# Analysis and Design of Simulation Experiments with Linear Approximation Models 

Fedorov, V., Korostelev, A. and Leonov, S.
IIASA Working Paper
WP-84-074

September 1984

Fedorov, V., Korostelev, A. and Leonov, S. (1984) Analysis and Design of Simulation Experiments with Linear
Approximation Models. IIASA Working Paper. WP-84-074 Copyright © 1984 by the author(s). http://pure.iiasa.ac.at/2444/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

# ANALYSIS AND DESIGN OF STIULATION EXPERIMENTS WTTH LINEAR APPROXIMATION MODELS 

## V. Federov

A. Korostelev*
S. Leonov*

October, 1984
WP-84-74

* All-Union Institute of Systems Studies, Moscow, USSR

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2381 Laxenburg, Austria

## FOREWORD

Understanding the nature and dimensions of the world food problem and the policies available to alleviate it has been the focal point of the IIASA Food and Agriculture Program since it began in 1977.

National food systems are highly interdependent, and yet the major policy options exist at the national level. Therefore, to explore these options, it is necessary both to develop policy models for national economies and to link them together by trade and capital transfers. For greater realism the models in this scheme are kept descriptive, rather than normative.

Over the years models of some twenty countries, which together account for nearly 80 percent of important agricultural attributes such as area, production, population, exports, imports and so on, have been linked together to constitute what we call the basic linked system (BLS) of national models.

These models represent large and complex systems. Understanding the key interrelationships among the variables in such systems is not always easy. Communication of results also becomes difficult. To overcome this problem, one may consider approximating these "primary models" by more transparent "secondary models".

In this paper Valeri Federov. A. Korostelev and S. Leonov describe the package of programs for the design and analysis of simulation experiments with such secondary models. The package was prepared in the AllUnion Institute of Systems Studies in Moscow. It is one of the first attempts in this field, and we hope that more experience, comments and critiques will help to improve and extend the package in a useful and practical way.

Kirit S. Parikh
Program Leader
Food and Agriculture Program.

## ACKNOWLEDGEMENTS

I am very grateful to Lucy Tomsits for editing and typing the paper and to Valerie Khaborov for his help in installing the software at IIASA.


#### Abstract

There is a necessity in a number of IIASA's researches to deal with analyzing the properties of the computerized versions of complex models. The use of simulation experiments is one of the most successful tools in solving this problem. In this paper, the package of programs for the the design and analysis of simulation experiments is described. The package was prepared in the All-Union Institute of Systems Studies in Moscow. It is one of the first attempts in this field, and the authors did not expect to have constructed a very comprehensive variant, but hope that more experience, remarks and critiques will help to improve and extend the package in a most useful and practical way.


## CONTENTS

1. Introduction ..... 1
2. Structure of the Interactive System ..... 2
3. Construction of Experimental Design ..... 2
4. Experimental Analysis ..... 7
5. Stepwise Regression with Permutations ..... 9
6. Example of System Utilization ..... 12
References ..... 15

# ANALYSIS AND DESIGN OF SIMULATION EXPERTMENTS WITH LINEAR APPROXIMATION MODEIS 

## by

V. Fedorov, A. Korostelev* and S. Leonov*

## 1. INTRODUCTION

The construction and computer realization of mathematical models of the natural and social phenomena is nowadays one of the stable tendencies of systems analysis. Sometimes those models are so complicated that they look like "black boxes" even for their authors. That is why methods for the investigation of such models are extremely interesting. The ideas and methods of the simulation experiment are rather old (Naylor, 1971). Some aspects of design and analysis of simulation experiment were described by Fedorov (1983), and we shall follow the concepts of this paper. The main object of our study is a computer realization of a model called primary model which is described below.

The aim of this paper is to describe the general structure of the interactive system for design and analysis of simulation experiment, and
to show its potentialities.

## 2. STRUCTURE OF THE INTERACTIVE SYSTEM

The current version of the system contains two main programs intended for construction of experimental design and data analysis. These programs are independent of each other and are linked only through input-output files of data. It is necessary to point out that the treatment of any specific model requires an exchange module. This module makes it possible to repeatedly call the primary model varying input data. The principle scheme of interactive system may be illustrated by Figure 1.

