The FAP Data Bank. Part 2: Updating and Aggregating Methods and Practice

Sichra, U.
IIASA Working Paper
WP-84-094

December 1984

Sichra, U. (1984) The FAP Data Bank. Part 2: Updating and Aggregating - Methods and Practice. IIASA Working Paper. WP-84-094 Copyright © 1984 by the author(s). http://pure.iiasa.ac.at/2424/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

NOT FOR QUOTATION
WITHOUT PERMISSION

THE: FAP DATA BANK
 PART 2: UPDATING AND AGGREGATINGMEIHODS AND PRACTICE

U. Sichra

December 1984
WP-84-94

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations.

INTERNATIQNAL INSTITLTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria

FOREWORD

Understanding the nature and dimensions of the world food problem and the policies available to alleviate it has been the focal point of the IIASA Food and Agriculture Program (FAP) since it began in 1977.

National food systems are highly interdependent, and yet the major policy options exist at the national level. Therefore, to explore these options, it is necessary both to develop policy models for national economies and to link them together by trade and capital transfers. Over the years FAP has, with the help of a network of collaborating institutions, developed and linked national policy models of twenty countries, which together account for nearly 80 percent of important agricultural attributes such as area, production, population, exports, imports and so on. The remaining countries are represented by 14 somewhat simpler models of groups of countries.

To support the work a data bank was organized at the very beginning of the Food and Agriculture Program. The FAP data bank has grown in size and complexity and now contains large volumes of data obtained from different sources.

Ulrike Sichra has described the updating and aggregation methods in this paper. The organization, contents and management of the data bank are described in an accompanying paper, namely WP-84-93.

Kirit S. Parikh
Program Leader Food and Agriculture Program.

PREFACE

The FAP Data Bank is a large collection of data from different sources which constitutes a basic element in the modeling activities of the Food and Agriculture Program (FAP). This data bank was created at the very beginning of the Food and Agriculture Program and has grown ever since in size and complexity. In order to be able to describe it better and to document its contents, the vast amount of information has been split into two parts:

Part 1: Organization, Contents and Management
Part 2: Updating and Aggregating -- Methods and Practice

Part 1 is the introductory paper on which Part 2 is based. It addresses a general audience, interested in data for agricultural modeling, serving at the same time as a document for the FAP modeling activities.

Part 2, the current document, is designed for those will take care of updating of the data bank. This volume not only assumes that the reader is familiar with Part 1, but also that he or she are experienced computer users, preferably at IIASA.

An important document to understand the idea of "aggregation", a crucial concept in the FAP Data Bank is The Aggregation of the Agricultural Supply Utilization Accounts, WP-83-42, IIASA. In that paper the methodology and details of the aggregations are described at length.

It is hoped that the two papers describing the data bank will satisfy a long felt need for documentation and clarification. Any suggestions for improving the understandibility of the data bank description are very much welcomed.

ACKNOVLEDGEMENTS

The nature of this paper makes it impossible to list all the persons and organizations that helped towards its publication. The main data contributions came from the following institutions:

- The Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
- The International Labour Organization of the United Nations (ILO), Geneva, Switzerland; and
- The World Bank, Washington, D.C., USA

To these organizations, the Food and Agriculture Program (FAP) is deeply indebted, recognizing that without their unselfish collaboration the FAP Data Bank would hardly have come into existence. Most of the past and present staff of the FAP have been helpful in one way or another in creating the data bank. Many suggestions from both Program Leaders, Ferenc Rabar and Kirit S. Parikh, have contributed to the usefulness of the data bank.

Numerous persons in the FAP collaborating network have made available new data for their country, or have updated the existing data for it. Our deep gratitude is addressed to them. Without the dedication of Günther Fischer the data bank and its managing routines would not have evolved. Bozena Lopuch and Stefanie Hoffmann worked with great dedication on the C.MEA and fertilizer data. The formatting efforts of Lilo Roggenland and Bonnie Riley can be directly seen. Without the careful reviewing done by Gerhard Krömer and Laszlo Zeold many parts would not have been clear.

And last but not least, we wish to thank all the users of the FAP data bank who by using the data, and with their questions, discovery of errors and similar actions have helped the FAP Data Bank to become a useful instrument in the modeling activities of the FAP.

CONTENTS

1. Introduction 1
2. Convert EBCDIC Tapes to Binary FAP Tapes 2
3. Extract Time Series Needed Later 3
4. Check Beginning Years and Errors 3
5. Preparations for the Aggregation 5
5.1. Price.a-binary data file 5
5.2. In.rates - formatted file 5
5.3. Exch.all - binary file 5
5.4. In.prices - formatted file 5
5.5. In.trans. - formatted file 5
5.6. Wei.conv-formatted file 6
6. SUA Aggregations 6
6.1. Aggregate Original FAO Commodities to Main Commodities 6
6.2. Convert to Other Units of Measurement 7
6.3. Aggregation to the Large FAP Commodity List 8
6.3.1. Exceptions 8
6.3.2. Special Classification for New Zealand 8
6.4. Aggregation to the Small FAP Commodity List 10
6.4.1. Exceptions 11
7. The 10th Commodity 12
7.1. National 12
7.2. International 12
8. Prices 13
8.1. National Average Producer Prices as Reported by FAO 13
8.1.1. PGEN1 - Prices of "NES" Products 14
8.1.2. PGEN2 - Price of Sugar Refined 14
8.1.3. PGEN3 - Oil and Cake Price from Price of Crop 15
8.1.4. PGEN4-Other Missing Prices 15
8.2. National Prices for Different Items of the Large and Small FAP Commodity Lists 15
8.2.1. Exceptions 18
8.3. World Market Prices 18
9. Aggregations of Several Countries to "one" Country 18
9.1. 'World" Data 19
9.2. EEC SUA's and Macro Data 20
9.3. CMEA SUA's and Macro Data 21
10. Nutrient Contents of Agricultural Products 22
11. Reduce Prices and Quantities 24
11.1 Exceptions 24
12. Population Data 25
References 25
Tables
Table 1: Commodities of the Detailed FAP List and their Dimensions 9
Table 2: Commodities for New Zealand 10
Table 3: Small and Detailed FAP Commodity List, Mapping 11
Table 4: Feed Factors 17
Table 5: Combination of Original and Aggregated Prices for World Price Calculations 19
Appendices
Appendix 1: Data File Format 26
Appendix 2: Nutritive Factors Record 27
Appendix 3: Commodity Codes and Text 28
Appendix 4: FAP Countries 35

THE FAP DATA BANK
 PART 2: UPDATING AND AGGREGATING METHODS AND PRACTICE

U. Sichra

1. Introduction

At irregular time intervals the Statistics Division of FAO, Rome, produces updates of existing Supply Utilisation Accounts (SUA) series, or computes further years of that time series. FAP receives updates on magnetic tape, if requested. Such updates are seldom received without prior request. On such occasions some written documentation is also made available, such as country and commodity lists, commodity trees, etc.

There is a fairly strict sequence of programs to be executed in order to integrate the SUA in to the FAP Data Bank and to produce the aggregates needed for the modelling work within FAP. However, there are a number of steps that must be taken, as they unfortunately cannot be automatized. The updating and aggregating itself is also not a "push button" action for several reasons which will be explained later. Among others, the disk space on the VAX (IIASA) is in general not large enough, and the FORTRAN77 used there does not permit direct writing of unformatted records to tape.

This paper will only cover the updating and aggregation logic of the SUA and related time series, like prices, and population aggregations to country groups. Miscellaneous programs like merge, extract, etc., will not be discussed here. The reader is referred for these activities to WP-84-93, (U. Sichra, 1984) In short, this is the sequence of actions to be taken in order to update old data records, or make new time series for the FAP Data Bank.

- Receive new EBCDIC tape(s) from FAO
- Convert EBCDIC tape(s) to binary tape(s).
- Select FAP countries and put them on one tape.
- Compare old and new accounts, make corrections and adjustments if necessary. Merge series if wanted and/or needed.
- Calculate missing producer prices (PGEN). Merge with old prices.
- Calculate average import and export prices (price.a). Merge with old prices.
- Aggregate 600 FAO commodities to 260 main commodities (ag).
- Convert main commodities to other units (agev).
- Aggregate 260 commodities to 27 FAP commodities (ag27).
- Aggregate 27 FAP commodities to 16 FAP commodities (og9).
- Calculate prices for 27 and 16 commodities (vavo27 and vavo9).
- Merge SUA and prices for 27 and 16 commodities.
- Calculate the 10 th price, merge to ag27 and ag9.
- Reduce prices (quantities) to 19 and 10 commodities.
- Aggregate all stages to EEC (ag, agcv, ag27 and ag9), also prices vavo27 and vavo9.
- Aggregate all stages to "one" (ag, agcv, ag27 and ag9).
- Make world market price for 10 th commodity.
- Make world market prices for 27 and 16 commodities.
- Reduce world market prices to 19 and 10 commodities.
- Calculate population time series.

