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PREFACE 

The Adaptation and Optimization project at IIASA is largely 

concerned with the development of algorithmic procedures for stoch- 

astic programming problems. In this paper, Professor Georg Pflug 

of the University of Giessen considers existing methods of con- 

trolling the step size in algorithms based on stochastic quasi- 

gradient techniques, and presents a new, adaptive step-size rule 

that leads to more rapid convergence of the associated algorithm. 

ANDRZEJ WIERZBICKI 

Chairman 

System and Decision Sciences 





ABSTRACT 

For a l go r i t hms  of t h e  Robbins-Monro t y p e ,  t h e  b e s t  cho i ce  

( from t h e  asymp to t i c  p o i n t  o f  v iew) f o r  t h e  s t e p - s i z e  c o n s t a n t s  

a  i s  known t o  be a/n. From t h e  p r a c t i c a l  p o i n t  of v iew,  however, n  
a d a p t i v e  s t e p - s i z e  r u l e s  s e e m  more l i k e l y  t o  produce qu i ck  con- 

vergence.  I n  t h i s  paper  a  new a d a p t i v e  r u l e  f o r  c o n t r o l l i n g  t h e  

s t e p  s i z e  i s  p resen ted  and i t s  behav io r  i s  s t u d i e d .  





ON THE DETERMINATION OF THE STEP SIZE 
IN STOCHASTIC QUASIGRADIENT METHODS 

Georg Ch. Pflug 

1. INTRODUCTION AND HISTORY OF THE PROBLEM 

We consider the problem of unconstrained minimization of a 

function: 

h (x) = min! 

by a stochastic quasigradient method. This implies the use of a 

steepest-descent (gradient) algorithm for which only statistical 

estimates of the gradients but not their exact values are avail- 

able. In particular it is assumed that at each point x and for 

every E > 0 we can observe a vector-valued random variable Yx 
I & 

such that its expectation E(Y ) satisfies 
X I &  

Sometimes there is even an unbiased estimate Yx of the gradient, i.e., 

The unknown minimum point xo = argmin h is estimated by a recursive 



sequence {x,} of  t h e  form 

where Yn i s  a sequence o f  s t o c h a s t i c  q u a s i g r a d i e n t s ,  i . e . ,  t h e  

c o n d i t i o n a l  e x p e c t a t i o n  of  Yn given t h e  h i s t o r y  o f  t h e  approx i -  

mat ion p rocess  s a t i s f i e s  

The v a l u e s  an a r e  t h e  s t e p - s i z e  c o n s t a n t s  and X I  is an a r b i t r a r y  

s t a r t i n g  va lue .  

Un i va r i a te  r e c u r s i o n s  o f  t h e  form ( 1 )  were cons idered  f o r  

t h e  f i r s t  t ime i n  a  p ionee r i ng  paper  by H.  Robbins and S. Monro 

i n  1951. These a u t h o r s  examine t h e  problem o f  r e c u r s i v e l y  e s t i -  

mat ing t h e  r o o t  o f  an unknown r e g r e s s i o n  f u n c t i o n  R ( * ) .  I n  t h e  

min imizat ion c a s e  t h i s  amounts t o  assuming t h a t  one can o b t a i n  

an  unb iased e s t i m a t e  o f  h t  ( 0 ) .  I f ,  however, on l y  an unb iased 

e s t i m a t e  of h ( * )  [ n o t  of h t ( * ) ]  i s  a v a i l a b l e ,  t hen  h t ( * )  h a s  t o  

be approximated by numer ica l  d i f f e r e n t i a t i o n .  The cor responding 

procedure was developed by J. K ie fe r  and J. Wolfowitz i n  1952. 