The comparatively simple approximation function, methods of optimal design, construction and statistical methods of data analysis, were deliberatedly used in the system. The choice of these simple mathematical tools can be explained as an attempt to balance between the reliability of a secondary model; its simplicity and lucidity taking into account the reasonability of the calculation volume. The following sections show the potentialities of programs and are illustrated by test examples. It is necessary to underline that some potentialities not foreseen in the system may be assigned to the exchange module.

## 3. CONSTRUCTION OF EXPERIMIENTAL DESIGN

While investigating the primary model it is assumed that input variables $x$ (factors, independent variables) are separated into groups at the heuristic level according to: Firstly, prior information on their nature; and Secondly, the expected degree of their influence on dependent
-3-


KEY: dotted lines show possible "feedbacks"

Figure 1.
variables $Y$. The factors are usually separated into the following groups:
a) Scenario and exogenous variables;
b) Parameters of the model of which values are obtained on the stage of identification (usually they have rather large intervals of uncertainty);
c) Variables known with "small" errors, which can often be considered as random ones.

The program for the construction of experimental design can generate designs of different types for variables from different groups. In the current version, the following types of designs are available to generate

- Orthogonal design
(i) two-level design $X=\left\{X_{i j}\right\}$; where $X_{i j}= \pm 1, i=\overline{1, N}, j=\overline{1, m}, i$ is a number of an observation, $j$ is a number of a variable, $X$ is Hadamard matrix, i.e., $X^{T} X=N I_{N}$, where $I_{N}$ is identity matrix, $N=4 k, k$ is a integer number;
(ii) three-level design $X=\left\{X_{i j}\right\}, X_{i j}=-1,0,+1 ; X$ is conference matrix, i.e. $X^{T} X=(N-1) I_{N} ; N=4 k+2$.

It is recommended to use orthogonal design for group (a), if a detail investigation for the factors from (a) is required;

- Randorn design with two- and multilevel independent variation of factors. Usually it is used for the factors from group (b).
- Random design for simultaneous variation of all factors of the group. It may be applied for block analysis.
- Random design with continuous law of distribution: uniform and normal. It may be applied for those factors which are known up to small random error.

The criterion for design construction is the correlation coefficients of column vectors of $X$-matrix: the columns must have correlation which is as small as possible. The design may also be generated (for some groups) in a purely random mannner, without examination of correlations.

There exists a vast literature on the methods of constructing orthogonal design. One of the simplest approach based on the Paley concept (see Hall, 1967) is used here.

## Conference matrices (C-matrices)

Let $G F(q)$ be a finite Galois field of cardinality $q, q=\boldsymbol{p}^{\boldsymbol{r}}$, where $p$ is a prime odd number. Let $R(x)$ be a character defined on $G F(q)$ :

$$
R(x)= \begin{cases}0 & x=0 \\ 1 & \text { if there exists } \gamma \in G F \text { such that } \gamma^{2}=x \\ -1 & \text { if such } \gamma \text { does not exist }\end{cases}
$$

If $a_{0}=0, a_{1}, \ldots \ldots, a_{q-1}$ are the elements of $G F(q)$ then a matrix $Q=\left\{R\left(\alpha_{i}-\alpha_{j}\right)\right\}$ is called Jacobsthal matrix and satisfies the equation

$$
Q Q^{T}=q I_{q}-J
$$

and

$$
Q J=J Q=0
$$

where $J_{i k}=1$ for all $i, k=\overline{1, q}$. Let

$$
C^{Q+1}=\left(\begin{array}{cc}
0 & e \\
-\varepsilon & Q
\end{array}\right) \text { if } q=-1(\bmod 4), e=(1,1, \cdots, 1)
$$

and

$$
C_{q+1}=\left(\begin{array}{cc}
0 & e \\
e^{T} & Q
\end{array}\right) \text { if } q=1(\bmod 4)
$$

Then $C_{q+1}$ is $C$-matrix of order $q+1$.