In the following sections each step will be explained in more detail, pointing out possible difficulties which might be encountered.

2. Convert EBCDIC Tapes to Binary FAP Tapes

The standard format of the SUA tapes provided by FAO is:

```
1600 bpi (sometimes 6250 bpi)
EBCDIC, no label
220 characters/record
4400 characters/block (=20 records/block)
```

Each record corresponds to one data record, whose logical format can be seen in Appendix 1. For any further processing it is best not to keep the data in EBCDIC format, as this would need constant converting to ASCII or internal machine code in order to be able to process the data. A sequential, unformatted, binary storage mode has been chosen, which saves space and speeds up processing (input and output of records). On the EBCDIC tape one data record (7 codes and 16 years of data) has 220 bytes, the converted records have 116 bytes each (108 bytes of codes and data, 8 bytes of information for the storage mode of the record).

In general data tape(s) from FAO contain very large amounts of data, which on the VAX do not fit on disk at once. Therefore it is necessary to convert the EBCDIC tape to binary FAP format by writing directly to tape. The option to do this depends on:

- availability of 2 tape drives simultaneously
- a FORTRAN compiler which generates a code that can write unformatted binary records directly to tape.

Currently both requirements are met at IIASA only by the PDP 11/70. Therefore the data conversion has to be done there. The sequence of compilation and execution is:
ftn supbin.f-ls -lv
dd if $=/ \mathrm{dev} / \mathrm{rmt}[0,1] \mathrm{ibs}=4400 \mid$ a.out $6=/ \mathrm{dev} / \mathrm{rmt}[1.0] 7=$ checkfile

The following problems have been encountered so far when doing this:

- all data from one FAO tape do not fit on one IIASA tape;
- FAO data are stored on more than one tape;
- the tape density is 6250 bpi .

If the density is wrong (i.e. 6250) there are 2 options: send the tape back to FAO and ask them to make one with the correct density; or have it converted to 1600 or 800 bpi at another computer installation (TU, IBM, etc). For the other 2 problems there are no standard solutions. The general idea is to fit as much data as possible on one IIASA tape, but always ensuring that every country is complete on the tape (this feature is required by the aggregation programs). One can use disk storage for pieces of countries, and then merge files from disk and tape to another tape. It is very easy to adapt the program suabin.f such that it checks for a specific country code and starts writing from there, or only until there, etc. The solution depends always on the concrete situation.

Binary data generated by programs compiled with the compiler ftn on the PDP will not be readable by programs compiled with f 77 or $\mathrm{xf77}$ on the VAX. It is therefore necessary to again convert the binary data to a slightly different format. The compilation and execution of this program are:

```
ftn vax.f -lv -ls
    and
a.out 1=/ dev/rmt[0,1]/dd of=/\textrm{dev}/\textrm{rmt}[1,0]
```

This routine has not been built into the EBCDIC-binary conversion (supbin.f) as the possibility of checking results on the PDP should be retained. It also has proven useful a number of times to have readable SUA on the PDP, as extractions, listing, merging, correction, etc. can all be done there as well.

3. Extract Time Series Needed Later

The original SUA from FAO can have the following types of time series merged with them, in addition to the SUAs;

```
- population (commodity code = 1)
- producer prices (dimension = 3)
- total trade (commodity code = 10)
- supply and demand of agricultural products measured in
calories, protein and fal (3 digit element code).
```

It is best to first extract each of these record types to separate files and to keep only SUA records on one file or tape.

4. Check Beginning Years and Errors

It is essential for most programs that all time series in one file have the same starting year (icd(6)). (For details on the organisation of the data and the meaning of the codes see Sichra, WP-84-93.) It can happen though, that time
series of some countries and commodities start at different years. In such cases it is best to write a small program which:

- reads records,
- checks for the correct year
- writes if correct, or
- shifts and writes

The program avail.f generates a long table of all countries and commodities and their beginning year. This check should also be applied to producer prices and population time series. A number of miscellaneous errors could still be found in the accounts, but in general they will only show when processing the data further (aggregate, make prices, merge, etc). Some types of errors which have been found up to now are:

- data for single years are mistyped by n magnitudes of 10 ;
- data is shifted, zeros are found in the middle of time series where not expected;
- unknown commodity numbers, which can also mean that a new commodity
- has been introduced.
- unknow elements and/or dimension, which can also indicate a new item, or a change in the logic, or simply an error.

These errors have to be corrected individually. In general it also proves useful to run the program "compare.f" or "compare1.f" which tells the difference of 2 overlapping time series in a specified period. The difference is reported in absolute and relative values. From the control output decisions can be made as to where and how to adjust the new data, especially in the connecting years.

In cases where new countries, commodities, elements and/or dimensions have been introduced, and should be included in the FAP Data Bank, care must be taken to update the files which provide text for the data listings. These are:

Countries: The country text has to be filled with its code into the file nfao. 2.
Commodities: The commodity code, together with the group code, has to be filled into the file nfao.3.1, if it is an original FAO commodity, or should be treated as such in the listings. If it is a purely FAP commodity, it should be put into the file nfao.3.22.
Elements: Any new elements have to be checked for matching into the pattern set (see file list. 1 or list.22) in the same directory as nfao.2 and nfao.3.1 (nfao.3.22). The programs which pick up element (and dimension texts) read from the random access file bin. 1 (or bin.22). This file will have to be created anew with the program def.f.
Dimensions: The same procedure as for new elements applies here. There is only provision for 3 columns of dimension texts (i.e. 3 dimensions), although in the data file the entry for icd(5) can be any integer number.

All country, commodity, element and dimension listings are already presented in the first part of the Data Bank description, see Sichra, WP-84-93.

5. Preparations for the Aggregation

In order to successfully aggregate the original SUA to main commodities, and later to 27 and 16 commodities, a number of data and parameter files have to be prepared. They may change as the accounts change, and will need to be checked, updated, corrected or remade. These files are:

- price.a (average export and import prices)
- in.rates (default extraction rates)
- exch.all (exchange rates from national currency to US\$)
- in.prices (average export prices of oilseeds, and cakes)
- in.trans and in.transx (commodity trees and exceptions)
- wei.conv (aggregation pattern and weights)

5.1. Price.a - binary data file

This file is created by the program alunitp.f. If all countries over which the average will be made do not fit on one tape, the program has to be adapted to be able to read from 2 different input files sequentially.

5.2. In.rates - formatted file

In.rates can be made "manually" by choosing suitable extraction rates for all commodities which partake in the aggregation. But if the number of countries and commodities involved is too large, the programs exratr.f and exav.f will calculate the rates by simply averaging over all commodities. If all time series involved do not cover the same number of years it could be best to modify the averages of those years, for which all countries do not report. This does not cause problems for the time series, as the extraction rates hardly change with time.

5.3. Exch. all - binary file

When calculating prices of 27 and 16 commodities exchange rates are needed to convert US $\$$ to national currencies. These rates can be read from the macro data file (which also needs updating from time to time), or a separate file with exchange rates can be created. The format is the standard binary SUA records format, the exchange rates are expressed in nc/ 10000 US\$ (FAO style).

5.4. In.prices - formatted file

In this file the average export prices for oil crops, oils and cakes are stored which will be used for splitting the imports and exports of oil crops in the main aggregation program. The information for this file can be taken from the file price.a.

5.5. In.trans - formatted file

The structure of in.trans (and in.transx) is explained in detail in Fischer and Sichra, WP-83-42. In general these files don't need to be changed when new aggregations have to be done, as the files have information on structures, and not time series. It is possible, however, that tree structures of commodities in all or only some countries change, and this must be reflected in in.trans (and in.transx). Also, when new commodities are introduced, they have to be
included in this file. Both files, in.trans and in.transx have the same structure and formats. In.transx contains only those trees which are an exception for a certain country. The first 3 digits in every line specify the country for which the exceptions apply. The file has to be arranged by country code and within it by commodity code.

5.6. Wei.conv-formatted file

Similar remarks as for in.trans can be made for wei.conv. It does not change with time (no time series), but may change as updates of FAO can be different in terms of newly introduced commodities. The details about this file are also to be found in Fischer and Sichra, WP-83-42. There are separate wei.conv files for special aggregations.

6. SUA Aggregations

The aggregation of the SUAs has been explained in full detail in Fischer and Sichra, WP-83-42. This section concentrates mainly on the technical aspect (programs and-files) and the exceptions which are active since the above reference has been completed.

The logical sequence of the aggregations is as follows:

input	program	output
original SUA (on tape 1)	agsua6.f	ag (to tape 2)
original SUA (on tape 1)	convsua.f	agcv (to tape 2)
agcv (on tape 2)	ag27.f	ag27 (to disk)
ag27 (on disk)	ag9.f	ag9 (to disk)

This sequence will only be kept if the aggregation is done country-wise and there are no exceptions and/or errors in the data. It can happen though, that some data are only corrected at the ag, or ag27 level, which means that intermediate manipulation will take place.

