replicator 

equations into models of the evolution of animal behavior. This approach was 

based on Maynard Smith's use of game theory in the study of animal conflicts 

within a species, equating "strategies" with behavioral phenotypes and "payoffs" 

with increments of individual fitness. 

These investigations were initially centered on the notion of evolutionary 

stability (see Maynard Smith, 1974), which may be interpreted as game- 

theoretic equilibria which are proof against the invasion of behavioral mutants. 

This static approach assumed certain implicit dynamics which were soon made 

explicit in the  form of equations, once again of replicator type. 

Let El. ....E, denote the behavioral phenotypes within a population. z ... z, 
the frequencies with which they occur, and q, (1  r i, j .E n )  the expected 

payoff for an Ei-strategist in a contest against an &"-strategist. Then, assuming 

random encounters, we obtain  AX)^ as the average payoff for an &-strategist 

within' a population in state x, and 

as the mean payoff. In the case of asexual reproduction, the rate of increase 

i,/zi of phenotype Ei is given by the difference   AX)^ - x-Ax, which once again 

yields (2.5) (or, in the discrete-time case, 

where C is a positive constant). 

The assumption of asexual reproduction at  first seems rather unnatural. I t  

can be shown, however, that  in many important examples the essential features 

of the dynamical model are preserved in the more complicated case of sexual 

reproduction (see Maynard Smith, 1981; Hofbauer e t  al., 1982; Hines, 1980; 

Bomze e t  al., 1983; Eshel, 1982). Rather than introducing some sort of Men- 

delian machinery which, given the present state of knowledge of the genetic 

basis of behavior. is bound to be highly speculative, i t  seems reasonable to stick 

to the more robust and manageable asexual model (see Schuster and Sigmund, 

1984). 



The corresponding replicator equations are examples of frequency- 

dependent sexual o r  asexual selection equations. Many specific types of 

conflicts (e.g., the Hawk-Dove-Bully-Retaliator game, t h e  War of Attrition 

game and the Rock-Scissors-Paper game) have been examined within this 

framework (see Zeernan, 1981; Bishop and Cannings,l978; Schuster e t  al., 1981). 

The game-dynamical aspects of the linear replicator equation (2.5) may be 

expected to lead to  applications in fields such as psychology and economics (see 

Zeeman, 1981). A justification of viewing strategies as replicators is given by 

Dawkins (1982). 

2.4. Population ecology 

Equations used to  model ecological systems are usually of the form 

where the yi are  the densities of different populations interacting through com- 

petition, symbiosis, host-parasi te or predator-prey relationships. Such equa- 

tions "live" on Rt and a re  usually not of replicator type. However, taking rela- 

t ive densities yields replicator equations. In particular, Hofbauer (19Bla) has 

shown that the classical (n - 1)-species Loth-Volterra equation 

is equivalent to the f ist-order replicator equation (2.5) on S,,\ fx: zn = 01 with 

%j = bij - b*, 

and yn = 1. The barycentric transformation (2.12), together with a change in 

velocity, maps the orbits of (2.11) into the orbits of (2.5). Which of these equa- 

tions is more convenient will depend on the problem considered. Similar 

results hold for interactions of order higher than linear. 

Sexually reproducing organisms are not replicators in the str ict sense of 

the term, but within ecological considerations and disregarding genotypes they 

may be viewed as  such. 



3. GENERALPROPEUrIES 

The term cP in (1.3) guarantees that the continuous-time replicator equa- 

tion (1.1) "lives" on %, since ( C z i ) .  = 0 on %. Thus the simplex and all its 

faces (which consist of subsimplices characterized by zi = 0 for all i in some 

non-trivial subset I of 11 ,..., n j )  are invariant. In particular, the "corners" e, 

are equilibria. The solutions of (1 .1)  in $, are defined for all t EIR. 