## Hadamard matrices ( $H$-matrices)

Hadamard matrices are constructed on the basis of the concept of Kronecker matrix product. If $q=1(\bmod 4)$, then

$$
H_{2 n}=C_{n} \otimes\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)+I_{n} \otimes\left[\begin{array}{cc}
1 & -1 \\
-1 & -1
\end{array}\right]
$$

is $H$-matrix of order $2 n, n=q+1$. Further, if $H_{n}$ and $H_{m}$ are $H$-matrices of orders $n$ and $m$, then $H_{n} \otimes H_{m}$ is $H$-matrix of order $n m$.

It must also be noted that if $q=\boldsymbol{p}^{\boldsymbol{T}}=-1(\bmod 4)$, then $H_{q+1}=C_{q+1}+I_{q+1}-H$-matrix of order $q+1$. With the use of the methods described, the program PLAN constructs:

- Hadamard $H$-matrices for all $n \leq 112, n$ is 4 -tuple, except $n=92$;
- Conference $C$-matrices of the following orders $m$ ( $m=2$ (mod 4)): $6,14,18,26,30,38,42,54,62,74,90,98,102$

It is clear that the above methods allow the construction of saturated (number of observation equals to number of factors plus one) orthogonal designs, which are optimal for the majority of statistical criteria, only for the above enumerated dimensions of the factor space. Therefore, for intermediate dimensions, the orthogonal design for the nearest larger dimension has to be used. It will also be orthogonal (but not saturated) in these cases.

There are two variants of the application of generated design $X=\left\{X_{i j}\right\}$.
(i) $X$-matrix is written (row by row) into the auxiliary file (HELP.DAT) for application in the exchange module and further analysis of simulation experiment.
(ii) The levels of factors may be set in the real scale: in that case, mean values and scale of variation are chosen by the user. The design in the real scale are obtained with the help of the evident formula

$$
F N_{i j}=F_{j}\left(1+v_{k} X_{i j}\right), \quad i=\overline{1, N} ;
$$

here the $j$-th factors belongs to the chosen group $k ; v_{k}$ is the scale of variation for group $k ; F_{j}$ stands for their value of the $j$-th factors. Matrix $F N=\left\{F N_{i j}\right\}$ is stored (row by row) into the file HELP.DAT.

## 4. EXPERIMENTAL ANALYSTS

The aim of the simulation of analysis is the construction of secondary model of the following form:

$$
\begin{equation*}
y=g(x)=v_{0}+\sum_{a=1}^{k} v_{a} f_{a}(x) \tag{1}
\end{equation*}
$$

where $y$ is a response (dependent variable); $v_{0}, v_{1} \ldots, v_{k}$ are parameters to be estimated (regression coefficients); $f_{1}, f_{2} \ldots, f_{k}$ are known functions depending on $x$-vector of input variables.

Since $k$ is usually rather large, one of the main problems of experimental analysis is the screening of significant factors. Following is the
statement of the problem: input data is set

$$
\begin{array}{lll}
X_{11} & X_{12} & \cdots
\end{array} X_{1 m}
$$

$$
X_{N 1} \quad X_{N 2} \ldots \ldots X_{N m}
$$

where $N$ is number of an observation, $m$ is number of variables. One variable is taken as a response and is denoted by $y$ (sometimes $y$ is not a variable itself, it could be some transformation -- the set of the most usable transformations are provided by the program). Then $k$ functions $f_{1}, f_{2} \ldots, f_{k}$, depending on the rest of variables, are chosen (mainly heuristically) and can be constructed with the help of the above-mentioned transformations of $x_{1}, x_{2} \cdots, x_{N}$. That is the final step in the formulation of model (1); screening experiments can be carried out now.

Here we shall enumerate the possibilities of the program for the analysis of results provided by simulation experiments.

1) Input variables can be separated into groups with the help of identification vector; variables from one group only are analyzed simultaneously, but identification vector may be changed, and the groups can be rearranged easily
2) It is possible to make transformations of factors, include their interaction and take any variable as a response.
3) The program provides the stepwise regression procedure; factors may be included into regression or deleted from the equation (Efroymson, 1962). Technically, this program for screening significant factors is based on the subroutines from SSP
package, 1970; some modifications of these subroutines are being carried out for the implementation of interactive regime and Efroymson procedure. Interpretation of input and output information in this module will cause no difficulties for a user familiar with the SSP package.
4) A user may obtain both statistics analogous to SSP subroutines and some additional information, for instance, correlation matrix of regression coefficients, and detailed analysis of residuals.
5) If a secondary model is used for interpolation or extrapolation, values of input variables (predictors) are being chosen by a user. The standard errors of the prognoses are calculated.
6) A heuristic method of random permutations for testing significance of entered variables is provided in the program. Its description is given in section 5 .

