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1. INTRODUCTION

For a given set X, let Re be a binary relation on X (i.e.

ReCX x X), with the indifference relation

I = Ren (-Re)

and the strict preference relation

P = Rel\I .,

Throughout this paper, we shall use the following notation:

X &y > (x,y) € Re
X ~ Y - (x,y) e 1

X vy A (x,vy) € P .



A binary relation which is both transitive* and reflexive is
called a quasi-ordering relation; if it is also antisymmetric
it is called an ordering relation. A quasi-ordering relation
with the property of connectedness is called a weak ordering
relation.
Now let X be a mixture space, that is, a space with convex

structure. In order to explain human behavior under risk in
terms of a set of axioms, von Neumann and Morgenstern imposed

a number of conditions which are essentially eguivalent to the

following:
1. £ is a weak ordering relation.

2. x&y+ox + (1=a)z Z ay + (1-a)z, 0 < ¥o < 1, ¥VzE€X.
3. ax + (1-a)y ¢ 2z, ¥a > 0 » not z ¥ y ..

Condition (2) is familiar as the independence condition, and (3)
as the continuity condition. Under these conditions, it is poss-

ible to construct a utility function u : X - R such that

(a) u(ax + (1-a)y) = cu(x) + (1=a)ul(y)
(b) x ¢+ y = u(x) > uly)

(c) x~y <« u(x) = uly) .

Note that the expected utility hypothesis is derived from pro-
perty (a). If we can extend the mixture space X into the

n-dimensional Euclidean space Rn, the following theorem holds:

Theorem 1.1 (Aumann [1]). Condition (2) 1s equivalent to
(1) XXZy-rx+2z22y+ 2z, vz
(ii) X%y +ax £ ay, ¥a > 0 .
*
Transitivity: x%* vy, y% z » x % z, ¥x,y,z€ X
Reflexivity: X & X, ¥xe X

Antisymmetricity: x £ vy, vy £ x> x =y, ¥Xx,y €X
Connectedness: either x & y or vy £ x, ¥x,ye X.



Then eondition (3) is equivalent to
(iii) x$% kz, ¥k > 0 - not z * 0

Corollary 1.1. The set D {x|x £ 0, Xx€E"} is a convez cone,

and in addition x X y <> X - yED. Moreover, letting T={x|x & 0,
xEEEn}:the continuity condition (i171) of Theorem 1.1 can be re-

written as T N(-T) = @.

Remark 1.1. The set D defined above is called the domination cone

of the decision maker's preferences.

We may consider the decision maker's preferences to be ranked
according to a quasi-ordering relation, as suggested by Aumann.
However, since this becomes an ordering relation on X/~, we shall
suppose throughout the paper that the decision maker's preferences
are ranked according to an ordering relation. Assuming that % in
Corollary 1.1 is antisymmetric, we have Dn(-D) = {0}, which im-
plies that D is a pointed cone. It is then easily seen that it
is sufficient for D to be closed to ensure the continuity of z.

Example 1.1. For Xc:RZ, let D'={(x1,x2)|(x.| >0) or (x.1 =0, x,2 0)}.
Then D' is pointed, but not closed. Therefore, the preference

relation defined by D' is not necessarily continuous. 1In fact,
the preference relation defined by this D' is a lexicographic
ordering relation. '

In view of the above considerations, we shall assume that
the decision maker's preference relation is defined by a pointed
closed convex cone D. We shall consider the following vector

optimization problem:

(P) D-maximize £ (x) over xeXcC R" '
where f = (f1,...,fp) and X is said to be the D-mazimal solution
if there is no xeX such that f(x) - £(x) eD\{6}. In this

paper, we shall give an overview of some duality results for

D-maximal solutions of linear vector optimization problems, that
is, in cases where f is a linear vector-valued function and X is
a polyhedral set. However, we shall use a cone-ordering relation
which is more general than that of the non-negative orthant: For

a cone §,



~

Y 3¢ Y < y - YE€s
y 2 ¥ <y - yes\l(s)
y>s§*—>y-§eints,

where 1(S) and int S denote the lineality space of S, snN(-S),
and the interior of S, respectively. The positive polar of S(:Rn
is defined by

s® = (xerR®I(x,s) 2 0, ¥se€s} .

