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PREFACE 

In 1983 IlASA initiated, with support from the U.N. Environment Programme, a 
two-year project on climatic impact analysis. I t  is being implemented by a small 
in-house core group with a collaborative network of 72 scientists working on 11 case 
studies around the world. 

The overall goals of this project are first, to evaluate the impact of climatic 
change and variability on food grain and livestock production, and second, to assess 
appropriate policy responses to reduce the impacts of climate on agriculture. Each 
of the 11 case studies has a team of 4 to  6 scientists which includes crop-climate 
and economic modelers, and a high-ranking agricultural planner. Outputs from cli- 
mate models (or from instrumental climatic records) are used as inputs to impact 
models to predict actual or potential yield responses to climatic changes. Compati- 
bility between the case studies is ensured by using the same types of climatic 
scenario and similar types of impact model. To trace the "downstream" effects of 
yield changes, outputs from the impact rnodels are used as inputs to economic 
models (e.g. farm simulations, regional input-output models). Finally, agricultural 
planners or ministers of agriculture are being asked to evaluate the range of poli- 
cies available for impact mitigation. 

The case studies are being collected together into an integrated set of climate 
impact assessments, the integration being achieved by methodological studies 
which seek to describe how different modeling approaches relate to each other. 
This paper by Carter, Konijn and Watts provides an overview of the use of agro- 
climatic models in climate impact analysis, a context against which the  case study 
models can subsequently be evaluated. 

We acknowledge the financial support of the United Nations Environment Pro- 
gramme and the Austrian Government for this work. 

Dr. Martin Parry 
Leader 
Climate Impacts Project 
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THE ROLE OF AGROCUMATIC MOD= IN CLIMATE IMPACT ANALYSIS 

T.R Carter, N.T. Konijn and R.G. Watts 

I t  would be a very convenient thing if farmers throughout the world could 
enjoy perfect weather and the absence of plant diseases and pests, and could grow 
perfect crops in perfect soils. In the real (and perhaps more exciting and interest- 
ing) world the  farmer must  deal with imperfect soil and variable weather, with the 
presence of pests and diseases, and with fluctuating markets and prices as well. 
The next most convenient thing to  having a perfect world would be to  have a per- 
fectly predictable world. If a farmer could predict perfectly all of t he  factors that  
influence the growth of his crops and the health of his livestock, and if he could in 
addition predict how his crops and livestock are influenced by these factors, how 
markets would influence his profits, etc., then he could decide which crops to plant 
in any given year, or whether to  plant anything a t  all. He could also use his perfect 
knowledge to decide whether and how to assist in the natural order by, for example, 
irrigation or the application of fertilizers. 

Farmers have, of course, been trying for centuries to  predict the outcome of 
each cropping season. Each year man and nature perform an experiment. Nature 
varies the rainfall, temperature, sunlight, and other weather parameters while indi- 
vidual farmers vary the rates of fertilizer application, planting dates, etc. The 
results of these experiments over many years forms the collective experience of 
the  farmers. The pooling of th is experience provides then1 with information about 
when to plant, fertilize, irrigate and harvest crops, and even when to anticipate cer- 
tain kinds of disease and pest epidemics. Scientists have recently begun to stream- 
line this process through the  use of mathematical models. Crop models provide a 
mechanism for efficiently distilling and organizing past experience on the  behavior 
of crops in such a way that  future behavior can be predicted. The mathematical 
model is, of course, not the real system. I t  is a set of variables and mathematical 
relationships by which we can at tempt  to  represent the real system. If the  model is 
perfect, and if all t he  external changes are anticipated. then the model will behave 
exactly a s  nature behaves. We could then predict what nature will do and we could 



understand why. We can never hope to do this perfectly, of course. Instead, our 
task as modelers is to discover which variables are required to describe the real 
world adequately, and how these variables are related to one another mathemati- 
cally. We will be mainly interested in the response of crops to changes in climate, 
and we will refer to the models discussed below as agroc lzmat ic  mode ls .  The pur- 
pose of this paper is to provide an overview of the role of agroclimatic models in cli- 
mate impact analysis. 1 

We will approach this task in three stages. Krstly, we will describe which 
processes are important in determining crop production and how the farmer 
exploits and modifies these in order to obtain optimum yields. Secondly. we look a t  
the types of mathematical models that are commonly used to simulate the crop 
production system. By concentrating on model attributes and disadvantages, we 
will discuss their performance in estimating crop responses to present-day condi- 
tions and assess their suitability for simulating the effects of future climatic 
change. As illustration, we present the results of specific experiments in which we 
explore the sensitivity of two models to climatic variations over a range of time 
periods. Finally, these features are summarized in a tabulated checklist which 
allows us to cross-compare the capabilities of particular models. 

2. CLTMATE AND THE CROP PRODUCTION !WETEM 
Strictly speaking, any treatment of the crop production system should 

embrace the full range of conditions that are important in the cultivation and hus- 
bandry of crops. However, since no single model has yet been developed that incor- 
porates all features of the system, we will restrict our &scussion only to those com- 
ponents that  we believe are pertinent in assessing the impacts of climatic change. 

In this section, we have developed a scheme that is designed to reflect the real- 
ity of crop production at the plant or field level, while offering the possibility to 
match that  reality with the conditions simulated by agroclimatic models. First, we 
describe crop production in terms of the influences of natural conditions on 
processes that  determine productivity. Second, we itemize the more important 
requirements necessary for the development of a healthy crop and consider how 
the farmer attempts to modify the physical environment in order to fulfill these 
requirements. The importance of the timing of an thropogenic activities with 
respect to natural events is illustrated by combining them in the form of a farm 
calendar. Thirdly, the effects of crop production and the influence of technology on 
long-term crop productivity are discussed. 

2.1. Crop Production and Climate 

To be able to show the effects of climatic changes on the physical processes 
determining crop growth, a model should respond to a t  least one of the variables 
that help to describe the climate. No matter where crop production takes place the 
following conditions determine the final production level: the radiative and tem- 
perature regime, the soil water available for plant growth, the availability of plant 
nutrients and the interference of pests and diseases. When any of these is not con- 
sidered in a model, i t  often means that under the actual local physical environment 
that particular variable does not induce annual responses sufficiently large to 
affect crop yields. Such an omission may become significant when longer-term 
climatic changes are considered. 

