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This paper describes the stochastic process model for mortality rates of the popu- 
lation. The key question is the relationship between conditional and unconditional 
survival functions. The Cameron and Martin solution to the problem is compared to 
the solution based on the Conditional Gaussian Approach. The advantages of the Gaus- 
sian approach are discussed. The proof of the main formula for averaging uses the 
martingale specification of the random hazard rate. 



DYNAMICS IN SUl7VIKAL ANALYSIS CONDITIONAL GAUSSIAN PROPERIY 
VERSUS CAMERON-MARTIN FOFMJLA 

kl. Yashin 

1. Introduction 

The well-known Carneron and Martin formula [ 1,2,3 ] gives a way of 

calculating the mathematical expectation of the exponent which is the 

functional of a Wiener process. More precisely, let ( R,H.P) be the basic 

probability space, H = ( H , ) , ~  be the nondecreasing right-continuous 

family of o-algebras, and Ho is completed by the events of P- 

probability zero from H = H, . Denote by W, n-dimensional H- 

adapted Wiener process and Q(u )  a symmetric non-negative definite 

matrix whose elements g i j ( u ) . i , j  = 1,2, ..., n satisfy for some t the con- 

dition 

The following result is known as a Cameron-Martin formula. 



Theorem 1. Let ( I )  be hue. Then 

where  (Wu,Q(u)Wu)  is the scalar p r o d z ~ t  equal t o  w ~ , Q ( u ) W ,  , and 

r(u) is a s y m m e t r i c  nonpositive definite m a t r i z ,  being a unique solu- 

t i o n  of the f i a t t i  mat* e quu twn  

r(t ) = 0 .is a zero m a t r i z .  

The proof of this formula in [3 ] uses the property of likeli- 
' 

hood ratio for diffusion type processes. The idea of using this approach 

comes from Novikov [4 1. Using this idea Myers in [ 5  ] developed this 

approach and found the formula for averaging the exponent when, 

instead of a Wiener process, there is a process satisfying a linear sto- 

chastic differential equation driven by a Wiener process. His result may 

be formulated as follows. 

Theorem 2. Let Y ( t  ) be a n  m -dinzenswnnl d i f j k s i o n  process of the 

f o m  

with determinis t ic  inM condition Y ( 0 )  . Assume that  m a w  Q(u ) hm 

t h e  properties described above. m e n  the nezt f o n n u l a  is is: 

where  r(u) is the solution of m a t r i z  Aicatti equation 



with the terminal co4dit ion r ( t  ) = 0. 

These results have direct implementation to  survival analysis: any 

exponent on the left-hand sides of ( 2 )  and (4) can be considered as a con- 

ditional survival function in some life cycle problem [ 5 , 6 , 7  ]. The sto- 

chastic process in the exponent is interpreted in terms of spontaneously 

changing factors that  influence mortality or failure rate. 

Such interpretation was used in some biomedical models. The qua- 

dratic dependence of risk from some risk factors was confirmed by the 

results of numerous physiological and medical studies [6 1. The results 

are  also applicable to the reliability analysis. 

The way of proving the Cameron-Martin formula and its generaliza- 

tions given in [I, 2.3  ] does not use an interpretation and unfortunately 

does not provide any physical or demogaphical sense to the variables 

r(u) that appear on the right-hand side of the formulas ( 2 )  and (4). 

Moreover, the  form of the  boundary conditions for equation (3) and ( 5 )  

on the right-hand side complicate the computing of the Cameron-Martin 

formula when one needs to calculate i t  on-line for many time moments 

t .  These difficulties grow when there are some additional on-line obser- 

vations correlated with the influential factors. 

Fortunately there is the  straightforward method that  allows 

avoidance of these complications. The approach uses the innovative 

transformations random intensities or compensators of a point process. 

Usage of this "martingale" techniques allows to get a more general 



formula for averaging exponents which might be a more complex func- 

tional of a random process from a wider class. 

If the functional is of a quadratic form one can get  another con- 

structive way of averaging the  exponent using the  conditional Gaussian 

property. The goal of this paper is t o  il lustrate this approach. 

2. Results Formulation 

We shall s ta r t  from the following general statement. 