For the discrete-time replicator equation (1 .2)  to have any meaning, the 

te rm 9 must be non-vanishing on &. I t  always has the same sign, and we shall 

assume that the f i ( x )  are also of this sign, say positive. In this case the sim- 

plex and all of i ts faces are once again invariant. 

If a continuous- or discrete-time replicator equation is restricted t o  a face 

of S, the resulting equation is again of replicator type. 

We shall say that two vector fields f and g on 5;, are equwnlenf if there 

exists a function c : S,, +IR such that f  i ( x )  - g i ( x )  = c ( x )  holds on & for all i. 

If f and g are  equivalent then the restrictions ii = z i C f i ( x )  - 9 )  and 

zi = z i ( g i ( x )  - 9 )  coincide on %. In the same way, if there exists a function 

c : & +IR+ such that f i ( x )  = c ( x ) g i ( x )  holds on S, for all i, then the difference 

equations x  -+ Tx with ( T X ) ~  = zi f  i ( x ) ~ - l  and ( T X ) ~  = z i g i ( x ) @ - l  coincide on Sj, .  

In particular, we say that n x n  matrices A  and B are equivalent i f  the vec- 

tor fields A x  and Bx are equivalent in the sense described above. This is the 

case iff there exist constants c j  such that 9 - bij = c j  for all i and j. 

Equivalent matrices l iad to identical &st-order replicator equations. Thus, 

without loss of generality, we may consider only matrices with zeros in the 

diagonal, for example, or matrices whose first row vanishes. 

Another useful property is the quotient rule 

or, in the discrete case. 

for z, > 0. 



Losert and Akin (1983) have shown that the discrete-time k i t -o rder  repli- 

cator equation induces a diffeomorphism from into itself. This result is 

important because i t  excludes the "chaotic" behavior caused by the non- 

injectivity of mappings such as z + az(1-z) .  However, the discrete case is still 

f a r  less well-understood than the continuous one, and may behave in quite a 

different way. 

4. EQUILlBRIA AND THHR SI'ABILITT 

The k e d  points of (1.1) or (1.2) in the interior of Sn are  the strictly posi- 

tive solutions of 

If (4.1) holds, the common value is 9. Similarly, the equilibria in the interior of 

a face defined by zi = D for some i E [ l  ,.... nj are the strictly positive solutions 

of the analogous equations. 

In particular, the inner equilibria of first-order replicator equations are 

the strictly positive solutions of the linear equations (4.2) and 

These solution form a linear manifold. Generically, there is either one or no 

interior equilibrium. In fact there is an open dense subset of n x n  matrices 

such that  the corresponding replicator equations admit a t  most one fixed point 

in the interior of Si, and in  the interior of each face (Zeeman, 1980). 

In many cases it is easy to perform a local analysis around a fixed point p 

by computing the eigenvalues of its Jacobian. One such eigenvalue is 9(p); this 

corresponds to an eigenvector p which is not in the tangent space. Since we 

are studying the restriction of (1.1) to %, this eigenvalue (or more precisely. 

one of its multiplicities) is irrelevant. Thus, for example, the relevant eigen- 

values of a corner e, are  the n - 1 values of a,, - q, (j # i). 

For the hypercycle (2.7) there is always a unique Axed point p in int S,,, 

which is given by 



and the eigenvalues of the Jacobian at  p are  (up to a positive factor) the n-th 

roots of unity. except for 1 itself (see Schuster e t  al.. 1980). I t  follows that  p is 

asymptotically stable for n s 3, and unstable for n r 5. In fact, using as a 

Ljapunov function, i t  can be shown that p i s  globally stable for n 4. For n r 5, 

numerical computations show that a periodc attractor exists, although this 

has not been proved rigorously. 