'we shall focus primarily on egricultural crop models although much of our discussion is equally applica- 
ble to other plant models (such as the forest g o d  model reported by Kauppi and Posch, 1985). 



The more important processes are il lustrated in Figure 1 and have been 
grouped according to their parent research discipline. The implication is that for a 
model incorporating all these aspects in any detail, teamwork is essential. 

METEOROLOGY & CLIMATOLOGY 

Transpiration 

PHYSIOLOGY 

Evaporation 

Immobilization 
Mineralization 

Water transport Nutrient transport 

Capillary rise 

T I 1 
Leaching 

Drainage 

Figure 1. Physical processes in plant production. 

2.2. Constructing a Farm Calendar 
Some agroclimatic models relate only climatic factors to crop yield, but we will 

take a broader view, here, recognizing tha t  other variables including farm manage- 
ment activities, do not only contribute to the level of the crop yield, but can be 
decisive in whether one obtains a yield a t  all. For example, excessive rainfall may 
cause a delay in planting time, or even make planting impossible, with obvious 
consequences for plant production. Of course, a farmer usually aims a t  achieving 
an optimal result, within the frame of his knowledge and his available options, and 
the weather often plays an important role in influencing his decisions. 



The development of a crop and its sensitivity to the physical environment is 
strongly plant-type dependent. A farmer's activities are also plant-type dependent 
although many are common to all crops. Here, we will present an example. for a 
specific crop, of what can be called a farm calendar. Similar calendars exist for 
other crops, and these are described elsewhere in the literature (e.g. FAO, 1978; 
Duckharn, 1963). The models we are interested in can be compared with the 
appropriate calendar to see whether certain important variables are included. In a 
later section we will offer a means to carry out this matching by way of a checklist. 

Spring wheat is taken as our example. The crop has many characteristics in 
common with other cereals; but i t  differs from winter varieties in being day-neutral 
(i.e. its development is not influenced by day-length) and in not requiring a cold 
(vernalization) period before heading. 

2.2.1. &op Requirements 
The development of the crop is indicated in Figure 2. Various development 

stages are recognized which are related to the crop's special requirements. The fol- 
lowing are distinguished: respectively, the requirements for radiation, water, 
nutrients, weed control, pest control, soil conservation and temperature. These are 
represented over time as horizontal bars; the denser the lines in the bar the more 
important are the requirements. 

Solar radiation stimulates a crop to  convert absorbed carbon dioxide to  car- 
bohydrates (i.e. plant material) through the process of photosynthesis. During the 
early development of a crop, in particular, its rate of growth is strongly influenced 
by the amount of radiation it intercepts. 

Water stress in plants is one of the most common factors limiting crop produc- 
tion. I t  is not just the  annual rainfall that determines whether there  is enough 
water available for plant growth, but the timing and distribution of rainfall, evapo- 
transpiration and soil characteristics play a role as well, both before and during the 
growing season. 

Of the nutrients, only the three main 'macronutrients' are dist'inguished, and 
their relative importance is staggered over the period of crop growth. Potassium 
tends to be more important a t  the beginning of the vegetative period, nitrogen fol- 
lowing tillering, and phosphorous during heading. 

The climate may play a decisive role in pest control, and activities of most of 
the lower organisms like fungi a re  triggered by humidity and temperature. As for 
weed control. weather conditions can affect both the competitiveness between weed 
cultures and with the crops. . 

Soil erosion is a problem in many agricultural areas. For example, during the 
period after plowing but before the crop has fully developed, rain can act directly 
on the soil surface, causing a large amount of soil loss. Rainfall of high intensity, 
surface runoff, or wind, together with an easily erodible soil can lead to several tens 
of metric tons of soil loss per hectare. 

Each plant type has its typical optimum temperature range although this may 
vary from growth stage to growth stage. Temperatures below zero degrees Celsius 
do not permit growth and extremely high temperatures may also be damaging to 
the crop. Plants have adapted to  daily fluctuations in temperature: given a suffi- 
cient supply of carbon dioxide, the higher temperatures during daylight promote a 
maximum photosynthesis rate, while lower nighttime temperatures reduce the 
losses of photosynthates by slowing down the process of maintenance respiration. 
For spring wheat the optimum temperature range lies between 15 and 25°C and the 
minimum temperature for both growth and germination is about 4°C. At ripening, 
the period preceding harvest, air temperatures above 18°C together with calm dry 
weather are optimum, leading to the minimum harvest losses. 
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Figure 2. Farm calendar for spring wheat. 



Extreme events that sometimes occur may not simply reduce yields, but can 
cause total losses. The occurrence of frost during the flowering period illustrates 
such an event. Lodging because of high rainfall accompanied by wind during grain 
formation can also lead to heavy losses. Plant breeders have come to the aid of 
farmers in this respect, introducing better adapted varieties like, for example, the 
short straw varieties that have reduced lodging in cereals. 

2.2.2. FWfi l l ing the hbtpirernents 
For most of the crop requirements the farmer has tools to reduce any adverse 

effects of the environment. Thus, the requirements indicated in Figure 2 are 
accompanied by a bar that  shows how farmers can act, given that they have the 
means and the sufficient know-how. 

For example, the soil may not be capable of meeting the nutrient require- 
ments, therefore, applied fertilizers may increase production, provided they are 
applied a t  the right t ime and in the correct way. How far those applied nutrients 
become available to the plant, however, is also a function of the weather. And 
although the farmer can to a certain degree counteract the negative effects of the 
weather, losses in nutrients may still occur due to leaching, fixation or volatiliza- 
tion. 

Through suitable conservation measures, soil erosion losses can be reduced to 
practically nothing. The planting of wind barriers, for example, at appropriate dis- 
tances and perpendicular to the dominant wind direction will often reduce losses 
considerably. 

Ironically, many of the areas where shortage of water is a constraint on growth 
are also areas with a favorable radiative and temperature regime. However, if no 
other factor is limiting, irrigation can transform those areas into the most produc- 
tive regions in the world. 