These two methods were gene ra l i zed  t o  t h e  mu l t id imens iona l  

c a s e  by B l u m  (1 954) . Sacks (1 958) proved t h e  asympto t i c  no rma l i t y  

of  t h e  p r o p e r l y  normal ized p rocess  Xn i n  t h e  Robbins-Monro (Rl l )  

case .  The Kiefer-Wolfowitz (KW) s i t u a t i o n  is a b i t  more compli- 

c a t e d ,  s i n c e  i n  t h i s  c a s e  two speeds of approximat ion i n f l u e n c e  

t h e  asympto t i c  behav ior :  t h e  d e t e r m i n i s t i c  speed of  t h e  approx- 

imat ion o f  O h ( = )  by f i n i t e  d i f f e r e n c e s  and t h e  s t o c h a s t i c  conver- 

gence r a t e  de r i ved  from t h e  C e n t r a l  L i m i t  Theorem. It was shown 

by Fab ian (1967) t h a t  t h e  r a t e  o f  convergence can be i nc reased  

cons ide rab l y  by us ing  h igher -o rder  numer ica l  approx imat ions of 

t h e  g r a d i e n t .  Fabian (1968) a l s o  gave a  v e r y  g e n e r a l  r e s u l t  con- 

ce rn ing  t h e  asympto t i c  norma l i t y  of  r e c u r s i v e  schemes, i nc lud ing  

t h e  RPI! and KW p rocesses .  

The asympto t i c  d i s t r i b u t i o n  depends on (i) t h e  l o c a l  proper -  

t i es  o f  h  ( . )  a t  t h e  minimum p o i n t  xo = argmin h  ( * )  ( o r ,  more p re -  
2 c i s e l y ,  on t h e  Hessian V h ( e ) ,  if t h i s  e x i s t s ) ;  (ii) t h e  covar iance  



structure of Yx; (iii) the step-size constants an; and (iv) the 

way in which Vh(-) is approximated numerically. It is, however, 

independent of the starting value XI. In particular, there is -- 
from the asymptotic point of view -- a best choice for the con- 

stants an, namely 

This choice maximizes the convergence rate. Moreover, in the 

univariate case there is even an optimal choice of the constanta, 

namely a = l/hw(x0), which minimizes the asymptotic variance. 

However, if only asymptotic convergence is required then the 

conditions 

are sufficient. 

The asymptotic approach is really rather unsatisfactory for 

practical applications. Due to the fact that the asymptotic 

distribution of Xn is independent of the starting value X I ,  the 

asymptotically optimal choice of the an is very bad for finite 

samples, especially if /X I  -xol is large. This is illustrated 

by the following example. 

1.1. Example. Let h(x) = Ix- xo1. We consider, for simplic- 

ity, only the deterministic gradient algorithm 

Let N be the first index for which IXn-xOI 2 E. Then N depends 

exponentially on 1x1 -xo(!  Thus we pay for a bad choice of starting 

value by incurring an exponentially increasing number of necessary 

steps. This disadvantage disappears if we consider only the 

asymptotic distribution. 

In practice it is preferable to choose the step length an 

such that it depends on the (unknown) distance X, - x o / .  If 

lxn-x I is very large the procedure should make large corrections; 0 



the step length should be decreased only when I x ~ - x ~ I  becomes 

smaller. On the other hand, it is clear that an adaptive choice 

of the an entails greater mathematical difficulty since in such 

a case the an can no longer be treated as constants, but become 

random variables an = an (xl , . . . ,xn) . We should emphasize the 

fact that methods based on the adaptive choice of step length an 

are quite different from random search techniques. In the adapt- 

ive choice approach an is a function of the (random) history of 

the process, whereas in random search methods the an are random 

variables which are independent of the past, but whose distribu- 

tional parameters may depend on past events. 

A first step toward the use of adaptively chosen step lengths 

in the RM case can be found in a paper by H. Kesten (1 958) . He 

proposed to take any deterministic sequence an satisfying (2) 

and set 

Ian-1 = am (say) if sgn Yn-, = sgn Yn 

otherwise . 

Kesten shows that the convergence properties hold in this case, 

but he was unable to give a mathematical argument to justify his 

procedure. 