Linearization around the inner equilibrium of (1.1) allows the use of the 

Hopf bifurcation technique. Zeeman (1980) has shown that for n = 3 such bifur- 

cations are degenerate and do not lead to  periodic attractors. In fact, the 

equivalence of (2.5), for n = 3, with the two-dimensional Lotka-Volterra equa- 

tion (2.1 l )  implies tha t  it admits no isolated periodic orbit. For n r 4, however, 

there exist nondegenerate Hopf bifurcations, the simplest of which is given by 

which, for p = 0, reduces to  the hypercycle equation with globally stable inte- 

rior equilibrium (see Hofbauer et  al., 1980). De Carvalho (1984) refined this by 

showing that  for small p > 0, the periodic orbit is globally attracting in int .!&, 
except for the stable manifold of the inner equilibrium. 

If there is no  fixed interior point, then there exists a c c l R n  with Cc,  = 0 

such that  the function (which is defined on in t  S )  increases along the 

orbits of (2.5) (Hofbauer, 1981b). I t  follows from Ljapunov's theorem that each 

orbit x( t )  in the interior of % has its w limit 

D(X) .= fp E $, : 3 tn -D +m with x(tn) -D ~ r ]  

contained in the boundary of %. This implies that  there are no periodic, or 

recurrent, or even non-wandering points in int & if there is no fixed inner 

point. However, this does not mean that limt+,z,(t) = 0 for some i. Akin and 

Hofbauer (1982) give an example, with n = 4. where the w limit of every interior 

orbit is  a "cycle" consisting of the corners el, e2, %, e4 and the edges joining 

them. 



Conversely, if the orbit x(t)  is periodic in int S, or, more generally, has its 

o limit in int 5;, then the time averages of this orbit 

1 
lim -fzi(t)dt, i = 1, ..., n 
T++- T 

exist and correspond to an interior equilibrium of (2.5) (see Schuster e t  al., 

1980). It frequently happens that an interior equilibrium is unstable, and 

hence physically unattainable, but is nevertheless still empirically relevant as 

a time average. 

I t  is often very difficult to derive a full description of the attractors of 

replicator equations. (Recall that strange attractors have been observed 

numerically (Arneodo e t  al., 1980), and that there is still no proof of the 

elristence of a unique limit cycle for the hypercycle (2.7) with n 15). More 

modest results may be obtained in such situations by considering only whether 

the attractors are in the interior or on the boundary. 

In particular, we shall say that the replicator equation (1.1) is permanent if 

there is a compact set in int S' which contains the o limits of all orbits starting 

in int S, (or, equivalently, if there is a 6 > 0 such that limt,+, inf zi (t ) 2 6 for 

all i ,  whenever z i (0)  > 0 for all i).  Such systems are robust in a sense which is 

obviously of great practical importance in ecology, genetics or chemical kinet- 

ics. On the one hand. the state remains bounded at  some distance from the 

boundary even if i t  oscillates in some regular or irregular fashion: therefore a 

population (or component) within this system cannot be wiped out by small 

fluctuations. On the other hand, if the system starts on the boundary, i-e., with 

one or more components missing, then mutations introducing these com- 

ponents (even if only in tiny quantities) will spread, with the result that  the sys- 

tem will soon be safely cushioned away from the faces of the simplex. 

We should make two remarks here. Firstly, permanence is not a structur- 

ally stable property (in the same way that the asymptotic stability of a fixed 

point is not necessarily structurally stable). Secondly, a non-permanent sys- 

tem does not always lead to the exclusion of some components. Zeeman (1980) 

has shown that there is a specific case of (2.5) which has an attractor on the 

boundary and one in the interior. It can also happen that each interior orbit 



remains bounded away from the faces, but by a threshold which depends on the 

orbit; for permanence, the threshold must be uniform. 

The most useful sufficient condition for permanence is the e~cistence of a 

function P defined on S,, with P(x) > 0 for x E int Sn and P(x) = 0 for x E bd S,, 

such tha t  P = P+, where + is a continuous function with the property that, for 

all x E bd S,, there is some T > 0 such that 

We shall describe P as an average I j a p m o v  funct ion.  Near the boundary, P 

increases "on average", so that the orbits move away from the boundary 

(Hofbauer, 1981 b). 