For a closed cone S, it is well known that int S0 # ¢ if and only
if S is pointed [11]. We shall also make frequent use of the
following lemma:

Lemma 1.1. Let S1 and 82 be cones in R". Then
. 0 _ .0 0 _ 0
L. 0 0 0

(ii) (81 ms?_) C S, + 82 .

In particular, for convex polyhedral cones S; and Sé ’

P | 1 IO - '0 IO
(ii ') (S1ns?_) = s1 + 82 .

2. DUALITY IN LINEAR VECTOR OPTIMIZATION

Possibly the first work on duality theory in multiobjective
optimization was carried out by Gale, Kuhn and Tucker for linear

cases [3]. They considered the following matrix optimization

problem:
Let D,Q,M and N be pointed convex polyvhedral cones in Rp,
Rm, R” and Rr, respectively. This means, in particular, that
0

int DO # #. In what follows we shall suppose that int N # @.
Further, we shall identify the set of all mxn matrices with
R0, This relation also holds for matrices of other dimensions.
Define

K, := {KeRP*T: RNCD}

K, := {RerR”"": K(int N) cD\{0}}



Then, the ordering relation 2 for pxr matrices is introduced
as follows:

K' 2 K if and only if K'-K° €K,

k' > k* if and only if k' -&% € K,

Problem (P )

GKT

K+-maximize K

subject to

n r

Here A€ Rmx , C€ Rpxn, Ke Rpxr, Xe Rn and ve Rr.

The dual problem associated with problem (P

)

, Be R

GKT) is then

Problem (DGKT
K+.-minimize K

subject to



Remark 2.1. Problems (P ) represent a class of

cky! 2374 (Pgge
matrix optimization problems of which vector optimization is a

special case. In fact, in the case where B and K are vectors and

y is a positive scalar, problem (P ) reduces to the more usual

GKT
formulation of vector optimization problems, that is,

Problem (P. )

GKT

Maximize k
subject to

Cx 2. k

GKT) then becomes

The dual problem associated with problem (P

Problem (D )

1
GKT

Minimize k

subject to

p € int D0

Before proceeding to duality relations for the problem under
consideration, we shall extend the well-known Minkowski-Farkas

lemma.

Lemma 2.1. For a matriz A€ R0 and a convex cone SCZRn, set

AS := {Ax: x€ S} .



Then

28)? = (e r™: aThe "

pProof. Easy.

Lemma 2.2. In order that (b,X) 2 0 for any XEEQO such that
2Tren°

>
X 2y 0.

, 1t 18 necessary and sufficient that Ax £Q b for some
Proof. The given condition on X is equivalent to
be ((am°na?)®
Further, since M and Q are convex polyhedral cones, we have
(a®no®® = am +
Finally, the given condition on ) is egquivalent to

(b-Q) NAM # @ ,

which is also egquivalent to the given condition on x.

Remark 2.2. Extensions to cases with non-polyhedral Q and M are

given by Fan [2] and Sposit and David [10].

Lemma 2.3. For ary two pointed convex cones S and T, with origin O,
the cone S + T 1s pointed if and only <if SN (-T) = {0}.
Proof. If a non-zero vector c is an element of SN (-T), -c is also

an element of T. Hence S + T contains cc + B(-c) for anv o > 0 and
g > 0. This implies that S + T contains a non-trivial subspace,
which means that S + T is not pointed.

Conversely, if § + T is not pointed, § + T contains non-zero

elements c and -c¢. Let these be given by

c =85 + t ’ seS, teT

~-c=s'+t', s'€e S, t'eT.



Adding these equations, we obtain
0 = (s+s') + (t+t') . (2.1)

On the other hand, since S and T are pointed convex cones,
s+s' #0, t+t' # 0, s+s'€S and t+t'€T. The relation (2.1)
therefore implies SN (-T) # {0}. This completes the proof.