Program for experimental analysis utilizes 3 files: SYSIN.DAT and SYSOUT.DAT for input and output information respectively, and an auxiliary file SYSST.DAT for intermediate information.

## 5. STEP ISE REGRESSION WITH PERKUTATIONS

It is well-known (see for instance, Pope \& Webster, 1972; Draper, Guttman, and Lapczak, 1979) that the application of standard statistical criteria (F-test, for example) for testing significance of entered variables in the stepwise regression procedure is not correct by its nature. That is why a heuristic method of random permutations is used in the interac-
tive system for testing significance of entered variables. Such an approach enables one to avoid complicated analytical methods that are necessary for calculating statistic of criterion. It must also be underlined that this method does not require the assumptions concerning the distribution of variables. Therefore it may be rather useful in practice (Devyatkina et al., 1981).

Method of random permutations is based on the following concept: two models are compared

> based model $y=g(x)$
> and a model $\hat{y}=\hat{g}(x)$
where response function $\hat{g}(x)$ is constructed according to permuted values of response: $y_{i_{1}}, y_{i_{2}} \ldots, y_{i_{N}}$, here $i_{1}, i_{2}, \ldots, i_{N}$ is a random permutation of indexes $1,2, \ldots, N$. If the first (basic) model gives an adequate approximation of the primary model, then for example, residual sum of squares for the 1st model will be significantly less than for the 2nd model. Such a comparison of statistics usually applied in stepwise procedure for testing adequacy of secondary model, underlies the method of random permutations.

Now we give a short description of the screening algorithm with permutations.
(1) 1st Step. The most significant variable is entered into regression -- $X_{N V_{1}}$. Student's T-statistic $\left(T_{0}\right)$, Fisher's $F$-statistic ( $F_{0}$ ) and $S S$ statistic (percentage of variance explained on this step, $S S_{0}$ ) are computed.

Random permutation is carried out for all rows of $X$-matrix except the elements from column $M$, corresponding to the response function $\boldsymbol{y}$ : let $i_{1}, \ldots, i_{N}$ be a random permutation of indexes $1, \ldots, N$. For every $l$-th permutation. ( $l=\overline{1 . L}$ ) stepwise procedure is carried out, the most significant variable is entered into regression and corresponding values of $T_{l}-, F_{l}$ - and $S S_{l}$-statistics are computed.
(2) $j$ th Step, $j>1$. $j$ th variable, $X_{N V_{j}}$, is entered into regression; $T_{0} F_{0}$ and $S S_{0}$-statistics are computed for the entered variable.

Random permutation is carried out for all rows of $X$-matrix except the elements from columns $N V_{1}, N V_{2}, \ldots, N V_{j-1}, M$ (Totally $L$ - permutations should be done). After every permutation stepwise procedure is being carried out, variables $X_{N V_{1}}, X_{N V_{2}}, \ldots, X_{N V_{j-1}}$ are being forced into regression. $T_{l}, F_{l}, S S_{l}$ - statistics are computed at every $l$ th permutation for the variable entered into regression on the $j$ th step.

After $j$ th step $(j \geq 1)$ the following information is given:

- index of entered variable, $N V_{j}$;
$-\quad$ value of $T_{0}$ :
- mean and standard deviation of $T_{l}$-statistics, $l=\overline{1, L}$, minimal and maximal values of $T$-statistic after permutations; a histogram for $T$-statistics (after permutations); percentage of those $T_{l}$, for which $\left|T_{l}\right|<\left|T_{0}\right|$.