2.3. hng-Term Effects of Crop Production 
Throughout a crop's growth, the resources upon which it depends are them- 

selves undergoing a continuous process of change. Moreover, these changes are 
not always measurable. For example, the soil texture is not likely to change signifi- 
cantly within a man's generation, due to  the robustness of the  soil minerals. In 
contrast, the  organic matter content and composition may change considerably 
even within a growing season. Although anthropogenic activities play an important 
role in controlling the rates of some of these changes, the effect of the climate 
should not be underestimated. For example, the decay of organic matter is greatly 
influenced by fluctuating moisture and temperature conditions, suggesting that 
any future changes in these conditions might induce rapid responses in decay 
rates. 

When we extend the time horizon beyond the short-term, it  is important to 
recognize also the effects on crop production of various cropping practices, such as 
rotations, multiple cropping, consecutive cropping, etc. On a particular tract of 
land, over a series of years, any number of crops may have been grown, each 
uniquely affecting the long-term status of the soil. Furthermore, a change in the 
crop mix, due perhaps to a changing climate, might alter significantly the rates of 
processes such as soil degradation and erosion, maybe feedng-back to the crop sys- 
tem and accentuating the impact. 



Finally, the rapid increases in crop yields reported from many parts of the 
world over the last two decades give testimony to some enormous advances in farm 
management practices and technology. Clearly, for as long as improvements in 
crop productivity are feasible, man will strive towards their attainment, through 
plant breeding and genetic engineering, development of new machinery and fertil- 
izers and evolution of improved conservation techniques. These technological 
trends will continue to exert an important and, very likely, dominant role in future 
crop production. 

3. MODELING THE CROP PRODUCIlON SYSEM 
We can view a mathematical model as a set of input variables that affect a set 

of output variables through a number of mathematical relationships. In an agro- 
climatic model, the output variable of primary interest usually involves some 
measure of crop productivity (e.g. yield, biomass potential, land suitability, etc.). 
Input variables include climatic variables such as temperature, precipitation, 
windspeed, solar rahat ion and the like. Other environmental variables that might 
affect yield have already been referred to as natural input variables. These were 
distinguished from another group, labeled anthropogenic input variables which are 
associated with direct intervention by man and include, for example, irrigation and 
the application of fertilizers and pesticides (Figure 2). 

The principal purposes of the modeling procedure are to understand the sys- 
tem and to develop predictive capability. Ultimately, we would like to be able to 
predict the consequences of changes in both natural and anthropogenic input vari- 
ables. The former would tell us how natural changes will affect crop productivity. 
The latter would suggest to us how we might act to optimize productivity by alter- 
ing anthropogenic inputs. 

Before attempting to assess the characteristic features of different model 
.types, let us consider first one of the simplest methods of relating plant growth to 
climate: the climate-based vegetation map. 

3.1. Climate-Based Vegetation Mapping 
Several schemes have been proposed which classify natural vegetation zones 

according to  mean climate (particularly measures of temperature and moisture 
conditions) and there are many examples of global maps which il lustrate regional 
vegetation patterns based on observed mean climate (e.g. Koppen, 1936; Holdridge, 
1947). This approach can be regarded as correlative modeling in the very loosest 
sense, where a number of discrete vegetation classes are 'correlated' with climate 
on the basis of a sample of observations from around the world. The interest in 
such a procedure for climate impact analysis lies in our ability to introduce a 
climatic change by adjusting the values of mean climate for a region. According to 
the changed climatic conditions we can then 'predict' (i.e. re-map) the new vegeta- 
tion pattern and can assess the impacts in terms of geographical shifts over space. 
Examples of the mapping of vegetation shifts include experiments using Holdridge 
Life Zones under a 2 x C02 climate (Emanuel et al., 1985), and for Kippen Vegeta- 
tion Zones under the climatic conditions simulated for the peak of the last ice age, 
18000 years ago (Hansen et d. ,  1984). Clearly, this type of analysis can be applied 
only to broad scale vegetation changes which, given the high temporal inertia of 
ecological systems would be measured over the long-term. Further since it is 
strictly a climate classification other factors such as soil properties, fire risk and 
species competition need to be overlaid on the basic classification in order to gain 
a realistic assessment of the impact of climatic change. 



Vegetation maps provide a useful first approximation of the biological response 
to changes in climate a t  a continental or global scale. Experiments of the kind dis- 
cussed offer a framework within which to focus our studies of crop response using 
agroclimatic models. 

3.2. Classitping Agroclimatic Models 
There are a number of excellent reviews of agroclimatic modeling in the litera- 

ture (e.g. Baier, 1982; Sakamoto, 1981; Robertson, 1983) and all attempt some kind 
of model classification. In general, models fall into two broad classes: empirical- 
statistical models and simulation models. 

hpir ical-stai ist ical  models are developed by taking a sample of annual crop 
yield data from a certain area together with a sample of weather data for the same 
area and time period, and relating them through statistical techniques such as 
multiple regression analysis. This procedure is sometimes labeled a black-box 
approach since it does not easily lead to a causal explanation of the relationships 
between climate and crop yield. This description should not imply, however, that 
these models are developed blindly or indiscriminately. The most effective 
empirical-statistical models are usually the product of very careful and well- 
informed selection of suitable explanatory variables, based on an intimate 
knowledge of basic crop physiology. 

Sbnulation models generally treat the dynamics of plant or crop growth over 
the growing season through a set  of mathematical expressions tying together the 
interrelationships of plant, soil and climate processes. Some of these relationships 
are well-enough understood to be regarded as accepted laws of physics, chemistry 
and biology and are often referred to as deterministic functions (Lyons, 1982). 
Other processes which are either poorly understood or of secondary interest to  the 
modeler are frequently represented by empirical functions. 

Thus. no simulation model can be described as truly deterministic since all 
incorporate a t  least some empirical (black-box) elements. However, they differ 
from empirical crop models in their development and operation. In the latter 
models, the output data (such as yield) must be sampled and related to the input 
data in order to construct the statistical model which is to be used as a predictive 
tool (Figure 3a). In the simulation approach, the plant growth processes are 
prespecified, and output data are generated i n t e d l y  by the model, as illustrated 
in Figure 3b. 