Care should be taken not to fill the disks extensively (not even $/ \mathrm{tmp}$). On the other hand, the output cannot be written directly to tape. Thus the results should be put on tape as they originate, taking care not to destroy or overwrite tapes (use/dev/smt and scan the tapes frequently).

6.1. Aggregate Original PAO Commodities to Main Commodities

On the tapes received from FAO there are accounts for about 600 commodities (260 main commodities and 340 derived commodities) for each country (see Appendix 3). Currently there is data for about 110 countries at IIASA, but only the FAP4 countries have been aggregated and checked (see Appendix 4).

After executing the main aggregation program agsua6.f only the main commodities are left (about 260). They have the same commodity codes as the original commodities (e.g. $15=$ wheat, $27=$ rice, etc), although the time series for most elements will look different now. For the accounts starting in 1966 (latest release from FAO available at FAP) some commodity trees look different from the old ones starting in 1961. There is a major change in the cotton tree.

In the old tree, and therefore in the aggregation program:

329	cotton seed is aggregated downwards to 331 and 332 331 332
oil of cotton seed and cake of cotton seed remain as such	
766	seed cotton remains
767	cotton lint is aggregated upwards to 766
768	cotton carded and
769	cotton waste are disregarded linter remains
776	remain

In the new accounts the code for seed cotton (766) has been changed to 328 , therefore the tree would have to be changed. But in order to aggregate 767 up to 328 all would have to be on one region card and the arrays in the program agsuab.f are not large enough for this. Thus the following quick solution bas been adopted:

- The program agsua6.f has to be run twice: first on all commodities but cotton (328 and 767).
- As the next step, the commodities 328 and 767 (cotton) should be extracted from the original tape for all countries and agsua6.f run again, with the parameter and control files from the subdirectory exc (exception).
This is necessary because the tree now seemingly spans over a large number of commodities and the program cannot load that large amount of international prices and extraction rates. In the subdirectory there are files with reduced number of commodities in them.
- The resulting commodity 328 will then have to be recoded to 766 and merged with the result from the first run of agsua6.f

6.2. Convert to Other Units of Measurement

In the second step of the main aggregation all quantities are written out again, weighted with the average 1969-1971 US\$ world market price (stored in wei.conv), and, if needed, for further aggregations, with another equivalence weight (e.g. protein content, meat weight, etc. also in wei.conv). Import and export values are no longer kept, but areas and stocks are taken over.

The commodity codes remain the same as in the original accounts, but the dimension codes change. In the original SUA and after agsua6.f, dimension 1 is always quantity (measured in number or mt), and dimension 2 is value in 1000US $\$$ (only used for imports and exports).

After executing convsua.f dimension 1 is quantity in 1970US $\$$ (which is always reported), and dimension 2 is quantity in mt (available where needed for further aggregations). There are exceptions to this rule: stocks and areas (sown and harvested) in general have dimension 1 (number or ha).

No manual interference with the results from convsua.f is expected, as all corrections should have taken place for the original data or after the first aggregation, or will take place later.

6.3. Aggregation to the Large FAP Commodity List

For the detailed models of the Basic Linked System (BLS), which do not take into account country specific features, the program ag27.f generates the accounts used in the parameter estimations and the model simulations. The commodities that result from this aggregation start with code 3001. The first 18 commodities (3001 to 3018) are demand and supply of agricultural products, commodity 3019 is non-agriculture, and commodities 3020 to 3027 are again supply of agricultural commodities. The supply is divided into crop and animal part, which does not mean that in commodities 3020 to 3027 consumption items will not be found as well. This comment is made because the demand model only asks for 19 commodities, and prices have to be created at that level as well.

Table 1 below shows the commodity codes, their names, the demand commodity code to which it belongs, and the dimensions available.

As pointed out above, some commodities have 2 units of measurement. If possible and available, dimension 2 (mt) will be taken for modelling activities, but for some very aggregate commodities like vegetables and roots, cocoa and tea, etc, only dimension 1 (1970US $\$$ quantities) are available and make sense. Beverages of alcohol are reported here, but are not carried forward to the next aggregation, as they are also included in the supply and demand of coarse grain and fruits, and their inclusion would mean double counting.

6.3.1. Exceptions

There are special weight files (wei.conv) and programs to make aggregations at this level for Kenya (wei.conv.114), for some feed programs (wei.conv.kl) and for New Zealand and Australia (wei.conv.aus). The resulting data files match special features of those models and parameter estimations. As a general rule though, modellers are discouraged to request their own aggregation patterns as the workload for the "databanker" would become very big, and a constant mapping from one aggregation pattern to another wrould be needed. The coding of these exceptions is also shown in Table 1.

The files for Kenya can be found in the directory "special", the files for the feed programs in the directory 'klaus', those for New Zealand and Australia in the directory "aus". Some programs, however, already include those special features (can be seen in the comment lines of the programs).

6.3.2. Special Classification for New Zealand.

In order to take into account the special characteristics of New Zealand's agriculture, and the availability of data there, a somewhat different aggregation has been made for that country. This exception has been isolated from the others as the aggregation pattern is different, and only one FAP commodity list is created here. The special pattern is shown in Table 2. The programs and control file to bandle it are stored in a special directory called "rae" (named after the person who worked on it), and/or have the string "rae" in the name.

It is important to remember that this aggregation is unique in that there is no reduction (see later) and no small commodity list either. Most of the commodities are also not suitably comparable with those resulting from other aggregations.

Table 1: Commodities of the Detailed FAP List and their Dimensions.

```
commodity codes - 3000...
    commodity
supply demand
"good dimension"
```

1		wheat	(1) $1000 \$$	(2) mt
2		rice	(1) $1000 \$$	(2)mt(milled)
3		coarse grain	(1) $1000 \$$	(2) mt
4		vegetable oil	(1) $1000 \$$	(2) mt
5		protein feed	(1) $1000 \$$	(2)mt pr
6		sugar	(1) $1000 \$$	(2) mt
7		bovtov meat	(1) $1000 \$$	(2)mt
B		pork	(1) 1000 \$	(2) mt
9		poultry+eggs	(1) $1000 \$$	(2) mt pr
10		dairy prod	(1) $1000 \$$	(2) mt
11		veget+roots		(1)1000\$
12		fruits+nuts		(1) 1000 \$
13		fishery prod	(1) $1000 \$$	(2)mt pr
14		coflee	(1) 1000%	(2) mt
15		cocoattea		(1) $1000 \$$
16		bev. of alcoh		(1) $1000 \$$
17		fibres		(1) $1000 \$$
18		industr.crops		(1) $1000 \$$
19		non agricult		(1) $1000 \$$
20	4	bovtov fat	(1) $1000 \$$	(2) mt
21	4	pig fat	(1) 1000 \$	(2) mt
22	4	poultry fat	(1) 10008	(2) mt
23	4	fish oil	(1) 1000 \$	(2)mt
24	5	meat meal	(1)1000\%	(2)mt pr
25	5	fish meal	(1)1000\$	(2)mt pr
26	17	wool,hides		(1) $1000 \$$
27	17	pig hides		(1) 1000 \$

Exceptions for the Feed Programs: commodity codes: 3700...

28	potatoes	
29	cassava	$(1) 1000 \$$
30	eggs	$(1) 1000 \$$

Exceptions for the New Zealand and Australia:
commodity codes: 3400 ...

28	ovine meat	$(1) 1000 \$$
29	wool	$(2) \mathrm{mt}$
30	ovine fat	

Table 2: Commodities for NZ Rae Aggregation, weight file: wei.conv.rae

	32..	dimension
1	wheat	2 (mt)
2	rice	2 (mt milled)
3	coarse grain	2 (mt)
4	vegetable oil	2 (mt)
5	prot.feed	2 (mt)
6	sugar	$2(\mathrm{mt})$
7	bovine meat	2 (mt)
8	---	
9	pig+poultry+egg	$2(\mathrm{mt})$
10	milk	2 (mt)
11	---	
12	veg+roots+fru+nuts	1 (1000 \$70)
13	fish	2 (mt)
14	--	
15	coffee+cocoa+tea	$1(1000$ \$70)
16	dist.alcoh	1 (1000 \$70)
17	fibres	1 (1000 \$70)
18	ind.crops	1 (1000 \$70)
19	oflals cattle	2 (mt)
20	offals sheep	$2(\mathrm{mt})$
21	pig fat	$2(\mathrm{mt})$
22	poultry fat	2 (mt)
23	fish oil	2 (mt)
24	meat meal	$2(\mathrm{mt})$
25	fish meal	2 (mt)
26	silk+hides cattle+ovine	1 (1000 \$70)
27	pig skin	1 (1000 \$7.0)
28	ovine meat	$2(\mathrm{mt})$
29	stearine, degras+tallow	2 (mt)
30	wool	1 (1000 \$70)

6.4. Aggregation to the Small FAP Commodity list

The last step in the SUA aggregations is to generate the 16 commodities which are used in the simplified FAP models. Although all related programs have the suffix 9 (ag $9 . f$ vavo9.f etc.) there are 16 commodities in the simplified commodity list, which follows the same logic as the previous aggregation. The 16 commodity files will always have the suffix 9 ; this has historical reasons (within FAP) and will therefore not be changed.