Analogous information is given for $F$ - and $S S$-statistics.
If the null hypothesis $H_{o}^{j}$ : "response function $y(X)$ is independent of $X_{N V_{j}}{ }^{\prime \prime}$ is not satisfled, it seems natural to expect that $T_{0}$-value ( $T$-statistic
for basic model) is greater (in absolute value) than the "significant" majority of $T_{l}$-values (analogously for $F$ - and $S S$-statistics). A rule for testing null hypothesis can be formulated as follows: null hypothesis $H_{0}^{j}$ is rejected with significance level

$$
a l f_{i}=\frac{i}{L+1}
$$

if $F_{0}$-statistic is greater than $(L-i+1)$ - values of $F_{l}$-statistics after permutations (the same for $T$ - and $S S$-statistics).

## 6. EXAMPLE OF SYSTEM UTILIZATION

Let's assume that there is a model with 30 input variables, and we suspect that only the first 7 variables brve great influence on the output variable $y$; the next 8 variables may be significant. It is also known that variables $16-23$ can take values on three levels $-1,0,+1$; the remaining 7 variables may be continuous and will be treated as a random noise in the model.

A priori information concerning input variables in the primary model often looks like the one above. Experimental design will be chosen on the basis of this information.

The aim of the experiment is to construct the secondary model with a few significant variables. In the model under consideration we will try to approximate the primary model by the model with 5-6 variables.

Now let us assume that the true model in the "black box" has the
following form:

$$
\begin{aligned}
y & =5 X_{1}+6 X_{2}+7 X_{3}+8 X_{4}+9 X_{5}+ \\
& +10 X_{8}+X_{8}+2 X_{9}+3 X_{10}+4 X_{11}- \\
& -X_{1} X_{7}-X_{1} X_{12} / 2-X_{1} X_{13} / 3+ \\
& + \text { RANDOM NOISE variables. }
\end{aligned}
$$

The system's potentialities will be demonstrated with the help of some simple examples using this model. It should be pointed out that these illustrative examples cannot comprehend all features of the system. More detailed information on them are contained in SYS INSTRUCTION which are available from the IIASA computer center.

## REFERENCES

Devyatkina, G.N., and A.T. Tereokhin (1981) Statistical Hypothesis Tests in Stepwise Regression Analysis Based on the Permutation Method, in Linear and Nonlinear Parameterization in Experimental Design Problems. Problems in Cybernetics, V. Fedorov and V. Nalimov (eds.). pp.111-121. Moscow (in Russian).

Draper, N.R., l. Guttman, and L. Lapczak (1979) Actual Rejection Levels in a Certain Stepwise Test. Commun. Statist. - Theor, Metho., AB(2):99105.

Efroymson. M.A. (1962) Multiple Regression Analysis, in Mathematical Methods for Digital Computers, A. Ralston, H. Wilf. (eds.). New York: Wiley.

Fedorov, V. (1983) Analysis and Design of Simulation Experiments for the Approximation of Models. WP-83-71. Laxenburg, Austria: International Institute for Applied Systems Analysis.

Hall, M. (1967) Combinatorics. New York.
Naylor, T.H. (1971) Computer Simulation Experiments with Models of Economic Systems. New York.

Pope, P.T., and J.T. Webster (1972) The Use of an F-Statistics in Stepwise Regression Procedures. Technometrics 14:326-340.

System/360 Scientific Subroutine Package, Version 3, Programmer's Manual. New York: IBM, Technical Publications Department, 1970.

| In thie example the dealgn le generated for 4 groupe, a number of factora - 30 . |
| :---: |
| Array (IN): Pactor 1 belonge to group IM |
| A number of groupe (including orthogonal groupl for analyole of corralationa. <br> Dealer for groupe 3.4 10 purely rendom. |
| Orthogonal dealg ie generated for group 1 ( 7 factora). |
| Two-level ( +1$)$ dealgn le generated with 12 experimente. |
| Typee of a varlation which will be uead. |
| Codea for group variation. |
| Multilevel dealgn (3 levele) le generated for group 3. |
| Correaponding probabilities and levale. |
| Design with unifore (-1, +1) diotribution io generatd for group 4. |
| Maximal correlation of factore with preceding ones. Seven factora are from the orthogonal group. therafora | the lyt numbur ( -0.189 ) corresponda to factor 8 .

