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In this paper, the author surveys techniques tha t  could be used to 
find the conditional probability and conditional mean of a normally dis- 
tributed random vector 5 over a rectangle of the form A = n2=l[q,bi]. 
This information is sometimes useful in stochastic optimization, for 
instance, when establishing upper and lower bounds on the expected 
value of the random vector 5. Numerical results il lustrate the perfor- 
mance of the various methods. 
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The idea of orthonormal variates, designed by D e e  to find condi- 
tional probabilities of a multivariate normal random variable, is 
extended to compute the conditional expectation given tha t  t he  observa- 
tion falls inside an n-dimensional rectangle. Another possible technique 
is presented in the form of a transformation to independence. Numeri- 
cal results are provided to  i l lustrate the performance of t he  methods. 



C O N D l T I O N A L P R O B A B ~ m C O N D m O N A L  
EXPECTATION OF A MULTIVARLATE NORMAL RANDOM 

VARIABLE OVER A FECTANGLE 
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1. ImODUCTION 

This paper surveys techniques for finding the conditional probability and 

conditional mean of a normally distributed random vector 6 over a rectangle of 

the form 

This information is sometimes of interest in stochastic optimization, for 

instance when one wants to establish lower and upper bounds on the expected 

value of a convex function of the random vector [ [1.10]. The bounds are h o w n  

in the literature as the inequalities of Jensen and Edmundson-Madansky, 

respectively (see [a] for an extension of the classical result which appeared in 

[ l l ] ) .  They are used in the following way. 

Given a convex function p : lRn +R and a partition n = ) A l , .  ..,& j of the sam- 

ple space JRn , we have 

where pi is the mass of the subset A,. . ti its conditional mean and uj is the 

Edrnundson-Madansky upper bound on Aj . 

By partitioning the sample space lRn in a suitable manner, it is possible to 

achieve arbitrary accuracy with these bounds, i.e., for every c > 0 there is a par- 

tition n, ofJRn such that  the upper and lower bounds in (2) af ler  by a t  most &. 

Thin npmt was prepared during a visit to the International Institute for Applied Systems Analysis in 
Laxenburg, Austria. The author gratefully acknowledges the hospitality extended to him as well as 
the free use of the computing facilities 



I t  seems natural to construct such a partition by considering only cuts 

generated by hyperplanes perpendicular to the coordinate axes. Every subset 

OF n then takes the form of an n-dimensional rectangle as in (I), with obvious 

modifications if a, or bi is infinite for some i (the case q = -- , bi = += has to 

be excluded for technical reasons). Hence we are led to study the quantities [9] 

where t has mean j~ and covariance matrix C, which is assumed to be sym- 

metric and positive definite. 

The conditional probability over the rectangle A is then Pr I( E A j  = p ,  while 

the conditional expectation is given by E I(/ C E A j  = ( l /p ) (q  i,...,qn). For nota- 

tional simplicity we shall assume that p = O  and C is a correlation matrix such 

that diag(Z) =(1 ...., 1). This does not constitute a loss of generality since the 

transformation Z defined by 4 ( z )  = (zi -&)/ 6 is one-to-one and readily 

inverted 

2. CONDITIONAL PROBABILTllES 

Let us first consider some easy cases. 

If n = 1, then 

This integral can be expanded into a power series which permits Fast and accu- 

rate evaluation on a computer. The quantity qi is even easier to obtain by ana- 

lytic integration: 

and accurate computation poses no problem at all. Hence the conditional 

expectation q l / p  is also known to within machine precision. 



For n = 2, an efficient method for computing 

is described in [14, Chap. 81 (see also [5]). Commercial software which calcu- 

lates p to  five-digit accuracy is also available, e.g., the routine MDBNOR in the 

IMSL library. 

The numerators q q 2  can be reduced to four one-dimensional integrals of 

type (3.1) after completing the square in the exponent of the integrand, and 

hence can be computed, a t  least in principle, to  arbitrary precision. Details are 

given in [?I. 

Thus the conditional mean is available with reasonable accuracy if p is not 

too small (three decimal places if p 2 0.001). This is sufficient for most practi- 

cal purposes. 