There are 9 agricultural demand and supply commodities (3501 to 3509), one non agricultural commodity (3510) which is identical to 3019 above, and 6 more supply commodities (3511 to 3516). This time there is only one quantity measure, dimension 2 (mt) or 1 (1970US\$) depending on the commodity. Animal stocks and area are always reported with dimension 1 (as for ag27). In Table 3 one can see how the mapping from 27 to 16 commodities is done, which are the dimensions in ag9, and to which demand commodities the supply 3511 to 3516
will be aggregated to. Also for ag9 prices have to be created at the 10 commodity level.

Table 3. Small and Detailed FAP Commodity List. Mapping

detailed models 3001-3027			simplified models$3501-3516$			
commodity	"good dim" 35					"good dim"
so..						
1	wheat	(2) mL	1		wheat	(2) mt
2	rice	(2) mmm	2		rice	(2) mit milled
3	coarse grain	(2) mt	3		coarse grain	(2) mat
4	vegetable oil	(2) mt	8		other food	(1) 1000570
5	protein feed	(2) mmt pr	7		protein feed	(2) mt prot
6	sugar	(2) mt	8		other food	(1) $1000 \$ 70$
7	bov+ov meet	(2) mi	4		bovtov meat	(2) mt
8	pork	(2) mt	6		other meat	(2)mt protein
9	poultry+eggs	(2) ma pr	6		other meat	(2) mt protein
10	dairy prod	(2) mt	5		dairy prod	(2) mot milk
11	veget+roots	(1) 10008	8		other food	(1) 1000570
12	fruits+nuts	(1) 10005	8		other food	(1) 1000570
13	fishery prod	(2) mt pr	6		other meat	(2)rnt protein
14	coffee	(2) mt	8		other food	(1) 1000570
15	cocoattea	(1) 10005	8		other food	(1) 1000570
16	bev.of alcoh	(1) 10005	8		other food	(1) $1000 \$ 70$
17	fibres	(1) $1000 \$$	8		industr.crops	(1) $1000 \$ 70$
18	industr.crops	(1) $1000 \$$	8		industr.crops	(1) 1000870
18	non agricult	(1) $1000 \$$	10		non agric	(1)1000870
reduction		reduction				
20	bovtor fat	(2) mL	11	8	bovtov fet	(1) $1000 \$ 70$
21	pig fat	(2) mt	12	8	other fat	(1) 1000870
22	poultry fat	(2) mt	12	B	other fat	(1)1000870
23 4	fish oil	(2) mt	12	8	other fat	(1) 1000870
$24 \quad 5$	meat meal	(2) mt pr	13	7	meat meal	(2)mt protein
$25 \quad 5$	fish meal	(2) mt pr	14	7	fish meal	(2)mt protein
$26 \quad 17$	wool,hides	(1) 1000	15	θ	wool,hides	(1)1000570
$27 \quad 17$	pig hides	(1) 10008	16	θ	pig hides	(1)1000570
Exceptions for the Feed Programs:						
28	potatoes	(1) 1000870	17		potatoes	(1) 1000870
28	cassava	(1) $1000 \$ 70$	18		carsava	(1) 1000570
30	eggs	(2) mit protein	18		eggs	(2) mt protein
Exceptions for the New Zealand and Australie:						
28	orine meat	(2) mt	17		ovine meat	(2) mt
28	wool	(1) $1000 \$ 70$	18		wool	(1) 1000870
30	orine fat	(1) 1000570	18		ovine fat	(1) 1000870

6.4.1. Bxceptions

For the feed programs and the New Zealand and Australia country models there is also a special program which makes the aggregation according to the special pattern to ag 9 . The remarks about the exceptions at the 27 commodity level also apply here.

7. The 10 th commodity

Both the small (ag9) and the large (ag27) FAP commodity lists have a nonagriculture commodity, for which only production and producer price are calculated.

7.1. National

The program y10cal.f generates production and producer prices for non agriculture at the 16 commodity level, which will have to be merged into the corresponding file. The non-agriculture production and price at the 27 commodity level can be generated by recoding the output of y10cal.f to 3019 (instead of the original 3510).

The quantity (in 1970US\$) of the non-agriculture commodity (3019 and 3510) is computed by dividing the constant 1970 non-agriculture GDP by the exchange rate for 1970:

$$
\mathrm{q}(\mathrm{t})=\mathrm{gdpna} 70(\mathrm{t}) / \operatorname{exchr}(70)
$$

and the price is the ratio from non-agriculture current GDP to non-agriculture constant 1970 GDP, multiplied by the exchange rate for 1970:

$$
p(i t)=g d p n a(t) / g d p n a 70(t) * \operatorname{exchr}(70)
$$

7.2. International

There is also a world market price required for the 10th commodity, which results from executing the program nonagpr.f. From the world tables and other sources one can get data on total exports in current and constant 1970 prices per country, in national currency. From the next section it will be clear how to compute world market prices for the agricultural products at the 16 and 27 commodity level.

With the help of exchange rates the world market price for the $10 t$ commodity is calculated using the following formula:

$$
\operatorname{pwe}_{t}(10)=\frac{\sum_{j=1}^{C_{i}} \operatorname{EXT}_{j, t} / \operatorname{exch}_{j, t}-\sum_{i=1}^{N_{2}}\left(\sum_{j=1}^{c_{i}} \operatorname{EXA}_{j, t}(i)\right) * \operatorname{pwe}_{t}(i)}{\sum_{j=1}^{C_{l}} \operatorname{EXT}^{2} O_{j, t} / \operatorname{exch}_{j, 70}-\sum_{i=1}^{N_{i}}\left(\sum_{j=1}^{c_{d}} \operatorname{EXA}_{j, t}(i)\right) \operatorname{pwe}_{70}(i)} * 10^{3}
$$

where
pwe $_{t}(10) \quad=$ world price for the non agriculture, in year t
$\operatorname{EXT}_{\mathrm{j}, \mathrm{t}} \quad=$ total exports, country j , at current value, year t
EXT70 $_{j, t} \quad=$ total exports, country j, at constant 70 value, in year t
exch $_{j, t} \quad=$ exchange rate, country j, year t in $n c / U S \$$

```
exch
EXA j,t (i) = agriculture exports volume, country j, commodity i, year
    t
pweti(i) = world price for commodity i, year t
pwe.70(i) = world price for commodity i, year 1970
C
    countries)
N
```

i.e. the difference of current total exports and agricultural exports, divided by the difference of constant 1970 total exports and agricultural exports.

The given agricultural exports have the dimension 1 or 2 (mt or 1970US $\$$) depending on the commodity. The factors $10^{* *} n$ are required because of the storage mode of the exchange rates.

B. Prices

There are prices of agricultural products at four levels of aggregation: original, ag, ag27 and ag9 and four elements: production, feed, food and other utilisation. For the first 2 groups of SUA (600 original and 260 aggregated commodities) only producer prices are available, and they are identical for both, as the production of main commodities does not change from original SUA to ag. They come directly from FAO, on the SUA tapes, merged with the other elements and dimensions of the corresponding commodity,

B.1. National Average Producer Prices as Reported by FaO

FAO reports on producer prices in their publications, which are actual producer prices supplied by official sources. There are as well computerized time series on average producer prices which serve the purpose of evaluating the agricultural production in terms of current value. ln what follows the average producer prices shall be discussed. The sources of these prices are multiple, they can be, by order of preference:

1. Official publications
2. Answers by national authorities to FAO questionnaires or direct queries
3. Other national publications
4. International publications
5. Unofficial publications and documents
6. Estimates using different techniques.

For more information on the estimates and the adjustments applied to certain commodities the Statistics Division of FAO should be consulted directly. The computerized time series presented by FAO contain prices for the main commodities, and sometimes for their derivates as well. Ideally the time series are complete, for all years of coverage (16 years in the current design of the SUAs). But in some cases data is missing for beginning and/or ending years. For the following countries the original producer price has to be divided by 100 (by using the program c100.f):

10	Australia
33	Canada
54	Denmark
104	Ireland
229	UK
231	USA

For Egypt (59) the divisor has to be 1000.
In the case of FAP, it is problematic if the prices of some derived products are missing, like oils and cakes of oil crops, sugar refined, offals and fats of animals. The FAP commodity selection treats these products as main commodities and therefore a producer price is needed when calculating the aggregated producer prices (detailed and small FAP lists).

In order to solve these problems (missing years and missing commodities) 4 computer programs have been written which calculate the needed time series of producer prices. After running these programs the results have to be merged with the original $F A O$ prices in order to have the complete set of producer prices for original data and first stage of aggregation (ag).

B.1.1. PGEN1 - Prices of "NES' Products

A number of commodities are a basket of various products, which all together receive the name xxx-NES (e.g. tropical fruits NES). In general there is no price available for these commodities, and PGEN1 will generate it.