A further contribution was made by V. Fabian (19601, who 

proposes a random linear search after the stochastic gradient 

has been evaluated. He takes additional random observations of 

h(Xn+ja Y ) ,  say Vnrj; j l l ,  and chooses an = j*an n n where j is 

the largest integer such that V > V n,l - n,2 - > * * *  "nrj9 With 
this choice it is also possible to derive the a.s. convergence 

properties. 

A different method of controlling the step size was proposed 

by Yu. Ermoliev et al. (1981). They assume that an unbiased 

estimate Zn of the objective function value h(Xn) is available 

and define (for k E N )  



Then an is  chosen accord ing t o  t h e  r u l e  

o therw ise  , 

where k ,  s and 6 a r e  a p p r o p r i a t e l y  chosen cons tan ts .  Th is  s tep-  

s i z e  r u l e  is  q u i t e  p l a u s i b l e  s i n c e  an is  decreased a s  soon a s  

it is ev iden t  t h a t  t h e  mean improvement i n  t h e  va lue  of  t h e  

o b j e c t i v e  func t i on  i s  t o o  smal l .  However, it is  a l s o  u n s a t i s -  

f a c t o r y ,  f o r  t h e  fo l lowing reasons : 

(i) The procedure cannot  d i s t i n g u i s h  between two d i f f e r e n t  

s i t u a t i o n s :  random f l u c t u a t i o n s  around t h e  minimum p o i n t  xo ,  

and smal l  g r a d i e n t s  combined w i th  l a r g e  v a r i a n c e s  f a r  away from 

x0.  I n  t h e  second c a s e  t h e  procedure w i l l ,  w i th  h igh p r o b a b i l i t y ,  

con t inue  t o  reduce t h e  s t e p  s i z e .  

(ii) Divergence caused by overshoot ing w i l l  n o t  be de tec ted .  

(iii) An a d d i t i o n a l  e s t i m a t e  of t h e  va lue  of  t h e  o b j e c t i v e  

func t i on  must be provided.  

A new method f o r  c o n t r o l l i n g  t h e  s t e p  s i z e  is  proposed i n  

Sec t ion  4 of t h i s  paper .  However, we  s h a l l  begin by cons ide r i ng  

some i n s t r u c t i v e  examples. 

2 .  EXAMPLES 

A g r a p h i c a l  r e p r e s e n t a t i o n  is  o f t e n  q u i t e  u s e f u l  i n  desc r i b ing  

u n i v a r i a t e  problems. A s s u m e  t h a t  Yx i s  an unbiased e s t i m a t e  of 
2 t h e  d e r i v a t i v e  h '  (x )  of  t h e  o b j e c t i v e  func t i on  h ( x ) .  L e t  a ( x )  = 

Var ( Y ~ ) .  The fo l lowing diagram shows a  p o s s i b l e  behavior  of E (yx)  = 

h '  ( x )  ( f u l l  l i n e )  and t h e  func t i ons  h '  ( x )  - + a ( x )  (dashed l i n e s )  . 



2.1 Example (Un iva r i a te  q u a d r a t i c  problem).  L e t  t h e  u n i v a r i a t e  

o b j e c t i v e  func t i on  t a k e  t h e  form 

and suppose t h a t  t h e  s t o c h a s t i c  g r a d i e n t s  Yn have expec ta t i ons  
2 axn and va r i ances  a . The s i t u a t i o n  can be desc r i bed  diagram- 

m a t i c a l l y  a s  fo l lows:  

To o b t a i n  a  b e t t e r  unders tanding of t h e  i n f l uence  of t h e  cho ice  

of s tep -s i ze  c o n s t a n t s  a n ,  w e  s h a l l  f o r  t h e  moment t a k e  them t o  
- be c o n s t a n t ,  an = a .  Then, in t roduc ing  t h e  e r r o r  v a r i a b l e s  Z n  = 

Yn - h '  ( X n )  procedure ( I  ) t a k e s  t h e  form 



or, equivalently, with c = aa, 

Xn is the superposition of a nonrandom drift 

and the zero-mean stochastic process 

The above can be approximated by the stationary process 

Un is an A R ( 1 )  process, since it is a stationary solution of the 

stochastic difference equation 

with moments 



S 
Corr (Un,Un-,) = (1 - C) 

Taking a trajectory from this process: 

we obtain a typical picture of the process Xn by superposition. 