3.3. Evaluating the Utility of Agroclimatic Models 
We can evaluate a model according to the following general criteria: objectives, 

logistics, assumptions and sources of error, and validation. 

3.3.1. Objectives 

In general, models are constructed in order to satisfy certain objectives. 
These are bound to condition what levels of detail and explanation are required in 
developing the model. As a simplification, empirical statistical models are built for 
the sole purpose of yleld pre&ction; simulation models offer a means to  analyze as 
well as to estimate yield. These differences in modeling objectives should become 
more apparent in the following discussion. 
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Figure 3. The construction, operation and validation of a) an empirical/statistical 
(black-box) model and b) an interactive simulation model (schematic). 

3.3.2. Logistics 
I t  is probably t rue to  say that a model is only as good as the data set upon 

which it is based. Adequate data are required first, for constructing the model algo- 
rithms, second, for running the model (i.e. as inputs) and third, as independent 
objective measures against which to validate model outputs. In considering the 
effects of climatic change one important concern is for a model to be capable of 
responding to  those annual fluctuations over several decades that are characteris- 
tic features of most regional climates. 



In general, with fewer and simpler model variables one can e q e c t  a longer 
time series of data and a more straightforward and rapid calculation process. Most 
empirical-statistical models are constructed to meet this objective, both for the 
purpose of simplicity and to avoid the statistical problem of inflated correlation 
coefficients due to a high number of explanatory variables (Sakamoto, 1981). Con- 
tinuing this line of reasoning, i t  is no surprise that some of the most effective sta- 
tistical models have been developed in areas where crop growth and yield are 
governed by a s i n g l e  major weather factor (e.g. temperature and hay yields in Ice- 
land, Bergthorsson. 1985). 

For an empirical t reatment of a more complex system, data bases may become 
prohibitively large, and in this situation the explanatory, simulation approach 
might be a viable substitute since some of the variables can be generated internally 
by the model. However, data requirements are normally greater for simulation 
models anyway, given the short time-steps frequently employed. Moreover, such 
line scale data are seldom available over long time periods imposing a formidable 
restriction on the applicability of many simulation models for the analysis of 
climatic fluctuations on a decadal basis. 

An additional logistical advantage of most empirical models lies in their predic- 
tion of yields for quite large regions. Thus, climatic data a re  often regional aver- 
ages derived from a number of sites, any one of which need not necessarily provide 
a continuous record. Conversely, simulation models tend to be site-specific, requir- 
ing a single, unbroken run of data for all variables. 

3.3.3. Assumptions a n d  S o u r c e s  of ~ O T  

In a perfect model, all variables contributing to the growth of a crop would be 
represented exactly and connected with an unbroken logic. However, because 
current understanding of plant processes is so imperfect, modelers must adopt a 
pragmatic approach, selecting only those variables thought to have a significant 
influence on crop growth, and where the interrelationships between these variables 
cannot be represented, even as empirical functions, assumptions must  be intro- 
duced which are based on the modelers' experience and judgement. The effective- 
ness of a model, for whatever purpose i t  is designed, invariably rests on the nature 
and validity of its assumptions. Although each model has its own unique set of 
assumptions, some are common to most models. 

Many of the weaknesses of empirical models, in particular, can be attr ibuted to  
their statistical assumptions. In the classical linear regression analysis, i t  is 
assumed that variables are independent. Unfortunately, few of the climatic vari- 
ables that impact on crop yield are n o t  related to each other and further, many are 
also related to themselves over t ime (i.e. autocorrelated). These problems of mul- 
f i c o U i n e a r i t y  usually result in regression coefficients with large, unstable vari- 
ances. In addition, the relationships between crop yields and climatic variables are 
rarely linear. Where they are modeled as such, this can also lead to inflated vari- 
ance, and the resulting coefficients may be unstable to the extent that  their sign 
can change with the addition of new observations (Biswas, 1980). 

One potential solution for reducing collinearity is to  combine intercorrelated 
variables into an a g r o c l i m a t i c  indez. Surrogate variables such as these have been 
used to represent soil moisture information or heliothermic conditions and can be 
related directly to yields (e.g. Williams. 1985). 

A third, simplifying assumption, which pervades most models but may have a 
greater influence in the empirical-statistical type, concerns the i n t e r p o l d i o n  and 
e z t r a p o l d i o n  of values. Since most models are developed and 'tuned' using func- 
tions pertaining to an observed range of present-day conditions, i t  is likely that 
interpolation will be the dominant procedure employed in model runs conducted 



under 'normal' conditions. However, altering the climate may introduce values 
outside the modeled range. Thus prediction becomes speculation as we must extra- 
polate the functional relationships in order to estimate response. This unsatisfac- 
tory procedure merely re-emphasizes the need to develop models over the p a t e s t  
possible range of observed con$itions. 

A fourth assumption, which affects both model types but in different ways, 
involves the inclusion of managemenf practices m d  technology as explanatory vari- 
ables (see Section 2.3.). In simulation models these are either included as explicit 
input variables, or specified as constants. In the latter case, this assumption may 
restrict the model's effectiveness in estimating long-term effects of technological 
change. 

Empirical-statistical models often t reat  technological change as a time trend 
based on yield statistics over a relatively long period of time. This procedure has 
two disadvantages. F~ rs t ,  it relies upon the subjective separation of technological 
trends from those that  can be attributed to  the environment (including climate). 
Secondly, as in the case of simulation models, a future scenario requires some 
assumptions about the extrapolation of the technology trend. 

Finally, sporadic cl imatic events such as hail storms, floods, late or early frosts 
can often have devastating effects on crops. While simulation models generally 
make allowance for these episodic events through the use of critical tolerance lev- 
els, empirical-statistical models often do not, and this can have implications in the 
analysis of longer-term climatic change (see Section 3.4.1.). 

We have given short descriptions here of some of the more important model 
assumptions and sources of error. More complete discussions of these and others 
can be foundin the  reviews by Sakamoto, 1981; Baier. 1981. 1982; Biswas, 1980 and 
Katz, 1979. 