The price of a NES-product is the average price of similar products:

$$
\mathrm{p}-\text { nes }=\sum(\mathrm{p} 1+\mathrm{p} 2+\mathrm{p} 3+\cdots \mathrm{pn}) / \mathrm{n}
$$

In a similar way, if a price of the similar products is missing, the NES price is taken instead.

8.1.2. PGEN2 - Price of Sugar Refined

Quite frequently the price for sugar refined is not reported, rather the price of sugar beets and sugar cane. From these two the sugar price is calculated, as a function of prices of beets and cane, quantities of beets and cane and extraction rates:

$$
p s=\left(s c * p c+s b^{*} p b\right) /(e r c * s c+e r b * s b) / e r s
$$

where:

$$
\begin{array}{ll}
\mathrm{ps}: & \text { sugar price } \\
\text { pc: } & \text { sugar cane price } \\
\mathrm{pb}: & \text { sugar beet price } \\
\mathrm{sc}: & \text { sugar cane production } \\
\text { sb: } & \text { sugar beet production } \\
\text { erc: } & \text { sugar cane extraction rate } \\
\text { erb: } & \text { sugar beet extraction rate } \\
\text { ers: } & \text { sugar raw extraction rate }
\end{array}
$$

8.1.3. PGEN3 - Oil and Cake Price from Price of Crop

Similar to the sugar problem, prices for oils and cakes of oil crops have to be generated from the main product, following the formula:

$$
p(i)=\operatorname{pcrop} / 2^{*} \operatorname{extr}(i)
$$

where:

```
p(i) = price of oil(1) or cake(2)
pcrop = price of crop
extr(i) = extraction rate of oil(2) or cake(2)
```

In this program beer prices are computed in an identical way.

8.1.4. PGEN4-Other Missing Prices

For a number of products there is no producer price available, and the method devised is to calculate the price by applying extraction rates to existing prices, or averaging over other prices. Typically products for which this method applies are meat, offals and fats of animals, as well as hair, hides and skins.

After having calculated missing prices (some years, or the whole time series) by the above methods, it is advisable to compare the results with existing FAO average producer prices. It has been observed quite frequently, that although the method applied by FAP seems to be similar to the one applied by FAO, there is a nearly constant ratio between FAP and FAO prices. In order to remain consistent with FAO, when the discrepancies have been large (i.e. $>5 \%$), the ratio has been applied to the FAP prices and the missing price only added to the FAO prices. For this, the meaningful program 'MASSAGE' has been used.

B.2. National Prices for Different Items of the Large and Small FAP Commodity lists

For the detailed and the small FAP commodity classification an aggregation procedure has been devised, in order to generate national prices for production, feed, food and other utilisation of agricultural products.

The following aggregation formula has been used:

$$
p(i, k)=\sum_{j=1}^{N_{i}} p p(j, k) * q(j, k) / \sum_{j=1}^{N_{i}} q(j, k)
$$

where
$\mathrm{p}(\mathrm{i}, \mathrm{k}) \quad=$ national price of aggregate commodity i , element $\mathrm{k}(\mathrm{k}=$ production, feed, food or other utilization)
$p p(j, k) \quad=$ producer price from FAO for commodity j (or substitute, if not available), for element k ($k=$ production, feed, food or other utilisation)
$\mathrm{q}(\mathrm{j}, \mathrm{k}) \quad=$ quantity of commodity j , element k
$\mathrm{N}_{\mathrm{i}} \quad=$ number of commodities j that aggregate to commodity i
The substitute price $\mathrm{pp}(\mathrm{j}, \mathrm{k})$ which is taken in case of a non available producer price for commodity j is calculated differently depending on the element k it is needed for. The following rules apply:
[if applicable, the first of the prices below is taken, otherwise the second, in the worst case the third (which always exists)].

National Producer Price (k=5)

1. $\quad \mathrm{pp}=$ national producer price as reported by FAO
2. if $q \exp (\mathrm{j})>=0.05^{*} \operatorname{qprod}(\mathrm{j})$ for all years:
$\mathrm{pp}=$ national export price, i.e. valexp(j)/qexp(j)*exchr
3. $\mathrm{pp}=$ international export price, i.e.

$$
\sum_{k=1}^{N_{k}} \operatorname{val} \exp (j, k) / \sum_{k=1}^{N_{k}} q \exp (j, k) * e x c h r
$$

National Feed, Food and Other Utilisation Prices ($k=10,14,15$)

1. if $\operatorname{qprod}(\mathrm{j})>=0.4 *(\mathrm{qimp}(\mathrm{j})+\mathrm{qprod}(\mathrm{j}))$ for all years: $\mathrm{pp}=$ national producer price as reported by FAO
2. $p p=$ national import price. i.e. valimp(j)/qimp(j)*exchr
3. $\mathrm{pp}=$ international export price

Depending on the commodity j, and the target commodity i, to which they are aggregated, some feed prices ($k=10$) are multiplied by the factors shown in Table 4.

The program which calculates these prices is called newvalvol.f (valvol is short for value per volume), and accordingly, the resulting price time series have the name vavo27 and vavo9 ("value per volume"). The program newvalvol.f reports about national producer prices not found or equal to zero. If the time series is not there at all, the next price is taken, according to the logic described above. If for a year the price equals to zero, it is up to the programmer how to proceed. In the SUA 1961-76 care was taken to have either complete time series for producer prices, or leave them out all together for those products where not enough data was available.

In the 1966-81 accounts there is the problem that some countries only report prices up to 1980, or 79, or even 78. The following solution was adopted here: for each country the "ending" year is known, and given as parameter in the control input (in.natprices). If prices of a commodity are missing before that year, the producer price is rejected. Any other solution, like interpolation or extrapolation can also be thought of, and the program changed accordingly.

Following the FAO coding practice, prices have dimension 3 (unit value). But at the 27 commodity level one runs into problems, as there are commodities with quantities in 2 dimensions, and consequently there should also be 2 price

Table 4. Feed Factors

3001	wheat	all	0.9
3002	rice	all	0.9
3003	coarse grain	all	1.0
		barley	0.95
3006	sugar	all	0.8
3007	bovtov meat	all	0.3
3008	pork	all	0.25
3009	poultry and eggs	all	0.25
3010	dairy	all	0.25
3011	veg and roots	all	0.9
		potatoe	0.77
3012	fruits and nuts	all	0.5
3017	fibres	all	0.3
3020	bovtov fat	all	0.6
3021	pig fat	all	0.6
3022	poultry fat	all	0.6
3023	fish oil	all	0.6

dimensions.
The following coding logic was adopted:

- If a commodity has only 1 quantity dimension (in such cases dimension 1 , 1970US $\$$) the corresponding price has dimension 3 (unit value per 1970US\$).
- If a commodity has 2 quantity dimensions (dimension $1=1970$ US $\$$, dimen$\operatorname{sion} 2=m t$), the price for the first quantity measure (dimension 1) has dimension 4, the price for the second quantity measure (dimension 2) has dimension 3.

The reasons for this convention:
first: history.
second: the "good" price, which will be used in the model, always has dimension 3.

Care should be taken to always address the correct dimensions for the different commodities of the detailed FAP list. Although this might seem confusing to the reader, it becomes clear when dealing with the data. It is unfortunate, however, that the listing program does not provide for 4 dimensions and the text printed in the case of dimension 4 is "horrible".

So far only the prices at the 27 and 16 commodity level have been merged with the SUAs of the corresponding level and not the prices at the first aggregation level. At the same time the price files have also been kept separate. Aggregations to ag27 and ag9 have therefore been merged with vavo27 and vavo9 correspondingly, and then written to tape again.

B.2.1. Exceptions

For the pattern required for Kenya, for the feed program and for New Zealand and Australia the program newvalvol.f can also create the prices. A switch in this program will produce the correct output.

B.3. World Market Prices

The ideas behind the calculations of the world market prices can be found in Sichra, WP-84-95. Here only the mechanics will be explained. A number of programs have to be run to prepare flles for the actual computation of world market prices. At first the "world" SUAs are needed at all 4 levels of aggregation, i.e.

or.one	original SUA
ag.one	main commodities
ag27.one	large FAP commodity list
ag9.one	small FAP commodity list

The creation of these files is explained in the next section. The smallest export price at the original level (no processing) and after the first aggregation (with processing) is calculated with the program smallp.f. A price will only be suitable to participate in the selection of the smallest, if the quantity exported is at least 3% of the "world" exports (or.one or ag.one). Once run over the original commodities, smallp.f gives raw material prices, and once run over the aggregated list, it produces a price with processing included.

As this program might take a long time and block a tape drive (especially when receiving a low priority), it has been written such that it only can take export elements (value and quantity). Thus these elements have to be extracted first to disk. If the program smallp.f has to be read directly from the full accounts, it will have to be changed accordingly. The next stage is to calculate world import and export prices for the small and the large FAP commodity lists. The programs which make this are called onevavoor.f and onevavoag.f. The difference between them is only the treatment of rice as explained in the paper about world market prices, see Sichra, WP-84-95.