The following two lemmas are extensions of those given by
Gale, Kuhn and Tucker [3].

Lemma 2.4. In order that BTAE-NO\{O} for any AEQO such that
aTren’
X EM 0 and y >N 0.

Proof. Suffieiency. Suppose, arguing by contradiction, that
there exists a % €Q° such that ATx €M’ and BTR €-NN\{0}. Then

for any x€M and y € int N, we have

, 1t 18 necessary and sufficient thatBy'ZQ Ax for some

( aT3,x) 2 0 >¢ BIX,y) .

On the other hand, the given condition for x and y implies that

( Ax-By, »)= ¢

for some x€M and y€int N, which contradicts the previous re-

lation.

Necessity. Since Q,M and N are all pointed convex polyhedral

cones, we have

the given condition for A g -(BN)OH ((AM)Oﬂ QO) = {0}
(from Lemma 2.1)
© (BN)0 + ((AM)Oﬂ QO) is pointed
(from Lemma 2.3)
 int BN)° + (am%ng®)0 4 g
(from Lemma 1.1)
< int (BN)N (aM+Q) # &
© B (int N) N (AM+Q) # @
< the given condition for x and y



Corollary 2.1. One of the following statements

(1) BTAE—NO\ {0} for some )\EQO
(ii) ByeQ for some y >0
holds at all times but they cannot hold simultaneously.

Proof. The result is an extension of Gale's theorem and follows

directly from Lemma 2.4.

Lemma 2.5. K is a K+-maximal solution of problem (PGKT) 1f and

only <if
(1)  cx 2z Ky holds for some X€M and y € int N such that AX 20 BY,
and

(ii) Cx‘,(nfD ﬁy holds for any x €M and y €N such that Ax sQ By.
Similarly, K is a K -minimal solution of problem (Dggp) Zf

and only <f
(ii') BTX < 0 ﬁTﬁ holds for some XEQO and ﬁeint D0 such that
N
als : 0 cTn, and
M
(i) BTX £ 0 RTM holds for any AEQOandNEDosuchthat ATA; 0 CTu.
N M

Proof. We shall prove only the first part of the lemma; the
proof of the second part may be obtained in a similar way.
If. Suppose that the K which satisfies (i) is not a solution

of problem (P ). Then there exists a matrix K' such that

GKT
K' > ﬁ

and

Cx K'§

(4

D

for some X 2, 0 and ¥ >NO such that Ax §Q By. Hence we have

M
Cx 2 K'y > Ky, which contradicts condition (ii).

Only <1f. Suppose, contrary to the assertion of the lemma,
that K does not satisfy (ii). Then there exist some x'€ M and

y'€ N such that

Cx' > ﬁy' and Ax' £. By' .



Taking (i) into account, it follows that
Clx+x') > K(y+y')

for x +x'€EM and Yy +y'€ int N such that A(x +x') sQ B(y+y').
Choose a vector d'€D\ {0} such that d' <, C(x+x') - R(y+y")
and a matrix AK€K_ such that AK(y +y') = d'. For a vector e

in N0 with (e,§-+y') = 1, a possible AK is given by AK := d1

T
dée,...,d;e) .  Then

e,

(ﬁ-+AK)(§-+y') :D C(§-+x')
and

K' := K + AK > K ,

which implies that K cannot be a solution to problem (PGKT)‘

Gale, Kuhn and Tucker have formulated a duality relation

between problem (PGKT) and problem (D ) which can be stated

GKT
in an extended form as follows:

Theorem 2.1.

(i) 4 matriz K is a f+—maximal solution of problem (PGKT) if
and only <1f 1t 18 a R+—minimal colution of problem (Dggr

(ii) If K s a f+-maxima2 solution of problem (PGKT) for some
% 2y, 0, and §>N 0, then we have Ky = CX.

(1ii) If R Zs a feasible solution of problem (P ) for some

GKT

X 2,0 and y >, 0, and is also a feasible solution of

M N
problem (DGKT) for some AEQO and p € int DO, and ©f

Ky = Cx
kTy = BTR,
then K is an efficient solution of both problems (PGKT) and (D

Proof.