I t  has been shown by Schuster e t  al. (1981) and by Hofbauer (1981b) that 

the general hypercycle equation (2.6) has P(x) = z ,z,. . .zn as an average 

Ljapunov function and is therefore permanent. This is of great importance in 

the realistic design of catalytic hypercycles, whose dynamics are too complex 

to be represented by (2.7). 

Brouwer's fixed point theorem implies that a necessary condition for per- 

manence is the existence of a k e d  point in int .Sn (Hutson and Vickers, 1983). 

For permanent first-order replicator equations (2.5). such an equilibrium is 

necessarily unique. Another very useful condition for the permanence of (2.5) 

is that the trace of the Jacobian at this fixed point must be strictly negative 

(Amann and Hofbauer, 1984). 

Amann and Hofbauer obtained a remarkable characterization of per- 

manence for systems (2.5) with matrices A of the form 

where + means that the corresponding element is strictly positive and -means 

that i t  is negative or zero. The following conditions are equivalent for equa- 

tions of this type: 



1 The system is permanent. 

2. There is a unique inner equilibrium p and +(p) is strictly positive. 

3. There is a vector z EIR,, with zi > 0 for all i, such that all components of 

ZA are strictly positive. 

4. The matr ix C obtained from A by setting cU = (taking indices of 

modulo n), i-e., by moving the first row to the bottom, is such that  its 

determinant and all i ts principal minors are strictly positive. 

Note tha t  -@(p) is just the trace of the Jacobian at  p, and that matrices 

such as C. wbich have diagonal terms strictly positive and all other terms non- 

positive, play an important role in mathematical economics. 

As a special case we find that the hypercycle equation (2.7) is always per- 

manent. Anotker special case has been obtained by Zeeman (1980): the replica- 

tor equation (2.5) with n = 3 and A of the form 

is permanent iff det A > 0 (in this case the inner equilibrium is a global attrac- 

tor). In addition, Arnann and Hofbauer (1984) have used the general theorem to 

characterize permanence in special types of reaction networks, such as hyper- 

cycles of autocatalysts: 

or  superpositions of counter-rotating hypercycles: 

(%.bi > 0). Hofbauer ( l98lb) has also proved that inhomogeneous hypercycles 

with % > 0, are permanent if they have an interior equilibrium. This was done 

using as an average Ljapunov function. More generally. Hofbauer conjec- 

tures that (2.5) is permanent iff for some p with pi > 0, the function &P' is an 

average Ljapunov function or, equivalently, ifl for such a p the inequality 

p-Ax > x-Ax holds for all fixed points x in bd &. This was proved by Arnann 

(1984) for the case n = 4. 



It can be sho rn  that  a necessary condition for the permanence of first- 

order replicator equations with \ r 0 is that an irreducible graph is obtained 

on drawing an arrow from j to i wherever Q > 0, i.e., that any two vertices can 

be joined by an oriented graph (see Sigmund and Schuster, 1984). It would be 

interesting to h o w  if such a graph is necessarily Harniltonian, i.e.. contains a 

closed oriented path visiting each vertex exactly once. (This has been shown by 

Arnann (1984) for the case n 5 4 and qi = 0.) 

An interesting class of examples is provided by models describing the com- 

petition between several hypercycles. If these hypercycles are disjoint then the 

equation is  of the  form 

zi = z ~ ( ~ ~ z ~ ( ~ )  -Q) , 

where n is a permutation of indices containing several cycles. Such systems 

are not irreducible and hence not permanent. If the  cycles are all of length 

less than 4. then one of them "wins out" and the others vanish (see Schuster e t  

al., 1980). This is probably also true for larger cycles, but has not yet been pro- 

ven. 

Once again, the situation is much less clear in the case of discrete-time 

replicator equations. A sufficient condition analogous to the existence of ar, 

average Ljapunov function has been given by Hutson and Moran (1982). 

Hofbauer (1984) has shown that the discrete hypercycle 

(with ki > 0) is permanent iff C > 0. 