Analogously, the gradient process 

can be approximated by the superposition of a deterministic 

component 



and the zero-mean stationary process 

'n is an ARPIA (1 ,I) process since 

The moments are 

u 2 
Var (Vn) = 

1 - (c/2) 

2 2 
Cov (Vn tVn-s for s > l  . ) = u c(l -ClS-' + (1 -c)  - - 

2 - c  

Note that if u2 = 0 then Xn + xo and Yn + 0 for any c such that 

0 < c  < 1. Hence there is no need for a reduction of the step 
1 size in the deterministic situation unless a > - .  If, however, - a 

u2 > 0, then 

- 
2 2 

lim Var (Xn - xo) - u a 

n+* 2c - c 2 

2 2 u C lim Var (Yn) = u + -  
n+* 2 - c  

and the process Xn will oscillate around the solution xo unless 

we reduce the step size. The asymptotic variance decreases as 

a + 0 ,  but on the other hand a small value of a results in slow 

convergence of the deterministic part. What we can learn from 

this example is that t h e  s t e p  s i z e  s h o u l d  be  r e d u c e d  i f  i t  i s  

e v i d e n t  t h a t  t h e  d e t e r m i n i s t i c  d r i f t  has  f a l l e n  t o  z e r o  and t h e  

f l u c t u a t i o n  o f  Xn i s  due o n l y  t o  t h e  random e l e m e n t  ( t h e  s t a t i o n a r y  

p r o c e s s  UnI. 



2.2 Example (Multidimensional quadratic problem). Let the 

objective function be of the form 

where A is a positive definite matrix. Without loss of generality, 

x is assumed to be zero. The error variables Zn are independent 
0 

and identically distributed with expectation 0 and covariance 

matrix C. Again we let the an remain constant and equal to a. 

The process (1 ) takes the form 

or, equivalently, 

Once again, X can be approximated by the sum of a deterministic n 
drift and the following vector-valued AR(1) process: 

This process is well-defined if a is smaller than the inverse of 

the largest eigenvalue of A. The gradient process 

can be rewritten as 

The stochastic part of this process can be approximated by the 

stationary vector-valued ARMA(1,l) process 

which fulfills the difference equation 



Clearly (3) determines the covariance structure of the process. 

Instead of considering the autocovariance matrices E(VnVA-s) we 

calculate the following two numbers: 

where tr (B) denotes the trace of matrix B. Use of the formula 

which is valid for positive definite matrices B with all eigen- 

values less than unity, leads to the simplifications 

As in the univariate case, the approximation process Xn converges 

(for fixed a) only if C = 0, i.e., if the procedure is a deter- 

ministic one. 

2.3 Example (Nonsmooth univariate case). In this example we 

consider the objective function h(x) = alx -xol and assume that 

the error variables Zn are again independent and identically 
2 distributed with expectation zero and variance a . Furthermore, 

we assume that the distribution of the Zn is symmetrical around 

zero and possesses finite moments of any order. Since h'(x) = 

a sgn (x - xo) if x # xo, the problem may be represented graphically 

as follows: 



Without loss of generality, we can assume that xo = 0. The 

stochastic approximation process (1) is then given by 

'n+ 1 = xn - aa sgn (x,) + aZn . (6) 

To which limiting distribution does this recursion converge, if 

any? Or, equivalently, what are the stationary distributions of 

the Markovian process (6)? Let G be the c.d.f. of the variables 

'no A stationary distribution F must clearly fulfill 

where 

and c = aa. 