The last program which finally calculates the world market prices is called worldp.f. It selects the items with or without processing, according to the scheme shown in Table 5. The prices are then "reduced" to the 19 and 10 demand commodities correspondingly.

There is a shell file which first creates the world aggregates and then executes all programs in the correct sequence in order to generate the world market prices. This shell file is called ww.run. The price for the 10 th commodity (non-agriculture) has then to be merged into this price file.

9. Aggregations of Several Countries to "one" Country

In a similar way one aggregates country-wise several commodities into one commodity by using appropriate weights, one can aggregate commodity wise several countries to make one country.

In general no weights are needed for this procedure, unless prices are calculated or values are not expressed in a common currency (e.g. in the macro data file).

Aggregations of several countries into one are used for making:

Table 5. Combination of Original and Aggregated Prices for World Price Calculations

commodity large FAP list			reason
wheat	x		
rice	X		but $p=q 27 * p 31 * 0.67 / q 27 * 0.67$
coarse grain	x		
vegetable oil	x		
protein feed	x		
sugar		x	is a processed product
bovtov meat		X	there is little trade in fresh meat, and the processing price also includes trade in offals
pork	x		
poulteggs	\mathbf{x}		
dairy prod		x	most trade is done in butter, milk powder and cheese
veg+roots		x	the raw material price is often higher than the price for the processed good
fruits+nuts	x		
fishery prod		x	the trade in fresh products is not representative
coffee	x		
cocoa+tea	x		
bev.of alcoh	X		
fibers		x	there is no trade in seed cotton, only linter, which bas too low a price
indust.crops	x		
bov+ov fat	X		
pig fat		x	it is not traded as such, but as "lard" (derived commodity)
poultry fat		x	it is not traded as such but as "rendered"
fish oil	x		
meat meal	x		
fish meal	x		
wool + hides		x	the processed good is mainly traded
pig bides		X	the smaller price was chosen

- "world" $(\operatorname{icd}(2)=0)$ out of all FAP countries
- EEC (888) SUAs and macro data
- CMEA (777) SUAs and macro data

9.1. "World" Data

For the general one-country aggregation the program onectr.f can be used. It simply adds up, commodity-wise, over all countries of the input file, all elements and dimensions it finds.

The resulting output has to be sorted, as the time series might be out of
sequence. There are several sort programs which differ in the size of files they are able to sort (sort.f, sort1.f, sort2.f). During the sorting process creation dates and status indicator of time series are lost, but this is not a problem, as both items are not meaningful in a highly aggregated stage.

It is important to note that all countries of the input file will be lumped together in the program onectr.f. Aggregations over all FAP4 countries have the string "one" somewhere in the filename, and are treated as "world" data. Earlier "one" files, which were built over a somewhat larger country list, are therefore slightly larger.

9.2. EEC SUAs and Macro Data

Currently the following countries are aggregated to generate EEC data:

15	Belgium-Luxembourg
54	Denmark
68	France
78	Federal Republic of Germany
104	Ireland
106	Italy
150	Netherlands
229	UK

For this the corresponding countries have to be extracted first to a separate file, and this will then be the input for the program onectr.f. In order to aggregate the SUAs, including prices, to form one EEC "country" (code (888)), prices which are reported in national currencies, have to be converted to a common unit (EUROs in this case) and aggregated by weighting them with the quantities:

$$
p(888)=\sum_{i=1}^{\text {nctr }} p(i) * \operatorname{exch}(i) * q(i) / \sum_{i=1}^{\text {nctr }} q(i)
$$

The program oneeec.f aggregates quantities (identical to onectr.f) and takes care of all types of prices (producer, food, feed, other). It uses an existing file of exchange rates from national currencies to EUROs (exch2.euro). The file exch2.euro is the output of the program excheuro2.f, which reads formatted conversion rates (stored in the file euro.form) and creates binary records in SUA format. For the time series starting in 1966 further exchange rates from national currencies to euros have been calculated, and the resulting binary file is "exch2.euro.66". The aggregations for this period are carried out in the same way as for the previous periods.

In order to aggregate further years of the SUA to EEC, it is necessary to update the exchange rates up to the last year of the SUAs, adapt the program excheuro2.f and create a new binary file "exch2.euro". For the exceptions (feed programs, NZ and Australia) the special aggregation patterns are accounted for in the program "oneeec.f" and are marked with comment lines. With an input parameter one can tell whether the aggregation should be done on the 27 or the 16 commodity level. There is no aggregation program ready made to aggregate prices at the 260 or even 600 commodity level. There has been no need for it so far, but it should not be difficult to change oneeec.f if needed, to perform that
job.
There are 2 more programs which aggregate macro data and fertilizer data of all member countries of EEC to one EEC-country: onectr.f and oferteec.f.

The program onectr.f does not do the macro-aggregation in the current version, but a few commands have to be changed and adapted, which should cause no problems to the user.

9.3. CMEA SUAs and Macro Data

The following seven countries have been aggregated to form the "country" CMEA with icd $(2)=777$:

27	Bulgaria
51	CSSR
77	Hungary
97	GDR
173	Poland
183	Romania
228	USSR

Additionally a further aggregate, with all the above countries except the USSR build a country group with icd $(2)=776$. There are SUA time series for both aggregates for the years 1961 to 1976 (with 1961 to 1965 according to the latest release of FAO), and from 1966 to 1981 only for the whole of CMEA (777).

Also some macro data is available for these aggregates (1961-1976). As the national accounting system is somewhat different from the one for market economies the commodity codes differ as well. They are:

commodity	element	dimension	explanation
1	14	1	labour force total in 1000 1
3110	2	1	labour force agriculture in 1000 3110
3112	5	1	fertilizer, nitrogen consumption in mt fertilizer, total consumption in mt capital stock (cst), total stock,
3112	2	1	in mil rubles capital stock (cst), agricultural capital, 3202
3202	3	1	in mil rubles net material product, total, in mil rubles net material product, agriculture,
	1	1	in mil rubles

The above data can be found on files starting with the prefix "mcrec...", and "fert....". In order to calculate value aggregates, exchange rates from national currency to rubles are needed for all of the participating countries. The code for these is:

commodity	element	dimension	explanation
3113	13	1	exchange rate 100000 nc per ruble

National producer prices for each of the CMEA countries only exist between 1965 and 1974. Due to the fact that a significant part of the modelling for CMEA countries is carried out with country specific models, and thus with special data from those countries, no further actions were taken in FAP to construct the CMEA aggregates for more years than the ones immediately available from FAO. The aggregates for CMEA are made with the program onectr.f, for all different levels of aggregation (or, ag, ag27 and ag9). The control file in.onectr provides necessary parameters. In the shell file onectr.run all files involved in the aggregation can be seen. The exchange rates required in the shell file are not relevant for the CMEA aggregations and can be neglected, however, a file must be specified.

Before running the aggregation the countries which form CMEA have to be extracted to a separate file. The aggregate file (after onectr.f) is not necessarily in the correct order (by commodity, within it by element, within it by dimension). Thus it has to be sorted, with the program sort2.f (large enough for the biggest commodity list). Note that sort2.f does not create a new file if a resorting is not needed. The resulting aggregations are only for quantities, in all quantity dimensions, and not for prices.

10. Nutrient Contents of Agricultural Products

For most of the commodities included in the SUA there are figures available on the nutrient contents per unit of that commodity.

Together with the first SUA released to FAP a file with these values was files which contain the accounts (see Appendix 2). Also this file has been converted to binary format and it constitutes one of the files of the FAP data bank. In this case, however, the structure of the FAO file has not been taken over completely. in the FAP data bank this file needs the following read or write statement:

$$
\operatorname{read}(\mathrm{iu}, \mathrm{end}=991)(\mathrm{jcd}(\mathrm{i}), \mathrm{i}=1,5),(\mathrm{y}(\mathrm{j}), \mathrm{j}=1,3)
$$

For FAP purposes only $j c d(4)$ and $j c d(5)$ (country and commodity code) are of interest.

The three factors stored in y are;

$\mathrm{y}(1)$	calories	$(\mathrm{nr} / 100 \mathrm{gr})$
$\mathrm{y}(2)$	protein	$(\mathrm{gr} / 100 \mathrm{gr})$
$\mathrm{y}(3)$	fat	$(\mathrm{gr} / 100 \mathrm{gr})$

The file is organized in a similar way as the SUA files: by increasing country code, and within a country by increasing commodity code. It is important to remember that for country code 0 (international factor) there are coriversion factors for every main commodity and for most derived products. For each individual country the reporting of conversion factors is not complete, and one might want to use the international factor (country code 0) when the needed values for a specific country and commodity cannot be found. The program foodvavo.f (discussed below) only uses the international factors for reasons of simplicity.

The file of nutritive factors from FAO has been split into 2 files at FAP:
nutc.bin. \mathbf{w}, which contains the international factors (country code 0), and
nut.bin.n, whicb covers all other countries.