COKHELATIOM ANALYSIS mAS CARNIED OUT POR A PACTORS
Corcolation andyais was carried out for factors






$$
\begin{aligned}
& \text { Number of obervationa le } 12 \text {. } \\
& \text { Total number of varlables la } 31 \text {. } \\
& \text { Identiflcation vector eeparatea varlables into } 4 \text { gruupa. }
\end{aligned}
$$

The influence of the let block on reaponse function le analyzed on
thle etage.
Varlable No. 31 is the reaponee function.
This colacidence of formal and real varlablea' numbere ie by
an Incldent: it is connected with numeration of variablea
In the lat block.
Beginning of acreening analyale.
Means and ytandard deviations of variablem.






TABLE OP VARIABLES
PORUAL VARIABLE 1 REAL VARIABLE
PORMAL UARIABLE 2 REAL VARIABLB
PORMAL VARIABLE 2 REAL VARIABLR

PORMAL VARIABLE
PORMAL VARIABLE 8
8
REAL VARIABLE
PORMAL VARIABLE
pORMAL VARIABLE
7 ** STEPWISR PROCEDURE *********

input varlabla

$$
\begin{aligned}
& \stackrel{a}{\underset{~}{+}} \\
& \stackrel{+}{+}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \dot{0}
\end{aligned}
$$

o.
o.
o.
0.
0.
0.
0.44332
Q**************** STEP
VARIABLE ENTERED. . . . 1

$$
0.42305
$$

$\qquad$ input varlables.

$$
\begin{aligned}
& 0.2408 \theta \\
& 0.37890
\end{aligned}
$$





numaer of selection SUM OF SQUARES REDUCED IN THIS STEP.... 334.250
CUMULATIVE SUM OF SQUARES REDUCED....... 5556.482

$$
\begin{aligned}
& \text { The last line is the } \\
& \text { of the responee with } \\
& \text { inout varlables. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ®̈ } \\
& \stackrel{y}{5} \\
& \dot{\oplus}
\end{aligned}
$$

$$
\begin{array}{ll}
0 \\
0 \\
0 & \stackrel{0}{0} \\
0 \\
0 & 0 \\
0 & -
\end{array}
$$ $\square$ correlation matrix

$\begin{array}{cccccc}\text { CODES } \\ 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$
PROPORTION REDUCED SQUARES REDUCED.
CUMULATIVE PUM OP SQUORTION REDUCED....
5771.334

BLOCK ?
31 ERD
3 DEPENDENT VARIABLE $?$
BLOCK ?
31 ERD
3 DEPENDENT VARIABLE $?$
STANDARD ERROR OF ESTIMATE
VARIABLE REO. CORPP

| VARIABLE | REG. CORFP |
| :---: | :---: |
| 6 | 10.05568 |
| 6 | 0.72222 |
| 5 | 0.27778 |
| 3 | 0.16867 |
| 2 | 8.33333 |
| 1 | 5.27778 |
| INTERCEPT | 2.16867 |

WITH INTERACTION 7 ( YES - 1, NO - 0)

$$
\begin{aligned}
& \text { Corralation matrix of input } \\
& \text { variablea and reaponse function. } \\
& \text { The part of this aatrix la the } \\
& \text { Identity matrix due to ortho- } \\
& \text { conality of the design. }
\end{aligned}
$$

## a numeer of observations 12

| yormal | variable | 1 | heal | ariable |
| :---: | :---: | :---: | :---: | :---: |
| POKMAL | variable | 2 | Real | Varlable |
| pormal | variable | 3 | keal | vakiabl |
| PORMAL | vahiable | 4 | keal | variable |
| POrmal | vahiable | 5 | keal | variabl. |
| pormal | variable | 6 | heal | Variable |
| YORMAL | variable | 7 | HEAL | VA |
| PORMA | variable | 8 | heal | Varia |




Porpal and rual numbery of varlablea of tha 2 nd block differ from each other

Poraal varlables 4 and $6.1 .0 .$. real variables 11 and 12. explain 65.3x of variance. That's why varlablea $1-12$ have to be analyzed jointly.

```
IDENTIPICATION VECTOR
    \(\begin{array}{llllllllllllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 0 & & & & & & & & & \end{array}\)
```