This convolution equation is best handled by considering the 

Fourier transforms. Let X be distributed according to F and let 

Then (7) can be rewritten as 

(iCll (t) e 
-ict ict 

+ $2 (t)e $ (at) = $l (t) + $2 (t) , 



where $ ( - )  is the characteristic function of the Zn. We assume 

that $ ( * )  does not vanish anywhere, i.e., Zn is non-lattice. Any 

solution of (7) must be symmetric, i.e., such that 

The functional equation (8) can then be written as 

log (t) - log (-t) = log (at) - e 
ict) 

-ict - -1  - log (e $ (at) . 

Since, from the moment conditions on Zn, 

taking the derivative of equation (9) at the point 0 leads to 

2 2 
Hence E(X I:,,Ol 1 = + and therefore 

4c 

k On taking higher derivatives we see that ~ ( 1 x 1  ) is uniquely 

determined for odd k. (For even k the kth derivative vanishes 

on both sides.) Let 2Bk = E ( x ~  2k+l 
) ;  k > O .  Thus - 

Or, by introducing the distribution function 



we obtain 

We see that H ( - 1  and consequently F ( 0 )  is uniquely determined 

by the sequence {Bkl i f  t h e  c o r r e s p o n d i n g  moment prob lem (11) 

has  a  u n i q u e  s o l u t i o n .  

However, the author was unable to solve (10) explicitly 

even for a normal error distribution. It also seems to be difficult 

to determine the even moments, especially the variance of the 

symmetric solution. 

Nevertheless, we can still take the first absolute moment 

as a measure of dispersion. From (10) it can be seen that in 

this case Xn does not converge to zero unless a + O  e v e n  when 
2 a = 0. This is the important difference between examples 2.1 

and 2.3. The asymptotic dispersion (10) can be viewed as a super- 

position of a "deterministic part" c/2 and a stochastic part 
2 2 a a /2c. 

3. DETERMINISTIC STEEPEST-DESCENT METHODS 

In this section we study step-size rules for deterministic 

steepest-descent methods. Let h(*) be a quasiconvex, continuous 
k function defined on IR . This means that the sets 

are closed, convex sets. We assume that h is continuously dif- 

ferentiable for x # xo with gradient Vh(x) # 0 for x # xo and 

that S(xo) = {x0l, i.e., xO = argmin h ( ) . An algorithm of the 

form 

is known as a s t e e p e s t - d e s c e n t  a l g o r i t h m .  In mathematical pro- 

gramming the step-size constants an are usually determined from 



i.e., they are found by a line search. However, this type of 

procedure cannot be used in stochastic gradient methods since 

for these problems only a stochastic estimate of the optimal a 

would be available. Such an estimate would require additional 

observations as well as contradicting the basic philosophy of 

stochastic approximation: Not - to waste too much time trying to 

get a better estimation of the next step when the current point 

is still a long way from the solution. 

Let us therefore concentrate on those step-size rules which 

depend only on n (the number of the step) and the history 

(xl,...,x ) of the iteration process, and which do not require n- 1 
any additional evaluation of the objective function. 

One important subclass of these rules is formed by sequences 

an which depend only on n. The corresponding convergence proper- 

ties are given by the following theorem. 

3.1 Theorem. Let the function h be defined as above and 

suppose that for every E > 0 

then the iteration {xn} given by (12) converges to x0. 

Proof. Without loss of generality we can assume that xo = 0. 

If 11 xnII - > E then 



2 2 
Thus, f o r  l a r g e  n ,  11 xnll - > E imp l i es  t h a t  11 xn+l 11 A < 11 xnll - 2anK, 

where K i s  a c o n s t a n t  depending on ly  on E .  I f ,  however, 1 1  xnll - < E 

t hen ,  by t h e  c o n t i n u i t y  of V h ( - ) ,  ilVh(xn)ll i s  bounded and hence 

11 < 2~ f o r  l a r g e  n. From l a n  = w e  can conclude t h a t  IIxn+l - 
l i m  sup ilxnll - < E .  Since  E was a r b i t r a r y  t h e  theorem i s  proven. 