The first file (nutc.bin.w) has small differences when compared to the FAO file. This results from correcting some typing mistakes encountered in the FAO file. As a result from some research carried out by FAP a number of years ago, the format of the file nutc.bin.w was enlarged to make room for 11 instead of 3 nutritive factors, the resulting file is called mix.nut.

The read/write for this file should be:

$$
\operatorname{read}(\mathrm{iu}, \mathrm{end}=992)(\mathrm{jcd}(\mathrm{i}), \mathrm{i}=1,5) \cdot(\mathrm{z}(\mathrm{j}), \mathrm{j}=1,11)
$$

The contents of the $z(i)$ is:

$\mathrm{z}(1)$	calories	$\mathrm{kcal} / 100 \mathrm{gr}$
$\mathbf{z}(2)$	protein (low)	$\mathrm{gr} / 100 \mathrm{gr}$
$\mathrm{z}(3)$	protein (bigh)	$\mathrm{gr} / 100 \mathrm{gr}$
$\mathbf{z (4)}$	fat	$\mathrm{gr} / 100 \mathrm{gr}$
$\mathbf{z}(5)$	calcium	$\mathrm{mg} / 100 \mathrm{gr}$
$\mathrm{z}(6)$	iron	$\mathrm{mg} / 100 \mathrm{gr}$
$\mathrm{z}(7)$	vitamin a	$\mathrm{iu} / 100 \mathrm{gr}$ (international units)
$\mathbf{z (B)}$	thiamine	$\mathrm{mg} / 100 \mathrm{gr}$
$\mathbf{z (9)}$	riboflavin	$\mathrm{mg} / 100 \mathrm{gr}$
$\mathrm{z}(10)$	niacin	$\mathrm{mg} / 100 \mathrm{gr}$
$\mathrm{z}(11)$	vitamin c	$\mathrm{mg} / 100 \mathrm{gr}$

This time a much larger number of dimensions are generated (not following the standard FAO coding), in order to fit in all the nutritional values and be able to distinguish between different volumes in the large FAP commodity list. As the text listing programs are not able to cope with dimension codes larger than 3 , the mapping of dimensions to nutrient content will be given here, and can also be found in comment lines in the program foodvavo.f

meaning	"good" dimensions	"good" per capita	
calories	11	31	51
protein (low)	12	32	52
protein (high)	13	33	53
fat	14	34	54
calcium	15	35	55
iron	16	36	56
vitamin a	17	37	57
thiamine	18	38	58
riboflavin	19	39	59
niacin	20	40	60
vitamin c	21	41	61

For calculating the nutritive content of selected elements of the FAP commodity lists, one can run the program foodvavo.f which takes its nutritive factors from the file mix.nut.

This program, while generating the nutritive content of calories, proteins, fat, thiamine, etc., per unit (mt, US\$, etc), also calculates the per caput per day value of the elements. In the case of element 5 ; production, it would be the number of calories produced per caput per day, for element 14; food, the number of calories consumed by humans per day.

It should be very easy to adapt the program foodvavo.f in a way suitable to calculate other aspects of demand and supply, measured in nutritive values.

11. Reduce Prices and Quantities

The FAP models belonging to the BLS consist of a supply and a demand module. Similarly, the commodity classifications of the detailed models and the simplified models have distinct supply and demand commodities (see Table 3).

The programs that generate SUAs and prices for the large and the small commodity lists do not acknowledge the division of the models into demand and supply part. In the case of quantities, it is straightforward to add up those quantities of supply commodities which jointly form a demand commodity, e.g. protein feed, fish meal and meat meal constitute together the demand for protein feed.

When it comes to prices it is necessary to weight the prices to be added up with the corresponding quantities. For this purpose a "reduction" program has been written, which takes as input the reduction pattern (see Table 3) and generates prices for the "reduced" commodity lists.

The program is called reduce.f and has to be run separately for the detailed (ag27) and the small (ag9) FAP commodity lists. Each type of price (production, feed, food, other) has to be run separately as well.

11.1. Fxceptions

For the special aggregations for the feed program, there is also a special reduction program called 'reducekl.f".

12. Population Data

Population data is kept in the FAP data bank in the same format as SUA time series. The time series for total population have always been included in the SUA tapes from FAO Rome. At FAP they are kept in two files:

- separately, in the file pop.bin
- in the macro data file.

FAO originally only provided FAP with total population, but the modelling work required agriculture and non-agriculture labour force as well. To generate these time series ILO data was used, see Sichra WP-84-93. In its latest release (66-81) the FAO SUA tapes also have information on:

commodity	element	dimension	
1	1	1	total population in (1000s)
1	14	1	ag pop/tot pop $10^{* * 4}$ (ratio)
1	15	1	rur pop/tot pop (ratio)
1	16	1	tot lab/tot pop (ratio)
1	17	1	ag lab/tot lab (ratio)

From these time series the population time series needed by FAP can be constructed using the program "pop.f". The resulting data records are:
commodity element dimension

1	1	1	total population (in 1000s)
1	14	1	total labour force (in 1000s)
1	16	1	agriculture labour force (in 1000s)
1	17	1	non-agriculture labour force (in 1000s)

They have been merged into the corresponding all.xxx file. lt will be noticed that the assigning of element codes in FAP is not consistent with the FAO practice (history !!).

REFERENCES

U. Sichra. The FAP Data Bank, Part 1: Organization, Contents and Management. WP-84-93. International Institute for Applied Systems Analysis, Laxenburg, December 1984.
G. Fischer and U. Sichra. The Aggregation of the Agricultural Supply Utilization Accounts. WP-83-42. International Institute for Applied Systems Analysis, Laxenburg, 1983.
U. Sichra. World Prices for the Detailed and Small FAP Commodity Lists. WP-84-95. International Institute for Applied Systems Analysis, Laxenburg, 1984.

APPENDIX 1: Data File Format

record position	field length /class	feld name
$1-2$	2 N	sub-system
$3-5$	3 N	country
$6-9$	4 N	commodity
$10-11$	2 N	element
12	1 N	dimension
$13-21$	9	(blank)
$22-23$	2 N	first year indicator
$24-34$		first year data
+35		+ data status indicator
to	$192 \mathrm{~A} / \mathrm{N}$	to
$204-214$	(16×12)	sixteenth year data
+215		+ data status indicator
$216-219$	4 N	date
220	1	(blank)

APPENDIX 2: Nutritive Factors Record

record position	field length /class	field name
$1-2$	2 N	sub-file
$3-4$	2 N	sub-system
5	1 N	language
$6-8$	3 N	country
$9-12$	4 N	commodity
$13-15$	3	(blank)
16	1	sequence (blank)
$17-22$	6 N	calorie conv.factor
$23-28$	6 N	protein conv.factor
$29-34$	6 N	fat conv.factor
$35-76$	42	(blank)
$77-136$	60	(blank)
$137-196$	60	(blank)
$197-200$	4 N	date

APPENDDX 3: Commodity Codes and Text.

 -

cake of ootion seod
linseed linseed
oil of
oif of inseod
onke of ilinseod hempseed
oil of hempseed
oako of hempsoed oilseeds nes
oil of vegeitorigin nes
oakes of oilseeds nes
flour/meni of oilsoeds flour/menl onbbagos
e
pinach
omaloes tomatoes
juice or lomatoes
peeted tomatoes
cauliflower
pumpkins, squash, sourds
cucumbers and gherkins
ohillestpepners, green
ohilicstpeppers, green
onionstshsilols, green
 arlic
beans, green
peas, grecn
road beans,
cring
 green c
mushrooms
po!jp 10 YsajJpoJd 8an
sjoojRJ00! carobs

egetables fresh nes egetables dried nes
 vegelables canted ns jujee or vegetables nes
 juice or vegetables nes vegs. dehydrated os5.

 ananaspantains

 preprd nuts

0523
0523
05230
05331
0531
0534
0536
0537
0541
0542
0544
0547
0549
0550
0552
0554
0558
0560
0561
0563
0564
0565
0567
0568
0569
0570
0571
0572
0574
0575
0576
0577
0600
0603
0604
0619
0620
0622
0623
0624
0632
0633
0634
0635
0636
0637
0638
0639
0649
0641
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653