The last trivial case occurs for independent components. If that  happens, 

then C is the identity matrix, 

Conditional means and conditional expectations can thus be computed by 

appealing to the one-dimensional case for each component separately. 

Let us now turn  to the case n s 3  with dependent components. There are 

theoretical methods for computing p exactly in three and four dimensions 

[6,12], but they are  not very efficient, and the only viable option seems to be to 

employ a Monte-Carlo method. This approach has been studied extensively by 

Dedk [2.3,4], whose results are summarized briefly because they also provide 

the basis for the t reatment  of the q,. 

A first crude estimator for p is given by 



where f0 is the indicator function of A ,  that  is, 

and [zi, i = 1  ,..., Nj is an independent sample of size N from the distribution of 

the random vector f .  I t  can be shown tha t  go is an unbiased estimator for p,  

but unfortunately i ts variance only decreases linearly with the sample size, and 

hence a rather  large sample is necessary if any significant accuracy require- 

ment  is imposed. 

De& [ Z ]  introduced the following elegant decomposition of # to take advan- 

tage of fairly sophisticated variance reduction schemes. I t  is not hard to see 

that f can be written as  f = hi%, where h is chi-distributed with n degrees of 

freedom, z  is distributed uniformly on 9, the unit sphere in IRn, h and z  are 

independent, and T i s  any matrix such tha t  T TT = C.  Here h can be regarded as 

the length of the random vector #, while z  can be thought of as its direction. 

An attractive choice for T is the Cholesky decomposition of C because efficient 

methods exist for i ts generation and because its triangular structure reduces 

the computational effort necessary to calculate T z .  

Writing F, xn. V for the  distribution functions of 5 ,  A, z ,  respectively, we 

obtain 

m 

P = j d ~ ( f )  = j f o ( t ) d ~ ( # )  = j j f o ( h T z  )dxn ( A )  d V ( Z  ) = jg (z ) d V ( z  ) , 
A IR" 9 0  s" 

where 

Sampling then proceeds in the  following manner. For each j =I, ..., N a random- 

ized system of orthonormalized directions ["{ ,.... z i j  is obtained by first gen- 

erating a sample of n observations from the  uniform distribution on S"' and 

then orthonormalizing them by the Cram-Schmidt procedure. This defines 



estimators 

where 

s = ( s l  ...., s,) isasignvector ,  s l = + l o r - 1 ,  l = l ,  ..., k 

i = ( )  is an index vector, i( ~ f l ,  ..., nj, 1 = I  ,,.., k 

and 

In other words, all directions are considered which can be formed by adding any 

k (linearly independent) vectors from f %( ...., %ij u f-TZ( ,..., -7?zl j and 

renormalizing them so that the new vector will still fall onto T S .  I t  is 

straightforward to verify that for each k ,  dk is an unbiased estimator for p. In 

principle, k can be chosen arbitrarily from 11, .... nj, but the computational 

effort increases rapidly. 

The reduction in the variance of the dk can be traced primarily to two 

causes. Firstly, the sample points b j (s, i )  are uniformly and quite regularly dis- 

tributed on T S ,  and secondly, their number is quite large. From (5) it is obvi- 

ous that there are ~ ~ ( 3 )  terms in the series which could be expected to lead to 

an approximate reduction in the variance by the same factor. Numerical 

results show that this is indeed the case. 

Thus. if we wish to minimize the variance of the dh for a given sample size 

N without regard to computational complexity, the best estimator would be 

determined by the which maximizes the expression $(:). I t  is not hard to 

show that E = ( Z n  +I)/ 3. 

3. CONDITIONAL YEANS 

Similar considerations also hold for the q i .  

As a first step we obtain crude estimators 



These estimators are again unbiased, and the variance decreases linearly in N, 

just as in (4). 

In oraer to apply Dedk's variance reduction scheme, we can again use the 

decomposition # = ATz. This gives 

where 

An easy way to prove this identity is to note that A s 7  if and only if h 2 s r 2  and 

use the density of a chi-squared distribution, which can be written down expli- 

citly. 