Before t r y i n g  t o  c o n s t r u c t  a more a d a p t i v e  s t e p - s i z e  r u l e  

w e  f i r s t  draw a t t e n t i o n  t o  t h e  fo l low ing  lemma. 

3.2 Lemma. L e t  h be convex and t w i c e - d i f f e r e n t i a b l e .  The func- 

t i o n  a  (Vh ( x )  , Vh (x-aVh ( x )  ) )  i s  monoton ica l ly  dec reas ing  and 

van ishes  i f  and on ly  i f  a  i s  t h e  s o l u t i o n  o f  ( 1 3 ) .  

Proof .  The a s s e r t i o n s  fo l low e a s i l y  from s imple  c a l c u l u s .  

The s i t u a t i o n  can be i l l u s t r a t e d  by t h e  fo l low ing  f i g u r e .  

S ince  ( Vh (x )  , Vh ( x  - aVh(x)) < 0 imp l i es  t h a t  a  i s  l a r g e r  t han  t h e  

op t ima l  a  g iven  by ( 1 2 ) ,  we a r e  l e d  t o  t h e  fo l low ing  h e u r i s t i c  

s t e p - s i z e  r u l e :  

The dec rease  by a  f a c t o r  o f  1/2 i s  somewhat a r b i t r a r y ;  any f a c t o r  

q (0  < q < 1 )  could  be taken.  



With this rule we can state and prove a convergence theorem. 

3.3 Theorem. Let h be defined as in Theorem 3.1. In addition, 

we assume that it is in£-compact (i.e., the sets S(x) are compact) 

and 1 1  Vh (x) l l  - < K I I  x - xoll . The iteration 

where an is given by (151, converges to xo for every starting 

value (xl ,a1 > 0). 

Proof. We show first that, for a > 0, ( Vh (x) , ~ h  (x-aVh (x) ) ) > 0 

implies that h(x) > h(x-aVh(x)). By virtue of the quasiconvexity 

of h 

Let z = x-aVh(x). Suppose that h(z) - > h(x), i.e., xES(z). 

Then 0 - > (z-x,Vh(z) ) = -a (Vh(x) ,Vh(z)) > 0 and the theorem is 

proven by contradiction. 

Now consider the sequence an. If lan < then xn converges. 

Let the limit be y. If I I  Vh (y) l l  > 0 then ( Vh (x) ,Vh (x-aVh (x) ) )  > 0 

for small a in a neighborhood of y. Thus y can be the limit only 

i f y = x  0 ' If an - 0 but lan = then xn converges to xo by 

Theorem 3.1. If an does not converge to zero, then there is an 

index N E I  such that an a for n - > N  and (Vh(xn),Vh(xn+,)) > 0. 

Hence h(xn) is decreasing for n - > N. The sequence {x,} has a 

cluster point y since h is in£-compact. Let z = y-aVh(y). Then, 

by continuity, h (z) = h(y) and ( ~h (z )  , ~ h  (x)) - > 0. This implies 

that either x = z or Vh(x) = O f  but in any case x = 
X ~ '  

We finish this section by looking at two examples. 

X 3.4 ~xample. Let h (x) = Ilxll . Then Vh (x) = if x # 0. 

Since ( xtvh(x)) = l l  xll and ( x,Vh (x)) = llxll the assumptions of 
I I  Vh (x) 11 

Theorems 3.1 and 3.3 are satisfied. The recursion (12) then takes 



t h e  form 

O r ,  w r i t i n g  xn = vnx l ,  

I f  {an} s a t i s f i e s  ( 1 4 )  and an+l - < an 2 2an+l then  

I f  {an} i s  determined by (15) then 

IIxnII = 0(2-") 

and w e  see t h a t  (15) i s  much b e t t e r  than ( 1  4 )  i n  t h i s  case .  