9.3.4. Vdidation 
The ultimate test of any model is to assess how closely its estimates of real 

world conditions correspond to actual measured observations. The whole credibil- 
ity of a model's forecast of crop response rests on the rigorous testing of its sensi- 
tivity and verification of i ts outputs against independent observations. 

A sensitivity analysis can tell us a lot about the inherent stability of a model, 
i ts effective range of operation and its potential applicability to climatic change 
experiments. In essence. a sensitivity analysis seeks to  evaluate a model's 
responses to incremental changes in magnitude of each input variable (both singly 
and in combination). These adjustments should be distributed such that the 
extreme values lie well outside the observed natural range. A similar procedure is 
employed for those mechanisms, including feedback processes, that are generated 
internally. In this way, we can gain insights into: 

a)  the physical realism of the modeled relationships over a wide range of condi- 
tions; 

b) the relative importance of the various types of external forcing; 

c) the relative influence of each modeled variable in determining model outputs; 
an d 

d) some of the model's limitations, including information concerning (i) the con- 
ditions under which the model breaks down, and (ii) which of its coefficients 
are potentially unstable, under what circumstances and with what effect (e.g. 
see Katz, 1979). 



In order to appraise its performance, it is necessary to validate a model's esti- 
mates against observed data. This procedure has a number of attendant difficul- 
ties, not least the problem of securing adequate data for its implementation. The 
types of data required for validation depend to a large extent on the nature of the 
model's predictions. 

As a minimum requirement, the outputs from an empirical-statistical model 
should be verified against at  least ten years of independent crop yield data, reflect- 
ing a variety of conditions. Ideally, these should be different bodies of data from 
those used to construct the model, and for the same time period, in order to test 
the model's common applicability. However, because of the area-specific nature of 
most statistical models (due in part to their general neglect of variables such as 
soils, drainage and management that are often highly heterogeneous over space) 
this form of cross-validation is rare. Model results are usually compared with 
observations from the same area but for a different time period (Figure 3a). 

For simulation models, the problems are slightly different. Firstly, the data 
requirements are usually very much greater than for statistical models. A proper 
validation procedure should include not only a comparison of modeled outputs with 
real conditions, but also the verification of each and every internally derived value 
(Flgure 3b). In some instances, however, it may be either impractical or even 
technically impossible to measure a particular variable. 

Secondly, to  restate the need for internal validation, let us consider some pos- 
sible validation outcomes. For example, a perfect correspondence of observed with 
predicted outputs such as yield can, when taken in isolation, mask an internal caco- 
phony of errors. Conversely, where the internal validation is apparently good, the 
output estimates may be discordant. This condition might be explained by the 
cumulative effect of small, seemingly inconsequential structural errors, or by the 
omission of important explanatory variables from the model, or indeed by a combi- 
nation of the two effects. 

Finally, in validating any type of model, care should be taken to ensure that 
the independent observations being used are totally compatible with the model esti- 
mates. Efficient scrutiny of the data may uncover unforeseen peculiarities to 
which a model may or may not be sensitive (such as the introduction of irrigation 
to  an area, the replacement of a crop hybrid, or a change in the total area under 
the crop). 

3.4. Agmclimatic Models in Climate Lnopact Anatygis 
In the late 1960s and early 1970s, when modelers First began to address the 

problem of examining crop responses to possible future climatic change, many con- 
ducted their experiments using models that were not always appropriate for the 
task. Most models had been constructed either as predictive tools for estimating 
year-to-year yields, or as research tools to investigate detailed cropenvironment 
interrelationships during a typical growing season. Now, over a decade later, i't has 
become increasingly clear that  by extendmg the time horizon of study beyond the 
immediate short-term (for which many models are tuned) we run into a whole set of 
fresh problems. These can be grouped into two categories: (i) problems relating to 
the validity of model relationships and (ii) difficulties concerning which methods 
to  adopt in simulating climatic change. 

3.4.1. Model Relationships 
All facets of the natural environment are undergoing a continuous process of 

change. Over short time periods, in situatiorls where rates of change are relatively 
slow, their effects may be imperceptible. Thus, for the purposes of modeling short- 
term crop response they can often be parameterized as constants. However, in a 



consideration of longer-term climatic changes, over periods ranging from decades 
to  centuries, these processes may exert an influential and possibly dominant role 
in crop growth. I t  is therefore important to incorporate these effects in models, a t  
least on an annual updated basis. Examples include changes in soil properties (see 
Section 2.3.) and the natural adaptation of certain plant species to stressful 
weather. 

As a result of readjusting model parameters many of the functional relation- 
ships, adequate in describing short-term processes, may become invalid and 
require re-evaluation (Wigley, 1984). Moreover, a change in climate may alter the 
importance of critical threshold values for crop growth (e.g. a climate warming 
might reduce markedly the risk of cold damage to a cereal crop but may increase 
the probability of heat stress; and see Rosenberg, 1982). Further, if a crop is espe- 
cially vulnerable to the effects of episodic events then i t  is of critical importance 
that  such events should be modeled effectively, for any change in their frequency 
may have dramatic consequences. 

F~nally, attendant on, and possible contributing to climatic change could be 
factors such as atmospheric, soil and water pollution. However, for modelers to 
simulate the d r e c t  crop responses to such complex problems as increased atmos- 
pheric carbon dioxide concentrations, or acid precipitation, is placing a rather 
large onus on their skills if we consider the prevailing uncertainties existing within 
these fields. Nevertheless, there have been several recent attempts, aIbeit not 
within a formal model framework, to quantify the direct effects of carbon dioxide on 
crop yield (e.g. Rosenberg, 1981; Waggoner, 1983). 

3.4.2. Mode 1 Runs f o r  A r t u r e  C l i m a t e  

A first consideration for modelers wishing to simulate the effects of future 
climatic change is how best to quantify that  change. There exist predictions of 
change simulated by a suite of global climate models of varying type and complex- 
ity, predictions based on using past climatic anomalies as analogs of future con&- 
tions, and prechctions generated stochastically and/or synthetically. The temporal 
and spatial resolution of these predctions varies widely, and i t  is this consideration 
which is a major determining factor in the selection of an appropriate scenario as 
an input to a particular model. 