Thus one arrives a t  the unbiased estimators 

with all other notation as in (5). 

In particular, it should be clear that the same sample can be used to 

extract all the information of interest and that  7 1 ( z ) . ~ 2 ( z )  have to be computed 

just once for each sample point. Dedk [4] gives an efficient algorithm for doing 

this. 

The dimculty with this approach lies in the fact that  the quotient is 

not an unbiased estimator for q i / p  [13]. Using a Taylor expansion about the 

point q i / p ,  i t  is not hard to verify tha t  



where om = var (d,), uio = cov (dk , ~ f  ). 

The bias can be reduced (but not eliminated) by forming the estimators 

Note that in formula (9) the true variance and covariance are used, while the 

quantities appearing in (10) are the sample variance and covariance. Expan- 

sion into a Taylor series shows that 

It is also possible to use this technique to obtain approximate variances for 

different estimators. Thus 

Sample output from five small problems is supplied in the Appendix. 

Several conclusions can be drawn: If p is of moderate size, all methods perform 

reasonably well, the variance depending on the sample size in the predicted 

manner. The reduction in the variance due to orthonormal variates is appreci- 

able, but even the crude estimator gives acceptable results. For small p,  the 

performance of the crude estimator grows continually worse, and the orthonor- 

mal variates fare only marginally better. 

After some reflection it should not be too hard to see why this might be the 

case. Assume for the moment that p is known with certainty. p =0.01, let us 

say. In this case dividing by p will result in a variance inflation of the numera- 

tor qi by a factor of lo4, i.e.. if three-digit accuracy is required for the condi- 

tional expectation, qa has to be sampled with a variance of at most 10-lo. This 

requires a rather large N, and uncertainty in the value of p can only make 

things worse. 

The size of the variance obviously tells us little about the accuracy of the 

estimator. Even for rather large variances, the estimate may be quite close to 



the true value. Conversely, a small variance does not mean that the estimate 

is necessarily good. Of the 520 estimates listed in Tables 1-5, 145 are more 

than one standard deviation away from the true value. This proportion of 27.9% 

outliers compares rather well with the number predicted by the law of large 

numbers, namely 1 - 29(1) = ,317. 

Furthermore, the variances of the quotients $: are often seriously 

underestimated, underscoring the fact that there is also some bias inherent in 

formula (11). Of course the estimates could be improved by considering 

higher-order information in the Taylor expansion as well as higher-order sam- 

ple moments. This would, however, increase the storage and computational 

requirements, and the possible gain is not easily assessed since the principal 

problem of variance inflation cannot be addressed in this way. But all may not 

be lost as far as the envisaged application is concerned. for rectangles of little 

mass contribute little to the overall bounds in formula (2). and perhaps the 

accuracy requirements need not be too stringently adhered to  in this case. 

The next section describes a way to avoid the problem altogether. 

4. INDEPENDENCE T R A N S P D m O N S  

It is known from elementary matrix algebra that every positive definite, 

symmetric matrix C can be factored into 

where P is orthogonal and D is diagonal or, equivalently, 

In addition, the random vector 77 =PT# is normally distributed with mean 

PTP=0 and covariance matrix = PTz4P = D ,  such that the components of 7 

are seen to be independent. 

Now 

The complexion of the problem has changed, but not the complexity. In 

the space of the random vector I] the integran-d is separable, but unfortunately 



the region of integration has lost i ts simple appearance. On the other hand, 

P ~ A  is still a rectangle, whose coordinates are readily computable, and a parti- 

tioning scheme seems to suggest itself. The situation in two dimensions is dep- 

icted in Figure 1, and the generalization to higher dimensions is obvious. 

In contrast to  the Monte-Carlo methods of Section 3, i t  is clear that  one 

can obtain lower bounds on p by considering only subsets which lie entirely 

within P T A ,  and upper bounds by taking all subsets whose intersection with P ~ A  

is nonempty. The bounds can be made arbitrarily accurate by suitably refining 

the partition. 

Inner and outer approximations for 5 = pTQi can be obtained in an analo- 

gous way, and error  bounds a re  straightforward if t he  plane qi = O  is used in the 

partitions whenever 7)i changes sign over P ~ A .  