(i) It is easily shown, for any convex cones S and T, that

).

GKT

).



where

ST := {(s,t): sE€Es, teT} .

From Lemma 2.4 we have

o

(i) of Lemma 2.5 - AN\ _ _ _ _
(-c) X sQeD (-ﬁ y for some x€M and y €int N

N (BT,-ﬁT) A ﬁ 0 0 for any (A,u)E.QO$DO
1} N
such that
aT,-ch) (A) 20 O
¥ ‘
© (i') of Lemma 2.5.
Similarly,
N _ T T
(ii') of Lemma 2.5 <« {-A"\ _ -C _ _ 0
A< 0. 0 i for some A€ Q0 and
BT M®N" \gT/ Geint D°

- (-¢,R) (x) /{D 0 for any (x,y) EMON
Yy

such that
(-2, B) (") 25 0
Y

© (ii) of Lemma 2.5.

Proof of (ii) and (iii) follows directly from Lemma 2.5. This
completes the proof.
Another vector optimization formulation with more reciprocity

was suggested by Kornbluth ([6]:
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Problem (P.)

K

D-maximize Cx

subject to

Problem (D.)

K
T
D-minimize B A

subject to

L€ int D0 .

Theorem 2.2. There exists a D-mazimal solution X to problem

(PK) for some v=y if and only if there exists a D-minimal solu-

tion X to problem (DK) for some p=yu,

Proof. See [6].

The following relationship between_problems(PGKT) and (P,)

K
((Dggp) and (Dg)) is a simple extension of that revealed by

Rodder [9].

Theorem 2.3.

(i) If (R,X,¥) solves problem (PGKT)’ then X is a D-mazimal
solution of problem (Py) for y=7¥.
(ii) If X is a D-mazimal solution of problem (PK) for y =y, then

there exists a matriz R such that (ﬁ,§,§) solves problem

(1>GKT) .

-



(iii) Statements analogous to (i) and (ii) hold for problem
(DGKT) and problem (Dg) -
Proof. (i) is obvious. Since (iii) is dual to (ii), we need

only proof (ii) here. Suppose that X is an efficient solution
of problem (PK). It may readily be shown that there exists a
e int DO such that

iTck 2 fTcx

for all x 2 0 such that

Ax §Q BY .

Considering the dual problem associated with this scalarized
linear programming problem, it follows that there exists a XGEQO
such that

TBTA ¢ $T8T)

for any )\GQO such that

From the well-known duality theorem of linear programming, we
have
TBTY = iTcx

This condition implies that the two equations

Dy = Cx
and
iTp = T8
have a common solution 5 (see, for example, Penrose [8]). Hence,

it follows immediately from (iii) of Theorem 2.1 that D is an ef-



ficient solution of problem (PGKT). This completes the proof.

Isermann [4,5] has given a more attractive formulation
which does not include auxiliary parameters such as y and u.

We shall now consider it in an extended form. Let Uo be a class

of p x m matrices U such that there exists a p €int D0 with UTuGEQO.

The primal and dual problems are then defined as follows:

Problem (P,)

D-maximize {Cx: =xeX}
where

X := {XEM: BAx 9 b} .
Problem (DI)

D-minimize {Ub: UEU,]
where

UO := {U: there exists alJEint DO such that

ATuTy 2 OcTu and utpe oy .
M

The following duality properties hold for these problems:

Theorem 2.4.

(i)  Ub /{D Cx for all (U,x) €U, x X.
(ii) Suppose that t-JGUO and x €X satisfy Ub = Cx. Then U is a
D-minimal solution of the dual problem and X is a D-mazimal

solution of the primal problem (PI).

= Min_ (D.).

(iii) Max (PI) D

D I

Proof.

(i) Suppose, contrary to the assertion of the theorem, that
there exist some x €X and I_JGUO such that



Ub 55 cx - (2.2)

Note here that by definition there exists a U € int D0 such that

T=-

ATI-JTE Cu

A"

M0

T e® .