HLOCK 7
1
DEPEMDENT VAKIABLE ?
31
HITH INTERACTION 7 ( yES - 1, NO - 0)
0
A number of observations 12
table of variables
pormal variable 1 REAL variable pormal variable 1 REAL variable pormal variable 2 REAL Variable porval variable pormal variable sible seal variable omal vamiable o real variable Orval variable 7 REAL variaule dral variable 9 keal varable orma Variable geal variaule Ormal Vakiable geal variable PORMAL VAKIABLE 10 REAL VAKIAHLE $\begin{array}{llll}\text { ORHAL VAKIABLE } & 11 & \text { REAL Variable } & 11 \\ \text { ormal Variable } & 12 & \text { REAL VAKIable } & 12\end{array}$ ormal variable 12 real variabl

| *sesen**** | * STEPWISE | PROCEDUKE |
| :---: | :---: | :---: |
| Vaklable | MEAN | STANUARD |
| no. |  | deviation |
| 1 | 0. | 1.04447 |
| 2 | 0. | 1.04447 |
| 3 | 0. | 1.04447 |
| 4 | 0. | 1.04447 |
| 5 | 0. | 1.04447 |
| 6 | 0. | 1.04447 |
| 7 | 0. | 1.04447 |
| 8 | 0.18687 | 1.02986 |
| 0 | 0. | 1.04447 |
| 10 | 0.66667 | 0.77850 |
| 11 | 0. | 1.04447 |
| 12 | 0. | 1.04447 |
| 13 | 2.16667 | 22.00561 |
| NUMAER OF | SELECTION | 1 |
| couts |  |  |
| 000 | 0002 | 22 |
| 00 |  |  |

After new ldentification they forn block 1, the reat are ln block 2.


Elght variablea expluin $80.0 x$ of varjance, but they asantially diffor in aignificance (cr. T-valuen) Therefore it ia naturally to uageat that deletine noay of them will not deceriorate our approxination casentially.


** model analysis and porecasting ***
recression gquation

| No. | SIONIPIC | variables | RESPONSE |  | S. ${ }^{\text {d }}$ | correlation m |  | MATRIX | recression |  | COEP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | . Var. X 31 | $1 \cdot$ |  |  |  |  |  |  |  |
| 1 | variable | 4 | $\begin{gathered} 10.056 \times( \\ 5.314) \end{gathered}$ | 4) | 1.892 | 100 | 0 | 0 | 0 | 0 | 0 |
| 2 | variable | 6 | $\begin{aligned} & 9.722 \times X( \\ & 8.138) \end{aligned}$ | $61$ | 1.892 | 0 | 100 | 0 | 0 | 0 | 0 |
| 3 | vakiable | 8 | $\begin{aligned} & 9.278 \times X 1 \\ & 4.003) \end{aligned}$ | $8)$ | 1.092 | 0 | 0 | 100 | 0 | 0 | 0 |
| 1 | variable | 3 | $\begin{aligned} & 9.167 \times X( \\ & 4.044) \end{aligned}$ |  | 1.802 | 0 | 0 | 0 | 100 | 0 | 0 |
| 6 | variable | 2 | $\begin{aligned} & 0.333 * x( \\ & 4.404) \end{aligned}$ |  | 1.892 | 0 | 0 | 0 | 0 | 100 | 0 |
| 8 | variable | 1 | $\begin{aligned} & 5.278 \times X( \\ & 2.789) \end{aligned}$ |  | 1.892 | 0 | 0 | 0 | 0 | 0 | 100 |

-0. model estimation *."