A provisional version of the algorithm was implemented on the computer - 
some results a re  reported in the  Appendix. The method works quite well if the 

components of [ are  independent from the start ,  but seems extremely slow oth- 

erwise. An increase in speed might be effected by Romberg-type edrapolations 

on data obtained from coarse partit ions, but i t  is clear that  even if drarnatic 

improvement can be made on computing times, there are serious limitations to  

the approach and its use cannot be recommended for n > 3 if the components of 

the random vector [ are correlated. 



On the  other  hand, independence transformations can be successfully 

applied to  formula (2). It may be recalled that the partitions there were con- 

structed in what seemed a convenient way a t  the time. In retrospect it turns 

out  that cuts  perpendicular to the coordinate axes are more of a hindrance 

than a help and the partitions should really be guided by the directions of the 

eigenvectors of C in the space of the random vector # (which coincide with the 

coordinate directions in the  7-space). In other words, i t  might be easier to 

exploit independence and find bounds on EvF(7). which is easily recognized as 

being equal in value to Etlp(#) if $(7) =p(Pq).  

Numerical work is currently under way a t  the University of British Colum- 

bia to  apply the preceding ideas to a problem of portfolio revision. 

APPENDIX 

The following five simple problems were used to il lustrate the performance 

of the various methods described in the  text. 

Problem 1: 

Problem 2: 

Problem 3: 

Problem 4: 

Problem 5: 

Tables 1-5 give the results for t he  Monte-Carlo methods. The notation is as  

in the  text, the second figure in each table entry showing the approximate 



standard deviation of the estimator, calculated from the sample variance. The 

true values of problems 4 and 5 were determined by a numerical integration 

routine and are accurate to five decimal places. Due to t ime constraints and 

heavy use of the computer i t  was impossible to obtain accurate running times 

for the different problems. Problems 1 and 4 took about 90 seconds total com- 

puter time on a VAX 11/750, the other three slightly under three minutes. 

These t imes are not very meaningful, however, as they include total CPU time 

as well as the time taken to swap the  program in and out of the core. Precise 

figures would probably be much smaller. 

Results obtained using the partitioning methods are given in Tables 6 and 

7. Only problems 4 and 5 are considered, since the others have independent 

components, and so the correct values could be found without any partitioning. 

The following additional notation is used in Tables 6 and 7. 

A superscript "ow ( p O ,  q ? ,  etc.) denotes outer approximations, while super- 

script "i" stands for inner approximations. The average of the two values is 

1 
denoted by an overbar. The estimate & is defined by &=  _Pq , where 

P - 
q = ( i j l . . . . , . k ) T .  The number of divisions refers to the number of cuts made in 

each direction, e.g., for the three-dimensional problem 5, #div = 2 indicates 

that a total of 8 subsets were used Problem 4 took a little over 4 minutes of 

total computer time, and on Problem 5 the global time limit of 5 minutes was 

exceeded. although, as before, these figures have limited information content 

due to the congestion on the computer. 

Table 1. Monte-Carlo results for Problem 1. 

k=O 

k=l  

k=2 

9' 

.200i.042 

.180i.029 

.180i.018 

.161i.012 

.1766*.0075 

.1603i.0034 

.1651+.0035 

.1654*.0025 

,1580i.0074 
.102Oi.0055 
.1643i.0(134 
.1640+.0025 

.I6463 

N 
100 
200 
500 

loo0 

100 
200 
500 

loo0 

100 
200 
500 

1000 

P 

,270i.045 
.Z5!ji.031 
.238*.010 
.215i.013 

.2275+.0008 

.2284i.0007 

.2277i.0004 

.2278i.0003 

.2277*.0009 

.2211i.0007 

.2278i.0004 
,2277i.0005 

true value 

9 a 

. lWi.043 

.182i.029 

.169*.018 

.152i.O12 

.1520i.0078 

.1638i.0053 

.1634i.0034 

.1043i.O025 

.1720i.0079 

.1634i.O058 

.1055i.0095 

.1649i.0025 

18463 .22777 

t' 
.730i.086 
.708i.M5 
.756i.046 
.749+.034 

.782i.033 

.744i.024 

.727i.015 

.727+.011 

.6QOi.033 

.716i.024 

.722i.015 

.721i.011 

.72218 

4 
.702*.108 
.712i.074 
.708i.047 
.708i.035 

A75i.034 
.720i.023 
.719+.015 
.722i.O11 

,761i.035 
.722+.025 
.727+.015 
.725i.011 

.72270 
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Table 2. Monte-Carlo results for Problem 2. 