Therefore, since x €M, we have

(aToTh,x )2 <ctu,x ). (2.3)
Furthermore, from (2.2)
(pT,Bb )< ut,ck ). (2.4)

It then follows from (2.3) and (2.4) that
_T__ - - .
(u ,0ax >)><( u,Ub) . (2.5)

However, since ﬁTEGEQO and Ax §a b, we have ( p,UAx) <({ ﬁ,ﬁb) '
which contradicts (2.5).

(ii) Suppose, contrary to the assertion of the theorem, that

I_JbﬁMinD (DI). Then there exists a O €U, such that b *p Ub = cx,
which contradicts result (i). Therefore, U is a D-minimal solu-
tion of the dual problem. 1In a similar fashion, we can conclude

that x is a D-maximal solution of the primal problem.

(iii) We shall first prove Max_ (Py) C Ming(D ). Let x be a
D-maximal solution of problem (PI). Then it is well-known that
there exists some u € int D0 such that (1,Ccx) 2(u,Cx) for all
x €X. It is sufficient to prove the statement in the case where
X is a basic solution. Transform the original inequality con-
straints Ax <. b into

0

AXx + y =D



Let B denote the submatrix of [A,-I] which consists of m columns
corresponding to the basic variables. Then from the initial

simplex tableau

using the simplex method.

From the well-known properties of linear programming problems,

we have

B 'a) ¢ 0 0
M

~T
po(C CB

ﬁTCBB_1 2 50 .
Q

CBB-1' these relations can be rewritten as

Setting U

nTe < 0 0 Toa
M

~ ~ 0
uTU EQ ’

which shows that ﬁ GUO.

On the other hand,

Ub = C,LB b = Cx

B B = C(xB,O) = Cx

B
In view of result (ii), the last relation implies that ﬁ is a
D-minimal solution of problem (DI). Hence we have

MaxD(PI) C Min_ (D

(D7) .




We shall now prove Max,(Py) D Min_ (D;). Suppose that
U is a D-minimal solution of problem (DI). Then it is clear
that for every u € int D0 there cannot exist any UE UO with UTue Q0

such that

uTUb < uTab .
Setting X = UTu, it follows that

ATa 2 0 ulc
M

(2.6)
ATb < quIb

cannot hold for any AeQO and any p € int Do. More strongly, we

can see that there is no AEQO and no ueDo for which (2.6) is

satisfied. 1In fact, arguing by contradiction, suppose that

some A'e Q0 and u'e D0 exist such that

»Ta 2 u'Te

M

A'Tb < u'Tﬁb

But since U is a solution of problem (DI), there exist ﬁEEint D0

and i = ﬁTﬁEQ such that
ATa 2 o B C
M
3T = aToTb .

Therefore, we have

G+anTaz o wean’e
M

G+A")Tb < n+ ") 0b .
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~

This implies the existence of solutions p + p'€ int DO, Ao+ A'E;QO
to (2.6), which contradicts our earlier assumption.
Rewriting (2.6), we may say that there is no AGEQO and no uezDo

for which

-A b 0
PR ( ] )e-(moenl {0}
C -Ub

is satisfied. Thus, from Corollary 2.1, there exists a solution

(x,0) €int (M’ ®R1")® = int (MeRr]) satisfying

-A b X
R €EQ & D .
C -Ub a
Since a > 0, we finally have
Ax <. b (2.7)
cx 2. Ub .
Using result (i), the last relation reduces to

Cx = Ub . (2.8)

From result (ii), relations (2.7) and (2.8) imply that %X is a

D-maximal solution of problem (PI). This completes the proof.

3. CONCLUDING REMARKS

This paper reviews several duality results in linear vector
optimization using an extended reformulation with general cone
ordering. This generalization gives some insight into the rela-
tions between cone orderings. In a previous paper [7], the author
discusses duality in nonlinear vector optimization in a geometric-
ally unified way. All of the results given in this paper can be
adapted to nonlinear situations by treating this as a special
case and using a vector-valued Lagrangian. This will be treated

in a subsequent paper.
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