One method of improving the 'compatibility of scales' where the resolution of 
the predicted climate variables is too coarse for input into an agroclimatic model, 
is to generate a synthetic set of finer-scale da ta  Methods exist for generating daily 
temperatures from monthly means (e.g. Brooks, 1943), for adjusting weekly precipi- 
tation by allocating fixed proportions of the weekly total to particular days (e-g. 
Stewart, forthcoming), and for stochastic simulation of daily weather data (e.g. 
Richardson, 1901; Mearns e t  d,, 1984). Alternatively, instead of improving the reso- 
lution of the input data, another more common compromise is to run the impact 
model a t  a coarser resolution. The possible errors involved in this procedure are 
discussed more fully in Section 4. 

A final consideration when running a climate impact scenario concerns how 
models handle a climatic change. This can be approached on two levels. First, a 
model's simulation of year-to-year crop response may be s t a t i c  or dynamic. 

Briefly, a scenario using a static model usually involves the input of one set of 
changed climatic means (averaged over several decades) with the output assumed 
to  represent mean response over the same period. The procedure is suspect, how- 
ever, for in reality i t  is very rare for a period-averaged climate to resemble any one 
of the constituent years of weather within that period (particularly in the case of 
precipitation). Moreover, the crop yield estimated for a 'mean climate' year can be 
quite different from crop yield estimates calculated for each year and averaged 



over the whole period (see, for example, Table 1, Section 4.1.). 2 

Thus, a more satisfactory scenario is one which treats climate as a variable, 
dynamic entity, and models year-to-year fluctuations both for the present day and 
future climatic'regimes. Of course, a static-type model can be used for this pur- 
pose by repeating individual runs for varied inputs. However, i t  is more efficient 
(and elegant) if a model can collect t he  separate sets of input data together and 
conduct multiple runs in a single operation. Year-to-year variability about a future 
climatic mean can be simulated by generating synthetic data, and some of the 
more sophisticated models have this capability built-in. Under conditions of 
'stable' climate, model runs  of this kind should normally be conducted over a 
period of several decades in order to simulate equilibrium conditions. 

The second level of approach to  climatic change considers whether we should 
model change as step-like or transient. If we accept tha t  long-term climatic 
change is likely to involve a gradual process of change, then we should appreciate 
the  dangers of treating change a s  an abrupt perturbation, for not only is such a 
climatic change ra ther  unrealistic, but  t he  model responds to the change as if i t  
were part  of the year-to-year variability. Thus, longer-term processes such as  soil 
adjustments are not allowed t ime to react (unless changed equilibrium conditions 
are simulated). Unfortunately, all too many model experiments have been con- 
ducted using this 'sudden shock' approach and the modeiing of transient changes 
(whether linear, exponential or cyclic) has been largely neglected. Reasons for this 
may  include the requirement for large input data sets  and considerations of com- 
puter  time. 

4. EXPLOmG MODEL SEN- TO CLIMATE: TWO EXP- 
Our eventual major interest, a s  modelers, will be in predicting the effect of 

climatic change on future crop yield. In order to  do this, we will need to  know the 
future distribution of the various climatic variables over both space arid time. 
Clearly, the prediction of daily weather events over an entire season will not be 
feasible in the near future, if, indeed, i t  is ever possible (Lorenz, 1968). Predicting 
seasonal, or even monthly averages smoothed over large areas, however, seems a 
goal that  might be achieved in the no t  too distant future. I t  will be very nice if this 
kind of t ime and space averaged input data can be used in agroclirnatic models with 
some assurance that reasonably accurate crop yields will be predicted. 

The nature of this problem brings out very nicely the idea tha t  the  effects of 
t ime and space resolution a re  not entirely independent. Rainfall, for example, 
tends to be a highly localized phenomenon in both t ime and space. Averaging rain- 
fall over ei ther t ime or space hides the  variability of the  t rue signal, and this varia- 
bility might be a very important factor in crop growth and yield. On the other 
hand, real rainfall data are seldom available on less than a daily averaged basis, and 
then  only a t  specific sites. The rainfall in a given cropping region might vary 
appreciably over both space and time. If we average over space, does i t  make sense 
no t  to average over t ime? I t  is also perhaps worth pointing out that  empirical- 
statistical models generally a t tempt  to correlate crop yield with monthly, season- 
ally, or even annually averaged temperature,  precipitation and the like. Can this 
ever be expected to be a reasonable approach? In what detail must we know and 
specify t he  input variables in an agroclimatic model in order t o  have a reasonably 
good chance of predicting the  effects of these variables on crop yield? Must we use 
daily or even hourly data, or can we use monthly or seasonal or annual averages? 

'1t ahould be noted, however, that this effect m e y  not be so important for models operating with a time- 
step exceeding one month. 



The yield of a particular crop depends upon many climatic variables, such as  
rainfall, temperature, sunlight, and their  seasonal variations. In addition to cli- 
mate  directly, yield depends upon a variety of chemical and physical properties of 
the soil; for example, i ts permeability, ac ihty ,  and available nutrients. These pro- 
perties can change in response, for example, to  precipitation changes, with t ime 
constants of many years. These long te rm changes might affect yield. In fact the 
sensitivity of yield to  long term climatic change might be very different from the 
sensitivity t o  year t o  year variations. 

In the  light of the above, i t  might be useful to use agroclimatic models to  
explore both ends of t he  t ime scale. We present here the  results of two sets of 
numerical experiments through which we explore the effect of temporal resolution 
of the  ' input  precipitation on yield, and the  difference between short-term and 
long-term sensitivity of yield to climatic change. 

4.1. Ekperiment 1. The Temporal Resolution of Input Data and Its Elfect on Yleld 
The first se t  of experiments was performed with a crop production model 

described by Konijn (1984). The model was chosen strictly on the basis of i ts availa- 
bility and on its suitability for performing the experiments described below. The 
model est imates crop yields based on characteristics tha t  describe the physical 
environment (including the  climate). The data for these experiments were taken 
from the Stavropol region of the USSR Only one soil type was considered and the 
growth of the chosen crop, oats, was assumed not t o  be limited by diseases, pests, 
o r  shortage of nutrients. 