Table 3(a) Monte-Carlo integration for Problem 3. 

k=O 

k= l  

k=2 

k=3 

P 

.040W.0197 

.0400+.0138 
,034W.0081 
.034(k.0057 

.028Qi.0031 

.0266i.0021 

.0286+.0014 

.028Qi.0010 

.0304+.0018 

.029&.0013 

.029&.0008 

.028Qi.0006 

.02511t.0025 

.026Qi.0018 

.026&.0011 

.0273i.0008 

.02831 

N 
100 
200 
500 

1000 

100 
200 
500 

1000 

100 
200 
500 

1000 

100 
200 
500 

1000 

k=O 

- 
k = l  

k=2 

k=3 

true value 

Q' 

.0131r.00g7 

.0103i.0@40 

.0084+.M)23 

.00001t.0017 

.0063+.0007 

.0061+.0005 

.0067+.0003 

.0070+.0002 

.0080+.0005 

.OU75i.0003 

.OWOi.0002 

.OU701t.0001 

.0063i.0006 

.0066i.0004 

.0067+.0003 

.0067i.0002 

.OM83 

N 

100 
200 
500 

1000 

100 
200 
500 

1000 

100 
200 
500 

1000 

100 
200 
500 

1000 

true value 

Q" 

.0090+.0064 

.0146+.0066 

.0160+.0048 

.01441t.0030 

.0135+.0018 

.01281t.0012 

.0131+.0008 

.0129+.0005 

.0139+.0010 

.0134+.0007 

.01351t.0005 

.01361t.0003 

.01151t.0013 

.0122+.0010 

.01241t.0006 

.0130+.0005 

.Dl302 

P 

.0100i.O100 

.0050+.0050 

.0060+.0035 

.0060+.0028 

.00860i.001Q6 

.00863i.00120 

.00848r.00078 

.006&i.00055 

.006211t.00068 

.00608+.00048 

.00587+.00031 

.00636+.00024 

.00603+.00050 

.00620*.00032 

.00620i.00021 

.00850+.00016 

Q S 

.0254+.0164 

.0224r.0102 

.0197+.0062 

.0204+.0044 

.0183+.0030 

.01571t.0020 

.0181i.0014 

.0182+.0010 
--pppppp 

.01871t.0017 

.0184+.0013 

.0178+.0008 

.0177+.0006 

.0146+.0023 

.01721t.0018 

.0170+.0011 

.0168+.0008 

.01761 

.328+.a41 

.257r.044 

.246+.032 

.264+.024 

.2206*.0078 

.2268+.0063 

.2360+.0033 

.2422+.0026 

.2836+.0037 

.2524+0. 

.24111t.0017 

.2454+.0011 

.25091tO. 

.24561tO. 

.2480+0. 

.2465*.0010 

24478 

q 

.0061+.0081 

.0031+.0031 

.00281t.0019 

.0041+.0016 

.00422+.00110 

.00318+.00064 

.00309i.00040 

.003221t.00029 

.002B&t.00039 

.00Z14r.00024 

.00213+.00016 

.0028&.00012 

.00297+.00028 

.003031t.00017 

.00287+.00011 

.00305+.00008 

P' 