Theorem 3. Let Y ( u )  be an arbi t rary H-adapted random process 

and h ( Y , u )  is some non-negat ive HY-adaptive funct ion such  that for  

some t SO 

where T i s  the stopping t i m e  associated with the process Y ( U )  us 101- 

Lovrs: 

and w= n u j ~ ( v ) . v  S u  1 is u-dgebragenera ted  by  the h is tory of the 
u >t 

process Y ( U )  up to t ime  t , W = (w)tao . 

The proof of this s tatement  based on the idea of "innovation", widely 

used in martingale approach to filtration and stochastic control prob- 

lems [ 3 , 8 , 9  ] is given in the Appendix. 



Another Eorrn of this idea appeared and was explored in the demo- 

graphical studies of population heterogeneity dynamics [7.10,11 ]. 

Differences among the  individuals or units in these studies were 

described in terms of a random heterogeneity factor called "frailty". This 

factor is responsible for individuals' susceptibility t o  death and can 

change over t ime in accordance with the changes of some external vari- 

ables, influencing the  individuals' chances to die (or to have failure for 

some unit  if one deals with t h e  reliability studies). 

When the  influence of the external factors on the  failure ra te  may 

be represented in terms of a function which is a quadratic form of the 

diffusion type Gaussian process, the result of Theorem 3 .may be 

developed a s  follows: 

Theorem 4. Let the m-dimensional  H-adapted process Y(u) 

s d i s f y  the l inear  stochast ic di f ferent ial  equafion 

where Yo .is the Gaussian random variable w i t h  m e a n  mo and  var iance 

yo . Denote b y  Q(U) a symmeCric non-negative def ini te mat* whose 

e lements  sa t is fy  condi t ion (1). m e n  the n e z t  f o r m d a  is h e  

The processes m, and y,, are the s01ut iom of the fol lowing ord inary 

di f ferent ial  eguat ians: 



with the initial conditions mo and yo , respectively. 

The proof of th is  theorem is based on the  Gaussian property of the  

conditional distribution function P (Y(t ) < z 1 T > t ) . This situation 

recalls the well-known generalization of the Kalman filter scheme 

[3,12,13,14 ] (see Appendix). 

Note tha t  a similar approach to the  averaging of the  survival func- 

tion was studied in [6 ] under the assumption tha t  t he  conditional Gaus- 

sian property take place. The mortality ra te in this paper was assumed to 

be influenced by the  values of some randomly evolving physiological fac- 

tors such a s  blood pressure or serum cholesterol level. 

We will i l lustrate the  results and ideas on several examples. 

3.1. Failure Rate as a Function of a Random Variable 

Let (Q,H.P) be the  basic probability space, Y(o )  and T(w) be two 

random variables, such that T(o) > 0 with a probability one and has a 

continuous distribution function. ~ ( w )  and T(w) will be interpreted as 

external environmental factor and termination (death) t ime, respec- 

tively. 

Assume tha t  the external factor influences failure ra te  by means of 

random variable Z = y 2 .  Let o(Z) be a o-algebra in Q generated by 

the random variable Z . Denote by ~ ( t  .z) = P ( T S t I U(Z) ) the  u(z)- 

conditional distribution function of termination t ime T .  Assume that  

F( t  .Z) has the form 



where A(t) , t r 0 ,  is deterministic function of t that may be inter- 

preted as the age-specific mortality rate for an average (standard) indivi- 

dual [11 1. 

Let F ( t )  denote the unconditional distribution function for T ( w )  , 

and x( t )  is determined by the equality 

This function was called "observed mortality rate in [I1 ] since i t  

represents mortality approximated by empirical death rates which are 

evaluated without taking population heterogeneity into account. It can 

be easily shown [11 ] that 

where 

is the conditional mathematical expectation of Z given the event 

t T > t j .  

The form of the x( t )  as a function of time is determined by the the 

conditional distribution of frailty Z and h(t)  . It turns out that if the 

frailty Z is generated by Gaussian random variable Y .  the analytical 

form for a t )  might be easily found. Moreover, this conditional distribu- 



tion of Y is Gaussian, as shown in the following theorem. 