1 3.5 Example. Let  h ( x )  = x'Ax, where A i s  a  p o s i t i v e  

d e f i n i t e  matr ix .  Then Vh (x )  = Ax and 

where M and m a r e  t h e  l a r g e s t  and sma l les t  e igenva lues  of A,  

respec t i ve l y .  S i m i l a r l y ,  

and t h u s  t h e  assumptions of Theorems 3.1 and 3.3 a r e  s a t i s f i e d .  

Choosing t h e  c o n s t a n t s  an according t o  ( 1 4 )  l e a d s  t o  

Th is  impl ies  



Choosing, for instance, a = a/j we obtain j 

For this example, rule (15) can be written as 

I 

a ' 2 3 
n if x n A x n - a x A x  > O  n n  n 

a - - 
n+ 1 

an/2 otherwise . 
2 3 

It is evident that the constants an can never fall below m /2M . 
Thus, if the objective function is quadratic then the constants 

determined by rule (15) do not converge to zero and the rate of 

convergence of the iteration is at least 

Again, rule (1 5) is superior to (1 4) . 

4. A STOCHASTIC STEP-SIZE RULE 

A stochastic version of rule (15) is presented in this 

section. We once again consider the approximation process (1) 

where 

I 

It would be possible to approximate ( Vh (x,) , Vh (Xn+l ) ) by YnYn+l . 
However, it would be incorrect to compare this quantity with zero; 

we should rather look at the expectation of this value for the 

stationary distribution of (1). Since this distribution depends 

on h ( - )  we have to make some additional assumptions. 

1 ' We assume that h ( 0 )  is quadratic, i.e., h (x) = x Ax, since 

this is the most important case, and also that the covariance 



mat r i x  C of t h e  s t o c h a s t i c  g r a d i e n t s  Yn i s  independent  of Xn. 
I 

By ( 5 )  t h e  e x p e c t a t i o n  of  YnYn+l under t h e  s t a t i o n a r y  d i s t r i b u -  

t i o n  i s  

To s imp l i f y  t h e  r u l e  w e  r e p l a c e  aA(2I  - ( 2 1  - aA) ) = 

03 

3 1 (aA) i, by aA, neg lec t i ng  terms of  h ighe r  o r d e r  i n  A. aA(21 
i = O  

The q u a n t i t y  t r (aCA)  can be es t ima ted  by t a k i n g  a  random 

d i r e c t i o n  Dn a t  Xn and e s t i m a t i n g  t h e  g r a d i e n t  a t  Xn + aDn. To 
1  be more e x p l i c i t ,  l e t  Yn and Y: be two independent  e s t i m a t e s  o f  

1  1 2 
vh(Xn). Le t  Dn = (Yn  - Y,). Then E ( D n  ( x l  ,... , X n )  = 0 and 

1  
cov (D,) = T C .  ~ e t  XIncl = Xn + aDn and Tntl be an e s t i m a t e  of - U - vh (Xn+ l ) t  i .e . .  Yn+l  - "n+l + 'n+la Then 

1 A. I - 
E ( D n Y n + l )  = E ( D n ( A ( X n  + aDn) + Z n + l ) )  

t a 
= aE (DnADn) = t r  (AC) 

A more pars imonious use o f  t h e  random v a r i a b l e s  can be achieved 
1  1  2  by s e t t i n g  Yn = (Y, + Y,) ,  which has t h e  advantage of  reduc ing 

t h e  covar iance  m a t r i x  by a  f a c t o r  o f  1/2. The s t e p - s i z e  reduc t i on  

i s  then based on t h e  comparison 

Th is  method i s  summarized i n  a lgor i thm 4.1. The n o t a t i o n  Yn := 

Y ( X n )  i s  used t o  i n d i c a t e  an independent  f unc t i on  c a l l  of t h e  
4 e 

g r a d i e n t  e s t i m a t e .  I n  p a r t i c u l a r ,  Y 1  := Y (X,) ; yL := Y (X,) does 
1  2 n o t  mean t h a t  Y = Y . 