6. GRADIENT SYSKMS OF REPUCAlVR TYPE 

The evolutionary dynamics deAned by the gradients of certain potential 

functions are of great interest because they correspond to popular notions of 

adaptive genotypic or phenotypic landscapes and yield biological models with 

extremum principles of a type familiar in theoretical physics. The action of 

selection in such situations drives the state uphill along the path of steepest 

ascent. 



Gradients depend on metrics. Shahshahani (1979) provided a geometric 

framework for population dynamics by using a Riemann metric instead of the 

more usual Euclidean metric on S,. Replicator equations which are gradients 

with respect to this metric are of considerable interest (see Akin, 1979). 

Shahshahani defines the inner product of two vectors x and y in the 

tangent space TpS, (where p E int  Sn) in the following way: 

This introduces a notion of orthogonality which depends oh p ,  and a definition 

of distance which differs from the Euclidean distance by attaching more weight 

to changes occurring near the boundary of S,,. If V is a differentiable function 

de6ned in a neighborhood of p ,  then the Shahshahani gradient Grad V(p) is 

defined by 

for all y E Tp&, where DV(P) i s  the derivative of V a t  p. The more usual 

Euclidean gradient grad V(p) is defined by 

Using the fact  tha t  y E TpS;, iff y EIR, satisfies xyi = 0. i t  can be shorn that 

the replicator equation (1.1) is a Shahshahani gradient of V iff f is equivalent t o  

grad V, in the sense outlined in Section 3. 

The case where V is a homogeneous function of degree s is of particular 

interest, since this implies that 9(x) =.sV(x), from Euler's theorem. The aver- 

age fitness ih then grows a t  the largest possible rate and the orbits are "orthogo- 

nal" (in the Shahshahani sense) to the constant level sets of QI. 

In particular, if we have 

then the Shahshahani gradient is zi(% - QI), i.e., (2.4). If, however, we have 



where qj = a*, then the Shahshahani gradient is the selection equation (2.2). 

The corresponding extremum principles, which give conditions for the average 

fitness 9 to increase a t  the largest possible rate, have been stated by Kiippers 

(1979) and Kimura (1958). respectively. However, they did not specify the 

appropriate metric. The fact that @ increases along the orbits of (2.2) is 

Fisher's Fundamental Theorem of Natural Selection. 

An immediate consequence of Fisher's theorem is that  the  orbits of (2.2) 

converge t o  the se t  of equilibria. In addition, each orbit converges to some 

equilibrium. This has been proved by Akin and Hofbauer (1982), who once again 

used a Ljapunov function of type h?. Analogous results also hold for 

discrete-time selection equations, but are considerable harder to  establish - 
they have been proven by an der Heiden (1975) for the case n = 3 and by Losert 

and Akin (1983) in the general case. It would be interesting to  know whether 

this convergence holds whenever f is the Euclidean gradient of a homogeneous 

function. 

Rrst-order replicator equations (2.5) are Shahshahani gradients iff 

ai,. + a,, + ah = a-. + Q + akj F (6.5) 

holds for all indices i, j and k (Sigmund, 1984). This is the case iff the matrix A 

is equivalent (in the sense described in Section 3) to  a symmetric matrix, or 

equivalently, iff there are constants ci such that % - aji - - ci - c j  holdsforal l  

i and j .  

Equations of the type 

are obviously Shahshahani gradients. If the functions g, are monotonically 

decreasing, they model competition between replicators which inhibit their own 

growth but are otherwise independent. In this case it can be shown that there 

exists a unique global attractor. More precisely, we can assume without loss of 

generality that  g ,(0) I g 2(0) 2 . . . 2 g, ( 0) > 0, in which case there exists a 

number K and a p E 5; such that 



where m is the largest integer j with gj(0) > K. The point p is the limit, as t 

approaches t m ,  of all orbits x ( t )  for which zi(0) > 0, i = 1, ..., m. A variant of 

this model shows that  if the total concentration xzi is kept at  a constant value 

c (not necessarily equal to  1) by replacing !$ by 9 / c ,  then the number of 

species that can coexist increases with increasing c (see Hofbauer e t  al., 1981). 