The model was f irst run for each of the 12 years, 1971-1982, using ten day aver- 
aged rainfall data for each year. Next, the ten day rainfall data in each year were 
averaged by threes to  obtain thirty day averages. The model was then run with the 
same time s tep  as  before, but using thirty day averaged rainfall as  input data. An 
ensemble average of the ten day rainfall data was also created by averaging each 
ten day period over the entire twelve year data set. A similar ensemble average se t  
was created from the thir ty day averages. The model was run with these ensemble 
averaged precipitation data. 

The resul ts are summarized in Table 1. The yield computed using the ten day 
and thirty day rainfall input data differ by less than 3% in half t he  cases. In no case 
do they differ by more than 10%. In most, but not all, cases the  use of thirty day 
averaged data (smoothing the  data) results in higher yields. The yield resulting 
from the use of the  ensemble average precipitation data (again, smoothing) is 
higher than the  average yield over the twelve year period. This is especially t rue of 
t he  ten day data. 

We have chosen three years for closer examination. The precipitation data for 
these years (1971, 1975, and 1982) are shown in Figure 4. The solid lines are ten 
day averaged and the dashed lines thirty day averaged precipitation. The beginning 
and end of the  growing season are marked by arrows on the horizontal (time) axis. 
Table 2 shows, for the same three years, the  total dry weight assimilation broken 
down into four plant components: leaf, root, stem, and grain. 

1982 was a relatively wet year during the growing season, and the  grain yield 
was high. Smoothing the precipitation data (using the thir ty day average) resulted 
in  a 5.1X higher predicted yield. The variability of the ten day rainfall data is much 
higher than tha t  of t he  thirty day data. When very high rainfall occurs during a ten 
day period, t he  runoff can be considerable. This water is effectively lost from the 
system. During 1982 the variability was especially high during the  early and middle 
parts of the growing season. This is reflected in the  fact that the leaf dry weight. 
which develops mainly during this period, is nearly 10% higher for the thirty day 



Table 1. Comparison of grain yields of oats estimated using precipitation data 
averaged over 10 day and 30 day time-steps. Data refer to the period 
1971-82 a t  Stavropol, U.S.S.R. 

averaged data than for the ten day averaged data. 

YEAR 

1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 

12 Y r  Avg Yield 

Ensemble 
Average 

Rainfall Data 

For the 1975 case, averaging over thirty days instead of ten days results in a 
lower predicted grain yield. Leaf, root, and stem dry weights are all slightly higher, 
however, (see Table 2). The reason for this is the following: Although the ten day 
averaged precipitation is. of course, less smooth than the thirty day average values, 
there are only two ten day periods during which precipitation exceeds 40 mm. 
Thus, the smoothing of precipitation input, and the resulting decrease of runoff, 
should not greatly increase the efficiency with which the plants can use the mois- 
ture. On the other hand, during the last two ten day periods of the growing season. 
the particular way in which the averaging was done resulted in the fact that a very 
dry ten day period outside the growing season was used to compute the last thirty 
day averaged data. The precipitation during the last twenty days of the growing 
season was thus underestimated in the thirty day averaged case. 

The very low precipitation during the 1971 growing season resulted in the 
smallest grain yield of any of the  twelve years studied. Variability of precipitation 
was also low. In no ten day period &d the precipitation exceed 30 rnm, and in only 
three cases was it less than 10 mm. Hence,  values obtained from model runs using 
ten and thirty day precipitation averages differed by less than 1%. 

Instead of continuing our experiments by running the model for longer and 
longer t ime periods, we have plotted grain yield (computed using ten day averaged 
precipitation) against seasonally and annually averaged precipitation for each of 
the twelve years (Figure 5). There is a quite good correlation between yield and 
seasonally averaged precipitation, but only a very weak one for the case of annually 
averaged precipitation. The annually averaged precipitation in 1971 and 1982 were 
almost identical, but in 1971 the rain fell mostly outside the growing season, 
whereas in 1982 i t  was distributed through the growing season with the larger 
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Figure 4. 10 day (solid lines) and 30 day (dashed) averaged precipitation (mm) at 
Stavropol for the years 1971, 1975 and 1982. 



Table 2. Dry matter production of oats (kg/ha) divided into four basic plant corn- 
ponents. Estimates are for three years (1971, 1975 and 1982) and for 10 
day and 30 day precipitation averages. 

portion falling in the last half, when the grain was forming. I t  seems clear from Flg- 
ure 5 that  (as would be intuitively expected) the year to year change in annual pre- 
cipitation is not a very good measure of predicted crop yield. On the other hand, 
the correlation with precipitation during the cropping season is surprisingly good. 

We are, of course, fully aware that we have tested the response of a model of 
nature and not nature itself. If one finds that ten day, monthly, or seasonal rainfall 
data can be used with nearly equal accuracy in an agroclimatic model, it cannot 
automatically be concluded that the same is true in nature. Nevertheless, the 
results give us cause for hope that this very convenient state of affairs might be 
true. Obviously, i t  would be very interesting to repeat these experiments with a 
model that  could incorporate daily or even hourly rainfall data. 

4.2. Ehpriment 2. Comparing Short-Term and b n g - T e r m  Sensitivity of Yield to 
Climatic Change 

YEAR 

(Avg Period) 

197 1 
(10 day) 

197 1 
(30 day) 

1975 
(10 day) 

1975 
(30 day) 

1982 
(10 day) 

1982 
(30 day) 

In order to explore this question we use the results of some experiments previ- 
ously reported by Watts (1983). The experiments were performed using the VNIISI 
model, an environmental model that contains both crop growth and soil corn- 
ponents (Pitovranov et al., 1984). The crop model uses only annually averaged cli- 
mate data, but the soil model has the advantage of allowing soil characteristics to 
evolve over very long time periods. It is therefore unique in that it can be used to 
explore the relative values of long- and short-term changes of yield in response to 
climatic change. The sensitivity of the model to temperature and precipitation 
changes was examined in the following way. First the soil and geography in the 
model were fixed to represent approximately the Great Plains of the United States 
(plains, loamy sand). Nitrogen fertilizer application was fixed at 50 kg/ha and phos- 
phorus a t  10 kg/ha (similar to current fertilizer use on wheat in Kansas). The 
model allows for local temperature to be changed as an input. Long-term average 
precipitation values can also be specified, but the model itself imposes a stochastic 
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Figure 5. Plots of modeled oats yield against seasonally and annually averaged pre- 
cipitation. Yields were computed using 10 day averaged precipitation. 

variation of precipitation about the average value. A temperature and precipitation 
value was chosen and the model run until a statistical steady state was reached. 
Average yield and the variations of precipitation and yield about the average were 
recorded. The experiment was then repeated for another set of average tempera- 
ture and precipitation data. 