.0047i.0047 

.0023+.0023 

.0021+.0013 

.0023+.0009 

.OW1 11t.00051 

.001731t.00031 

.00171+.00021 

.001761t.W015 

.00184+.00018 

.001561t.00013 

.00148*.00008 

.0015&.00006 

.00145+.00012 

.00156i.M)008 

.00158i.00005 

.00160+.000W 

.00667 . W M  .00163 

4 
.225+.114 
.364+.106 
.472+.087 
.424+.053 

.4701+.0351 

.4848*.0256 

.4580+.0158 

.4470+.0114 

.4822+.0179 

.450Qi.O128 

.4660*.0080 

.4687+.0058 

.4614*.0282 

.4588+.0219 

.4626i.0130 

.4749*.0001 

A5981 

q 3  

.0149+.0149 

.0074i.0074 

.0059i.0038 

.00561t.0025 

.00522+.00138 

.003841t.00085 

.00438+.00062 

.00417+.00041 

.004081t.00052 

.003891t.00038 

.00357+.00023 

.00396+.00018 

.00335+.00018 

.00358+.00023 

.00381+.00016 

.00404+.00012 

+' 
.635+.266 
,5801t.165 
.5791t. 11 8 
.6011t.M2 

.84301t.0766 

.5856+.0576 

.6344+.0366 

.6304+.0252 

.6233+.0443 

.61971t.0322 

.6133+.0206 

.6128*.0147 

.59181t.0735 

.8448+.0493 

.63461t.0308 

.6150+.0208 

.62196 

.Om15 

q4 

.0051+.0051 

.0026+.0026 

.0048+.0037 

.0083+.0028 

.00850+.00206 

.00483i.00123 

.00484+.00074 

.00485+.00055 

.00425+.00086 

.00418*.00046 

.00432+.00032 

.00488+.00023 

.00476+.00050 

.00481+.00033 

.00434+.00020 

.00483i.W015 

(I 

.00901t.0030 

.0015i.0015 

.00101t.0007 

.00431t.0021 

.00636+.00217 

.00510+.00140 

.00519+.00091 

.00544+.00064 

.004551t.00077 

.00458+.00059 

.00450+.00037 

.00492+.00028 

.004481t.00057 

.00442r.00036 

.00480+.00024 

.00500+.00019 

.Om82 .00515 



Table 3(b) Conditional expectations for Problem 3. 

Table 4. Monte-Carlo results for Problem 4. 

k=0 

k= l  

k=2 

k 3  

N 
100 
200 
500 

1000 

100 
200 
500 

1000 

100 
200 
500 

1000 

100 
200 
500 

1000 

true value 

k=0 

k=l  

k=2 

*l 

.4665+.0001 

.4665r.0001 

.35i0r.0500 
,2850r.0435 

.2485+.0203 

.2666rO. 

.2646*.0072 

.2573+.0049 

.2688+0. 

.2567+0. 

.2550*.0020 
2491 i.0030 

.2423i.0007 

.2522+.0032 

.2519+.0007 

.2483+0. 

true value .19 145 .I9402 .00705 -70005 .0368 1 

.24478 

9 
-.0295r.0611 
.0045+.0440 
.0174+.0277 
.0157+.0208 

.0199+.0183 

.0213r.0136 

.0343i.0084 

.0347+.0059 

.0554+.0179 

N 
100 
200 
500 

1000 

100 
200 
500 

1000 

100 

Q' 

.118+.033 

.156+.029 

.143+.017 

.125+.011 

.I 186+.0088 

.1306+.0869 

.1302+.004S 

.1326+.0031 

.1554+.0103 

v 
.611r0. 
.611rO. 
.463r. 156 
.511+.088 

.486i.062 

.47'7r.W5 

.477+.025 

.476+.018 

.460+.019 

.452+.015 

.466+.010 

.455+.008 ' 