The special cases 

1 gi(zi) = U, - bizi and gi(zi) = 
ci + 4zi  

have been studied by Epstein (1979). 

Except in low-dimensional cases, there is little hope of obtaining a corn- 

plete classification of first-order replicator equations (2.5) u p  to topological 

equivalence. Two such equations are said to be topologically equivalent if there 

exists a homeomorphism from onto itself which maps the orbits of one equa- 

tion onto the orbits of the other equation in such a way that  orientation is 

preserved. Two n x n  matrices are described as R-equivalent if the correspond- 

ing replicator equations are topologically equivalent. 

Zeeman (1980) proposed a method for the classification of stable cases. By 

analogy to the definition of structural stability, an n x n  matrix A i s  said t o  be 

stable if its R-equivalence class is a neighborhood of A. Thus small perturba- 

tions of A do not change the topological structure of the corresponding replica- 

tor equation. Zeeman conjectured that the stable matrices form an open dense 

set  in the space of n x n  matrices and are divided into a finite number of R- 

equivalence classes for each n.  He proved this for n = 2 and 3, and classified 

all corresponding stable replicator equations. (For n = 2 and 3 there are 2 and 

19 stable classes, respectively, up  to time reversal.) 

A basic requirement for the classification of (2.5) for n = 3 is that  there 

are no limit cycles. This is a consequence of the corresponding result for two- 

dimensional Lotka-Volterra equations (see, e.g., Coppel, 1966) and of the 

equivalence between such equations and brst-order replicator equations 

(Hofbauer, 1980a). Bomze (1983) extended Zeeman's classification t o  cover 

unstable cases, obtaining 102 types of phase portraits up to time reversal. 

Little is known about stable matrices for higher dimensions, apart from the 

fact that stability implies that all fixed points of (2.5) are hyperbolic (the real 



parts of the eigenvalues of their Jacobians do not vanish). This was proved by 

de Carvalho (1984). 

Recall that, without loss of generality, the diagonal of a matrix may be 

assumed to contain only zeros. Let & denote the class of such matrices with 

non-zero off-diagonal terms. Two matrices A and B in & are said to  be sign 

equivalent if the corresponding off-diagonal terms have the same sign, and 

cornbinatorially eguivaleht if A can be made sign equivalent to B by permuting 

the indices. Zeeman (1980) showed that A and B are combinatorially 

equivalent iff the equations obtained by restricting the corresponding replica- 

tor equations to the edges of & are topologically equivalent. Within &. R- 

equivalence classes are r e h e m e n t s  of the combinatorial classes. There are 10 

such combinatorial classes for n = 2 and 114 for n = 3 up to sign reversal (Zee- 

man, 1900). De Carvalho (1984) has studied 19 combinatorial classes without 

inner equilibria as a first step towards a classification of R-stable matrices for 

n = 4. Another step in this direction was taken by Amann (1984), who charac- 

terized all 4x  4 matrices which lead to permanent replicator equations. 

Another interesting (although highly degenerate) class of examples is pro- 

vided by circulant matrices (%j = q+lj+l for all a and j ,  counting indices 

modulo n) .  A partial analysis of this class is given in Hofbauer et al. (1980). I t  

is shown that the center of &, i-e., the point m, where mi = 1/n. is always an 

equilibrium; i t  is not hard to compute the eigenvalues of its Jacobian. If m i s  a 

sink, then m is a global attractor; if m is a source, then all orbits converge to 

the boundary. Non-degenerate Hopf bifurcations occur for n 2 4. 