4.1 Algori thm 
I 

Step  1. Choose s t a r t i n g  va lues  X I ,  a 

S tep  2.  S e t n  := 0; N := 0. Go t o  S tep  4 



Step 3 .  S e t  n  := n+l 

1 Observe Yn = Y ( X n )  : y2 = Y ( X n )  n  

1 S e t  Y n  := - 1 2 
2 ( Y n  + Y n )  

Step 4 .  Perform Step  3 tw ice 

Step 5. I f  

then s e t  a  := a/2; N := n; s t o p ,  i f  a  - < E;  perform 

Step 3 twice and r e t u r n  t o  S tep  5  

Otherwise perform Step 3 once and then  r e t u r n  t o  Step 5  

I t  i s  important  t o  n o t i c e  t h a t  i f  t h e  procedure i s  determi-  

n i s t i c  Dn = 0 and 6, = 0. Therefore a lgor i thm 4 .1  i s  very  c l o s e  

t o  r u l e  (15) except  t h a t  t h e  a lgor i thm uses  t h e  a r i t h m e t i c  mean 
I 

of t h e  i nne r  products  Y k + l Y k .  

I n  o rde r  t o  reduce t h i s  d i f f e r e n c e  we could use a  v a r i a n t  

of t h e  a lgor i thm which employs a  s e q u e n t i a l  t - t e s t  i n s t e a d  of a  
* 

simple comparison of mean va lues.  Th is  a lgor i thm i s  presented 

below i n  more formal n o t a t i o n ,  which omi ts  i t e r a t i o n  i nd i ces .  

4 . 2  Algorithm 

Step 1 .  Choose s t a r t i n g  va lues  X ,  a  

S t e p 2 .  S e t n  := 0 ;  k  : = I ;  y =  0; ~ = 1  

* 
For t h e  theory  of s e q u e n t i a l  t e s t s  see  Govindaraju lu (1975) .  



Step 3 .  S e t n  : = n + l  ; k := k+l 

Observe Y' := Y ( X )  ; y2 := Y ( X )  

S e t  v := Y  

if k f l  

then  set a := a/2;  k := 0; 6 := 6/2; 

s t o p  if a < E; go t o  S tep  3 - 

then  go t o  S tep  3 

then set  k := 0; n := 0; go t o  Step 3 



The cons tan t  t r e p r e s e n t s  t h e  apper  a - f r a c t i l e  of a s tandard  

normal d i s t r i b u t i o n  and should be s e t  t o  a va lue  between 1 and 3. 

I t  i s  shown below t h a t  t h i s  a lgor i thm r e s u l t s  i n  a convergent 

i t e r a t i o n  p rocess .  

I 4.3 Theorem. Let  h ( x )  = 2 x Ax and l e t  t h e  covar iance mat r i x  

of t h e  g r a d i e n t  es t ima t ions  Yn be cons tan t .  Then t h e  r e c u r s i v e  

sequence ( 1 )  wi th  s t e p  s i z e s  given by a lgor i thm 4 . 1  o r  4 . 2  con- 

verges a. s. t o  zero.  

Proof.  We must cons ider  two d i f f e r e n t  cases .  I f  an + a  > 0 

then t h e  d i s t r i b u t i o n  of t h e  Yn approaches t h e  s t a t i o n a r y  d i s t r i -  

but ion.  Hence, by e r g o d i c i t y ,  

Hence, w i th  p r o b a b i l i t y  1 ,  t h e r e  must be an index N such t h a t  

a has  t o  be reduced. Hence an+O i s  impossib le.  N 

1 I f  an + 0 then ;; L Y ; + ~ Y ~ +  0 and hence E ( Y ; + ~ Y ~ )  = 0. Th is  

however imp l ies  t h a t  X n + O .  
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