The results are shown in Figure 6. (Many runs for various soil types, fertilizer 
application rates, and geographic regions were made, and the results were d l  quali- 
tatively similar to those shown.) The solid lines show the steady state variations of 
yield with (average) precipitation for various temperatures. The slopes of these 
lines represent the long-term sensitivities of yield to precipitation changes a t  vari- 
ous temperatures. The dashed lines represent variations of yield caused by the 
year to year variation of precipitation. The two are clearly not the same. In fact, 
for the cases of T = 9TC, and T = 7°C with P = 670 mm/yr, the signs of the sensitivi- 
ties are different. 

Some interesting inferences can be drawn from this numerical experiment. 
Short- and long-term sensitivities of agroclimatic models (and, by inference, real 
systems) can be very different. Many models, in particular, empirical-statistical 
models, measure only short-term sensitivities. In analyzing and attempting to 
predict crop yield change due to long-term climatic change both are important. 



Annual precipitation (mm) 

Figure 6. Long- and short-term sensitivities for wheat yields (nitrogen fertilizer, 50 
kg/ha; phosphorus fertilizer, 10 kg/ha). 

Long-term changes in climate, in temperature and precipitation, say, quite obvi- 
ously might affect average crop yields. It appears from the present results that the 
sensitivity to short-term climatic variations, i.e., the short-term sensitivities, also 
change when long-term climatic change occurs. Variability of interannual tem- 
perature and precipitation is also expected to  change in response to long-term 
climatic change. If a given climate change caused both these variabilities and the 
associated short-term sensitivities to decrease, the variability of crop yields might 
decrease substantially, and this could be very important for regions of marginal 
agriculture (Parry. 1976). On the other hand, increases in both variabilities and 
short-term sensitivities could prove disastrous to marginal agriculture, even if 
long-term average yields increased. 

5. AGROCLIMATIC MODEL CHECKLIST 

The preceding discussion has addressed a number of questions concerning 
agroclimatic models and their applicability in climate impact analysis. Table 3 is 
an attempt to  fit together some of these points in the form of a model checklist. 
This allows us to make our own assessment of a particular model on the basis of its 
component parts and its operation. 

5.1. Model Components 
Three classes of model components are depicted: 

a) h t a  inputs - a list of variables which can be input directly although some 
may be derived internally by the model. These can be natural or anthropo- 
genic inputs. 



Table 3. An agroclimatic model checklist. 
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b) SUe q e c i f i c a t w n s  -indicating whether a model is site- or area-specific (if it is 
not, see 5.2.c). 

c )  &rived outputs - ranging from suitability indices to  detailed crop yield com- 
ponents. 

5.2. Model Operation 
We have identified three features important in running a model: 

a) S m d a t i o n  of present-day condit ions - indicating t h e  time-step used dur- 
ing the growing season, whether variables are updated from year to  year, 
and the capability for responding to  sporadic events such as frosts, floods. 
etc. 

b) S m d a t i o n  of cl imat ic  change - whether this is modeled as  a step-like 
change of mean values or of a distribution of values; or as a transient 
change of the mean or of a drstribution. 

c) Response option -indicating whether it is possible to  adjust model inputs 
i.e. to simulate the  choices of response that  a farmer might face. 

In general, the scheme attempts t o  include First those variables that  are 
more commonly modeled, so tha t  the  incorporation of variables towards the 
bottom of each list indicates an increased level of model sophistication. Like- 
wise, entries towards the right of the tableau indicate a more detailed, higher 
resolution simulation capability. 

In this paper we have attempted to outline some of the techniques that  
can be employed to  assess the impact of climatic change on crop production. 
We have proceeded from the premise (for which we present numerous support- 
ing examples) that  fluctuations in cl imate can induce significant biophysical 
responses in agricultural crops, affecting both the quality and quantity of the 
hamestable product. I t  is is these "first-order" responses t o  climate that  form 
the focus of our discussion, but clearly these may constitute only the  initial 
link in a chain of economic and social repercussions cascading through the 
farming system and beyond. 

There exists a broad spectrum of approaches for examining first-order 
crop responses to  climatic variations, which we have grouped under the head- 
ing of agroclimatic models. Each has been developed to  reflect certain 
features of the crop production system, a system tha t  we have characterized in 
the form of a farm calendar. Be have stressed that most agroclimatic models 
were developed with a contemporary application in mind. The evaluation of 
crop responses to climatic change, particularly longer-term changes of an 
amplitude lying well outside the  present range, introduces new dimensions of 
complexity to  the modeling procedure. This merely serves to spotlight the 
importance of detailed and thorough sensitivity testing and validation of 
models. Without these, and bearing in mind the inevitable uncertainties asso- 
ciated with each stage of the climate impact "cascade", the credibility 
attached to estimates of crop response could be cast in serious doubt. 

From the results of the two sensitivity experiments, we have il lustrated 
how: 



a) I t  may not be necessary to operate models at the most detailed (and 
costly) time resolution if satisfactory results can be obtained using a 
longer time-step. 

b) The short-term response of crops to a particular climatic anomaly may be 
quite different to the response over a longer period. 

Finally, we have presented a method of assessing an agroclimatic model, by 
means of a checklist. As well as incorporating traditional model characteris- 
tics, the checklist also considers how a model handles climatic change and 
whether input variables can be adjusted to represent possible farming 
responses to this change. 
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