0654	dress, bridis
0655	-egrool fod
0656	oofleo, green
0657	ooffee ronst
0658	coffee subst
0659	coffee extr
0661	cocor beans
0662	oocoa powder
0663	cocor paste
0664	cocoa butler
0665	ohoc prod ns
0666	?37737?
0667	tea
0671	mate
0674	teanes
0677	hops
0687	pepper w/1/b
0689	pimento
0692	venilla
0693	oinnamon
0698	clores
0702	nulmeg
0711	anise
0723	splces nes
0737	oil oitronil
0748	peppermint
0753	ess oils nes
0754	pjrethrum
0755	pyrel extr.
0756	pyret maro
0766	seed cotton
0767	cottontint
0768	ootton cardd
0769	oolton waste
0770	colton lintr
0771	flax raw
0773	flax libre
0774	flax tow
0777	hemp libre
0780	jute
0782	jute-1ike
0788	ramie
0789	sisal
0800	agare nes
0809	abaon
0821	Tibre nes
0826	tobacco
0828	oigarettes
0829	oigars
0831	lobacco prod
0836	nat rubber
0837	rubber dry
0839	netural gums
0840	oom feed cat
0841	oom feed pou
0842	oom feed pig
0845	oom feed oth
0846	gut feedtme
0850	feed sup
0851	nonprol nitr

dregs from brewing+dist.
veselablestroots, fodder
coffee, green
coffee ronsted
coffee subst cont coffoo
ooffeo extracts
cocon beans
oocon powder
cocoa paste oake
oocoa butter
ohocolate products nes ??7???
lea
tea nes
tean
hops
pepper, whito/long/black
pimento, allspice
vanilla
cinnamon (oanella)
oloves, wholetstems
nutmeg, mace, cardamons
enise, becian, fennel
spices nes
oll of citronella
peppermint
essential oils nes
pyrethrum
pyrethrum oxtract
pyrethrum maro
seed colton
cotton lint
cotton carded oombed
ootton waste
cottoninter
flan fibre raw
flan fibre and low
Clan tow waste
hemp fibre and tow
jule
jute-like ribres ramle
sisal
agave fibres nes abaca (manila hemp)
fire orops nes
lobacco leaves
olgarettes
cigars oherools
tobacco producte nes natural rubber rubber natural dry notural gums
compound feed
compound reed, cattle compound reed, poulliy compound feed, gigs
compound reed. other or nes
pluten feed and
feed suplements
loed suplements
non protein nitrogens

0852	ooncentr nes
0853	vitamins
0854	feed additir
0855	feed mineral
0857	hay non-leg
0858	hay legumin
0859	hay unspeoif
0860	range past
0861	improvpast
0862	ri/meal miso
0864	calves
0865	veal
0866	cattle
0867	beef veal
0868	offals cattl
0869	fat cattle
0870	beer boneless
0872	beer dss
0873	meat extraot
0874	sausage beof
0875	beef prep
0876	beef canned
0882	cow milk
0885	cream, fresh
0886	butter, oows
0887	ghee, oows
0888	sh milk cows
0889	wh milk, cond
0890	whey, oondens
0894	wh milk, evap
0895	skmilk evep
0896	sk milk cond
0897	cowmilk dry
0898	milk sk dro
0899	dry buttermilk
0900	dry whey
0901	cheese w oow
0903	whey, fresh
0904	oheese s cow
0917	casein
0919	cattle hides
0920	hide w cattl
0921	hide doalll
0922	hide n cattl
0927	skin f calve
0928	skin w calve
0929	skin d calve
0930	skin n cattl
0944	ind cattmeal
0945	bio oattmeal
0946	buffaloes
0947	buffalo meat
0948	offal buffal
0949	fat buffalo
0951	buffalomilk
$095 ?$	butter buffl
0953	ghee buffalo
0954	milk sk buff
0955	ohees burfl
8957	buffalo hide

0958	hide w buff
0959	hide d buffi
0972	ind buffmeat
0973	bio buffmeat
0974	1 ambs
0975	1 amb meat
0976	sheep
0977	mutton lamb
0978	offels sheep
0979	fat of sheep
0982	sheep milk
0983	butter sheep
0984	sheep oheese
0985	sk milk shee
0987	wool, greasy
0988	wool, scoured
0994	grease wool
0995	sheepskins
0996	skin w sheep
0997	skin d sheep
0998	skin nes sh
0999	skinwool sh
1007	wool shoddy
1008	hair carded
1009	wool waste
1012	ind sheepmeat
1013	bio sheepmeat
1014	kids
1015	kids meat
1016	goats
1017	goat meat
1018	offals goats
1019	fat of goats
1020	goat milk
1021	goat cheese
1025	goatskins
1026	skin woat
1027	skin d goat
1028	skin nes goa
1032	ind goatmeat
1033	bio goatmeat
1034	pigs
1035	pigmeat
1036	offals pigs
1037	fat pigs
1039	bacon pigs
1041	sausages pig
1042	meat pr pig
1043	lard
1044	pigskins
1045	skin w pigs
1046	skin d pigs
1047	skin nes pig
1055	ind pigmeat
1056	bio pigmeat
1057	chiokens
1058	ohicken meat
1059	offal chiokn
1060	meat pr ohck
1061	meat od chok

hides wet-salted buffal hides dry-salted buffal indigenous buffalo meat indigenous buffalomea biological buffalo meat I ambs
lamb meat
sheep
mutton and lamb
offals of sheep, edible fat of sheep
buttertghee (sheep mi
buttertghee (sheepmil
cheese of sheep milk
skim sheep milk
wool, greasy
wool, scoured
grease incl lanolin wool
sheepskins, fresh
skin wet-salted sheep
skin dry-salted sheep
skin nes sheep
skin with wool sheep
wool shoddy
hair carded or combed
wool hair waste
indigenous sheep meat biological sheep meat kids
kids meat
goats
goat meal
offals of goats, edible
fat of goats
goat milk
cheese of goat milk
goatskins, fresh
skins wet-salted goats
skins dry-salted goats
skins nes goats
indigenous goat meat
indigenous goat meat
biological goat meat biological goat meat pigs
pigmeal
offals of pigs, edible
fat of pigs
baoon-ham of pigs
sausages pig meat
meat preparations pigs
Jard
pigskins, fresh
skin wet-salted pigs
skin dry-salted pigs
skin nes pigs
indigenous pigmeat
biological pig meat
chickens
chioken meat
offals liver of ohickens
meal preparations chick
meat canned chicken

sulphorio acid
ogrioulturel ime

 marine nes meal fr offal orustaoeans frozen

 orustaceans meal ofral
milusos oxol cephlprrsh
molluscs frozen moliuscs rrozen
moliusos cured

$$
\begin{aligned}
& \text { ammonia } \\
& \text { phosphorlo aold }
\end{aligned}
$$

1565	molsc canned
1566	molsc meals
1567	mols meal of
1570	oephlp fresh
1571	ophlpfrozen
1572	ophlp oured
1573	cohlp canned
1574	cphlp pr nes
1575	ophlp meals
1576	cohl meal of
1579	aquto mammal
1580	aq m meat
1581	aq m meals
1582	aq moils
1583	aq m prep ns
1584	aq mmeal of
1587	aquto anim f
1588	aq a cured
1589	aq a meals
1590	aq a prep ns
1591	aq a meal of
1594	aqutc plants
1595	aq p dried
1596	aq p prep ns
1599	fish lot val

[^0]
APPENDIX 4: FAP countries (* = FAP4)

	EEC and Japan	Developing Asia	
15	Belgium - Luxembourg (*)	16	Bangladesh
54	Denmark (*)	100	India (*)
68	France (*)	101	Indonesia(*)
78	Federal Rep. of Germany (*)	102	lran
104	Ireland(*)	103	Iraq
106	Italy (*)	116	Korean Democr. Rep
110	Japan(*)	165	Pakistan(*)
150	Netherlands(*)	171	Philippines
229	UK(*)	216	Thailand
888	Total EEC		
	CMEA		Latin America
27	Bulgaria(*)	9	Argentina(*)
51	Czechoslovakia(*)	21	Brazil(*)
77	German Democratic Republic(*)	138	Mexico(*)
97	Hungary (*)	170	Peru
173	Poland(*)	236	Venezuela
183	Romania(*)		
228	USSR(*)		
777	Total CMEA		
	Rest of Europe		Other Countries
11	Austria(*)	10	Australia(*)
67	Finland (*)	33	Canada(*)
84	Greece(*)	41	China(*)
162	Norway	156	New Zealand(*)
174	Portugal(*)	202	South Africa
203	Spain(*)	231	USA(*)
210	Sweden(*)		
211	Switzerland		
223	Turkey(*)		
248	Yugoslavia		
	Developing Africa		
4	Algeria		
59	Egypt(*)		
62	Ethiopia		
114	Kenya(*)		
143	Marocco		
159	Nigeria(*)		
206	Sudan		
212	Syria		
215	Tanzania		
222	Tunisia		

[^0]: molluscs canned
 moliuscs canned
 molluscs meal from offal
 cephopods fresh
 cephalopods frozen
 cephalopods frozen
 oephalopods cured
 cephalopods canned
 oephalopods prep
 cephatopods meals f offa
 cephalopods mea
 aquatic mammals meat
 qquatic mammals meals
 aqualic mammals meal
 aquatic mammals oils
 aquatic mammals prepnes
 aqua mammal meal foffal
 aqua mammal meal offa
 aqualic onimals nes frsh
 aqualic animals cured aquatic animals meals aquatic animals prep nes
 aqua animmeal fr offal
 aquatic plants
 aquatic plants dried
 aquatic plants prep nes
 fishery tolal value