Proposition 1. Let Z = y2 , where Y is a Gaussian r a n d o m  variable 

with m e a n  a and variance . Then the condit ional d is t r ibut ion of Y 

g iven the event 1 T > t j is also Gaussian, with a m e a n  ml and var iance 

yt that safisfy the equations 

The result of this statement follows from Theorem 4. I t  can also be 

proved independently using Bayes' rule. According to  this rule the condi- 

tional density of random variable Y may be represented in the form: 

where (from the definitions of Z and T )  

and 

Substituting the formulas for h ( 2 )  and P ( T > t ) into the  equation 

for P(z  ( T >  t )  leads to 



where 

and f ( t )  is some function that does not depend on z and acts as a nor- 

malizing factor. It is evident that this form of the conditional density 

g ( z , t )  corresponds to a Gaussian distribution with 
a 

and 
2a2A(t ) + 1 

8 as mean and variance, respectively. Substituting these 
2 u 2 ~ ( t  ) + 1 

values for mt and yt , i t  is not difficult to check that they satisfy the 

equations given in the theorem. 

Remark. Note that results of this theorem may be represented by 

the following averaging formula 

which has the form similar to the Cameron-Martin result. 

3.2. Mortality in a Structurized Population 

Assume that  some population may be represented as a collection of 

several groups of individuals (men and women, ethnic groups, etc.). 

Introduce a random variable Z taking a finite number of 'possible values 

(1.2 ,.... K) with a p i o n  probabilities pI .p2 ,,... p ~ .  Let the age-specific 

mortality rate of the average individual depend on the value of the ran- 

dom variable Z ; - this will be associated with a particular social group. 

Assume that the survival probability of a person from group j with a 

history fl  of environmental or physiological characteristics up to time 

t may be written as follows: 



where Y ( t )  is the process described in formulation of the Theorc-; 4. 

If the observer takes into account the differences between the peo- 

ple belonging to different social groups he should produce K different 

- 
patterns of age-specific mortality rates i ( i , t )  , i = 1 . K .  

Proposition 2. 7he mortal i ty rates corresponding to the conditional 

survival probabilities 

are given by the forrnuLas 

where K different estimations m, ( i ) ,  yt ( i )  are the soLutions of the fol- 

lowing equations: 

If evolution of the environmental or physiological factors also 

depends on random variable Z ,  there are K different processes 

influencing the mortality rates in each of the K population's group 

respectively. 

d Y , ( t )  = a o ( i , t )  + a l ( i , t )  Y , ( t )  dt + b ( i , t )  d W,,! . Yi(0)  = &,, 

where the Y,,o are Gaussian random variables with means mo(i)  and 



variances yo(i) , and the W ,  are independent H-adapted 'Wiener 

processes. The formula for X(i,t) will be the same as before, but the 

equations for ( i )  and 7; ( i )  will contain different parameters 

ao(i,t ), al ( i , t  ), b( i , t )  : 

dm; (i) - 
dt = ao( i , t )  + a l ( i , t )  mt (i) - 2 mt ( i )  7; ( i )  A(i,t) , rno(i), i  = 1,K 

If the observer does not differentiate between people from different 

groups the  observed age-specific mortality ra te  x(t)  will depend on the  

- 
proportion ni ( t ) ,  i = 1,K, of individuals in the  different groups. These 

proportions coincide with the conditional probabilities of the events 

- 
[ Z = i  j , i  = 1.K,  given f T > t 1 , and can be shown to satisfy the fol- 

lowing equations 

where 9(0) = pj . In this case i ( t )  may be represented as follows: 

3.3. Evaluation of Mortality Rate in Multistate Demography 

Assume that  & is a finite s ta te  continuous t ime Markov process 
I 

with vector initial probabilities p , ,  . . . % and intensity matrix 

with bounded elements for any t  r 0 .  The process & can be inter- 

preted as a formal description of the  individuals' transitions from one 



state to another in the multistate population model. Denote 

Hf = 01L,u s t j. The following statement is the direct corollary of 

Theorem 3. 

Proposition 3. Let the process & be associated w-dh the death t ime 

T as fol lows: 

Then the n e z t  f o rmu la  .Is t rue:  

where the n i ( t  ) are the solutions of the following s y s t e m  of the ordinary 

di f ferent ial  equat ions: 

urith ?(o) = p j  . 

- 
The variables s r j ( t ) ,  j = 1.K can be interpreted as  the proportions 

of the individuals in different groups at  time t .  



3.4. Proof of Theorem 3 

Let H = (Ht)tM be a nondecreasing right-continuous family of o- 

algebras in R and let Ho be completed by sets of P-zero measure from 

H = H , .  

Denote by Y(t ), t 2 0 ,  the continuous time H-adapted process 

defined on (D,H,P) that  describes the evolution of these factors. Denote 

by W the family of o-algebras in R generated by the values of the ran- 

dom process Y(u) : 

Assume that  w-conditional distribution function of death time T may 

be represented by the formula 



where A(Y,u)  was introduced before. 