.487+.013 

.491+.011 

.480+.008 

.469+.005 

P 
.2#)+.042 
.230+.030 
.204+.018 
.188+.012 

.1802+.006E 

.1888i.0047 

.1688r.0030 

.1904r.0021 

.2042+.0068 

.45991 

I 

Q e 

-.0065+.0135 
.0010+.0101 
.0036+.0057 
.0028+.0039 

.0038+.0033 

.0040+.0028 

.0065r.0018 

.0066+.0011 

.0112+.0037 

#l 

.536r.110 

.676i.OBB 

.700i.054 

.870i.038 

,864r.048 
.891r.032 
.891+.020 
.697*.014 

.767+.049 

3.5 
,295r0. 
.295iO. 
.186+.053 
.535+.175 

.755+.188 

.770r. 159 

.805r.102 

.797+.088 

,744r.084 
.757+.074 
.788+.049 
.774+.072 

.750r.033 
,717i.045 
.744i.030 
.770+.022 

v 
1.489r.0001 
1.48Qi.0001 
.887+.282 
.698i.183 

.612*.083 

.596+.069 

.678+.050 
,610r.033 

.&35r.W1 

.643+.034 

.610+.023 
,624r.017 

.561i.036 

.582+.021 

.616+.015 

.623+.011 

.?7242 

3A 
.514+.00004 
.514+.00004 
.818i.406 
.781+.223 

.770+.167 

.738+.130 

.718r.076 

.71l r.056 

.684i.076 

.691 i.050 
,738i.037 
.736+.024 

799r.052 
.747*.036 
.702i.022 
.714i.018 

.621 fM3 .72279 
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Table 5. Monte-Carlo results for Problem 5. 

Table 6. Results from partitioning on Problem 4. 

k=O 

k=l 

k=2 

k=3 

9 

.0198+.0177 

.0435+.0146 

.0490+.0093 

.0468+.0062 

.0415+.0021 

.0436i.0016 

.0446i.0011 

.0440+.0@38 

.0453+.0017 

.0448+.0012 

.044 I+. 0007 

.0439+.0005 

.0413+.0022 

.0432+.0015 

.0435+.0010 

.0441+.0007 

,04438 

N 

100 
200 
500 

1000 

100 
200 
500 

1000 

100 
200 
500 

1000 

100 
200 
500 

1000 

P 

.220+.042 

.225+.030 

.220+.019 

.206+.013 

.1842+.0030 

.1941+.0021 

.1844i.0014 

.1847i.0010 

.1870+.0015 

.188%.0010 

.1859+.0006 

.1857+.00041 

.1934+.0021 
,1955i.0016 
.1882+.0011 
.1959+.0008 

true value .18716 

q e  ' 

.0455+.0201 

.0453+.0146 

.0456+.0095 

.0428+.0063 

.0439+.0025 

.0442+.0018 

.0433+.0011 

.0434+.0008 

.0450*.0017 

.042&.0012 

.0430+. 0007 

.0432+.0005 

.0427+.0018 

.0452+.0014 

.044~.0009 

.0448+.0007 

.OM30 

.0900+.0785 

.1054i.0596 

.2226+.0377 

.2274+.0264 

.2152*.0102 

.2257+.0079 

.2295+.0054 

.2263+.0039 

.2319+.0085 

.2293+.0058 

.2255i. 0036 

.2248+.0025 

.2154+.0109 

.2220+.0076 

.2223+.0047 

.2251i.0033 

.22514 

q 3  

.0508+.0252 

.0488i.0169 

.0528+.0103 

.0440+.0069 

.0497+.0029 

.0479+.0019 

.0452+.0012 

.0448+.0009 

.0412+.0017 

.0428+.0011 

.0445+.OW7 

.0449+.0005 

.0461i.0021 

.0455+.0015 
0463+.0010 
.0458+.0007 

.04439 

3E 
,2067k.0824 
.2014+.0593 
.2072+.0393 
.2077+.0218 

,2278i.0125 
.2288+.0080 
.2232+.0055 
.2230+.0039 

.2308+.0083 

.2197+.0059 

.2200+.0036 
,221 1r.0025 

.2226+.0082 

.2320i.0071 

.2293+.0045 

.2290+.0033 

.22514 

3.9 
.2310+.1060 
.2168i.O696 
.2398+.0423 
.2136+.0308 

.258%.0143 

.2476+.0006 

.2330i. 0061 

.2303+.0042 

.2112+.0085 

.2191+.0057 

.2274+.0035 

.2296*.0025 

.2402+.0104 

.2339+.0072 

.2384+. 0047 

.234&.0034 

.22514 



Table 7. Results from partitioning on Problem 5. 
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