I t  has often been remarked that game theory is essentially static. How- 

ever, the replicator equations (2.5) and (2.9) offer dynamic models for normal 

form games which are symmetric in the sense that both players have the same 

strategies and the same payoff matrix A. In fact, the dynamic extension is 

already implicit in the notion of an evolutionarily stable state (Maynard Smith, 

1974, 1982), which is a r e h e m e n t  of the concept of a Nash equilibrium. 

A point p E S, is said to be evolutionarily stable if i t  satisfies the following 

two conditions: 



1. Equilibrium condition: 

PAP> x - ~ p  for all x E ~ i ,  (8.1) 

2. Stability condition: 

if p A p  = x-Ap for x # p then p-Ax> x-Ax . (6.2) 

A game can have zero, one or several evolutionarily stable points. As shown by 

Selten (1984). the notion is not structurally stable: some matrices which yield 

evolutionarily stable points can be perturbed into matrices which do not. In 

this context we also refer the reader to Bomze (1984) for a thorough analysis of 

the relation of evolutionary stability to  the multitude of equilibrium concepts 

used in game theory. 

I t  can be shown that the following four conditions are equivalent (see 

Hofbauer e t  al., 1979; Zeeman, 1980): 

(i) p is evolutionarily stable 

(ii) for all q E 5; with q # p, we have 

provided that  E > 0 is sufficiently small 

(iii) for all x # p in some neighborhood of p, we have 

(ir) the function r'h? is a str ict local Ljapunov function a t  p for the replicator 

equation (2.5). i.e., strictly increasing along all orbits in a neighborhood of 

P. 

Condition (ii) is probably the most intuitively obvious in a biological con- 

text: if the state of the population is p, then a fluctuation introducing a small 

subpopulation in state q eventually gets wiped out, since the  p population fares 

better than the q population against the "mixture" (1 - c)p + cq. 

I t  follows from the equivalence of (i) and (iv) that  any evolutionarily stable 

point p i s  an asymptotically stable fixed point of (2.5). However, the converse is 

not true. In particular, (iii) implies that if p E int  % is evolutionarily stable, 

then i t  is an at tractor for all orbits in int S,, and hence the unique evolu- 

tionarily stable point in &; however, Zeeman (1980) has shown that there exist 



3 x 3 games with two asymptotically stable fixed points, one in the interior and 

the other on the boundary of S,. 

Akin (1980) has shown that  (2.5) has no fixed point in int  5i, iff there exist 

two strategies x and y in S, such that x dominates y in the sense that  

for all z E int  5;,. This result is supplemented by precise statements concern- 

ing the support of strategies x and y and the Form of global Ljapunov functions 

or invariants of motion for (2.5). 

The results obtained using the time averages (4.4) described in Section 4 

suggest a computational method for finding equilibria (and hence solutions) of 

normal form garnes. These results, which can easily be extended to asym- 

metric games (i.e., games in which the players have different payoff matrices). 

should be compared with the classical methods (involving differential equa- 

tions) for finding the solutions of garnes (see, e.g.. Luce and Raiffa. 1957, p. 

438). 

The discrete analogues of such methods involve iterative procedures. It 

turns out, however, that discrete-time replicator equations of type (2.9) do not 

seem to lend themselves very well to game dynamics; in particular, an evolu- 

tionarily stable point need not be asymptotically stable for (2.9) (see, e.g., 

Schuster and Sigmund. 1984). 

The behavior of (2.5) and (2.9) for zero-sum games (a,, = -a,,) is analyzed 

in Akin and Losert (1984). If an interior equilibrium exists, then the continuous 

model (2.5) has an invariant of motion. The equilibrium is stable, but not 

asymptotically stable, and all non-equilibrium orbits of (2.5) in int S, have o 

limits in in t  5i, but do not converge to an equilibrium. By contrast, if the 

discrete t ime model (2.9) has an interior equilibrium then i t  is unstable and all 

non-equilibrium orbits converge to the  boundary. If there is no inner equili- 

brium, then all orbits converge to the boundary in both discrete and continu- 

ous cases. In the discrete case all possible attractors may be described using 

the notion of chain recurrence. 
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