[^0]```
Hlock ?
l
    dEPENDENT VARIABLE 7
31
HITH INTERACTION }7\mathrm{ ( YES - 1, NO - 0)
0
A humaER OP OBSERVATIONS 12
table of variables
    PORMAL VARIABLE 1}\mathrm{ REAL VARIABLE 1
    qOMMAL vahiable 2 meal variable 2
    pohmal vahlable 3 REAL variable
    pormal vahiable i real variable
    PORMAL VAHIABLE © REAL VAHIAHLE
    pormal vahiable a meal variable
    pORMAL VAHIABLE ( 9 REAL VARIABLE
    yormal variable s meal vahiable 
```



```
    MOHMAL VaHIABLE 11 HEAL VARIABLE 11 
******- STEPWISE REGRESSION WITH PERMUTATIONS *e.e.e**
```



```
NUMBER OH OBSERVATIONS }1
NUMHER OK VAHIABLES 
NUNHER OK VAHIABLES IS .
12
```



```
SCALE YOK a HIStOGRAM:A POINT CORRESPONDS TO 1 value/S/
HUMBER OY INTERVALS YOR A HISTOGRAM 5
MAX.NUAHER OP STEPS 12
NUMBER UP PERMUTATIONS SO
```



```
tutal number or deleted variagles-?
1
THEIR INDEXES-?
```




```
    ENTERED VARIABLES AND THEIR T-STATISTICS,STEP- 1
    11
    3.35
```



```
STEP 1
variable entered 11
```

HLOCK 7

```
6
```




A regraselon model with 13 variables la analyzed,
a number of obaervationa - 12.
a scale and a number of Intervale for a hietogran.
Maxiaal nuaber of atepa - 12.
Maxial nuaber of parautationa- 30 .

Variable a la deleted from the regreasional equation.

[^1]```
BasIC T-STATISTIC 3.3
T-MEAN AND ST.DEVIATION 0.5945 2.2838
TMEM. AND MAX.T-STATISTICS APTER PEMMUTATION
    -2.84 4.40
MISTOGHAM POH T-STATISTIC
    -2.8446 -1.3449
    -1.3949 0.0549
    0.0549 1.5048
    1.5046 2.9544
    2.9544 4.4042
O% t,pok which aus(t) is less than abs(to) 06.01
```


LASIC P-STATISTIC 11.213
-MLAN AND ST.DEVIATION 5.395 3.107
MIM. aND MAX.p-STATISTICS APTER PERRUTATION
$2.688 \quad 19.397$
MISTOGRAM POR P-STATISTIC
2.8884 5.9501 .............................
2.8884 5.9501 .......
$\begin{array}{rr}5.9501 & 0.3117 \\ 9.3117 & 12.8733\end{array}$
$\begin{array}{ll}12.6733 & 16.0350 \\ & 16.0350\end{array}$
$\begin{array}{ll}12.6733 & 18.0350 \\ 16.0350 & 19.3986\end{array}$

- OP P, LESS THAN YO 96.07

BASIC SS-PROPORTIUN HEUUCELI 0.5280
8S-MEAN AND ST.DEVIATION 0.33300 .0934
8S-MEAN AND ST. DEVIATION 0.3330 O.0934
mIM. AND mAX.SS-PROPORTIONS AYTER PELMUTATION
W. 2086 0. H890
WISORAM POR Statistic
0.2050 sestati
$0.2050 \quad 0.2965 \quad . . . . . .$.
$0.2988 \quad 0.3873 \quad . . . . . . . .$.
$\begin{array}{ll}0.3873 & 0.4781 \\ 0.4781 & 0.5690\end{array}$
0.47810 .5690
OR SS,LESS than SSO 96.67


##  <br> 

 -00.0.0.***************EMTERED VARIABLES AND THEIR T-STATISTICS,STEP= 2
1112
$3.10 \quad 1.78$
Man and atandard doviation of T-atatiatic after perautation: 0.6945 and 2.2836 .
Minimal und eaximal values of t-atucistic after parautation: -2.84 and 4.40.
yletogran for T-atatiatic: one point corrauponde to ont value (according to alagned ecule).
00.07\% of T-atatiatica after purmutation vatlufy the laeqquality:

$$
\left|T_{1}\right|<3.35=T_{0}
$$

Aoslagous information le given for $P$ - and $s s$ - etetlutice.

[^2]
[^0]:    stepmise regression with permutations

[^1]:    Varlabie 11 de entered into regreauion on the iet etep, fte T-utatiatica is $\mathrm{T}_{0}=3.36$.

[^2]:    *arisblas that are antared into regreasion afer 2 atepe. Correapoadiny T-stellatice
    Verlable 12 In enterad duto ragraeglon on the and otep