Using the terminology of the martingale theory [3,15 ] and the  

recent compensator representation results [16 ] one can say tha t  the 

process 

is an F -p red ic tab le  compensator of the life cycle process 

where HZY = (w)trD, = V w, HiZ = cr1;51u.u : t  j. This means tha t  

the process 

is an  IF-adapted martingale. If the  termination time T is viewed as  

the time of death, the process A( Y , u )  , 0  s u < t  , may be regarded a s  

the  age-specific mortality ra te  for an individual with history 

rfi = { Y ( u ) ,  O l u ~ t  1. 

Let HI = (x)t,D. Denote by A ( t )  the HI-predictable compensator 

of the life cycle process Xt . According to the definition of the compensa- 

tor  and the compensator representation results [3,1? ] one can write 

The formula for h(u)  is the resul t  of the following statement: 

1. Let Y ( t )  and T are related (LF it is described by the for- 

mula  (17). Then 

- 
h ( t ) = E [ A ( Y . t )  1 T r t  ] 



Proof. Note that the process 

is Hz- adapted martingale that can be represented in the form 

where 

The process Nt seems to be Hz-predictable martingale. To prove that,  

i t  is enough to check the martingale property 

that  easily follonvs from the equality 

and the process 

is IF-adapted martingale. Note further that o-algebra has the 

atom tT > u j [18 ] and consequently 

The non-decreasing process on the right-hand side of this equality is 

Hs-adapted and continuous and, consequently, i t  is HZ-predictable. The 

uniqueness of Hz-predictable compensator implies the formula 



and consequently 

x ( t )  = E [ A ( Y , ~ )  I T >  t  ] 

In particular cases when h ( Y , u )  = Y * ( u ) ~ ( u ) Y ( u )  where Q ( u )  is the 

matrix with property ( I ) ,  formula for h(t ) will be 

- 
1 = m;Q(t )mt + * ( Q ( t  IT*)*  

where rn, = F . [ ~ ( t ) l  T > t  ] 

7: = a ( Y ( t ) - m t ) ( Y ( t )  -mt)*  I T > t  I .  

and 

3.5. Proof of Theorem 4 

I ~ o a u c e  the conditional characterist ic Function f t(a) defined as 

follows: 

f r  (a) = E ( e'"*Y(') I T > t ) ,  t 20. 

According to Bayes' rule, this can be approximated by 

f t  (a) = I&' ( e ' ~ * Y ( t )  ~ ( t )  

where 

and denotes the mathematical expectation with respect to  marginal 

probability measure corresponding to the trajectories of the Wiener pro- 

cess W,, Osu I t  , and 

Y . ( d Q ( u ) Y ( u )  = E (  Y e ( u ) Q ( u ) Y ( u )  I T > u ). 

Using Ito's differential rule one can represent the product eia*Y( ' )p(t)  as 



Taking the mathematical expectation of both sides of this equality 

leads to  

Notice tha t  f ,(a) has the form: 

This particular form and the  equation for f (a) generate the idea tha t  

one should search for an f; (a)  in the same form: 

where mc and yt satisfy some ordinary differential equations 

(We assume that  the equations for m, and y, have unique solutions.) 



The vector function g ( t )  and matrix ~ ( t )  can be found from the equa- 

tion for f ,  ( a )  . In order to do this note that the following equalities hold: 

where f i t  and f  denote the vector of the first order derivatives and 

the matrix of the second order derivatives respectively, of the function 

f t  (a) with respect to a . 

Applying these formulas to the equation for f  (a) we obtain (omit- 

ting the dependence of f t  (a) on a for simplicity): 

Derivatives f ht and f kt may be calculated from equation (k2): 

Substituting these derivatives into the equation for f ; (a),  differentiating 

with respect to t and using equations (k3)  and (k4) for mt and 7; we 

obtain: 



Taking the real and imaginary parts of this equality yields 

which lead to the equations for mt and yt described in the theorem. 

Notice that  the form of the f,(a) noted above corresponds to  the 

Gaussian law for conditional distribution of the Y ( t )  given the event 

[T > t 1. 

It is left to shonr now that equation (A4)  with G(t ) given by (A.6) has 

a unique solution. One can easily do this implementing the approach 

developed in [3  ] , chapter 12. 
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